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Abstract 

A  method is described that Yjelds Ule fast WaJsb bmsfmm (FFWT) in 

sequency  order. The advantages of this method  over  others are: 1) it i s  

based on the Cooky-Tukey-type fast Hadamard  transform (FHT) al- 
gorithm, 2) the computational effort is identical to the conventional FHT, 
and 3) the transform  remains its own inverse. 

Certain properties of a Hadamard matrix of order N= 2-w 
make it a convenient  vehicle for the computation of the fast 
Walsh transform (FWT) [ 11, [2].  The rows or columns of the 
matrix are Walsh functions. Since  each  element can only  be 
j 1 and each row or column is orthogonal to every other one, 
the inverse transform is  accomplished by repeated forward 
transforms due to  the symmetry properties of the matrix, and 
certain special Hadamard matrices of order N=2“ possess 
the additional property of having their rows or columns 
defined  by a simple  recursive formula. This last property 
lends  itself to  the computation of a “fast” transform using 
fast matrix factorization techniques, i.e.,  Cooley-Tukey 
factorization. In fact, by replacing the trigonometric multi- 
pliers in  the standard fast Fourier transforrn (FFT) routine 
by a 2 1 , the  FHT can be generated [2],  [3].  

The only drawback with the fast Hadamard transform 
(FHT)  is that those matrices that possess a simple  recursive 
formula and, therefore, a fast algorithm, are not capable of 
directly producing the  output coefficients ordered by in- 
creasing  sequency  [4], [5] .  Sequency, as defined by Harmuth 
[6, p. 501, is  one-half the average number of zero crossings 
per unit time interval. The ordering of the  output coefficients 
of a typical FHT is  called dyadic or  Paley ordering [ 5 ] .  

In order to convert from dyadic to sequency ordering, the 
output coefficient ordering must be decoded by  using a Gray 
code-to-binary decoder [ 5 ] ,  [7]. This, of course, slows  down 
the fast nature of the transform and results in additional 
computational costs.  Fig. 1 shows  Walsh functions in both 
sequency and dyadic  ordering. 

Fast Algorithm for Sequency Ordering 

By suitably modifying the FHT approach, a sequency- 
ordered FWT can  be computed that shares all  of the good 
properties of the FHT but eliminates the Gray code  decod- 
ing. The modification  is  best illustrated for the case  when 
M=3 and N=2”1=8. 
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Fig. 1. Walsh functions 0 through 7 ordered  dyadicqlly  (right)  and 
by increasing sequency (left). O = f / r  is normalized time. 

A property of all FHT techniques  based on fast matrix 
factorization is that coefficients at  the  output of the  trans- 
form are in bit-reversed order [3] ,  [4]. A necessary adjust- 
ment  involves the rereversing of the bits and reordering the 
coefficients in ascending  index order. Fig. 2 shows a general 
flow graph for  the Cooley-Tukey-type FHT. 

The first step in the modification  scheme  is to bit reverse 
the input data and reorder it in ascending  index order. In a 
standard FHT, one  may transform and then bit reverse or 
bit reverse and then transform, achieving the same end re- 
sult. In the modified FHT, the input must he bit reversed 
prior to the actual transformation. 

The second step is to define a reversal. A reversal  involves 
altering or  reversing the action represented by the solid and 
dotted lines arising from the nodes in Fig. 2. The solid  line 
indicates the transfer of the quantity from the node where 
the line originates to the node where the line terminates and 
the multiplication of this quantity by plus one. The dotted 
line represents a similar transfer, but  the multiplying factor is 
minus  one. Fig. 3 illustrates a reversal. In the reversal  case, 
the action may  be pictured in two  ways: the roles of the solid 
and dotted lines are interchanged (a solid  line transformed 
into a dotted line and vice  versa), or the quantity stored at 
the node from which the dotted and solid  lines  arise  is  multi- 
plied by a minus  one (- 1) and the action of the lines left 
unchanged. A reversal  can  occur  only at those nodes  which 
give  rise to both a solid and a dotted line. 

The third step is to determine  which nodes are to be  re- 
versed and which are to remain  unchanged. The following 
rules describe the selection procedure (all letters refer to 
Fig. 2). 

Rule I :  Lines originating from the input nodes IN are 
never reversed. 

Rule 2: The next set of nodes to the right, column AI ,  has 
2O= 1 “blocks” of reversal. A block  is  used to denote that 
group of computations (represented by- the lines)  which are 
disconnected from its neighbors above or  below. For ex- 
ample, in Fig. 2 there is  only  one  block  between the input 
nodes and nodes A1. There are two  blocks  between  nod.es A1 
and As,  etc. Starting with the 20= 1 blocks  between  nodes 
IN and AI, the number of blocks increases to  the right as 2’, 
22, and so on  up until the set  of  blocks  between  nodes A,w-~ 
and Al,f-l which  number 2-*f-1=N/2. In Fig. 2, the blocks 
are separated by the heavy broken lines. 
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Fig. 2. Signal flow graph of discrete FHT. Multipliers are +1 and - 1 as in- 
dicated  by the solid and dashed lines, respectively. The heavy broken  lines 
separate blocks. 
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Fig. 3. Illustration of the effect of a reversal on the computational flow of 
element Xr (P) .  The solid line indicotes multiplication by -l-1 and the dotted 
line by - 1 .  

Rule 3: Reversals  occur in blocks. At each  column of nodes 
AI after the  input nodes, the bottommost block or the one 
containing the largest indexed term has a reversal. The num- 
ber  of  reversals  per  block equals the number of nodes per 
block  divided  by  two. Working up a string of nodes AI ,  from 
XI(N- 1) toward Xl(0) every other block has a reversal. The 
topmost block or the one containing the term indexed (0), 
never has a reversal. 

Fig. 4 shows the resultant flow graph with just the blocks 
indicated and demonstrating the reversal pattern that is  gen- 
erated. Fig. 5 shows the final  flow diagram for N = P =  8 of 
the  FWT  that generates the  output coefficients  in  sequency 
order. 

Other Sequency Ordering Techniques 

There are basically three other general  schemes for calcu- 
lation of a sequency-ordered  Walsh transform. The process 
of decoding the output of a standard FHT is slower and more 
costly than  the plain FHT, and slower than  the modified 
FHT previously  described. 

A method described by Harmuth [6, pp. 45-48] necessi- 
tates writing a new algorithm since it differs from the familiar 
FFT algorithm which  may already be  available to the inves- 
tigator. Harmuth’s method also requires a programming 
change to compute the inverse transform and defining the 
function of interest on the interval [ -4 , ; )  instead of on the 
more usual [0, 1) interval. 

A third method involves arranging the rows of a Hada- 
mard matrix in the proper manner to insure output sequency 
ordering and then trying to construct a fast computational 
scheme for this structure [4]. Since this matrix does not 
have a very  simple  recursive formula [7], this method has not 
been notably successful as yet. 
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Fig. 4. Illustrates the positions of blocks in the flow graph of  a sequency- 
ordered FWT of order N=23=8. R indicates a block that has a reversal. 
BRO means bit-reversed order. SO means sequency ordered. 
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Fig. 5. Signal flow graph for the sequency-ordered FWT. The input data is 

assumed to be in bit-reversed order. The output coefficients C(i1 are in 
sequency order. The  solid line indicates multiplication by f l  and the 
dotted line by - 1. 

Conclusions 

A program for computing the FHT was  made by modify- 
ing an FFT program and was run on an IBM 360-65 com- 
puter in Fortran IV. The FHT program wasthen modified as 
described above to yield  sequency ordering and  run again. 
A comparison was then made  between  execution  times for 
the FHT  and the modified FHT or FWT for N up to 
29 = 5 12. It was found that  the increase  in computation time 
for the modified FHT over the standard FHT was  negligible. 

Therefore, the method for generating a sequency-ordered 
FWT or FHT as described  by this paper has several ad- 
vantages  over other sequency ordering methods. The modi- 
fied FHT is convenient  since it can be generated from well- 
known FHT or FFT techniques, is computationally no more 
costly than the standard FHT, and retains the  attribute of 
being its own  inverse transform. 
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