MIIFPPS

MIPS32® M4K™ Processor Core
Software User’'s Manual

Document Number: M D00249
Revision 02.03
August 29, 2008

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2002-2008 M 1 PS Technologies Inc. All rightsreserved.

MIPS;Y

Copyright © 2002-2008 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
thisinformation (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24K c, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.01, Built with tags: 2B MIPS32 PROC

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: Introduction to the MIPS32® M4K™ Processor COMe.....cccoeeviiiiiieiiiie e, 13
I T (U T P PP TP PP 14
1.2: MAK™ COre BIOCK DIBGIAIM ...ceiiiiiiiiieeiiite ettt ettt e et e ek e e et e e e e e e 16

1.2.1: Required LOGIC BIOCKSccoiiiiiiiiiitiie ettt e e e e 17
1.2.2: OPLioNal LOGIC BIOCKS.eeiiiiiiiitiee ittt ettt e et e et e e e s b e ee e 21

Chapter 2: Pipeling of the MAKT™ COrEccoviiiiiiiei ettt e e e e e e e e e e e e e e aaraaa e e eees 23

P 1o 1= [T TR =T [T PO RPPPPPPPRPOTPPPR 23
2.1.1: 1 Stage: INSIIUCLION FEICK ...eeiiiiiiiiie ettt eas 24
N S - Lo [l = =T ot U (o] o O PRSPPI 25
2.1.3: M Stage: MEMOIY FEICKHeeiiiiiiiiii ettt et aenneeas 25
N Sy NS = Vo [1o | o IR PPPTP 25
2.1.5: W Stage: WIHEEDACK ..ottt ettt as 26

2.2: MURIPIY/DIVIAE OPEIALIONSeeiiee it ee ettt ekttt e e e et e e e e e e b bt e e e e s bb et e e e e anba e e e e e abbreeaeaas 26

2.3: MDU Pipeline (High-Performance MDU)coouuiiiiiiiiiiee ittt et e e eee e 26
2.3.1: 32x16 Multiply (High-Performance MDU)oooiiiiiiiiiiiie e 29
2.3.2: 32x32 Multiply (High-Performance MDU)cooouiiiiiiiiiiiee et 29
2.3.3: Divide (High-Performance MDU)ooiiiiiiiiiieiiiiie ettt ettt 30

2.4: MDU Pipeline (Area-Efficient MDU)ooiiiiiiiiiiiie ettt ettt et e e e eae e 31
2.4.1: Multiply (Area-EffiCient MDU)ooiiiiiiiii ittt eas 32
2.4.2: Multiply Accumulate (Area-EffiCient MDU)ooiiiiiioiiiiie e 32
2.4.3: Divide (Area-Efficient MDU)ooiiiiiiiiie ittt ettt 33

RS =T = T (ol o I B T - PO RPPPOPPPRPOTPPPR 33

2.6: DAL BYPASSING ...ttetieiiitiiieee ittt ettt e e R bttt e 4o E e e e e e e R et e e e e e bb et e e e e ba e e e e e abbreee e 34
G T B o T- 1o [5 1= F- TP PPPP 35
2.6.2: Move from HI/LO and CPO DEIAY..........uuiiiiiiiiiieiiiieie ettt 35

2.7: COPIrOCESSON 2 INSIIUCTIONSeeiiee ittt ettt ettt e e ook bt e e e e ok et e e e e e s bb et e e e abb et e e e e anbb e e e e e sbbreeeeaas 36

2R S M 11 =T (oo Qo F=T g To | T T RO RPOPPPPRPOTPPPR 37

P2 S 11 J ©e] o To 111 To] o - TR RPPPOPPPRPOTPPPR 38

2.10: INSLIUCTION INTEITOCKSeeiei ittt e et e e e e h bt e e e e bb et e e e e aaba e e e e e sbbreeee e 38

0 T o = 2 U o P 39
2.10.0: TYPES OF HAZAIUS ...ceeeiiieeeie ettt ettt et e et e et e e nnne s 40
A A [o 1S3 (U Tt 1o T T IR 1 o PP PRPPP 41
2.121.3: ENMINALING HAZAIUS ...ttt ettt ettt e e ettt e e sttt e e s nnneeas 41

Chapter 3: Memory Management Of the MAKT™ COTeouiiiiiiiiiiiiiiiieee e 43
0 I [011 £ To (0T 1T o IO PP PP PP PUPRPPPPRPPRN 43
G Y/ [0 To [T o) @] o 1T = o) o PR 43

I VT4 (0T Y/ [T g o VAR T=To 0 1 =T £ USSP 44
32,2 USEI IMOUE.......ee ettt ekttt e h et oot e et ookt e bt et 46
K N (=T 1 =T 1Y oo [OO P PP PP PPRPN 47
G S B 1= o 10 o 1Y/ oo [P 49

G TR S =T 1Y/ = Vo o TV T AV Y PR 51

I S VA (=1 0 OT0] a1 (o] I @0] o] o Lot =TT o) USSP 53

Chapter 4: Exceptions and Interrupts in the MAK™ COre.......ccooeiiiiiiiiiee e, 55

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 3

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

e = (o= o 110 o W @] g o 11T o 1< TP PPURT TR 55

A (ot o110 o o 0] PP PPURT TR 56
G O [01 (=T A (U] o S TP PP SRS PRPPPPPPTPPN 57
Tt [01 (T 10T o1 1Y T o [= 2T PPPPP TP 57
4.3.2: Generation of Exception Vector Offsets for Vectored INtErrUPtSeevieeiiiiiiiiiiiiiiiiieeeeeeeee i 65
A €1 o = S = 1o [)V A =T o £ (= £ TSRS 66
4.5: EXCEPLION VECION LOCALIONScciiiiiiiiiiiiittt ettt ettt e e e e e e ettt ettt e e e e e e e s e b bbbt e e et e e e e e e e e e s annnbnbee e 67
4.6: General EXCEPLION PrOCESSINGcoiiiiiiiittiieeei e e e e ettt e e e e e e e e bbbt ettt e e e e e e e e s s e e bbb e beeeeeeeeeeeaaannneebeees 68
4.7: DebUQ EXCEPLION PrOCESSING ...coieiiiiiiiiiitiiieet e e e e ettt e e e e e e e e e bbbttt ettt e e e e e e s aa bbb bbbt e eeeeeeeeaaaannneaneees 70
R S (o= o 110 PP PP PUPT TP 72
4.8.1: RESEU/SOMRESET EXCEPLION ...ttt e e e e e e e e s bbbt e et e e e e e e e aaaannnbeeeees 72
4.8.2: Debug SiNgle STEP EXCEPLIONuiiiiiiiiiiii ittt e et e e e e e e e e e e aneebee s 72
4.8.3: Debug INtErTUPE EXCEPLION ...ttt ettt e e e e e e et e e e e e e e e e e e annbeneees 73
4.8.4: Non-Maskable Interrupt (NMI) EXCEPLION ...ttt 74
4.8.5: INTEITUPE EXCEPTION ...eeieeie ettt e oottt e e e e e e e e s e bbbt et e et e e e e e e e aeaannnbebeees 74
4.8.6: Debug INStruction Break EXCEPLION.........coai ittt e e e e e e e e e e aainaees 75
4.8.7: Address Error Exception — Instruction Fetch/Data ACCESS.........uuuuiiiiiiiiiaiiiiiiiiie e 75
4.8.8: Bus Error Exception — Instruction Fetch or Data ACCESS.......ccuuvuriiiiiiiieeeie e 76
4.8.9: Debug Software Breakpoint EXCEPLIONooiiiiiiiiiiieiiee ettt e e e e e 76
4.8.10: Execution Exception — SYStem Call.......cooiiiiiiiiiiiiiiiie e 76
4.8.11: Execution EXCeption — BreakPOiNt.........cooiiiiiiiiiiiiiiiii ettt e e e e e e e 77
4.8.12: Execution Exception — Reserved INSIIUCIONciiiiiiiiiiiiiiie e 77
4.8.13: Execution Exception — Coprocessor UNUSADIE ...t 77
4.8.14: Execution Exception — CorExtend UNUSaDIe.............coooiiiiiiiii e 78
4.8.15: Execution Exception — COProCeSSOr 2 EXCEPLIONcceiiiiiiiiiiiitieiiee ettt 78
4.8.16: Execution Exception — Implementation-Specific 1 EXCEPLIONuuviiiiiiiiiiiiiiiiiiiieee e 78
4.8.17: Execution Exception — Integer OVEIrfIOW............uuiiiiiiiiiiiiii et 79
4.8.18: EXECULION EXCEPLION —— TTAP .. .uttttiieiteieee ettt bbbttt e e e e e e e e e b bbb e e e e e e e e e e aasnnnbeeeees 79
4.8.19: Debug Data Break EXCEPLIONuu ittt e e e e e e e e e e e e e e e e e e e annbeneees 79
4.8.20: COMPIEX Break EXCEPLIONuiiiiiiiiii ettt e e e e e et e e e e e e e e e nebenee s 80
4.9: Exception Handling and Servicing FIOWCNAITSoooiiiiiiiiie e 80
Chapter 5: CP0 Registers of the MAK™ COrecoooiiiiiiiiii e, 85
5.1: CPO REQISTEI SUMIMAIY ...ceiiiitiiiee ettt e ettt e ettt e e e st bt e e e e aa b et e e o4k b et e e e oa ke e e e e a4 ek b et e e e e abb et e e e e anbb e e e e e sbbreeaeaas 85
5.2: CPO REQISEr DESCIIPLIONStieiiiiiiteeie ettt ettt ettt e ekttt e e e ekt e e e e a b bt e e e e ettt e e e e aaba e e e e e anbreeeeaas 86
5.2.1: HWREnNa Register (CPO RegiSter 7, SEIECE 0)c.uuiiiiiiiiiieeiiieie et 87
5.2.2: BadVAddr Register (CPO Register 8, SeleCt 0).........uuiiiiiiiiiiiiiiiie et 88
5.2.3: Count Register (CPO Register 9, SEIECT 0)uuiiiiiiiiiieiiiiii et 88
5.2.4: Compare Register (CPO Register 11, SEIECE 0)uuviiiiiiiiiieiiiiiee et 89
5.2.5: Status Register (CPO RegiSter 12, SEIECE 0)......cciiuurriiiiiiiiiie it 89
5.2.6: IntCtl Register (CPO RegiSter 12, SEIECT 1)......uiiiiiiiiiieiiiiiiie et 93
5.2.7: SRSCtl Register (CPO Register 12, SEIECT 2)ciiuiiiiieiiiiiie ettt 95
5.2.8: SRSMap Register (CPO RegiSter 12, SEIECE 3)......uuiiiiiiiiiiiiiiiiiiee et 98
5.2.9: Cause Register (CPO Register 13, SEIECT 0)....uiiiiuuiiieeiiiiiiieeiiiiie e 99
5.2.10: Exception Program Counter (CPO Register 14, SeleCt 0)ccuvviiiiiiiiieiiiiiiiee e 102
5.2.11: Processor Identification (CPO Register 15, SeleCt 0)ocoiiiiiiiiiiiiiiieieiiee e 103
5.2.12: EBase Register (CPO RegiSter 15, SEIECT 1)ocuriiiiiiiiiiie ittt 104
5.2.13: Config Register (CPO Register 16, SEIECE 0).......cuuririiiiiiiiieeiiiiiie et 105
5.2.14: Configl Register (CPO RegiSter 16, SEIECE 1)......uuiiiiiiiiiiiieiiiiiie et 106
5.2.15: Config2 Register (CPO RegiSter 16, SEIECE 2)........uuviiiiiiiiiiiiiiiee et 107
5.2.16: Config3 Register (CPO RegiSter 16, SEIECE 3).......uuiiiiiiiiiiiiiiiiiet et 108
5.2.17: Debug Register (CPO Register 23, SElECE 0)ocuuviiieiiiiiiie it 109
5.2.18: Trace Control Register (CPO Register 23, SEIECT 1)cuuviiiiiiiiiiie et 112

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2.19: Trace Control2 Register (CPO Register 23, SElEeCt 2)oovvveiiiiiiiiiiiiiiiis e 114

5.2.20: User Trace Data Register (CP0 Register 23, SeleCt 3)........cuuuuriuiuiiiiiiiiiiie e 116
5.2.21: TraceBPC Register (CPO Register 23, SEIECL 4)coiiiiiiiiieereee et 117
5.2.22: Debug2 Register (CPO Register 23, SEIECE 6)cccoiiiiiiiiieeeeri e e e 118
5.2.23: Debug Exception Program Counter Register (CPO Register 24, Select 0)ccccovvviiiviiiiieeenenn. 118
5.2.24: ErrorEPC (CPO Register 30, SEIECT Q) ...uuiiiiiiiiei i e e e e e e e e e e e e e e e anaanas 119
5.2.25: DeSave Register (CP0O Register 31, SElECt 0)cooiiiiiiiiiiiiiiii e 120
Chapter 6: Hardware and Software Initialization of the MAK™ Core..........cccccceeeiiiii e, 121
6.1: Hardware-Initialized ProCESSOr STALEuiiiiii ittt e e e e et e e e e e e e e e s e e anneeeeeees 121
6.1.1: COPrOCESSOr O STALE ...ttt e e e e e e e e e et e e e e e e s e e e e e ae s 121
6.1.2: BUS State MaCRINESottt e e e e e e e ettt et e e e e e e e e e e et e eeeeaeens 122
6.1.3: Static CONfIGUIALION INPULS ...t et e e e e e e 122

L I S = o] I [0 ST USRI 122
6.2: Software INitialiZed ProCESSOr STALEeiiiiii ettt e e e e e e e e e e e e e e e e e e e s e e annneeneees 122
B.2.01 REGISIET FIlE ...ttt ettt e et e e e 122
6.2.2: COPIOCESSOr O STALE ...ttt ettt e e e e e et e e et e e e e e e s e e e e e e eee s 122
Chapter 7: Power Management Of the MAK™ COTeuiiiiiiiiiiiiiiiie e 125
7.1: Register-Controlled POWEr ManagemMENTccoiiiiiieiiiiiieieeeee e e s esee ettt e er e e e e e e e s s asntnteeeeraeeaeeeesssannnsenenees 125
7.2: Instruction-Controlled PoOwer ManagemeENntcccuuuuiiiiiiiieee e s sttt e e e e e e e s s st rereeee e e e e e s e annnnenenees 126
Chapter 8: EJTAG Debug Support in the MAK™ COreooiiiiiiiiiiiiiieeeeeeeiiieee e 127
o0 R B L= o TH o I @ o T 1 0] I =T o £ (= SO 128
8.2: Hardware BrE@KPOINTSciieaiiiiiiiiiie ettt e e e e e e bbbttt et e e e e e e e e e s bbb b et e e e e e e e e e e e e e annnbbebee e 129
8.2.1: Features of INStruction BreakpOintt 130
8.2.2: Features Of Data Brea@kKPOINTooiiiiiiiiiiie ettt e e e e e et e e e e as 130
8.2.3: Features of Complex BreakpOintS.ottt e e 130
8.2.4: Conditions for Matching BreakpOints et 130
8.2.5: Debug Exceptions from BreakPOiNtS............ue ittt e e e e eeeee s 132
8.2.6: Breakpoint Used as TrGQEIPOINTcoiiiiiiiiii ettt e e e e e e et eeeeee s 133
8.2.7: Instruction Breakpoint REGISIEIScooiiiiiiiiiie ittt e e eeeeae s 134
8.2.8: Data BreakpOint REQISTEIS ittt e e e e et e e e e e e e e e e e et e e eeeeeeeeas 138
8.2.9: Complex Breakpoint REGISIEIS.cooi ittt e e et e e e e as 144
8.3: Complex BreaKpPOINt USAQEccooiiiiiiiiiieee ettt et e e e e e e e e e s bbb e e et e e e e e e s e annbbebee s 148
8.3.1: Checking for Presence of Complex Break SUPPOIT........c..uuuiiiiiiiiieeaiaiiiiiiee e 148
8.3.2: General Complex Break BENAVION..........c...uiiiiiiiiiieeee ettt 149
8.3.3: USAQe Of PASS COUNTEISciiiiiiiiiiiiitititise s s e s e s e e e e e e e e e e e e et et e ee et et s s e e e e aaeaeaeaaaaeaeeeeeeeseensenrnnns 149
8.3.4: Usage Of TUPIE BreaKPOINTScuiiiiiiiiiiititee ettt e e e e e e e e et be e e e e eaee s 150
8.3.5: Usage of PrimiNg CONILIONS.uuuuiiiiiiiiiss e e e e ettt s e e e e e e e e e e e e aaaeeeeeeeaeseensanrnnas 150
8.3.6: Usage of Data Qualified BreakpOintSuuiiiiiiiiiiiiiiie et 150
8.3.7: Usage Of SOPWALCH TIMEISeiiiiiieeii ittt e e e e e e e et eeeeae s 151
o o oot ST S o A (1 2 . TP 151
8.4.1: EJTAG Internal and EXternal INTErfaCES.uuiiii it 152
8.4.2: TeSt ACCESS POIt OPEIALIONeeeiieieeiiii ittt e e e et e et e e e e e e e e eeeeaeeeeas 152
8.4.3: Test AcCeSS Port (TAP) INSITUCHIONSuvueiiiiie eeaneneanrnnes 156
T = N I I AN e =T o £ (= £ SO 158
8.5.1: INSIIUCLION REQISTEN ...ttt e e e et ettt e et e s e e e e e e e e eaeaaaaeaeeeeeeeeennennrnnes 158
8.5.2: Data REQISIEIS OVEIVIEWceeviiiieiiiiiiiiiaiss s s et e e e e e eeaeaeee e et e eeeeaaseaaatas e ae s e aeaaaaaaeaaaaeeareereeesennrnrnnes 158
8.5.3: Processor ACCESS AAUIESS REQISTEIuuuuuiiiii i e i eeeaenaanrenns 165
8.5.4: Fastdata Register (TAP INStruction FASTDATA)ccoiiiiiieeeeeeeee e e e e e e e e e e e e e e e e e eeenanranns 166
8.0: TAP PrOCESSON ACCESSESttututuiuu e e et et e e e e e e ettt ettt e ettt aetete et e b e oo o e o e oo e e e e e e e e et ettt et eeeeesebebsbbbb b 167
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 5

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.6.1: Fetch/Load and Store from/to the EJTAG Probe through dmseqccccooevviiiiiiiiiiiiiiis 168

8.7 TraCE MECRNANISIMS ...ttt et e e e oo oo o kbbb ettt e e e e e e e e o e s bbb bb e et e e e e e e e e e s e e annnbbeeee e 169
8.8 IFIOWLIrACE™ MECRANISIM ...ttt e e e e e e e s e s bbbt e et e e e e e e e e aanbbebee e 169
8.8.1: A Simple Instruction-Only TraCing SCREMEcoiiiiiiiiii e 170
8.8.2: ITCB OVEIVIBW ...ttt ettt e oo oo 4ottt e e e e a2 4o oo bbb e ettt e e e e e e e e e anbbbnbeeeaaeaeeas 171
8.8.3: ITCB IFIOWTIACE INEITACEeeeeiiieieeiiie ittt e e e e e et eeeaeeas 171
8.8.4: ITCB IFlowTrace Storage RepreSeNntationooiiiiiiiiiiiieeee et 172
8.8.5: ITCB IFIOWTIACE INEITACEeeiiiiieieeiiiiit ettt a e e e eeeeae s 172
8.8.6: ITCB IFlowTrace Off-Chip INTEITACE...........uuiiiiiiiiie e 173
8.8.7: Breakpoint-Based Enabling Of TraCing............uuiiiiiiiiiiiiiiiieee et 174
R T = I G I = od TP OO PP RPUP PR PRTPP 174
8.9.1: PrOCESSON IMOUES ...ttt ettt e oo oo oottt et e e e e e 4o e o bbb et ettt e e e e e e e e e e aanbbbbbeeeaaeaeeas 175
8.9.2: Software Versus Hardware CONTIOL............uuuiiiiiiiiiiaii et ae s 175
8.9.3: TracCe INFOIMALION ...ttt et e e e e e e e o bbbttt et e e e e e e e e annbbebeeeaaeaeeas 175
8.9.4: Load/Store Address and Data Trace INfOrmMation...........c..uuuiiiiiiiiieioiiiee e 176
8.9.5: Programmable Processor Trace Mode OPtIONS......c.oiiiiiiiiiiiiiiieee ettt 177
8.9.6: Programmable Trace INformation OPLIONSccuiiiaiiiiiiiiiiiie it 177
8.9.7: Enable Trace to Probe/On-Chip IMEIMOIYuiiiiiiiaiiiiiieee ettt 178
RS IR A O = T I T [= PP PPPTPTRRRPSTPPN 178
8.9.9: Cycle by Cycle INFOIMALIONcoiiiiiiiiii et e e e e e e e e e e e e e e eeeeeeeeeaeneanrnea 179
8.9.10: TracCe MESSAGE FOIMIAL......cciiiiiiiiiee et e et e e et et e e e e e st e e e e e eebba e e e e eeansneeas 179
8.9.11: TraCe WOKM FOIMMALttt e ettt e e e e e e e e e o bbb ettt e e e e e e e e e e aannbeebeeeeaeeeeas 179
8.10: PDtrace™ Registers (Software CONLIOI)..........ooiiiiiiiiiiiiire e e s 179
8.11: Trace Control Block (TCB) Registers (Hardware CONtrol).........ccccoveiiiiiieiiiiiiiiieceeeeeee e 180
8.11.1: TCBCONTROLA REQISTEIeititiiieieiiiiitt ettt ettt e e e e e e e e bbbttt et e e e e e e s e e annbb b b e eeeeeeeeas 180
8.11.2: TCBCONTROLB REQISTENeeiiiiiieiiiiiiitete ettt e e e e e e et e et e e e e e e e e e aab bbb e e eaeeaeeas 183
8.11.3: TCBDATA REGISIEI ...ttt ettt e oottt et e e e e e e s e oo bbb bttt et e e e e e e e e s e annbbnbeeeeeeeaens 187
8.11.4: TCBCONFIG ReQIStEr (REG 0)...ciiiiiiiiiiitiiieeit ettt e et et e e e e e e e s e bbb eeaeeeeas 188
8.11.5: TCBTW REQISIEN (REU 4) ..ceeeeeeeeeetiieittei ettt e e et e e e e e e e e e e et ettt s e s e e e e e e e eaeaaaaeeeeeeeaeeaesnrnrnnes 189
8.11.6: TCBRDP REQISIEr (REU 5) ..eveeieieitiiiiiiiiiii i ettt ettt e e e e e e e e e e e e aeaeeeeeeeeeneeenenrnna 190
8.11.7: TCBWRP REQISIEr (REQ B) ..eeeeeeretiiiiiiiiiiiisse i et et e e e e e e e e et ettt s e e s e e e e e e aeeaeaaaaeeeeeeseessrnranes 190
8.11.8: TCBSTP REQISEI (REU 7).eeeeeeieeritiiuiiitii it ts e e et e e e e e e e e e e et et ettt e ettt as e e s e e aaaaaeaaaaeaeeeeeeeenesnrnrnnas 190
8.11.9: TCBTRIGX ReQIStEr (REJ 16-23) ...ttt ettt e e e e e e et eeeeeaeeas 191
8.11.10: REQISIEr RESEE STALEciiiiieeeeeeeeeit et e ettt e e e e e e e e e e e e aeaeeeeeeeeeeeeeernrnna 193
T A = I G I = Tt =t g = o] 1 o SO 194
8.12.1: Trace Trigger from EJTAG Hardware Instruction/Data Breakpointsccccceeeiiiiiiiiiiieeeeenenn. 194
8.12.2: TUIrNING ON PDIFACE™ TIACEevvvuiririiiiiiiieie i e e e e e e eeeeeee e e et eeeeaaaeatab e as s e s aaaaaaaaaaaaeaeeeereesnensrnrnnas 194
8.12.3: TUrNING Off PDIFACE™ TIACEevvvririririiiiiiieie i e s e e e e e ee e et et ettt eeeaaa ettt a e s e s e e e e aaaaaaeaeaeeeeeeeenessrnrnnes 195
8.12.4: TCB TracCe ENADIINGciiiiiiieieeieei e et et e e ettt s s e e e e e e e e e aaaeaaeeeeeeeeeeesssnrnnes 196
8.12.5: TracCing @ RESEL EXCEPLIONceiiiiiiiiiie ittt ettt e e e e e et eeeeae s 196
S 00 S O = I T T =T gl (o T oS 197
8.13.1: Trigger UNItS OVEIVIEW.eeeeeiieiiiiiiitiiieei s s e s et e e e e e e e aeaeee e e et eeeeaeaeatstas i assesaaaaaeaeaaaaeaaseeesesesnsrnrnnes 197
8.13.2: Trigger SOUICE UNIL. oot e e e e e e ettt et s e s e e e e e e e eaeaaaaeaaeeeeeeseesesnrnnns 198
8.13.3: Trigger CONIOl UNIEScoiiiiiieeiiieiiieit s e et e e e e e e e et e et e e s s e e e e e e e aeaeaaaaeaaeeeeeeseesnsnrnnns 198
8.13.4: Trigger ACHON UNIt ..ot e e e e e e e e e e e et et et et et e ettt s s e s e e e e e eaaaaaaeeeeeeeeeeeesssnrnnns 198
8.13.5: SIMUIANEOUS TGOS ...ieiiieieeeeieeteitit e s e s e s et e e e e e e e e e eeee e et e eeaeaeseaaat s s seaaaaaaaaeaaaaeeeeeeeseseesernrnnes 198
8.14: EJTAG Trace Cycle-by-CycCle BENAVIONoooiiiiieeee et 199
8.14.1: Fifo Logic in PDtrace and TCB MOUUIESccooeiiiiiiieieeeeeeee e e e e e e e e e e e e e ee e eeeananennas 199
8.14.2: Handling of Fifo Overflow in the PDtrace MoOdUIEcoovviiiiiiiiiiiiiiiie e 200
8.14.3: Handling of Fifo OVerflow in the TCB.......ccooi i e e e 200
8.14.4: Adding Cycle Accurate Information to the TracCe............ooovviviiiiiiiiiiiiie e, 201
8.15: TCB ON-Chip TraC IMEIMOIY ...ttt ettt e e e e e e e e bbbttt e e e e e e e e e s bbe bbbt et e e e e e e e e e e e annnbbebee e 201
8.15.1: ON-Chip TracCe MEMOIY SIZE......cciiiiiiiiiitiite ettt e e ettt e e e e e e e e e bbb eeeeeaeeas 201

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

I T2 I = ot =t (0] 0 1Y/ o o [T 202

8.15.3: TrACE-TO MOUE......eeiiiiiiieiie ettt ettt e et e e et e e e e e e e e e e e e 202
Chapter 9: INSTrUCtiON SEL OVEIVIEWccoo i 203
9.1: CPU INSIIUCHION FOIMALS ..iiiiiieiiiiiiiitie et e e ettt e e e e e e e e e sttt ettt e e e e e aeaaaaaaannnbebeeeeeaeaaeeeesaaannnsenenees 203
9.2: Load and StOre INSITUCHIONS. ..ottt e ettt e e e e e e e sttt e e e e e e e e e e saaa s nbebe et e e aeaeeeeesaaannnnesenees 204
9.2.1: Scheduling @ Load Delay SIOT...........ccuuiiiiiiiiiiiee ittt 204

9.2.2: DETINING ACCESS TYPES. ... ittttteiiitit it ettt ettt e ekttt e et e o4 ekt e e e e st e e e e s b b et e e e e s b e e e e et b e e e e nees 204

9.3: COMPULALIONAI INSTIUCTIONS ...ttt e et e st et e e s e s 205
9.3.1: Cycle Timing for Multiply and Divide INSTTUCTIONS.coiiuuiiiiiiiiiie et 206

9.4: Jump and BranCh INSIFUCTIONScouuuiiieiiiiiii etttk e et e st e et e e e e s annnne s 206
9.4.1: OVerview Of JUMP INSTIUCTIONSoiiiiiiiiii ittt e e e e 206

9.4.2: Overview of Branch INSIIUCLIONSooiiiiiiiiiieie et e e e eeeeeeeees 206

9.5 CONLIOI INSTIUCTIONS ...t teeeeeie et e ettt e oo ettt e e e e e e e e e s s e be bt e et e e e e aeeaeeaesannsbebe et e aaeaaeeeesaaannnnennnees 206
9.6: COPIrOCESSON INSTIUCTIONSutteieee ittt ettt et e e ekt e e e ek e e e e st e e e e nbbn et e e s annnnee s 206
Chapter 10: MAK™ Processor Core INSTIUCTIONSuiiiiiiiieiiiiiiiee et 207
10.1: Understanding the INStruction DESCHPIONSuuuiiiiiieiieeeii e i e e e e e e s e e e e e e e e e e e e e s eeeeeeees 207

O 2 |V 7 QL @ T o oo To [= 1 - o PR 207
10.3: MIPS32® Instruction Set for the MAK™ COTEuviiiiiieiiie et 210
(O O | ST PP RSP PRI 217
PP O PP PPR 220
L TP PP PPR 222
OO P PP RSP PPRPRPRIN 224
SY N C et e Rt e et e et e Rt e e Rt e e R e e e e 226
L PP PP 227
Chapter 11: MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set 229
0 I 1 £ W o 1o = = o oY L] o PP 229
R 1] (W o 1o £ 1 T U 232
APPENAIX A: REVISION HISTOIY ..uuiiiiiiiiiiiiiiiiiisisiiesissssseesssssrseresrersreeerresrae..—e..——..——.———————————————————————————— 235
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 7

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14

MAK™ Processor Core BIOCK DIGQIAIMuuuuuiiiiiiie et e e e ettt s s s e e e e e e e e e aeaaaaaaaaaaaees 17
Address Translation DUMNG @ SRAM ACCESS cvvviruriiiiiiiiiaie i et e e e e e e e e e e e e et ettt e aaaaaeaas 19
M4K™ Core Pipeline Stages (with high-performance MDU)ccccoiiiiiiiiiiiiieee e 24
M4K™ Core Pipeline Stages (with area-efficient MDU)cc.uuiiiiiiiiiiiiiiie e 24
MDU Pipeline Behavior During Multiply Operationsooiiuiiiiiiiiiieiaee e 28
MDU Pipeline Flow During a 32x16 Multiply OPerationc..uueeeeiiiiaaeaiiiiiiiiieieeee e 29
MDU Pipeline Flow During a 32x32 Multiply OPerationcc.uueeereiiiiaeaaiiiiiiiieieeee e 30
High-Performance MDU Pipeline Flow During a 8-bit Divide (DIV) Operationcccccccuviiiiiiiinenenn. 30
High-Performance MDU Pipeline Flow During a 16-bit Divide (DIV) Operationccccccoeviivvvieeeneen. 30
High-Performance MDU Pipeline Flow During a 24-bit Divide (DIV) Operationcccccooeviuvvviieeneen. 31
High-Performance MDU Pipeline Flow During a 32-bit Divide (DIV) Operationcccccoovviuvvviieeneen. 31
M4K™ Area-Efficient MDU Pipeline Flow During a Multiply Operationccccovviiiieiiiieniiiniiins 32
M4KC Area-Efficient MDU Pipeline Flow During a Multiply Accumulate Operationc.ccooeeueeee 32
M4K™ Area-Efficient MDU Pipeline Flow During a Divide (DIV) Operationccccccevvieeeiiiiniiinns 33
U PIpeling BranCh D IAYuueieiiiiiiii ettt e e e e e e e e e as 34
[U PIPEIING DAt DYP@SS ...ttt ettt e e e e e e e bbbttt e e e e e e e e e et bea e eee s 34
[U PIPEling M 10 E DYPASS ...ttt ettt e e e e e e 35
U PIpeling A t0 E DAt DYPASS ...eeeeiiiiieiiiiiiiiie ettt ettt e et e e e e e e e 35
U Pipeline SIip after @ MEFHIo ettt e e e 36
Coprocessor 2 Interface TraNSACHIONSiiiiiiiiiiiiiiie et e et e e e e e e e e bb e e e e e e e e e s e e aanneees 37
INSEIUCION CACNE IMISS SHIP ...ttt e et e e e e e e e e e e e e eee s 38
Address Translation DUMNG SRAM ACCESScevuiuuiuuieiiiiiiiaie i et e e e e e e e e aaeaetetete e e aaaaas 43
MAK™ processor core Virtual MEMOIY MaPuiieiiiiiiaaaiiiiiii ettt e e 45
User Mode Virtual AAArESS SPACEccuiiiiiiiiiiiiiitie ettt e e e e et e e e e e e e e s neeeeeeas 46
Kernel Mode Virtual AQAIrESS SPACE cooiiiiiiiiitiiie ittt e e e e e e e neeeeeeas 48
Debug Mode Virtual ADArESS SPACEcoeiiiiiiiiiiiiie ittt e e e e e e e s aeeeeeeas 50
FM Memory Map (ERL=0) in the MAK™ ProCeSSOr COMEcc.uuutiriiiiieaeaiaiiiiiiiieieeetaaaaeasaaaiiieieeeeeeas 52
FM Memory Map (ERL=1) in the MAK™ ProCeSSOr COMEccuuurieiiiiiiaeaiaiiiiiiiiiieeete e e e e e s aeiiisieeeeeeas 53
Interrupt Generation for Vectored INterrupt MOAEoooiiiiiiiiiiiiiiieee e 61
Interrupt Generation for External Interrupt Controller Interrupt Modeccccvviiiiiiiiiieiiniiiieeee 64
General EXception HANAIEr (HW)uiiiiiiiiiieeee ettt e e e e e e e e eeneaees 81
General Exception Servicing GUIAElINES (SW) ...ttt 82
Reset, Soft Reset and NMI Exception Handling and Servicing Guidelinesccccccceeeiiiiiiiiiiinnnen. 83
HWRENA REQISIEr FOMMAL ..o e e e e e e e e e e a e e e e s e e e e e aeaaaeaeeeees 87
BadVAdAr REQISEr FOIMALccooiiiiiiiieeeeeee et e e e e e et et e e e e e s e e e e e e e aaaeaeeeees 88
CoUNt REQISTEI FOMMAL ..o e e e e e e e e et et e e e e e e et e e e s e e e e aeaeaaeaeaeeeeeeeaeesssssnrnrnnes 88
Compare ReQISIEI FOIMALooiiiiiiiie ittt e e et e e e e e e s bbbt et e e e e e e e e e e e e ananseeees 89
StatUS REQISIEr FOIMIAL........iiiiiiiieieeete e e e e e e e e e et et et ettt a e e e s e e e eaaeaeaeaaaeeeeeaesessnnnsnrnnes 90
Lo L@ I o0 1) (=] gl o1 4= | 94
SRSCH REQISIEr FOIMMIALoeiiiiiieeeeeeete et e e e e ettt s e e e e e e aeaeeaeaeaeaeeeeeaeeeessenrnranes 95
SRSMaP REGISIEN FOIMAL.......ci ittt e e e ettt e et e e e e e e et e s bbb bbb e e e e e e e e e e e s e aaneeeeeees 98
CaUSE REQISIEI FOIMAL........iiiiiiiieiiei s e et e e e e e e e et et et e e e e e e et e e s e e aaaeaeaaeaeaeeeeeeeeeesessnnrnrnnes 99
] O LT 1S3 (=T gl o 4T | O 103
o [=T S (=T gl o] 4= | U 103
T R SN =T o TR (=T gl o] 1 = L O 104
: Config Register FOrmat — SEIECE Occooiiiiiiieeeee e e s 105
: Config Register Field DeSCHIPLIONS.oiieiiiiiiee ettt e e e e e e e eeeeae s 105

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Figure 5.15: Configl Register FOrmMat — SEIECE Loovviiiiiiiiiiei i a e e e e e e e ae e e 106
Figure 5.16: Config2 Register FOrmMat — SEIECE 2vvviiiiiiiiiiee et a e e e e e e e aea e 107
Figure 5.17: Config3 ReQIStEr FOIMAL.........cccoiiiiiiiieeeeeee e e e e e e e e et et a e e e e e e e e aaeaaaaeaeees 108
Figure 5.18: Debug ReQISIEr FOMMIALccooiiiiiiie e e e e e e e e e e e e e e e e e s e e e e e e aeaaeaaeaeeeees 110
Figure 5.19: TraceControl RegIStEr FOIMMALovviiiiiiiiiiii s et e e e e e e e e e aeaaeaeaeees 112
Figure 5.20: TraceControl2 RegiStEr FOIMMALooeviiiiiiiiii e e et e e e e e e e e aaeaaeaeaeees 114
Figure 5.21: User Trace Data RegiSter FOIMAL \..........oouiiiiiiiiiiiiiiii e e e e e e e e aea e 116
Figure 5.22: Trace BPC ReQIStEr FOMMALooiiiiiiiiiiiiiieiie s s e s e e e e e e e e e et et e ettt e s e e e e e e e e aaeaaeaeaeees 117
Figure 5.23: Debug2 RegISIEr FOIMMIALcccooiiiiiiieeeeeeee s e e e e e e e e e e e e et e e e e e et e et e e s e e e e e e aeaaeaaaaeaeees 118
Figure 5.24: DEPC ReQIStEr FOMMALcccoiiiiiiiiiiieieee s et e e a e s e e e e e e aeaeaaaeaeaeees 119
Figure 5.25: ErrfOrEPC REQISIEr FOIMALccooiiiiiiieiieiee s e e e e e e e e e e e et e et e s e e e e e e e eaaaaaaaeaeees 120
Figure 5.26: DeSave RegIStEr FOIMMALccooiiiiiiieeeeeie s e e e e e e e et e et e et e s e e e e e e e eaaaaaaaeaeees 120
Figure 8.1: TAP Controller State DIAgramoooviiiiiiiiiiiiii i as s e e s e e e e e e e e e e et et et e e e e s e s e e e e aeaaeaaaaeaeees 153
Figure 8.2: Concatenation of the EJTAG Address, Data and Control REQISLErSvvvvviiiiiiiiiiiiieeeeeeeeeeeeee, 157
Figure 8.3: TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected 158
Figure 8.4: Endian Formats for the PAD REQISIENvvviiiiiiiiiie ettt a e e e e e e e e e aea e 166
Figure 8.5: TracCe LOQIC OVEIVIEWccciiieeeieieie et e e s e e e e e e e e e e e e e e e e et e e e e et e aesee b e et e e e e e e e e e eaeaaaaaeaeees 171
Figure 8.6: EJTAG Trace Modules in the MAK™ COIEuuuuuuiiiiiiieie i e e ee ettt ea e e e e e e e e aaaaeaeees 175
Figure 8.7: TCB Trigger ProCeSSING OVEIVIEWceuuuuuuuuuuiiisiiasasaieseaeaeaeaaaeteterteeesaerestsrarar s e aaaaaaaaaaseaeees 197
Figure 9.1: INStIUCION FOIMALSiiiiiii i s e e e e e e e e e e e e e e e e et e et e e et ee e e et a bt e e e e e e e e aeaeeaaeaeeeees 204
Figure 10.1: Usage of Address Fields to Select IndeX and Waycooooiiiiiiiiiiiiiee e 217
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 9

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Listo

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 2.7:
Table 2.8:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table 4.8:
Table 4.9:
Table 4.10
Table 4.11
Table 4.12
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 5.9:

Table 5.10:
Table 5.11:
Table 5.12:
Table 5.13:
Table 5.14:
Table 5.15:
Table 5.16:
Table 5.17:
Table 5.18:
Table 5.20:
Table 5.19:

10

f Tables

MDU Instruction Latencies (High-Performance MDU)ciiiiiiiiiiiiiceccccceeeeeeeee e 27
MDU Instruction Repeat Rates (High-Performance MDU)............ooooiiiiiiiiiiiiieee e 28
M4K™ Core Instruction Latencies (Area-Efficient MDU)ccoooiiiiiiiiiiii e 31
PIPEINE INTEITOCKS ...ttt oo e oottt e e e e e e s e bbbt e e e e e e e e e e e e aann 37
INSTFUCHION INEEITOCKS ...ttt e e e e e e e s bbbt e e e e e e e e e e e e aneneeeees 39
EXECULION HAZAIUS ...ttt e et e e e e e e bbbt ettt e e e e e e s et bbb e e e e e aaeeeaeaann 40
INSTFUCHION HAZAIAS ...ttt oottt et e e e e e e e e bbbt e e e e e e e e e e e e e e annnbeeeees 40
Hazard INSTIUCHION LISTING ..uvuuuiiiiiiiie e et e e e e e e e e e e e e e e e e e e eeee e e e e ae s et e e e e e e e aeeas 41
L0 LYY Y oTe LR =To o 4= (U 46
T g Lol I\ (o Te (ST T =T [L= L 48
Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces.........ccccceeeeeennn. 50
CPU Access t0 drseg AAAreSS RANQJEccvvviiiiiiiiiiiiieie i e i et e e e e e e e et et ettt e et s e s e e e e aeaaeaeaaaaaaaaaeaees 50
CPU Access to dmMSeg AAAreSS RANQGEvvuiiiiiiiiiiiiiei e i et e e e e e ettt s s s e e e e aeaaeaaaaaaaaaeaaaees 51
Cache CONErENCY ALIHDULEScce e e e e e e e e et et ettt e et s s e e e e aeaaaaeaaaaaeaaaeanes 51
Cacheability of Segments with Block Address Translationooovvvviiiiiiiiiiiiiie e 52
PrIOFLY OF EXCEPLIONS ...ttt e e e e e e bbb et ettt e e e e e e e e bbb bbb e et e e e aaeeeaaaaan 56
INEEITUDPE IMOOES ...ttt e oo 4o ettt ettt e e e e e e e e e bbb bbbt e e e e e e e e e e aeaannnbaeeees 58
Relative Interrupt Priority for Vectored INterrupt MOGE............eeeiiiiiiiiiiiiiiiecee e 61
Exception Vector Offsets for Vectored INTEITUPLSoooi it 65
EXCEPLiON VECIOr BASE AGUINESSESottt ettt ettt e e e ettt et et e e e e e e e st reeeaeaeeeaaan 67
EXCEPLION VECION OFfSELS ...ttt ettt e ettt e e e e e e e e bbbt e e e e e eaeeeaaaaan 68
EXCEPLION VECTOIS ...ttt e ettt ettt et e e o4 oo o bbbttt et e e e e e e e e b bbbt e e e e e e aaeeeaaaanns 68
Value Stored in EPC, ErrorEPC, or DEPC 0N an EXCEPLON.........ooiiiiiiiiiiiieiee e 69

Debug EXCeption VECIOr AQUIESSEScc.uiiiiiiiiiiiie ettt ettt e e e e e e e e e s eeeaeaeeeaaas 71
: Register States an INterrupt EXCEPLIONuiii ittt e e e e e e e neaneees 75
: CPO Register States on an Address EXCEPLION ErTOr.......cuiiii it 76
: Register States on a Coprocessor Unusable EXCEPLIONcooiiiiiiiiiiiiiieiieeeee e 78

(O8I =T 1) (= =SSP 85
CPO REQISIEN FIeIO TYPOS -ttt ettt ettt e e e e e e e e s bbbt bt e et e e e e e e e s e s b et e e eeeaeaeas 86
HWRENa Register Field DeSCIIPLIONSuuuiiiiiiiiieeeie ittt a e e e e e e e e e e aeeeaaas 87
BadVAddr Register Field DeSCIIPIION.utiiiiiiiei ettt ettt e e e e eeeae e e e e an 88
Count Register Field DESCIIPLIONiiiii ittt e et e e e e e e e e e s e s bbb eeeaeeeas 88
Compare Register Field DESCHPLIONcoiiiiiiiiii ettt e e e e e e et eeeeeeas 89
Status Register Field DeSCIIPLIONSiiii ittt e e e e e e e e e e e e e eeeeeas 90
INtCtl Register Field DeSCIIPLIONS ... ettt et e e e e e e e s r et e e e e e e e e e e annnnenes 94
SRSCtl Register Field DESCIIPIONSccoiiiiiiiiiiiii ittt e et e e e e e e e e e e s bbb eeeeeeeas 95

Sources for new SRSCtlcgg on an Exception or INterrupt............occveiiiiiiiiiiiiciec e 98
SRSMap Register Field DeSCIPIONScoiiiiiiiiiie ettt e et e e e e e e e s ee e e eeeeas 98
Cause Register FIield DESCHPIIONS........uii ittt e e e r e e e e e e e s s e e eeeeeas 99
Cause Register EXCCOUE FIEIooiiiiiieeeee st a e e e e e e e e e aeaaaes 101
EPC Register Field DeSCIIPLION.ci ittt ettt e e e e e e e e e s bbb e eeeaeeeas 103
PRI Register Field DESCIPLIONScoiiiiiiiiiii ettt e e e e e e e e e et eeeeeeeeas 103
EBase Register Field DeSCIIPIIONS.ciiiieiiiiiiie ettt e e e e e e e e eeeeeee s 104
Cache CoNErenCY AIHDULESccooiiiiiieee e e e e e e et e et e s e e e s e e e e e aaaeaeaeees 106
Configl Register Field DesCriptioNS — SEIECT Lcoiiiiiiiiiiiiieee e 106
Config3 Register Field DeSCHPLIONS.........iaiiiii ittt e e e et e e e e e e s aeeeees 108
Configl Register Field DesCriptioNS — SEIECT Lcoiiiiiiiiiiiiieee e 108

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Table 5.21: Debug Register Field DESCHPIIONS.uuu ittt e aaas 110
Table 5.22: TraceControl Register Field DESCIIPLIONScooiiiiiiiiiiiii e e e e e e e e 112
Table 5.23: TraceControl2 Register Field DESCHPLIONScoiiiiiiiiiiiiiiiee et e e e e e e 115
Table 5.24: UserTraceData Register Field DeSCIPIONS.......cooiiiiiiiiiiii ettt e e e e 116
Table 5.25: TraceBPC Register Field DESCIIPLIONS.ttt ettt e e e e e e e e e e e e e e 117
Table 5.26: Debug2 Register Field DESCIPLIONS.uu i ittt e e e e e e e e e e bbb r e e e e e e e e e e e e anas 118
Table 5.27: DEPC ReQISIEI FOMMALS.uuuuiuiiiiiie it e e e e e e e e e et e ettt e s s e e e e e e e e e e e e e e aeeeeeeeaeaeaeseaaaeas e as 119
Table 5.28: ErrorEPC Register Field DESCIIPIION.uuiiiiiaiiiiiiiitee ettt e e e e e e e e e e 120
Table 5.29: DeSave Register Field DEeSCIPLIONuutiiiiiiieeeee ittt e e e e e e e e s e e e e e e e e e e e e aaas 120
Table 8.1: Debug Control Register Field DeSCHIPUIONSiiiiiiiiiiiie ettt e e e e e e 128
Table 8.2: Addresses for Instruction Breakpoint REGISIEISooiuuiiiiiiiiieie et 134
Table 8.3: IBS Register Field DESCIPLIONSooiiiiiiiiieee ettt e e e e e e e e e s e bbb b e e e e e e e e e e e e e aanas 134
Table 8.4: IBAN Register Field DESCIPLIONS ...ttt ettt e e e e e e e e e e e bbb e e e e e e e e e e e e e aaas 135
Table 8.5: IBMN Register Field DESCIIPLIONS ittt e e e e e e e e e s e bbb r e e e e e e e e e e e aeaaas 135
Table 8.6: IBASIDN Register Field DESCIIPLIONSuutiiiiiiiieaee ittt ettt e aans 136
Table 8.7: IBCn Register Field DeSCIIPLIONSco..eeiiiiiiiiiiee ettt ettt e e e e e e e e e s ab bbb e b e e e e e e aeeeeaaanns 136
Table 8.8: IBCCn Register Field DESCHIPIIONS.uuiiiiiiiiieeaie ittt e e e e e e s e bbb e e e e e e e e e e s e e anas 137
Table 8.10: Addresses for Data Breakpoint REGISIEISooiiiiiiiiiiiiie e 138
Table 8.9: IBPChn Register Field DeSCIIPLIONSuuiiiiiiiiieee ettt e et r e e e e e e e e e s bbb e e eeeaeeeeaeana 138
Table 8.11: DBS Register Field DESCIIPLIONSutiiiiiiiiiie ettt ettt e e e e e e e e e s bbb e beeeeeaeeeeeaeanas 139
Table 8.12: DBAN Register Field DeSCIIPLIONSuutiiiiiiiieieee ittt e ana 139
Table 8.13: DBMn Register Field DESCIIPLIONSuutiiiiiiiieeeei ittt e aaas 140
Table 8.14: DBASIDN Register Field DESCHIPLIONS........uiiiiiiiaiiiiiiiite ettt e e e e e e e e e e e e e 140
Table 8.15: DBCN Register Field DESCHIPIIONS.ttt ittt e e e e e et e e e e e e e e e e s e e anaas 141
Table 8.16: DBVN Register Field DeSCIIPLIONSuuttiiiiiiiiieeei ittt e e e e e e e e e s bbb e e e e e e aeeeeaeanas 142
Table 8.17: DBCChn Register Field DESCIIPLIONSuiiiiiiiieeeeeiiiiiteie ettt e 142
Table 8.18: DBPCn Register Field DESCHIPLIONSuuiiiiiiiiieeiiiiiiitte ettt a e e e e e e e e e e e e e e e e e e 143
Table 8.19: DVM Register Field DeSCIIPLIONSuuiiiiiiiiieeeaee ittt a e e e e e e e e e e e e e e e e e e aaas 144
Table 8.20: Addresses for Complex Breakpoint REQISTEIScouuiiiiiiiiiiieee ettt 144
Table 8.21: CBTC Register Field DESCIIPLIONSuuiiiiiiiieeieei ittt e e e e e e e e e s bbb e e e e e e e e e e e e aaas 145
Table 8.23: Priming Conditions and ReQISLEr VAIUES.............ooiiiiiiiii e 146
Table 8.22: PrCndA Register Field DeSCIPLIONS.t ittt e e e e e e s e bbb e e e e e e e e e e s e annas 146
Table 8.24: STCtl Register Field DESCHIPLIONSuuuiiiiiiiieeeeee ittt e e e e e e e e e ae e e e e e e e e e e e e aaas 147
Table 8.25: STCtl Register Field DESCHIPLIONSuuitiiiiiiieeee ettt e anas 148
Table 8.26: EJTAG INTEITACE PINS ..ottt ettt et s et e e e e s es 152
Table 8.27: Implemented EJTAG INSIIUCLIONSuuiiiiiiiiieeiee ittt e aaas 156
Table 8.28: Device 1dentifiCation REQISTEr.t e e e e e e e e e e e e e e et e e e e e ae e s 159
Table 8.29: Implementation RegiSter DESCIIPLIONSuiiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e 160
Table 8.30: EJTAG Control RegiSter DESCIIPIIONSuiiiiiiieiiiiiiiiite ettt et et e e e e e e e e e e e e e e e e e e 161
Table 8.31: Fastdata Register Field DESCHIPIIONuuiiiiiiiiieiiiiiie ettt e e e e e e e e e e e 166
Table 8.32: Operation Of the FASTDATA GCCESSuutiiiiiiieiaaiiiiiiii ittt e e e e e e ettt e et e e e e e e s s bbaebreeeaaaeeeaaaaan 167
Table 8.33: Data BUS ENCOUINGouuiiiiiiiiiiiie sttt e e s e e e e e e e e e e e e e e eeee e e aeaeeeaeseaene s e eas 172
Table 8.34: REQISIEIS iN the ITCBuuiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e eeeeeeeeeeeeaeaeseseaa s e as 173
Table 8.35: Registers that Enable/Disable Trace from Complex Triggers and their drseg Addresses................. 174
Table 8.36: A List of COProcessor 0 TraCe REGISIEISciiiiiiiiiiiiiiiiie ittt a e e e e e e 179
Table 8.37: TCB EJTAG FEUISEIS.....uuuuiuuuiuieiiieieie i et e e e e e e e e e ee ettt e eeeaae et a s e s e e e e aaaaaaeeeeeaeeeeeeesesesenenensan i aeaas 180
Table 8.38: Registers selected by TCBCONTROLB.......cccoiiiiiii e s 180
Table 8.39: TCBCONTROLA Register Field DESCHPLONSoooiuiiiiiiiiiieie ettt a e e 180
Table 8.40: TCBCONTROLB Register Field DESCHPLONSoooiiiiiiiiiiiieee ettt a e e e e 183
Table 8.41: Clock Ratio encoding of the CR field ... 187
Table 8.43: TCBCONFIG Register Field DeSCHIPUONSciiiiiiiiiiiiee ettt e e e e e e e e 188
Table 8.42: TCBDATA Register Field DeSCIIPLIONSuiiiiiiiiiiiiiiiitie ettt e e e e e e e e e e e e e e 188
Table 8.44: TCBTW Register Field DESCIPLIONSuiiiiiiiiiiaiiiiiiiiite ettt e aaas 189
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 11

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Table 8.45: TCBRDP Register Field DeSCIIPLIONSutiiiiiiiiiiiiiiiiite ettt e e e e e e e e e e e e e e e e e e 190

Table 8.46: TCBWRP Register Field DESCIIPLIONS.ttt ettt e e e e e e e e e e e e e 190
Table 8.47: TCBSTP Register Field DESCIIPLIONSuuuiiiiieieeeiiiiiittte ettt e 191
Table 8.48: TCBTRIGX Register Field DeSCIPLIONS.u ittt e e e e e e e e e e e e e e 191
Table 9.1: Byte ACCESS WIthiN @ WOuuueiiiiii i e e e e e e e e e e e e e et e e e e e e e e e e e e s 205
Table 10.1: Encoding Of the OPCOUE FIEI..........coiiiiiiieiiiii ettt e e e e e s nneeeas 208
Table 10.2: Special Opcode encoding of FUNCHON FI€ld..........oouuiiiiiiiiiiiie e 208
Table 10.3: Special2 Opcode Encoding of FUNCHON FI€ldvviiiiiiiiiiiieiiiice e 208
Table 10.4: Special3 Opcode Encoding of FUNCHON FIElduviiiiiiiiiiiciiee et 209
Table 10.5: RegIlmm ENcoding Of It FIEIG......ccoi i e e e e 209
Table 10.6: COP2 ENCOAING Of IS FI I ...uvuueiiiiii i e e e e e e e e e e et e e 209
Table 10.7: COP2 Encoding of rt Field WHhen ISZBC2........coooieeeeeeeeiee st a e e ee e 209
Table 10.8: COPO ENCOAING Of IS FI Ivuuiiiii i e e e e e e e e e e et e et as 210
Table 10.9: COPO Encoding of Function Field WHhen rSZCOuuuiiiiiiiiiiiiis s e e e e 210
Table 10.10: INSIFUCTION SEL ... oottt e e e e oottt ettt e e e e e e o e e s e bbbt ettt e e e e e e e e e aanbbbbas b e e e eaeaeeeaaeanns 210
Table 10.1: Usage Of EffECHVE AQUIESS....uuu it a ee e e r e as 217
Table 10.2: Encoding of Bits[17:16] of CACHE INSTIUCTIONoiiiiiiiiiiieieie et 218
Table 10.3: Encoding of Bits [20:18] of the CACHE INSIIUCHIONuviiiiiiiiieiiiiiiie e 218
Table 10.1: Values of hint Field for PREF INSITUCHIONcoiiiiiiiiiiiiei et 222
Table 11.1: Symbols Used in the Instruction Encoding Tables..............uiiiiiiiiiiiic e 229
Table 11.2: MIPS16e Encoding Of the OpCOde FIeldcoiiiiiiiiiiii e 230
Table 11.3: MIPS16e JAL(X) Encoding of the X FIeld..........coorriiiiiiiiee e 230
Table 11.4: MIPS16e SHIFT Encoding of the f FIeldoooiiririieeee e 230
Table 11.5: MIPS16e RRI-A Encoding of the f Field...........oooiiririieee e 230
Table 11.6: MIPS16e I8 Encoding of the fUNCE FIeld............oooiiiiiiiieee e 230
Table 11.7: MIPS16e RRR Encoding of the f FIeld............ooiiiiiiri e 231
Table 11.8: MIPS16e RR Encoding of the FUNCE Fieldooooriiiiiieeee e 231
Table 11.9: MIPS16e I8 Encoding of the s Field when fuNCt=SVRS ... 231
Table 11.10: MIPS16e RR Encoding of the ry Field when funCt=J(AL)R(C)cceeeieeriiiiiiiee e 231
Table 11.11: MIPS16e RR Encoding of the ry Field when funCt=CNVT ... 231
Table 11.12: MIPS16€e Load and StOre INSTIUCTIONSciiiiiaiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e e 232
Table 11.13: MIPS16e Save and ReStore INSIIUCLIONSooiiiiiiiiiiiiii ettt e e e e e e e 232
Table 11.14: MIPS16e ALU IMmediate INSIIUCTIONScoiiiiiiiiiiiiiiiee ettt e e e e e e e e e e 232
Table 11.15: MIPS16e Arithmetic Two or Three Operand Register INSrUCIONScooiiiiiiiiiiiiiiiiiiiiie e 232
Table 11.16: MIPS16€ Special INSIIUCTIONSoiiiiiiiiiieie ettt e e e e e e e e e e bbb e e e e e e e e e e e e e e e anas 233
Table 11.17: MIPS16e Multiply and Divide INSIIUCHIONScoiiiiiiiiiiii et 233
Table 11.18: MIPS16e Jump and Branch INSITUCHIONS..........ooiiiiiiiiiiie et e e 234
Table 11.19: MIPS16€ Shift INSITUCTIONScoiiiiiitii ittt e e e e e e e e e e e bbb e e e e e e e e e e e e e anns 234
12 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 1

Introduction to the MIPS32® M4K™ Processor Core

The MIPS32® M4K™ core from MIPS Technologies is a high-performance, |ow-power, 32-bit MIPS RISC proces-
sor core intended for custom system-on-silicon applications. The core is designed for semiconductor manufacturing
companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peripher-
als with a high-performance RISC processor. A M4K coreis fully synthesizable to allow maximum flexibility; it is
highly portable across processes and can easily beintegrated into full system-on-silicon designs. This allows devel op-
ersto focus their attention on end-user specific characteristics of their product.

The M4K coreisideally positioned to support new products for emerging segments of the routing, network access,
network storage, residential gateway, and smart mobile device markets. It is especially well-suited for applications
where high performance density is critical, especially those requiring multiple processor cores on a single chip.

The M4K family has two members, distinguished by the range of build-time options available:
MIPS32 M4K™ Core: Fully configurable cacheless core.

« MIPS32 M4K™ Lite Core: A subset of the full M4K core, with areduced set of build-time configuration
choices.

The term M4K core used throughout this document generally refersto al members of the M4K family. Since the
M4K Lite core has fewer configuration options than the M4K core, certain features described in this document may
not be available on the M4K Lite version.

The core implements the MIPS32 Release 2 Instruction Set Architecture (1SA), and may optionally support the
MIPS16e Application Specific Extension (ASE) for code compression. The MMU consists of asimple Fixed Map-
ping Translation (FMT) mechanism, for applications that do not require the full capabilities of a Translation Looka-
side Buffer- (TLB-) based MMU available on other MIPS cores.

The M4K coreis cacheless; in lieu of caches, it includes a simple interface to SRAM-style devices. Thisinterface
may be configured for independent instruction and data devices or combined into a unified interface. The SRAM
interface allows deterministic latency to memory, while still maintaining high performance.

The core includes one of two different Multiply/Divide Unit (MDU) implementations, selectable at build-time, allow-
ing the user to trade off performance and areafor integer multiply and divide operations. The high-performance MDU
option implements single cycle multiply and multiply-accumulate (MAC) instructions, which enable DSP algorithms
to be performed efficiently. It allows 32-bit x 16-bit MAC instructions to be issued every cycle, while a 32-bit x 32-bit
MAC instruction can be issued every other cycle. The area-efficient MDU option handles multiplies with a
one-bit-per-clock iterative algorithm.

The basic Enhanced JTAG (EJTAG) features provide CPU run control with stop, single stepping and re-start, and
with software breakpoints through the SDBBP instruction. Additional EJTAG features - instruction and data virtual
address hardware breakpoints, complex hardware breakpoints, connection to an external EJTAG probe through the
Test Access Port (TAP), and PC/Data tracing, may optionally be included.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 13

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® M4K™ Processor Core
Therest of this chapter provides an overview of the MIPS32 M4K processor core and consists of the following sec-
tions:
» Section 1.1 “Features’

e Section 1.2 “M4K™ Core Block Diagram”

1.1 Features

e b-stage pipeline
* 32-bit Address and Data Paths
* MIPS32-Compatible Instruction Set
* Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
e Targeted multiply instruction (MUL)
e Zero and one detect instructions (CLZ, CLO)
e Wait instruction (WAIT)
e Conditional move instructions (MOVZ, MOVN)
» Prefetch instruction (PREF)
e MIPS32 Enhanced Architecture (Release 2) Features
» Vectored interrupts and support for an external interrupt controller
» Programmable exception vector base
e Atomic interrupt enable/disable

* GPR shadow sets

Bit field manipulation instructions
» MIPS16e Application Specific Extension
» 16 bit encodings of 32-hit instructions to improve code density
e Specia PC-relative instructions for efficient loading of addresses and constants
» Datatype conversion instructions (ZEB, SEB, ZEH, SEH)
e Compact jumps (JRC, JALRC)
e Stack frame set-up and tear down “macro” instructions (SAVE and RESTORE)

* Programmable Memory Management Unit

14 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

1.1 Features

* Simple Fixed Mapping Trandation (FMT)
* Address spaces mapped using register bits
* Simple SRAM-Style Interface
» Cacheless operation enables deterministic response and reduces size
» 32-bit address and data; input byte enables enable simple connection to narrower devices
e Single or multi-cycle latencies
» Configuration option for dual or unified instruction/data interfaces
* Redirection mechanism on dual 1/D interfaces permits D-side references to be handled by I-side
» Transactions can be aborted to improve interrupt latency
* Multi-Core Support
» External lock indication enables multi-processor semaphores based on LL/SC instructions
» Externa sync indication allows memory ordering
» Debug support includes cross-core triggers

» CorExtend™ User Defined Instruction capability (access to this feature is availablein the M4K Pro™ cores and
requires a separate license)

» Optional support for the CorExtend feature allows users to define and add instructions to the core (as a
build-time option)

e Single or multi-cycle instructions
» Source operations from register, immediate field, or local state
» Dedtination to aregister or local state
» Full featured Coprocessor 2 Interface
e Almost all 1/Osregistered
* Separate unidirectional 32-bit instruction and data buses
» Support for branch on Coprocessor condition
* Processor to/from Coprocessor register data transfers
» Direct memory to/from Coprocessor register data transfers
* Multiply-Divide Unit (High performance build-time option)

* Maximum issue rate of one 32x16 multiply per clock

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 15

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® M4K™ Processor Core

* Maximum issue rate of one 32x32 multiply every other clock

» Early-in divide control. Minimum 11, maximum 34 clock latency on divide
* Multiply-Divide Unit (Area-efficient build-time option)

* Iterative multiply and divide. 32 or more cycles for each instruction.
* Power Control

* No minimum frequency

» Power-down mode (triggered by WAIT instruction)

» Support for software-controlled clock divider

» Support for extensive use of fine-grain clock gating
» EJTAG Debug Support

» CPU control with start, stop and single stepping

» Software breakpoints viathe SDBBP instruction

* Optiona simple hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2 instruc-
tion and 1 data breakpoint, or no breakpoints

» Optiona complex hardware breakpoints with 6 instruction and 2 data simple breakpoints, plus ability to
specify combinations of breakpoints for more specific break conditions

» Optiona Test Access Port (TAP) facilitates high speed download of application code

» Optional trace hardware to enable real-time tracing of executed code

1.2 M4AK™ Core Block Diagram

16

The M4K core contains both required and optional blocks, as shown in the block diagram in Figure 1.1. Required
blocks are the lightly shaded areas of the block diagram and are always present in any core implementation. Optional
blocks may be added to the base core, depending on the needs of a specific implementation. The required blocks are
asfollows:

* Execution Unit

e Multiply-Divide Unit (MDU)

e System Control Coprocessor (CP0)

e Memory Management Unit (MMU)

e Cache Controller

e SRAM Interface

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

e Power Management

Optional blocksinclude:

» Enhanced JTAG (EJTAG) Controller

* MIPS16e support

» Coprocessor 2 Interface (CP2)

e CorExtend® User Defined Instructions (UDI)

Figure 1.1 shows ablock diagram of aM4K core.

1.2 M4AK™ Core Block Diagram

Figure 1.1 M4K™ Processor Core Block Diagram

Off/On-Chip
EJTAG Trace I/F
Trace
MDU TAP Off-Chip Debug
IIF
UDI |e»| Execution Core 2
(RF/ALU/Shift) MMU SRAM Interface %
Dual or Unified %‘
~ SRAM I/F p
CP2
System FMT Power
Coprocessor b
On-Chip | Fixed/Required Optional

Coprocessor 2

1.2.1 Required Logic Blocks

The following subsections describe the various required logic blocks of the M4K processor core.

1.2.1.1 Execution Unit

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) opera-
tions (logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two 32-bit gen-
era-purpose registers(GPRS) used for scalar integer operations and address calculation. Optionally, one or three
additional register file shadow sets (each containing thirty-two registers) can be added to minimize context switching
overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is

fully bypassed to minimize operation latency in the pipeline.
The execution unit includes:

» 32-bit adder used for calculating the data address

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

17

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® M4K™ Processor Core

18

* Address unit for calculating the next instruction address
» Logic for branch determination and branch target address calculation
e Loadadligner

* Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructions
are followed closely by consumers of their results

* Zero/One detect unit for implementing the CLZ and CLO instructions
* ALU for performing bitwise logical operations

» Shifter and Store aigner

1.2.1.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply divide operations. Two configuration options exist for the MDU, select-
able at build time: an area-€fficient iterative MDU and a higher performance 32x16 array. The MDU consists of an
iterative or32x16 multiplier, result-accumulation registers (HI and LO), multiply and divide state machines, and all
multiplexers and control logic required to perform these functions. The high-performance, pipelined MDU supports
execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every
other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32x32 multiply opera-
tions. Divide operations are implemented with asimple 1 bit per clock iterative algorithm and require 35 clock cycles
in worst case to complete. Early-in to the algorithm detects sign extension of the dividend, if itisactual sizeis 24, 16
or 8 hit. the divider will skip 7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU instruction while
adivideis still active causes a pipeline stall until the divide operation is completed.

The area-efficient, non-pipelined MDU consists of a 32-bit full-adder, result-accumulation registers (HI and LO), a
combined multiply/divide state machine, and all multiplexers and control logic required to perform these functions. It
performs any multiply using 32 cyclesin an iterative 1 bit per clock algorithm. Divide operations are also imple-
mented with asimple 1 bit per clock iterative algorithm (no early-in) and require 35 clock cyclesto complete. An
attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes a pipeline stall until the
operation is compl eted.

The M4K implements an additional multiply instruction, MUL, which specifies that lower 32-bits of the multiply
result be placed in the register fileinstead of the HI/L O register pair. By avoiding the explicit move from LO (MFLO)
instruction, required when using the L O register, and by supporting multiple destination registers, the throughput of
multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (M SUB/MSUBU), are used to perform the
multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the
product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands
and then subtracts the product from the HI and L O registers. The MADD/MADDU and MSUB/M SUBU operations
are commonly used in Digital Signal Processor (DSP) algorithms.

1.2.1.3 System Control Coprocessor (CPO)

In the MIPS architecture, CPO is responsible for the virtual-to-physical address translation, cache protocols, the
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), and
the enabling/disabling of interrupts. Configuration information such as presence of build-time options are available
by accessing the CPO registers. Refer to Chapter 5, “CPO Registers of the M4K™ Core” on page 85 for moreinfor-

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

1.2 M4AK™ Core Block Diagram

mation on the CPO registers. Refer to Chapter 8, “EJTAG Debug Support in the M4K™ Core” on page 127 for more
information on EJTAG debug registers.

1.2.1.4 Memory Management Unit (MMU)

The M4K core contains an MMU that interfaces between the execution unit and the SRAM controller, shown in
Figure 1.2,

The M4K implement a FM T-based MMU.The FMT performs asimple trandation to get the physical address from
the virtual address. Refer to Chapter 3, “Memory Management of the M4K™ Core” on page 43 for moreinformation
on the FMT.

Figure 1.2 shows how the address transl ation mechanism interacts with SRAM access.

Figure 1.2 Address Translation During a SRAM Access

: Virtual Physical
Instruction | Address Address
Address > Inst
Calculator — SnI;Ar\]M
SRAM
FMT interface
Data
Data > 7| SRAM
Address —» Phvsical
Calculator | Virtual Ad)é?ecsa}s
Address

1.2.1.5 SRAM Interface

Instead of caches, the M4K core contains an interface to SRAM-style memories that can be tightly coupled to the
core. This permits deterministic response time with less area than istypically required for caches. The SRAM inter-
face includes separate unidirectional 32-bit buses for address, read data, and write data.

Dual or Unified Interfaces

The SRAM interface includes a build-time option to select either dual or unified instruction and data interfaces. The
dual interface enables independent connection to instruction and data devices. It generaly yields the highest perfor-
mance, since the pipeline can generate simultaneous | and D requests which are then serviced in parallel. For simpler
or cost-sensitive systems, it is also possible to combine the | and D interfaces into a common interface that services
both types of requests. If | and D requests occur simultaneously, priority is given to the D side.

Backstalling

Typicaly, read or write transactions will complete in asingle cycle. If multi-cycle latency is desired, however, the
interface can be stalled to alow connection to slower devices.

Redirection

When the dua 1/D interface is present, a mechanism exists to divert D-side referencesto the I-side, if desired. The
redirection is employed automatically in the case of PC-relative loads in M1PS16e mode. The mechanism can be

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 19

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Introduction to the MIPS32® M4K™ Processor Core

20

explicitly invoked for any other D-side references, aswell. When the DS_Redir signal is asserted, aD-siderequest is
diverted to the I-side interface in the following cycle, and the D-side will be stalled until the transaction is compl eted.

Transaction Abort

Because the core does not know whether loads or stores are re-startable, it cannot arbitrarily interrupt a request which
has been initiated on the SRAM interface. However, cycles spent waiting for a multi-cycle transaction to compl ete
can directly impact interrupt latency. In order to minimize this effect, the interface supports an abort mechanism. The
core reguests an abort whenever an interrupt is detected and a transaction is pending. The external system logic can
choose to acknowledge the abort, if it wants to reduce interrupt latency.

MIPS16e Execution

When the core is operating in MIPS16e mode, instruction fetches only require 16-bits of datato be returned. For
improved efficiency, however, the core will fetch 32-bits of instruction data whenever the address is word-aligned.
Thusfor sequential M1PS16e code, fetches only occur for every other instruction, resulting in better performance and
reduced system power.

Connecting to Narrower Devices

The instruction and data read buses are always 32-bits in width. To facilitate connection to narrower memories, the
SRAM interface protocol includesinput byte enablesthat can be used by system logic to signal validity as partial read
data becomes available. The input byte enables conditionally register the incoming read data bytes within the core,
and thus eliminate the need for external registers to gather the entire 32-bits of data. External muxes are required to
redirect the narrower data to the appropriate byte lanes.

Lock Mechanism

The SRAM interface includes a protocol to identify alocked sequence, and is used in conjunction with the LL/SC
atomic read-modify-write semaphore instructions.

Sync Mechanism

The interface includes a protocol that externalizes the execution of the SYNC instruction. External logic might
choose to use this information to enforce memory ordering between various elements in the system.

External Call Indication

The interface has an indication when afetch isfor thetarget of acall-typeinstruction like JAL or BAL. A system with
prefetching might choose to save prefetched instructions to be executed when there is a return from the subroutine.

1.2.1.6 Power Management

The core offers anumber of power management features, including low-power design, active power management,
and power-down modes of operation. The coreis a static design that supports a WAIT instruction designed to signal
the rest of the device that execution and clocking should be halted, hence reducing system power consumption during
idle periods.

The core provides two mechanisms for system-level, low-power support:

» Register-controlled power management

» Instruction-controlled power management

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

1.2 M4AK™ Core Block Diagram

In register-controlled power management mode the core provides three bits in the CPO Status register for software
control of the power management function and allows interrupts to be serviced even when the core isin power-down
mode. In instruction-controlled power-down mode execution of the WAIT instruction is used to invoke low-power
mode.

Refer to Chapter 7, “Power Management of the M4K™ Core” on page 125 for more information on power manage-
ment.

1.2.2 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagram in Figure 1.1.

1.2.2.1 MIPS16e™ Application Specific Extension

The M4K core includes optional support for the MIPS16e ASE. This ASE improves code density through the use of
16-bit encodings of MIPS32 instructions plus some MIPS16e-specific instructions. PC relative loads allow quick
access to constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for
efficient subroutine entry/exit. Sign- and zero-extend instructions improve handling of 8bit and 16bit datatypes.

A decompressor converts the MIPS16e 16-bit instructions fetched from the external interface back into 32-bit instruc-
tions for execution by the core.

1.2.2.2 EJTAG Controller

All cores provide basic EJTAG support with debug mode, run control, single step and software breakpoint instruction
(SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code.

Optiona EJTAG features include hardware breakpoints. A M4K core may have up to six instruction breakpoints and
two data breakpoints and potentially support for complex breakpoints. The hardware instruction breakpoints can be
configured to generate a debug exception when an instruction is executed anywhere in the virtual address space. Bit
mask values may apply in the address compare. These breakpoints are not limited to code in RAM like the software
instruction breakpoint (SDBBP). The data breakpoints can be configured to generate a debug exception on a data
transaction. The data transaction may be qualified with both virtual address, data value, size and load/store transac-
tion type. Bit mask values may apply in the address compare, and byte mask may apply in the value compare.

Complex breakpoints can be configured to match on more intricate scenarios. Complex break features include pass
counters to enable the breakpoint after N matching occurrences, requiring matching of both data and instruction
breaks on oneinstruction, priming to enable after another breakpoint condition has been met, and qualifying to enable
instruction breaks when certain data conditions have been met.

An optional TAPR, enabling communication between an EJTAG probe and the CPU through a dedicated port, may also
be applied to the core. This provides the possibility for debugging without debug code in the application, and for
download of application code to the system.

Another optional block is EJTAG Trace which enables real-time tracing capability. The trace information can be
stored to either an on-chip trace memory or to an off-chip trace probe. The trace of program flow is highly flexible
and can include instruction program counter as well as data addresses and data values. The trace features provides a
powerful software debugging mechanism.

Refer to Chapter 8, “EJTAG Debug Support in the M4K™ Core” on page 127 for more information on the EJTAG
features.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 21

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

22

Introduction to the MIPS32® M4K™ Processor Core

1.2.2.3 Coprocessor 2 Interface (CP2)

The optional coprocessor 2 (CP2) interface provides a full-featured interface for a coprocessor. It provides full sup-
port for al the M1PS32 COP2 instructions, with the exception of the 64-bit L oad/Store instructions (LDC2/SDC2).

The CP2 interface can provide access to a graphics accel erator coprocessor or a simple register file. There is no sup-
port for the floating-point coprocessor COP1, which requires 64-bit data transfers.

Refer to Chapter 10, “M4K™ Processor Core Instructions” on page 207 for more information on the Coprocessor 2
supported instructions.

1.2.2.4 CorExtend® User Defined Instructions (UDI)

This optional module contains support for CorExtend user defined instructions. These instructions must be defined at
build-time for the M4K core. Accessto UDI requires a separate license from MIPS, and the coreis then referred to as
the M4K Pro™ core. When licensed, 16 instructions in the opcode map are available for UDI, and each instruction
can have single or multi-cycle latency. A UDI instruction can operate on any one or two general-purpose registers or
immediate data contai ned within the instruction, and can write the result of each instruction back to ageneral purpose
register or local register. Implementation details for UDI can be found in other documents available from MIPS.

Refer to Table 10.3 “ Special 2 Opcode Encoding of Function Field” for a specification of the opcode map available
for user defined instructions.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 2

Pipeline of the MAK™ Core

The M4K processor core implements a 5-stage pipeline similar to the original R3000 pipeline. The pipeline allows
the processor to achieve high frequency while minimizing device complexity, reducing both cost and power con-
sumption. This chapter contains the following sections:

e Section 2.1 “Pipeline Stages’

e Section 2.2 “Multiply/Divide Operations’

e Section 2.3 “MDU Pipeline (High-Performance MDU)”

e Section 2.4 “MDU Pipeline (Area-Efficient MDU)”

e Section 2.5 “Branch Delay”

e Section 2.6 “DataBypassing’

e Section 2.8 “Interlock Handling”

e Section 2.9 “Slip Conditions’

e Section 2.10 “Instruction Interlocks’

e Section 2.11 “Hazards’
2.1 Pipeline Stages

The pipeline consists of five stages:
e Instruction (I stage)

e Execution (E stage)

* Memory (M stage)

« Align (A stage)

» Writeback (W stage)

A M4K core implements a“Bypass’ mechanism that allows the result of an operation to be sent directly to the
instruction that needs it without having to write the result to the register and then read it back.

The M4K soft core includes a build-time option that determines the type of multiply/divide unit (MDU) imple-
mented. The MDU can be either a high-performance array or an iterative, area-efficient array. The MDU choice hasa

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 23

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the M4K™ Core

significant effect on the MDU pipeline, and the latency of multiply/divide instructions executed on the core. Software
can query the type of MDU present on a specific implementation of the core by querying the MDU bit in the Config
register (CPO register 16, select 0); see 5.2.13 “Config Register (CPO Register 16, Select 0)” for more details.

Figure 2.1 shows the operations performed in each pipeline stage of the M4K processor core, when the high-perfor-
mance multiplier is present.

Figure 2.1 M4K™ Core Pipeline Stages (with high-performance MDU)
I I I I I I I I I

|) ' ! |
| ! E | Y | A [w_] | -sraM : I-SRAM read
f | A>E Bypass | | ! 1Dec | - Instruction Decode
: : M->E'Bypass \ : Regrd | : Register file read .
\ T | |)) : Instruction Address Calculation stage 1 and 2
| | I-ACL | I-AC2 g
| rsram_ |Regrd ALU Op = ? l ALU Op - Arithmetic Logic and Shift operations
: IDec | D-AC - alan | RegW : 2 pAcC | : Data Address Calculation
\ | @ D-SRAM : D-SRAM read
| (2= ,
\ IAC1 | I-AC2 | | (' Align | : Load data aligner
| X w_ AEBjpass | ! 2 Reqw | : Register file write
: | [// | MDUResRrdy | Regw | : muL | : MUL instruction
\ : i T \ e CPA : Carry Propagate Adder
\ \ [Mult, Mafc _16x16,32x1 cPA MDUResRdy | |’ Mult, Macc | * Multiply and Multiply Accumulate instructions
| | ; - ! LS Divide : Divide instructions
: | [wutmacc // 3] cPA [mDUResrdy | (3 sign Adiust | - Last stage of Divide is a sign adjust
\ : S = MDU Res Rdy | : Result can be read from MDU
: \ [Divide ' ’/’/ ! Sign Adiust | MDU Res Rdy ! / / - One or more cycles.
l l

Figure 2.2 shows the operations performed in each pipeline stage of the M4K processor core, when the area-efficient
multiplier is present.

Figure 2.2 M4K™ Core Pipeline Stages (with area-efficient MDU)
I I I I I I I I I I

1 ! I

| [E [M [
| | _A->E Bypass :

!)

|

)

I-SRAII] . I-SRAM read

IDec | : Instruction Decode

Regrd | : Register file read

1ACL | 1-Ac2 | : Instruction Address Calculation stage 1 and 2
ALU Op : Arithmetic Logic and Shift operations

A W

X M->E|Bypass
1

ISRAM _ |Regrd| ALyop |

IDec | D-AC | D-SRAM__| Align RegW

| £ ’_I% : Data Address Calculation
| [} .
| = b-sraM : D-SRAM read
| | 5 Aign | : Load data aligner
: w® l A>E ?V,Pass L \ = Regw | : Register file write
v w7/ T wbUResRdy [Regw] 3 muL_| - MUL instruction .
\ \ 7 \ : = Multiply, Divide | - Multiply, Multiply Acc. And Divide
| \ /. - - Result can be read from MDU
\ [Muttioly, pivide // | [MDU Res Rdy é MDU Res Ray
\ \ L | ;
|) .

/ / : One or more cycles.
|

2.1.1 | Stage: Instruction Fetch
During the Instruction fetch stage:
* Aninstruction is fetched from the instruction SRAM.

 MIPS16einstructions are converted into M1PS32-like instructions.

24 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

2.1 Pipeline Stages

2.1.2 E Stage: Execution

During the Execution stage:

Operands are fetched from the register file.
Operands from the M and A stage are bypassed to this stage.
The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register instructions.

The ALU calculates the data virtual address for load and store instructions and the MMU performs the fixed vir-
tual-to-physical address trand ation.

The ALU determines whether the branch condition is true and calculates the virtual branch target address for
branch instructions.

Instruction logic selects an instruction address and the MMU performs the fixed virtual-to-physical address
trandation.

All multiply divide operations begin in this stage.

2.1.3 M Stage: Memory Fetch

During the Memory Fetch stage:

The arithmetic or logic ALU operation completes.
The data SRAM accessis performed for load and store instructions.

A 16x16 or 32x16 MUL operation completesin the array and stalls for one clock in the M stage to complete the
carry-propagate-add in the M stage (high-performance MDU option).

A 32x32 MUL operation stalls for two clocks in the M stage to complete the second cycle of the array and the
carry-propagate-add in the M stage (high-performance MDU option).

A multiply operation stalls the MDU pipeline for 31 cyclesin the M stage (area-efficient MDU option).
Multiply and divide calculations proceed in the MDU. If the cal culation completes before the IU moves the

instruction past the M stage, then the MDU holds the result in atemporary register until the |U movesthe instruc-
tions to the A stage (and it is consequently known that it won't be killed).

2.1.4 A Stage: Align

During the Align stage:

A separate aligner aligns loaded data with its word boundary.

A MUL operation makes the result available for writeback. The actual register writeback is performed in the W
stage.

From this stage load data or aresult from the MDU are available in the E stage for bypassing.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 25

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the M4K™ Core

2.1.5 W Stage: Writeback

During the Writeback stage:

» For register-to-register or load instructions, the result is written back to the register file.

2.2 Multiply/Divide Operations

The M4K core implement the standard MIPS 11™ multiply and divide instructions. Additionally, several new instruc-
tions were standardized in the MIPS32 architecture for enhanced performance.

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general purpose register file
instead of the HI/LO register pair. By avoiding the explicit MFL O instruction, required when using the L O register,
and by supporting multiple destination registers, the throughput of multiply-intensive operationsis increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU) multiply-subtract (M SUB), and multi-
ply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract operations. The
MADD/MADDU instruction multiplies two numbers and then adds the product to the current contents of the HI and
LO registers. Similarly, the MSUB/M SUBU instruction multiplies two operands and then subtracts the product from
the HI and L O registers. The MADD/MADDU and MSUB/MSUBU operations are commonly used in DSP algo-
rithms.

All multiply operations (except the MUL instruction) write to the HI/L O register pair. All integer operations write to
the general purpose registers (GPR). Because MDU operations write to different registers than integer operations, fol-
lowing integer instructions can execute before the MDU operation has completed. The MFLO and MFHI instructions
are used to move data from the HI/L O register pair to the GPR file. If aMFLO or MFHI instruction is issued before
the MDU operation completes, it will stall to wait for the data.

2.3 MDU Pipeline (High-Performance MDU)

26

The M4K processor core contains an autonomous multiply/divide unit (MDU) with a separate pipeline for multiply
and divide operations. This pipeline operatesin parallel with theinteger unit (1U) pipeline and does not stall when the
U pipeline stalls. This allows multi-cycle MDU operations, such as a divide, to be partially masked by system stalls
and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier array, a carry propagate adder, result/accumulation registers
(HI and LO), multiply and divide state machines, and all necessary multiplexers and control logic. The first number
shown (‘32" of 32x16) represents the rs operand. The second number (*16’ of 32x16) represents the rt operand. The
core only checks the latter (rt) operand value to determine how many times the operation must pass through the mul-
tiplier array. The 16x16 and 32x16 operations pass through the multiplier array once. A 32x32 operation passes
through the multiplier array twice.

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations
can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back
32x32 multiply operations. Multiply operand size is automatically determined by logic built into the MDU. Divide
operations are implemented with asimple 1 bit per clock iterative algorithm with an early in detection of sign exten-
sion on the dividend (rs). Any attempt to issue a subsequent MDU instruction while adivideis till active causes an
U pipeline stall until the divide operation is completed.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Table 2.1 lists the latencies (number of cycles until aresult is available) for multiply and divide instructions. The

2.3 MDU Pipeline (High-Performance MDU)

latencies are listed in terms of pipeline clocks. In thistable *latency’ refers to the number of cycles necessary for the
first instruction to produce the result needed by the second instruction.

Table 2.1 MDU Instruction Latencies (High-Performance MDU)

Size of Operand Instruction Sequence Latency
1st Instruction!!] 1st Instruction 2nd Instruction Clocks
16 hit MULT/MULTU, MADD/MADDU, 1
MADD/MADDU MSUB/MSUBU or
MSUB/MSUBU MFHI/MFLO
32 bit MULT/MULTU, MADD/MADDU, 2
MADD/MADDU, or MSUB/MSUBU or
MSUB/MSUBU MFHI/MFLO
8 hit DIVU MFHI/MFLO 9
16 bit DIVU MFHI/MFLO 17
24 bit DIVU MFHI/MFLO 25
32 bit DIVU MFHI/MFLO 33
8 bit DIV MFHI/MFLO 1004
16 bit DIV MFHI/MFLO 18[4]
24 bit DIV MFHI/MFLO 264
32 bit DIV MFHI/MFLO 3404
any MTHI/MTLO MADD/MADDU or 1
MSUB/MSUBU
[1] For multiply operations, thisisthe rt operand. For divide operations, thisis the rs operand.
[2] Integer Operation refersto any integer instruction that uses the result of a previous MDU operation.
[3] Thisdoes not include the 1 or 2 1U pipeline stalls (16 bit or 32 bit) that the MUL operation causesirre-
spective of the following instruction. These stalls do not add to the latency of 2.
[4] If both operands are positive, then the Sign Adjust stage is bypassed. Latency is then the same as for
DIVU.

In Table 2.1 alatency of one means that the first and second instructions can be issued back to back in the code with-
out the MDU causing any stallsinthe 1U pipeline. A latency of two meansthat if issued back to back, the IU pipeline
will be stalled for one cycle. MUL operations are specia because it needsto stall the IU pipeline in order to maintain
its register file write slot. Consequently the MUL 16x16 or 32x16 operation will always force a one cycle stall of the

U pipeline, and the MUL 32x32 will force atwo cycle stall. If the integer instruction immediately following the

MUL operation usesits result, an additional stall isforced on the IU pipeline.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

27

Pipeline of the M4K™ Core

Table 2.2 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply accumu-
late/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In thistable ‘repest rate’ refersto the
case where the first MDU instruction (in the table below) if back-to-back with the second instruction.

Table 2.2 MDU Instruction Repeat Rates (High-Performance MDU)

) Instruction Sequence
Operand Size of 1st Repeat
Instruction 1st Instruction 2nd Instruction Rate

16 bit MULT/MULTU, MADD/MADDU, 1
MADD/MADDU, MSUB/MSUBU
MSUB/MSUBU

32 bit MULT/MULTU, MADD/MADDU, MSUB/MSUBU 2
MADD/MADDU,
MSUB/MSUBU

Figure 2.3 below shows the pipeline flow for the following sequence:

1. 32x16 multiply (Multy)
2. Add

3. 32x32 multiply (Mult,)

4. Subtract (Sub)

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 multiply operation
requires two clocksin the My,p pipe-stage. The MDU pipeline is shown as the shaded areas of Figure 2.3 and

always starts a computation in the final phase of the E stage. As shown in the figure, the My,py pipe-stage of the
MDU pipeline occursin parallel with the M stage of the IU pipeline, the Ay py Stage occurs in parallel with the A
stage, and the Wy, Stage occursin parallel with the W stage. In general this need not be the case. Following the 1st

cycle of the M stages, the two pipelines need not be synchronized. This does not present a problem because resultsin
the MDU pipeline are written to the HI and LO registers, while the integer pipeline results are written to the register
file

Figure 2.3 MDU Pipeline Behavior During Multiply Operations

| cyclel | cycle2 | cycle3 | cycle4 | cycle5 | cycle6 | cycle7 | cycle8 |
Fof -4 7 7 °1 ©°L—7 ©°L—7 "1

| | | | | | | | |
Multy | | | E ! Mmbu Ambu Wmpou__| \ : :
Add : [I E M A [w ! |
. |
Multz : : I E [Mwou [Mwou Ambu Wypu |
\)
Sub | | | I [E [M A w |

] T
|

l

Thefollowing is a cycle-by-cycle analysis of Figure 2.3.

1. Thefirst 32x16 multiply operation (Mult;) is fetched from the instruction cache and enters the | stage.

28 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

2.3 MDU Pipeline (High-Performance MDU)

2. An Add operation enters the | stage. The Mult; operation enters the E stage. The integer and MDU pipelines

sharethe | and E pipeline stages. At the end of the E stagein cycle 2, the MDU pipeline starts processing the
multiply operation (Multy).

3. Incycle 3 a32x32 multiply operation (Mult,) entersthe | stage and is fetched from the instruction cache. Since

the Add operation has not yet reached the M stage by cycle 3, thereis no activity in the M stage of the integer
pipeline at thistime.

4. Incycle 4 the Subtract instruction enters | stage. The second multiply operation (Mult,) entersthe E stage. And
the Add operation enters M stage of the integer pipe. Since the Mult; multiply is a 32x16 operation, only one
clock isrequired for the My, p stage, hence the Mult, operation passes to the Ay,p Stage of the MDU pipeline.

5. Incycle5 the Subtract instruction enters E stage. The Mult, multiply enters the My,p stage. The Add operation
entersthe A stage of theinteger pipeline. The Mult; operation completes and is written back in to the HI/LO reg-
ister pair in the Wy,py stage.

6. Sincea32x32 multiply requires two passes through the multiplier, with each pass requiring one clock, the 32x32
Mult, remainsin the My, py Stagein cycle 6. The Sub instruction enters M stagein theinteger pipeline. The Add

operation completes and is written to the register file in the W stage of the integer pipeline.
7. TheMult, multiply operation progresses to the Ay py Stage, and the Sub instruction progress to the A stage.

8. The Mult, operation completes and is written to the HI/L O registers pair the Wy, p stage, while the Sub instruc-
tion write to the register filein the W stage.

2.3.1 32x16 Multiply (High-Performance MDU)

The 32x16 multiply operation beginsin the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage, the rs and rt operands arrive and the booth-recoding function occurs at
this time. The multiply calculation requires one clock and occursin the My, p stage. In the Ay py Stage, the

carry-propagate-add (CPA) function occurs and the operation is completed. The result is ready to be read from the
HI/LO registersin the Wy,p stage.

Figure 2.4 shows a diagram of a 32x16 multiply operation.

Figure 2.4 MDU Pipeline Flow During a 32x16 Multiply Operation

Clock 1 2 3 4
€ E >l€ M D€ Apy D€ Wy P

| Booth | Array | CPA | Res Rdy |

2.3.2 32x32 Multiply (High-Performance MDU)

The 32x32 multiply operation beginsin the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage, the rs and rt operands arrive and the booth recoding function occurs at this
time. The multiply calculation requires two clocks and occursin the My,py stage. In the Aypy stage, the CPA func-

tion occurs and the operation is completed.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 29

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the M4K™ Core

Figure 2.5 shows a diagram of a 32x32 multiply operation.

Figure 2.5 MDU Pipeline Flow During a 32x32 Multiply Operation
Clock 1 2 3 4 5
€« E >le Mpy D€ Mpy € Apy € Wy $

|Booth | Array Array | CPA | Res Rdy |
Booth

2.3.3 Divide (High-Performance MDU)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands, hence thefirst cycle of the My, Stageis used to negate the rs operand (RS Adjust) if needed. Note
that thiscycleis spent even if the adjustment is not necessary. During the next maximum 32 cycles (3-34) an iterative
add/subtract loop is executed. In cycle 3 an early-in detection is performed in parallel with the add/subtract. The
adjusted rs operand is detected to be zero extended on the upper most 8, 16 or 24 bits. If thisis the case the following
7, 15 or 23 cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycleisrequired if the remainder was negative. Note that this cycle is spent even
if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. The sign
adjust stage is skipped if both operands are positive. In this case the Rem Adjust is moved to the A,,py Stage.

Figure 2.6, Figure 2.7, Figure 2.8 and Figure 2.9 show the latency for 8, 16, 24 and 32 bit divide operations, respec-
tively. Therepeat rate is either 11, 19, 27 or 35 cycles (onelessif the sign adjust stage is skipped) as a second divide
can bein the RS Adjust stage when thefirst divide isin the Reg WR stage.

Figure 2.6 High-Performance MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

Clock 1 2 3 4-10 11 12 13
|4— EStage |4 Mypy Stage | € Mypy Stage | € Mypy Stage | € Mypy Stage | € Aypy Stage <€ Wypy Stage—}l

| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | MDU Res Rdy |

Early In

Figure 2.7 High-Performance MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Clock 1 2 3 4-18 19 20 21

|4— EStage |4~ Mypy Stage | € Mypy Stage 9| € Mypy Stage | € Mypy Stage | € Aypy Stage € Wypy Stage—}l

| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | MDU Res Rdy |
Early In
30 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

2.4 MDU Pipeline (Area-Efficient MDU)

Figure 2.8 High-Performance MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

Clock 1 2 3 4-26 27 28 29
|4- EStage |4 Mypy Stage > | €= Mypy Stage | €= Mypy Stage > € Mypy Stage {4 Aypy Stage < Wypy Stage—}l

| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | MDU Res Rdy |

Early In

Figure 2.9 High-Performance MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

Clock 1 2 3 4-34 35 36 37
|4- EStage |4 Mypy Stage > | €= Mypy Stage | €= Mypy Stage | € Mypy Stage {4 Aypy Stage < Wypy Stage—}l

| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | MDU Res Rdy |

Early In

2.4 MDU Pipeline (Area-Efficient MDU)

The area-efficient multiply/divide unit (MDU) is a separate autonomous block for multiply and divide operations.

The MDU isnot pipelined, but rather performs the computations iteratively in parallel with the integer unit (1U) pipe-
line. It does not stall when the 1U pipeline stalls. Thisallows the long-running MDU operationsto be partially masked

by system stalls and/or other integer unit instructions.

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide state

machine and all multiplexersand control logic. A simple 1-bit per clock recursive algorithm is used for both multiply
and divide operations. Using booth’'s algorithm all multiply operations completein 32 clocks. Two extra clocks are

needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not work with negative
numbers. Adjustment before and after are thus required depending on the sign of the operands. All divide operations

completein 33 to 35 clocks.

Table 2.3 lists the latencies (number of cycles until aresult is available) for multiply and divide instructions. The

latencies are listed in terms of pipeline clocks. In thistable ‘latency’ refers to the number of cycles necessary for the

second instruction to use the results of the first.

Table 2.3 M4K™ Core Instruction Latencies (Area-Efficient MDU)

Operand Signs of Instruction Sequence
1st Instruction Latency
(Rs,Rt) 1st Instruction 2nd Instruction Clocks
any, any MULT/MULTU MADD/MADDU, 32
MSUB/MSUBU, or
MFHI/MFLO
any, any MADD/MADDU, MADD/MADDU, 34
MSUB/MSUBU MSUB/MSUBU, or
MFHI/MFLO
any, any MUL Integer operationl 32
any, any DIVU MFHI/MFLO 33

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

31

Pipeline of the M4K™ Core

Table 2.3 M4AK™ Core Instruction Latencies (Area-Efficient MDU)

Operand Signs of Instruction Sequence
1st Instruction Latency
(Rs,Rt) 1st Instruction 2nd Instruction Clocks
pos, pos DIV MFHI/MFLO 33
any, neg DIV MFHI/MFLO 34
neg, pos DIV MFHI/MFLO 35
any, any MFHI/MFLO Integer operationl 2
any, any MTHI/MTLO MADD/MADDU, 1
MSUB/MSUBU
[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

2.4.1 Multiply (Area-Efficient MDU)

Multiply operations are executed using a simple iterative multiply algorithm. Using Booth's approach, this algorithm
works for both positive and negative operands. The operation uses 32 cyclesin My,p Stage to complete a multiplica-
tion. The register writeback to HI and LO are done in the A stage. For MUL operations, the register file writeback is
done in the W),py stage.

Figure 2.10 shows the latency for amultiply operation. The repest rateis 33 cycles as a second multiply can bein the
first My py Stage when the first multiply isin Aypy Stage.

Figure 2.10 M4K™ Area-Efficient MDU Pipeline Flow During a Multiply Operation

Clock 1 2-33 34 35

|4' E-Stage —>/4-Mypy-Stage > |- Aypy-Stage P 4‘WMDU'Stage"|
[Adgisubshitt | HLOWite [Reg WR]

2.4.2 Multiply Accumulate (Area-Efficient MDU)

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stages are
needed to perform the addition/subtraction. The operations uses 34 cyclesin My, py Stage to complete the multi-

ply-accumulate. The register writeback to HI and LO are done in the A stage.

Figure 2.11 shows the latency for a multiply-accumulate operation. The repeat rateis 35 cycles as a second multi-
ply-accumul ate can be in the E stage when the first multiply isin the last My, py Stage.

Figure 2.11 M4KC Area-Efficient MDU Pipeline Flow During a Multiply Accumulate Operation

Clock 1

2-33

34

<4 Mypy Stage P

35 36 37

<4 Mypy Stage P

|4— EStage |4 Mypy Stage 9> < Avpu Stage—>|4— Wypy Stage—>

|Add/SubtractShift| Accumulate/LO | Accumulate/HI | HI/LO Write |

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

2.5 Branch Delay

2.4.3 Divide (Area-Efficient MDU)

Divide operations a so implement a simple non-restoring a gorithm. This algorithm works only for positive operands,
hence the first cycle of the My, stage is used to negate the rs operand (RS Adjust) if needed. Note that thiscycleis

executed even if negation is not needed. The next 32 cycle (3-34) executes an interactive add/subtract-shift function.

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the remainder.
Note that one or both of these cycles are skipped if they are not needed. Theruleis, if both operands were positive or
if thisisan unsigned division; both of the sign adjust cycles are skipped. If the rs operand was negative, one of the
sign adjust cyclesis skipped. If only the rs operand was negative, none of the sign adjust cycles are skipped. Register
writeback to HI and LO are donein the A stage.

Figure 2.12 shows the pipeline flow for a divide operation. The repeat rateis either 34, 35 or 36 cycles (depending on
how many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide isin the last

Mwmpu Stage.
Figure 2.12 M4K™ Area-Efficient MDU Pipeline Flow During a Divide (DIV) Operation

Clock 1 2 3-34 35 36 37 38
|« EStage »|€Mypy Stage | €My Stage | €My Stage | €My Stage |4 Aypy Stage | € Wyp Stage |

| RS Adjust |Add/SubtractShiff Sign Adjust 1 | Sign Adjust 2 | HI/LO Write |

2.5 Branch Delay

The pipeline has abranch delay of one cycle. The one-cycle branch delay isaresult of the branch decision logic oper-
ating during the E pipeline stage. This allows the branch target address to be used in the | stage of the instruction fol-
lowing 2 cycles after the branch instruction. By executing the 1st instruction following the branch instruction
sequentially before switching to the branch target, the intervening branch delay dlot is utilized. This avoids bubbles
being injected into the pipeline on branch instructions. Both the address cal culation and the branch condition check
are performed in the E stage.

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay slot.
After the branch decision is made, the processor continues with the fetch of either the branch path (for ataken branch)
or the fall-through path (for the non-taken branch).

The branch delay means that the instruction immediately following a branch is always executed, regardless of the
branch direction. If no useful instruction can be placed after the branch, then the compiler or assembler must insert a
NOP instruction in the delay slot.

Figure 2.13 illustrates the branch delay.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 33

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the M4K™ Core

Figure 2.13 IU Pipeline Branch Delay

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle
Jump or Branch —» | E M A W
Delay Slot Instruction > | / E M A W
Jump Target Instruction (;‘ | E M A
One Clock
Branch Delay

2.6 Data Bypassing

Most MIPS32 instructions use one or two register values as source operands. These operands are fetched from the
register filein the first part of E stage. The ALU straddles the E to M boundary, and can present the result early in M
stage. Theresult is not written to the register file before the W stage however. If no precautions were made, it would
take 3 cycles before the result was available for the following instructions. To avoid this, data bypassing isimple-
mented.

Between the register file and the ALU a data bypass multiplexer is placed on both operands (see Figure 2.14). This
enables the M4K core to forward data from a preceding instruction whose target is a source register of afollowing
instruction. An M to E bypass and an A to E bypass feed the bypass multiplexers. A W to E bypassis not needed, as
the register file is capable of making an internal bypass of Rd write data directly to the Rs and Rt read ports.

Figure 2.14 |U Pipeline Data bypass

| stage . E stage . M stage . A stage . W stage
. AtoE bypass . . .
: M to E bypass
) Rs Addr
Instruction Rs Read
Rt Addr
Reg File
Rd Write
' Rt Read

L . . I]

Bypass Load data, HI/LO Data or
multiplexers CPO data

Figure 2.15 shows the data bypass for an Add; instruction followed by a Sub, and another Addsinstruction. The Sub,
instruction uses the output from the Add; instruction as one of the operands, and thus the M to E bypassis used. The
following Add; uses the result from both the first Add, instruction and the Sub, instruction. Since the Add, datais

34 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

2.6 Data Bypassing

now in A stage, the A to E bypassis used, and the M to E bypassis used to bypass the Sub, data to the Add, instruc-
tion.

Figure 2.15 IU Pipeline M to E bypass

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle
ADD; —p [E M A W
R3=RZ+R1 Zi/l to E bypass \ Ato E bypass
s, — 3 E / M A w
RA=R3-RT M to E bypass &A
ADDj > I E M A
R5=R3+R4

2.6.1 Load Delay

Load delay refersto the fact, that data fetched by aload instruction is not available in the integer pipeline until after
theload aligner in A stage. All instructions need the source operands available in the E stage. An instruction immedi-
ately following aload instruction will, if it has the same source register as was the target of the load, cause an instruc-
tioninterlock pipeline slip in the E stage (see 2.10 “Instruction Interlocks’ on page 38). If an instruction following
theload by 1 or 2 cycles uses the data from the load, the A to E bypass (see Figure 2.14) serves to reduce or avoid
stall cycles. Aninstruction flow of thisis shown in Figure 2.16.

Figure 2.16 IU Pipeline A to E Data bypass

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

Load Instruction —> | E M w

A
\ Data bypass from Ato E

- E / M A w

Consumer of Load Data Instruction - > | E M A
One Clock
Load Delay

2.6.2 Move from HI/LO and CPO Delay

Asindicated in Figure 2.14, not only load data, but also data moved from the HI or LO registers (MFHI/MFLO) and
data moved from CPO (MFCO) entersthe IU-Pipelinein the A stage. That is, datais hot available in the integer pipe-
line until early inthe A stage. The A to E bypassis available for this data. But as for Loads, an instruction following
immediately after one of these move instructions must be paused for one cycle if the target of the move is among the
sources of that following instruction. This then causes an interlock dip in the E stage (see 2.10 “Instruction
Interlocks” on page 38). An interlock dlip after aMFHI isillustrated in Figure 2.17.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 35

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the M4K™ Core

Figure 2.17 IU Pipeline Slip after a MFHI

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle
MFHI (to R3) > [E M A w
Zfata bypass from Ato E
ADD (R4=R3+R5) - 5 E (slip) E M A w

2.7 Coprocessor 2 Instructions

36

If a coprocessor 2 is attached to the M4K core, a number of transactions has to take place on the CP2 Interface, for
each coprocessor 2 instruction. First of al if the CU[2] bit in the CPO Status register is not set, then no coprocessor 2
related instruction will start a transaction on the CP2 Interface. Rather a Coprocessor Unusable exception will sig-
naled. If the CU[2] hit is set, and a coprocessor 2 instruction is fetched, the following transactions will occur on the

CP2 Interface:

1. Thelnstruction is presented on the instructions busin E-stage. The coprocessor 2 can do a decode in the same
cycle.

2. Thelnstruction is validated from the core in M-stage. From this point the core will accept control and data sig-
nals back from coprocessor 2. All control and data signals from the coprocessor 2 is captured on input latches to
the core.

3. If all the expected control and data signals was presented to the core in the previous M-stage, the core will pro-
ceed executing the A-stage. If some return information is missing, the A-stage will not advance and cause aslip
onall I, E and M-stage, see 2.9 “Slip Conditions’ on page 38.

If thisinstruction involved sending data from the core to the coprocessor 2, then this datais send in A-stage.
4. Theinstruction completion is signaled to the coprocessor 2 in the W-stage. Potential data from the coprocessor is

written in the register file.

Figure 2.18 Show the timing relationship between the M4K core and the coprocessor 2 for al coprocessor 2 instruc-
tion.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Figure 2.18 Coprocessor 2 Interface Transactions

2.8 Interlock Handling

One Cycle One Cycle One Cycle One Cycle One Cycle
COP2 inst. —» | E M A W
Core internal Fetch instrucion [Decode and setup| Get ToData from Capture Control &
: —> . FromData
operations valid memory
[. . |
Core to CP2 info. —» Instrucion Validate inst. ToData | Complete
CP2 to Core info) Control &
' Read
I i y FromData
CP2 internal Get ready fornew| Decode & get | See Capture ToData Complete
operations - inst. FromData _|'Valid instruction

Ascan be seen al control and data from the coprocessor must occur in the M-stage. If thisis not the case, the A-stage
will start dlipping in the following cycle, and thus stall the |, E, M and A pipeline stages; but if all expected control
and dataiis available in the M-stage, a Coprocessor 2 instructions can execute with no stalls on the pipeline.

There isonly one exception to this, and that is the Branch on Coprocessor conditions (BC2) instruction. All branch
instructions, including the regular BEQ, BNE... etc. must be resolved in E-stage. The M4K core does not have branch
prediction logic, and thus the target address must be available before the end of E-stage. The BC2 instruction hasto
follow the same protocol as all other coprocessor 2 instructions on the CP2 Interface. All core interface operations
belonging to the E, M and A stages will have to occur in the E-stage for BC2 instructions. This means that a BC2
instructions always slips for aminimum of 2 cyclesin E-stage. Any delay in return of branch information from the
Coprocessor 2 will add to the number of dlip cycles. All other Coprocessor 2 instructions can operate without slips,
provided that all control and data information from the Coprocessor 2 is transferred in the M-stage.

2.8 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interruptions
handled entirely in hardware, such as cache misses, are referred to as interlocks. At each cycle, interlock conditions
are checked for al active instructions.

Table 2.4 lists the types of pipeline interlocks for the M4K processor core.

Table 2.4 Pipeline Interlocks

Interlock Type Sources Slip Stage
|-side SRAM Stall SRAM Access not complete E Stage
Instruction Producer-consumer hazards E/M Stage
Hardware Dependencies (MDU) E Stage
BC2 waiting for COP2 Condition Check
D-side SRAM Stall SRAM Access not complete A Stage
Coprocessor 2 completion dlip Coprocessor 2 control and/or data delay A Stage
from coprocessor
MIPS32® M4K™ Processor Core Software User’'s Manual, Revision 02.03 37

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the M4K™ Core

In general, MIPS processors support two types of hardware interlocks:
» Stalls, which are resolved by halting the pipeline
» Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the M4K processor core, all interlocks are handled as dlips.
2.9 Slip Conditions

On every clock internal logic determines whether each pipe stage is allowed to advance. These slip conditions propa-
gate backwards down the pipe. For example, if the M stage does not advance, neither doesthe E or | stage.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advances normally
during dlips. This resolves the conflict when the slip was caused by a missing result. NOPs are inserted into the bub-
blein the pipeline. Figure 2.19 shows an instruction cache miss.

Figure 2.19 Instruction Cache Miss Slip

Clock 1 2 3 4 5 6

@ @ O
Stage v v v
Ve L fos [os [15] 16 |
E Lt [ts fe Ja 1] s
M] o] of]
Al |[nu]nliu] of of

(D Cache miss detected
(2) Critical word received
(3) Execute E-stage

Figure 2.19 shows a diagram of atwo-cycle dip. Inthefirst clock cycle, the pipelineisfull and the cache missis
detected. Instruction 10 isin the A stage, instruction 11 isin the M stage, instruction 12 isin the E stage, and instruc-
tion 13 isinthel stage. The cache missoccursin clock 2 when the 14 instruction fetch is attempted. 14 advancesto the
E-stage and waits for the instruction to be fetched from main memory. In this example it takes two clocks (3 and 4) to
fetch the 14 instruction from memory. Once the cache missisresolved in clock 4 and the instruction is bypassed to the
E stage, the pipelineis restarted, causing the 14 instruction to finally execute it's E-stage operations.

2.10 Instruction Interlocks
Most instructions can be issued at arate of one per clock cycle. In order to adhere to the sequential programming

model, the issue of an instruction must sometimes be delayed. Thisto ensure that the result of a prior instruction is

38 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

2.11 Hazards

available. Table 2.5 details the instruction interactions that prevent an instruction from advancing in the processor

pipeline.
Table 2.5 Instruction Interlocks
Instruction Interlocks
Issue Delay (in
First Instruction Second Instruction Clock Cycles) Slip Stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage
MFCO Consumer of destination regis- 1 E stage

ter
MULTx/MADDx/MSUBx 16bx32b MFLO/MFHI 0
(high-performance MDU) 2320x320 1 M stage
MUL 16bx32b Consumer of target data 2 E stage
(high-performance MDU) 32bx32b 3 E stage
MUL 16bx32b Non-Consumer of target data 1 E stage
(high-performance MDU) 32bx32b > E stage
MFHI/MFLO Consumer of target data 1 E stage
MULTx/MADDx/M SUBXx 16bx32b MULT/MUL/MADD/MSUB ol E stage
(high-performance MDU) MTHI/MTLO/DIV

32bx32b 11 E stage

DIV MUL/MULTx/MADDx/ Until DIV completes E stage

MSUBX/MTHI/MTLO/

MFHI/MFLO/DIV
MULT/MUL/MADD/MSUB/MTHI/MTLO/MF | MULT/MUL/MADD/MSUB/ Until 1st MDU op E stage
HI/MFLO/DIV MTHI/MTLO/MFHI/MFLO/ completes
(area-efficient MDU) DIV
MUL Any Instruction Until MUL completes E stage
(area-efficient MDU)
MFCO/MFC2/CFC2 Consumer of target data 1 E stage

2.11 Hazards

In general, the M4K core ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previousinstruction. There are some deviations to this model. These
deviations are referred to as hazards.

Prior to Release 2 of the MIPS32® Architecture, hazards (primarily CPO hazards) were relegated to implementa-
tion-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such away that they are back-
ward-compatible with existing MIPS processors.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 39

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the M4K™ Core

2.11.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two different types of hazards. execution hazards and instruction hazards. Both are
defined below.

2.11.1.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 2.6 lists execution hazards.

Table 2.6 Execution Hazards

Spacing
Producer - Consumer Hazard On (Instructions)
MTCO - Coprocessor instruction execution depends on the new value of Sta- Statuscy 1
tUSCU
MTCO - ERET EPC 1
DEPC
ErrorEPC
MTCO - ERET Status 0
MTCQO, El, DI - Interrupted Instruction Statusg 1
MTCO - Interrupted Instruction Causep 3
MTCO - RDPGPR SRSCltlpsg 1
WRPGPR
MTCO - Instruction not seeing a Timer Interrupt Compare 4t
update that
clears Timer
Interrupt
MTCO - Instruction affected by change Any other CPO 2
register

1. Thisisthe minimum value. Actual value is system-dependent since it is a function of the sequential logic between the SI_Timerint
output and the external logic which feeds SI_TimerInt back into one of the SI_Int inputs, or afunction of the method for handling
SI_Timerint in an external interrupt controller.

2.11.1.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 2.7 lists instruction hazards.

Table 2.7 Instruction Hazards

Producer

-

Consumer

Hazard On

Spacing
(Instructions)

MTCO

-

Instruction fetch seeing the new value (including a change to ERL fol-
lowed by an instruction fetch from the useg segment)

Status

40

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

2.11 Hazards

Table 2.7 Instruction Hazards (Continued)

Spacing
Producer - Consumer Hazard On | (Instructions)
Instruction stream - Instruction fetch seeing the new instruction stream Cacheentries 3
writeviaredi-
rected store

2.11.2 Instruction Listing

Table 2.8 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture for Pro-
grammers \Volume |1: The MIPS32® Instruction Set (MD00086) for a more detailed description of these instructions.

Table 2.8 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

JALR.HB | Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write

2.11.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing M1PS implementations, including many which pre-date
the MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

2.11.3 Eliminating Hazards

The Spacing column shown in Table 2.6 and Table 2.7 indicates the number of unrelated instructions (such as NOPs
or SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and consumer
of the hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entriesin the
table that are listed as O are traditional M1PS hazards which are not hazards on the M4K core.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazardsis to place
one of theinstructionslisted in Table 2.8 between the producer and consumer of the hazard. Execution hazards can be
removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the
JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction. Since the M4K core does not contain
caches, the SYNCI instruction is not strictly necessary, but is still recommended to create portable code that can be
run on other MIPS processors that may contain caches.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 41

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Pipeline of the M4K™ Core

42

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 3

Memory Management of the M4AK™ Core

The M4K processor core includes a Memory Management Unit (MM U) that interfaces between the execution unit

and the cache controller. The core implements a simple Fixed Mapping (FM) style MMU.

This chapter contains the following sections:

e Section 3.1 “Introduction”

e Section 3.2 “Modes of Operation”

e Section 3.3 “Fixed Mapping MMU”

e Section 3.4 “System Control Coprocessor”

3.1 Introduction

The MMU will translate any virtual address to a physical address before arequest is sent to the SRAM interface for
an external memory reference.

In the M4K processor core, the MMU is based on asimple algorithm to trandate virtual addresses into physical
addresses via a Fixed Mapping (FM) mechanism. These trand ations are different for various regions of the virtual

address space (useg/kuseg, kseg0, ksegl, kseg2/3).
Figure 3.1 shows how the memory management unit interacts with the SRAM access in the M4K core.

Figure 3.1 Address Translation During SRAM Access

Physical

FMT

Address
>

—

Physical

Instruction Virwal

Address

Address

Calculator

Data

Address —

Calculator | Virtual
Address

3.2 Modes of Operation

Address

A M4K processor core supports three modes of operation:

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

SRAM
interface

Instn
SRAM

Data
SRAM

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

43

Memory Management of the M4AK™ Core

44

e User mode

* Kernel mode

* Debug mode

User mode is most often used for application programs. Kernel mode is typically used for handling exceptions and
privileged operating system functions, including CPO management and 1/0O device accesses. Debug mode is used for

software debugging and most likely occurs within a software devel opment tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.

3.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of operation. Figure 3.2 shows the segmentation

for the 4 GByte (232 bytes) virtual memory space addressed by a 32-bit virtual address, for the three modes of opera-
tion.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, software has
access to the entire address space, aswell asall CPO registers. User mode accesses are limited to a subset of the vir-
tual address space (0x0000_0000 to Ox7FFF_FFFF) and can be inhibited from accessing CPO functions. In User
mode, virtual addresses 0x8000_0000 to OxFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CPO registers as for Kernel mode. In addition, while in Debug mode the core has access to the
debug segment dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned
on or off, alowing full access to the entire kseg3 in Debug mode, if so desired.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

Figure 3.2 M4K™ processor core Virtual Memory Map

Virtual Address User Mode Kernel Mode Debug Mode
VXFFFF_FFFF kseg3
_O }.iF.‘F.4.O .—q O.O.O ------------- kseg3 dseg
OxFF3F_FFFF Lt kseg3
0xFF20_0000 L.t
0XFF1F_FFFF et
0xE000_0000 L. kseg2 kseg2
OxDFFF_FFFF
0xC000_0000
0xBFFF_FFFF ksegl ksegl
0xA000_0000 __..-=-=""77777° o
O0x9FFF_FFFF

kseg0 kseg0
0x8000_0000
Ox7FFF_FFFF
useg kuseg kuseg
0x0000_0000

Each of the segments shown in Figure 3.2 are either mapped or unmapped. The following two sub-sections explain
the distinction. Then sections 3.2.2 “User Mode”, 3.2.3 “Kernel Mode” and 3.2.4 “Debug Mode” specify which
segments are actually mapped and unmapped.

3.2.1.1 Unmapped Segments
An unmapped segment does not use the FM to translate from virtual -to-physical addresses.

Unmapped segments have a fixed simple trandlation from virtual to physical address. Thisis much like the transla-
tions the FM provides for the M4K core, but we will still make the distinction.

All segments are treated as uncached within the M4K core. Cache coherency attributes of cached or uncached can be
specified and thisinformation will be sent with the request to allow the system to make a distinction between the two.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 45

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the M4AK™ Core

3.2.1.2 Mapped Segments
A mapped segment does use the FM to tranglate from virtual -to-physical addresses.
For the M4K core, the mapped segments have a fixed tranglation from virtual to physical address.The cacheability of
the segment is defined in the CPO register Config, fields K23 and KU (see 5.2.13 “Config Register (CPO Register 16,
Select 0)”). Write protection of segmentsis not possible during FM trandlation.

3.2.2 User Mode

In user mode, asingle 2 GByte (23! bytes) uniform virtual address space called the user segment (useg) is available.
Figure 3.3 shows the location of user mode virtual address space.

Figure 3.3 User Mode Virtual Address Space

32 bit

O0xXFFFF_FFFF

Address Error
0x8000_0000
0x7FFF_FFFF

2GB Mapped

useg

0x0000_0000

The user segment starts at address 0x0000_0000 and ends at address Ox7FFF_FFFF. Accessesto all other addresses
cause an address error exception.

The processor operates in User mode when the Status register contains the following bit values:

e UM=1
 EXL=0
 ERL=0

In addition to the above values, the DM bit in the Debug register must be 0.
Table 3.1 lists the characteristics of the useg User mode segments.

Table 3.1 User Mode Segments

Status Register
) Bit Value
Address Bit Segment
Value EXL ERL UM Name Address Range Segment Size
32-bit 0 0 1 useg 0x0000_0000 --> 2 GByte
A(BL) =0 Ox7FFF_FFFF (23! bytes)
46 MIPS32® M4K™ Processor Core Software User’'s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

All valid user mode virtual addresses have their most significant bit cleared to O, indicating that user mode can only
accessthe lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all references to useg through the FM.

3.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains
one or more of the following values:

 UM=0
« ERL=1
« EXL=1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the
end of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET
instruction jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User
mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address,
as shown in Figure 3.4. Also, Table 3.2 lists the characteristics of the Kernel mode segments.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 47

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the M4AK™ Core

48

OXFFFF_FFFF

0xE000_0000
OxDFFF_FFFF

0xC000_0000

Figure 3.4 Kernel Mode Virtual Address Space

Kernel virtual address space
Fixed Mapped, 512MB

Kernel virtual address space
Fixed Mapped, 512MB

OxBFFF_FFFF

0xA000_0000
0x9FFF_FFFF

0x8000_0000
0x7FFF_FFFF

0x0000_0000

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Unmapped, 512MB

Fixed Mapped, 2048MB

kseg3

kseg2

ksegl

kseg0

kuseg

Table 3.2 Kernel Mode Segments

Status Register Is One
. of These Values
Address Bit Segment Segment
Values UM | EXL | ERL Name Address Range Size
A(31)=0 (Um=0 kuseg 0x0000_0000 2 GBytes (23!
or through bytes)
EXL=1 OX7FFF_FFFF
A(31:29) = 100, ERSr_ L kseg0 0x8000_0000 512 MBytes
(;) through (2% bytes)
Da“_ 0 OXOFFF_FFFF
A(31:29) = 101, ksegl 0xA000_0000 512 MBytes
through (2% bytes)
OxBFFF_FFFF
A(31:29) = 110, kseg2 0xC000_0000 512 MBytes
through (2% bytes)
OxDFFF_FFFF
A(31:29) = 111, kseg3 0xE000_0000 512 MBytes
through (2% bytes)
OxFFFF_FFFF

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

3.2 Modes of Operation

3.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address

space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - Ox7FFF_FFFF.

When ERL = 1 in the Status register, the user address region becomes a231-byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address.

3.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 100,, 32-bit ksegO virtual address

spaceis selected; it isthe 229—byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
Ox9FFF_FFFF. References to ksegO are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The KO field of the Config register controls cacheability.

3.2.3.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1015, 32-bit ksegl virtual

address spaceis selected. ksegl isthe 22°-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
OxBFFF_FFFF. Referencesto ksegl are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address.

3.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM =0, ERL =1, or EXL = 1inthe Status register, and DM = 0 in the Debug register, and
the most-significant three bits of the 32-bit virtual address are 110,, 32-bit kseg2 virtual address spaceis selected. In
the M4K core, this 22°-byte (512-MByte) kernel virtual spaceis located at physical addresses 0xC000_0000 -
OXDFFF_FFFF..

3.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 111, the kseg3 virtual address

space is selected. In the M4K core, this 22°-byte (512-MByte) kernel virtual spaceis located at physical addresses
0xEO00_0000 - OXFFFF_FFFF.

3.2.4 Debug Mode
Debug mode address space isidentical to Kernel mode address space with respect to mapped and unmapped areas,

except for kseg3. In kseg3, a debug segment dseg co-existsin the virtual address range OxFF20_0000 to
OxFF3F_FFFF. Thelayout is shownin Figure 3.5.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 49
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the M4AK™ Core

Figure 3.5 Debug Mode Virtual Address Space

OxFFFF_FFFF
0xFF40_0000

0xFF20_0000

ksegl

kseg0 Unmapped

Mapped if mapped in Kernel Mode

0x0000_0000

The dseg is sub-divided into the dmseg segment at OxFF20_0000 to OxFF2F_FFFF which is used when the probe ser-
vices the memory segment, and the drseg segment at OxFF30_0000 to OxFF3F_FFFF which is used when mem-
ory-mapped debug registers are accessed. The subdivision and attributes for the segments are shown in Table 3.3.

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-enter
debug mode via a debug mode exception.

The unmapped kseg0 and ksegl segments from kernel mode address space are available from debug mode, which
allows the debug handler to be executed from uncached and unmapped memory.

Table 3.3 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

50

Segment | Sub-Segment Cache
Name Name Virtual Address | Generates Physical Address | Attribute
dseg dmseg OxFF20_0000 dmseg maps to addresses Uncached
through 0x0_0000 - OxF_FFFF in EJTAG
OXFF2F_FFFF probe memory space.
dreeg OXTEf: u—gcl)qooo drseg maps to the breakpoint reg-
OXFF3F FFFF isters 0x0_0000 - OxF_FFFF

3.2.4.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of CPU access to the drseg address range at OxFF30_0000 to OxFF3F_FFFF is determined as shown in
Table 3.4

Table 3.4 CPU Access to drseg Address Range

LSNM bit in Debug
Transaction register Access
Load / Store 1 Kernel mode address space (kseg3)
Fetch Don't care drseg, see comments below
Load/ Store 0

Debug software is expected to read the debug control register (DCR) to determine which other memory mapped reg-
isters exist in drseg. The value returned in response to aread of any unimplemented memory mapped register is

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

3.3 Fixed Mapping MMU

unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 8, “EJTAG Debug
Support in the M4K™ Core” on page 127 for more information on the DCR.

The allowed access sizeis limited for the drseg. Only word size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

3.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of CPU access to the dmseg address range at OxFF20_0000 to OxFF2F FFFF is determined by the table
showninTable3.5.

Table 3.5 CPU Access to dmseg Address Range

ProbEn bit in LSNM bit in
Transaction DCR register Debug register Access
Load / Store Don't care 1 Kernel mode address space (kseg3)
Fetch 1 Don't care dmseg
Load / Store 1 0
Fetch 0 Don't care See comments below
Load / Store 0 0

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If
such areference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
there will never be areference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to O.

3.3 Fixed Mapping MMU

The M4K core implements a simple Fixed Mapping (FM) memory management unit that is smaller than the afull
trandlation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FM performs virtual-to-physical
address tranglation and provides attributes for the different memory segments. Those memory segments which are
unmapped in a TLB implementation (ksegO and ksegl) are translated identically by the FM in the M4AK MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bitsin the Config regis-
ter. Table 3.6 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and KO (bits 2:0) of the Config register.
The M4K core does not contain caches and will treat all references as uncached, but these Config fields will be sent
out to the system with the request and it can choose to use them to control any external caching that may be present.

Table 3.6 Cache Coherency Attributes

Config Register Fields
K23, KU, and KO Cache Coherency Attribute
2 Uncached.
3 Cacheable
MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 51

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the M4AK™ Core

In the M4K core, no translation exceptions can be taken, although address errors are till possible.

Table 3.7 Cacheability of Segments with Block Address Translation

Virtual Address
Segment Range Cacheability
useg/kuseg 0x0000_0000- Controlled by the KU field (bits 27:25) of the Config register. Refer to
OX7FFF_FFFF Table 3.6 for the encoding.
ksegO 0x8000_0000- Controlled by the KO field (bits 2:0) of the Config register. See Table
Ox9FFF_FFFF 3.6 for the encoding.
ksegl 0xA000_0000- Always uncacheable
OxBFFF_FFFF
kseg2 0xC000_0000- Controlled by the K23 field (bits 30:28) of the Config register. Refer to
OxDFFF_FFFF Table 3.6 for the encoding.
kseg3 OxEO000_0000- Controlled by K23 field (bits 30:28) of the Config register. Refer to
OxFFFF_FFFF Table 3.6 for the encoding.

The FM performs a simple trandation to map from virtual addresses to physical addresses. This mapping is shown in
Figure 3.6. When ERL =1, useg and kuseg become unmapped and uncached. The ERL behavior isthe same asif there
wasaTLB. The ERL mapping is shown in Figure 3.7.

The ERL bit isusually never asserted by software. It is asserted by hardware after a Reset, SoftReset or NMI. See
4.8 “Exceptions’ on page 72 for further information on exceptions.

Figure 3.6 FM Memory Map (ERL=0) in the M4AK™ Processor Core

Virtual Address Physical Address
kseg3 kseg3
0xE000_0000 0xE000_0000
|
kseg2 kseg2
0xC000_0000 0xC000_0000
|
ksegl

0xA000_0000

kseg0
0x8000_0000

useg/kuseg

useg/kuseg 0x4000_0000
reserved

0x2000_0000

ksegO/ksegl
0x0000_0000 0x0000_0000

52 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

3.4 System Control Coprocessor

Figure 3.7 FM Memory Map (ERL=1) in the M4AK™ Processor Core

Virtual Address Physical Address
kseg3 kseg3
0xE000_0000 0xE000_0000
-
kseg? kseg2
0xC000_0000 0xC000_0000
-
ksegl
0xA000_0000 reserved
kseg0
0x8000_0000 0x8000_0000
useg/kuseg
useg/kuseg
0x2000_0000
ksegO/ksegl
0x0000_0000 0x0000_0000

3.4 System Control Coprocessor

The System Control Coprocessor (CP0) isimplemented as an integral part of M4K processor core and supports mem-
ory management, address trandlation, exception handling, and other privileged operations. Certain CPO registers are
used to support memory management. Refer to Chapter 5, “ CPO Registers of the M4K™ Core” on page 85 for more
information on the CPO register set.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 53

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Memory Management of the M4AK™ Core

54

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 4

Exceptions and Interrupts in the MAK™ Core

The M4K processor core receives exceptions from a number of sources, including arithmetic overflows, 1/0 inter-
rupts, and system calls. When the CPU detects one of these exceptions, the normal sequence of instruction execution
is suspended and the processor enters kernel mode.

In kernel mode the core disables interrupts and forces execution of a software exception processor (called a handler)
located at a specific address. The handler saves the context of the processor, including the contents of the program
counter, the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it
can be restored when the exception has been serviced.

When an exception occurs, the core loads the Exception Program Counter (EPC) register with alocation where
execution can restart after the exception has been serviced. Most exceptions are precise, which mean that EPC can be
used to identify the instruction that caused the exception. For precise exceptions the restart location in the EPC regis-
ter isthe address of theinstruction that caused the exception or, if theinstruction was executing in abranch delay sot,
the address of the branch instruction immediately preceding the delay slot. To distinguish between the two, software
must read the BD bit in the CPO Cause register. Bus error exceptions and CP2 exceptions may be imprecise. For
impreci se exceptions the instruction that caused the exception can not be identified.

This chapter contains the following sections:

e Section 4.1 “Exception Conditions’

e Section 4.2 “Exception Priority”

e Section 4.3 “Interrupts’

e Section 4.4 “GPR Shadow Registers’

e Section 4.5 “Exception Vector Locations’

e Section 4.6 “General Exception Processing”

e Section 4.7 “Debug Exception Processing”

e Section 4.8 “Exceptions’

e Section 4.9 “Exception Handling and Servicing Flowcharts”
4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are cancelled.
Accordingly, any stall conditions and any later exception conditions that may have referenced thisinstruction are
inhibited—there is no benefit in servicing stalls for a cancelled instruction.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 55

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

4.2 Exception Priority

56

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the W stage, the exception flag causesit to write various CPO registers with
the exception state, change the current program counter (PC) to the appropriate exception vector address, and clear

the exception bits of earlier pipeline stages.

Thisimplementation allows all preceding instructions to complete execution and prevents all subsequent instructions
from completing. Thus, the valuein the EPC (ErrorEPC for errors, or DEPC for debug exceptions) is sufficient to
restart execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception

may itself be killed by an instruction further down the pipeline that takes an exception in alater cycle.

Table 4.1 lists all possible exceptions, and the relative priority of each, highest to lowest. Several of these exceptions

can happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 4.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ DINT
input, or by setting the EjtagBrk hit in the ECR register.

NMI Asserting edge of SI_NMI signal.

Interrupt Assertion of unmasked hardware or software interrupt signal.

DIB EJTAG debug hardware instruction break matched.

AdEL Fetch address alignment error.
User mode fetch reference to kernel address.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SY SCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction with CorExtend disabled.

RI Execution of a Reserved Instruction.

C2E Execution of coprocessor 2 instruction which caused a general exceptionin the
COProcessor.

1S1 Execution of coprocessor 2 instruction which caused an Implementation Spe-
cific exception 1 in the coprocessor.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of atrap (when trap condition istrue).

DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Vaue Break on
Store (address and value).

AdEL Load address alignment error.
User mode load reference to kernel address.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

Table 4.1 Priority of Exceptions (Continued)

Exception Description
AdES Store address alignment error.
User mode store to kernel address.
DBE Load or store bus error.
DDBL EJTAG data hardware breakpoint matched in load data compare.
CBrk EJTAG complex breakpoint.

4.3 Interrupts

Older 32-bit cores available from MIPS that implemented Release 1 of the Architecture included support for two soft-
wareinterrupts, six hardware interrupts, and a specia -purpose timer interrupt. (Note that the Architecture al so defines
a performance counter interrupt, but thisis not implemented on the M4K core.) The timer interrupt was provided
external to the core and typically combined with hardware interrupt 5 in an system-dependent manner. Interrupts
were handled either through the general exception vector (offset 16#180) or the specia interrupt vector (16#200),
based on the value of Cause)y,. Software was required to prioritize interrupts as a function of the Causgp bitsin the

interrupt handler prologue.

Release 2 of the Architecture, implemented by the M4K core, adds an upward-compatible extension to the Release 1
interrupt architecture that supports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports
the use of an external interrupt controller by changing the interrupt architecture.

4.3.1 Interrupt Modes

The M4K core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

Interrupt compatibility mode, which actsidentically to that in an implementation of Release 1 of the Architec-
ture.

Vectored Interrupt (V1) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of thismodeis
denoted by the VInt bit in the Config3 register. This mode is architecturally optional; but it is always present on
the M4K core, so the VInt bit will alwaysread asal for the M4K core.

External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence of
this mode denoted by the VEIC bit in the Config3 register. Again, this mode is architecturally optional. On the
M4K core, the VEIC bit is set externally by the static input, SI_EICPresent, to alow system logic to indicate
the presence of an external interrupt controller.

The reset state of the processor isto interrupt compatibility mode such that a processor supporting Release 2 of the
Architecture, like the M4K core, is fully compatible with implementations of Release 1 of the Architecture.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 57

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

Table 4.2 shows the current interrupt mode of the processor as a function of the coprocessor O register fields that can

affect the mode.
Table 4.2 Interrupt Modes
= O
> | Z| T
Sle = &? o?
2|32|C |22
S 15 |E |55
n 818 Interrupt Mode
1 |x x | x | x | Compatibly
x |0 X | x | x | Compatibility
X |X =0 | x | x | Compatibility
01 | #0 | 1 | O |Vectored Interrupt
0|1 | #0 | x | 1 |External Interrupt Controller
0|1 |0 | O [O [Can'thappen - IntCtly g can not be non-zero if neither
Vectored Interrupt nor External Interrupt Controller mode
isimplemented.
“X" denotes don't care

4.3.1.1 Interrupt Compatibility Mode

Thisis the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 16#180 (if Cause) = 0) or vector offset
16#200 (if Cause), = 1). Thismodeisin effect if any of the following conditions are true:

» Causey =0

o StatUSBEV =1

+ IntCtlyg =0, which would be the case if vectored interrupts are not implemented, or have been disabled.

A typical software handler for interrupt compatibility mode might look as follows:

/*

* Assumptions:

* - Causery = 1 (if it were zero, the interrupt exception would have to

* be isolated from the general exception vector before getting
* here)

* - GPRs k0 and k1l are available (no shadow register switches invoked in

* compatibility mode)

* - The software priority is IP7..IP0 (HW5..HWO, SWl..SwO0)

*

* Location: Offset 0x200 from exception base

*/

IVexception:
mfcO k0O, CO_Cause /* Read Cause register for IP bits */
mfc0 k1, CO_Status /* and Status register for IM bits */
andi k0, kO, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, kil /* and mask with IM bits */
beqg k0, zero, Dismiss /* no bits set - spurious interrupt */

58 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

/*

L R

*

4.3 Interrupts

clz k0, kO /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, kO, 0x17 /* 16..23 => 7..0 */

s11 k0, kO, VS /* Shift to emulate software IntCtlyg */

la k1, VectorBase /* Get base of 8 interrupt vectors */

addu kO, kO, k1 /* Compute target from base and offset */

jr k0 /* Jump to specific exception routine */

nop

Each interrupt processing routine processes a specific interrupt, analogous

to those reached in VI or EIC interrupt mode. Since each processing routine

is dedicated to a particular interrupt line, it has the context to know

which line was asserted. Each processing routine may need to look further

to determine the actual source of the interrupt if multiple interrupt requests
are ORed together on a single IP line. Once that task is performed, the
interrupt may be processed in one of two ways:

- Completely at interrupt level (e.g., a simply UART interrupt). The

* SimpleInterrupt routine below is an example of this type.
* - By saving sufficient state and re-enabling other interrupts. In this
* case the software model determines which interrupts are disabled during
* the processing of this interrupt. Typically, this is either the single
* StatusIM bit that corresponds to the interrupt being processed, or some
* collection of other Statuspy bits so that “lower” priority interrupts are
* also disabled. The NestedInterrupt routine below is an example of this type.
*/
SimpleInterrupt:
/*

*

* % %

*/

Nes
/*
*
*

*

MIPS32® M4K™

Process the device interrupt here and clear the interupt request
at the device. In order to do this, some registers may need to be
saved and restored. The coprocessor 0 state is such that an ERET
will simple return to the interrupted code.

eret /* Return to interrupted code */
tedException:

Nested exceptions typically require saving the EPC and Status registers,
any GPRs that may be modified by the nested exception routine, disabling
the appropriate IM bits in Status to prevent an interrupt loop, putting
the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only
to demonstrate the concepts.

/* Save GPRs here, and setup software context */

mfcO k0, CO_EPC /* Get restart address */

sw k0, EPCSave /* Save in memory */

mfcO kO, CO_Status /* Get Status value */

sw k0, StatusSave /* Save in memory */

1i kl, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and kO, kO, k1 /* Clear bits in copy of Status */

ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */

Processor Core Software User's Manual, Revision 02.03 59

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

mtc0 k0, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

* Process interrupt here, including clearing device interrupt.

* In some environments this may be done with a thread running in

* kernel or user mode. Such an environment is well beyond the scope of
* this example.

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0O, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtcO k0, CO_Status /* Restore the original value */
mtc0 k1, CO_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

4.3.1.2 Vectored Interrupt Mode
Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This
mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Inter-
rupt mode isin effect if all of the following conditions are true:
* Config3y =1
o Config3VE|C =0
. |ntCt|VS #0
« Causey=1

* Statusggy =0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
interrupt is combined in a system-dependent way (external to the core) with the hardware interrupts (the interrupt
with which they are combined isindicated by the IntCtl,p1, field) to provide the appropriate relative priority of the

timer interrupt with that of the hardware interrupts. The processor interrupt logic ANDs each of the Causep bits
with the corresponding Status)), bits. If any of these valuesis 1, and if interrupts are enabled (Statusg = 1, Statu-

60 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

Sex = 0, and Statusgr; = 0), an interrupt is signaled and a priority encoder scans the values in the order shown in
Table 4.3.

Table 4.3 Relative Interrupt Priority for Vectored Interrupt Mode

Interrupt Vector Number
Relative Interrupt Interrupt Request Generated by
Priority Type Source Calculated From | Priority Encoder
Highest Priority | Hardware HW5 IP7 and IM7 7
HW4 IP6 and IM6 6
HW3 IP5 and IM5 5
HW2 IP4 and IM4 4
HW1 IP3and IM3 3
HWO IP2 and IM2 2
Software SW1 IP1and IM1 1
Lowest Priority SWO0 IPO and IMO 0

The priority order places arelative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs an
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. Thisis
shown pictorially in Figure 4.1.

Figure 4.1 Interrupt Generation for Vectored Interrupt Mode

Latch Mask Encode Generate
|ntct||p'|'|
Any Interrupt
- - P |Request Request
HWS ™| g el v P | SAuse -
Hwa | >l ®Tme T B8 '”tC“VS—+
[
HW3 S ™ 1ps v] g
HW2 e ®ma P75 \N/e"t‘?)r % \E/Xe;?'oo?fset
| | =| Number
HW1 >l M3 P 4 o5
2 vz P 3
IP1 (IR i ©
Causer, SRSMap |
Shadow Set
Number
-

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the | Vexcep-
tion label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dis-
patching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 61
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

62

handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnter-
rupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look asfollows:

Nes
/*
*

*

* % %

*

/*
*

*

*/

tedException:

Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
setting up the appropriate GPR shadow set for the routine, disabling

the appropriate IM bits in Status to prevent an interrupt loop, putting

the processor in kernel mode, and re-enabling interrupts. The sample code

below can not cover all nuances of this processing and is intended only

to demonstrate the concepts.

/* Use the current GPR shadow set, and setup software context */

mfcO k0O, CO_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfcO k0, CO_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, CO_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
1i k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */
and k0, kO, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlpggq here */
ins k0O, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0O, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*

* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine

*/

/* Process interrupt here, including clearing device interrupt */

To complete interrupt processing, the saved values must be restored
and the original interrupted code restarted.

di /* Disable interrupts - may not be required */
1w k0O, StatusSave /* Get saved Status (including EXL set) */

1w k1, EPCSave /* and EPC */

mtcO k0O, CO_Status /* Restore the original value */

1w k0O, SRSCtlSave /* Get saved SRSCtl */

mtc0 k1, CO_EPC /* and EPC */

mtc0 k0, CO_SRsctl /* Restore shadow sets */

ehb /* Clear hazard */

eret /* Dismiss the interrupt */

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

4.3.1.3 External Interrupt Controller Mode

External Internal Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to pro-
vide support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts,
including hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the
priority level and vector number of the highest priority interrupt. EIC interrupt modeisin effect if all of the following
conditions are true:

d Config3VE|C =1

|ntct|\/s #0
» Causey=1
d StatUSBEV =0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (Cause|p; pg) and the timer
interrupt request (Causer,) to the external interrupt controller, where it prioritizes these interrupts in a system-depen-

dent way with other hardware interrupts. The interrupt controller can be a hard-wired logic block, or it can be config-
urable based on control and status registers. This allowsthe interrupt controller to be more specific or more general as
afunction of the system environment and needs.

The external interrupt controller prioritizesits interrupt requests and produces the priority level and vector number of
the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level (RIPL), is
a 6-bit encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The
values 1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller
passes this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC interrupt mode. The
vector number that the interrupt should be serviced with is also passed to the core.

Status;p (which overlays Status)y7. v2) iSinterpreted as the Interrupt Priority Level (IPL) at which the processor is

currently operating (with avalue of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with Status,p| to determineif the requested

interrupt has higher priority than the current IPL. If RIPL isstrictly greater than Status,p| , and interrupts are enabled
(Statusig = 1, Statusgy, =0, and Statusgg, = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into Causegp, (Which overlays Causep;_pp) and signals the external
interrupt controller to notify it that the request is being serviced. Because Causer,p isonly loaded by the processor

when an interrupt exception issignaled, it is available to software during interrupt processing. The vector number that
the EIC passes to the core is combined with the IntCtly, 5 to determine where the interrupt service routine is located.

The vector number is not stored in any software-visible registers.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
Causegp, it aso loads the GPR shadow set number into SRSCtlg csg, which is copied to SRSCtlgg when the

interrupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 4.2.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 63

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

64

Figure 4.2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode Latch Compare Generate
Any
Cau
Cau:ZTp'c. o RIPL Request gg;ﬁt
a]
Statuspy = - > Status, E<D7
Status| PO &

s

Interrupt
x| Interrupt Service Exception
S | Started
c Load
4» Q O |ntctlvs
< Y Fields dz o
S |Requested T ception
2 ¥ Vector o}
B
g > g IPL g Number gb Vector Offset
g 3 > 0 5 —
5™ — =
g ™ d % o A Shadow Set
g e 3 o
& = o
@

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the | Vexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may

take ad

\vantage of adedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown

above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested

excepti

on routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy

Causeg,p| to Statusp| to prevent lower priority interrupts from interrupting the handler. Such aroutine might look
asfollows:

NestedException:

/*

* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,

* ok %k % ok oF

setting up the appropriate GPR shadow set for the routine, disabling

the appropriate IM bits in Status to prevent an interrupt loop, putting
the processor in kernel mode, and re-enabling interrupts. The sample code
below can not cover all nuances of this processing and is intended only
to demonstrate the concepts.

/* Use the current GPR shadow set, and setup software context */

mfcO k1, CO_Cause /* Read Cause to get RIPL value */
mfcO k0, CO_EPC /* Get restart address */

srl k1, k1, S_CauseRIPL /* Right justify RIPL field */

sw k0, EPCSave /* Save in memory */

mfc0 k0, CO_Status /* Get Status value */

sw k0, StatusSave /* Save in memory */

ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

mfc0 k1, CO_SRSCtl /* Save SRSCtl if changing shadow sets */
sSw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlpgg here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtc0 k0, CO_Status /* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */
/*
* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine
*/

/* Process interrupt here, including clearing device interrupt */

/*
* The interrupt completion code is identical to that shown for VI mode above.
*/

4.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtly g to create the interrupt offset, which is added to 16#200 to create the
exception vector offset. For VI interrupt mode, the vector number isin the range 0..7, inclusive. For EIC interrupt
mode, the vector number isin the range 0..63, inclusive. The IntCtly g field specifies the spacing between vector |oca-
tions. If thisvalueis zero (the default reset state), the vector spacing is zero and the processor reverts to Interrupt
Compeatibility Mode. A non-zero value enables vectored interrupts, and Table 4.4 shows the exception vector offset
for arepresentative subset of the vector numbers and values of the IntCtly,g field.

Table 4.4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtly,g Field
Vector Number 2#00001 | 2#00010 | 2#00100 | 2#01000 | 2#10000
0 16#0200 16#0200 16#0200 16#0200 16#0200
1 16#0220 16#0240 16#0280 16#0300 16#0400
2 16#0240 16#0280 16#0300 16#0400 16#0600
3 16#0260 16#02C0 16#0380 16#0500 16#0800
4 16#0280 16#0300 16#0400 16#0600 16#0A00
5 16#02A0 16#0340 16#0480 16#0700 16#0C00
6 16#02C0 16#0380 16#0500 16#0800 16#0E00
7 16#02E0 16#03C0 16#0580 16#0900 16#1000

61 16#09A0 16#1140 16#2080 16#3F00 16#7C00
62 16#09C0 16#1180 16#2100 16#4000 16#7E00
63 16#09E0 16#11C0O 16#2180 16#4100 16#8000

The general equation for the exception vector offset for a vectored interrupt is:

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 65

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

vectorOffset <« 16#200 + (vectorNumber X (IntCtlyg || 24#00000))

When using large vector spacing and EIC mode, the offset value can overlap with bits that are specified in the EBase
register. Software must ensure that any overlapping bits are specified as 0 in EBase. Thisimplementation ORs
together the offset and base registers, but it is architecturally undefined and software should not rely on this behavior.

4.4 GPR Shadow Registers

66

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the M4K core. Although Release 2 of the Architecture
defines a maximum of 16 shadow sets, the core alows one (the normal GPRs), two, four, or eight shadow sets. The
highest number actually implemented isindicated by the SRSCtly 55 field. If thisfield is zero, only the normal GPRs

are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode viaan
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRsin the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCitl register provides
the number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of the
previous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor isoperating in VI interrupt mode, binding of avectored interrupt to ashadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.

Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCHI
register. When an exception or interrupt occurs, the value of SRSCtl-gg iscopied to SRSCtlpgg, and SRSCtlcggis

set to the value taken from the appropriate source. On an ERET, the value of SRSCtlpgg is copied back into
SRSCltl g5 to restore the shadow set of the mode to which control returns. More precisely, the rules for updating the
fieldsin the SRSCtl register on an interrupt or exception are as follows:

1. Nofieldinthe SRSCtl register isupdated if any of the following conditionsistrue. Inthis case, steps 2 and 3 are
skipped.

* Theexceptionisonethat sets Statusgg, : Reset, Soft Reset, or NMI.

» The exception causes entry into EJTAG Debug Mode.

i StatUSBEV =1
i StatUSEXL =1
2. SRSCthSS is COpiaj to SRSCtlpSS

3. SRSCitlcgg is updated from one of the following sources:

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.5 Exception Vector Locations

» Theappropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, Cause), = 1,
Config3yg c = 0, and Config3y,t = 1. These are the conditions for a vectored interrupt.

+ TheEICSS field of the SRSCtl register if the exception isan interrupt, Cause)y, = 1, and Config3yg,c = 1.
These are the conditions for avectored EIC interrupt.

e TheESS field of the SRSCtl register in any other case. Thisisthe condition for a non-interrupt exception,
or anon-vectored interrupt.

Similarly, therules for updating the fields in the SRSCitl register at the end of an exception or interrupt are as follows:

1. Nofieldinthe SRSCtl register isupdated if any of the following conditionsistrue. Inthiscase, step 2 is
skipped.

A DERET isexecuted.

* AnERET isexecuted with Statusgg = 1.
2. SRSCtIpSS iSCOpied to SRSCIICSS

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialize (Statusggy = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlpgg, loading EPC with a
target address, and doing an ERET.

4.5 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 16#BFC0 . 0000. EJTAG Debug excep-
tions are vectored to location 16#BFCO0 . 0480, or to location 16#FF20. 0200 if the ProbTrap bit is zero or one,
respectively, inthe EJTAG_Control_register. Addressesfor all other exceptions are a combination of avector offset
and a vector base address. In Release 1 of the architecture, the vector base address was fixed. In Release 2 of the
architecture, software is allowed to specify the vector base address via the EBase register for exceptions that occur
when Statusgg,, equals 0. Table 4.5 gives the vector base address as a function of the exception and whether the
BEV hit is set in the Status register. Table 4.6 gives the offsets from the vector base address as a function of the
exception. Note that the IV bit in the Cause register causes Interrupts to use a dedicated exception vector offset,
rather than the general exception vector. For implementations of Release 2 of the Architecture, Table 4.4 gives the
offset from the base address in the case where Statusgg,, = 0 and Cause, = 1. For implementations of Release 1 of
the architecture in which Cause,,, = 1, the vector offset is asif IntCtl,5 were 0. Table 4.7 combines these two tables
into one that contains all possible vector addresses as a function of the state that can affect the vector selection. To
avoid complexity in the table, the vector address value assumes that the EBase register, asimplemented in Release 2
devices, is not changed from its reset state and that IntCtly,5 isO.

Table 4.5 Exception Vector Base Addresses

Statusggy
Exception 0 1
Reset, Soft Reset, NM|I 16#BFC0.0000
MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 67

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

Table 4.5 Exception Vector Base Addresses

StatUSBEV
Exception 0 1
EJTAG Debug (with ProbEn = 0inthe 16#BFC0.0480
EJTAG_Control_register)
EJTAG Debug (with ProbEn=1inthe 16#FF20.0200
EJTAG_Control_register)
Other For Release 1 of the architecture: 16#BFC0.0200
16#8000.0000
For Release 2 of the architecture:
EBase3; 1o | 16#000
Note that EBasez; 3g have the
fixed value 2#10
Table 4.6 Exception Vector Offsets
Exception Vector Offset
General Exception 16#180
Interrupt, Causeyy, = 1 16#200 (In Release 2 implementa-
tions, thisis the base of the vectored
interrupt table when Statusgg,, = 0)
Reset, Soft Reset, NMI None (Uses Reset Base Address)
Table 4.7 Exception Vectors
Vector
For Release 2
Implementations, assumes
EJTAG that EBase retains its reset
Exception Statusggy | Statusgx, | Causen, | ProbEn state and that IntCtly,g =0
Reset, Soft Reset, NMI X X X X 16#BFC0.0000
EJTAG Debug X X X 0 16#BFC0.0480
EJTAG Debug X X X 1 16#FF20.0200
Interrupt 0 0 0 X 16#8000.0180
Interrupt 0 0 1 X 16#8000.0200
Interrupt 1 0 0 X 16#BFC0.0380
Interrupt 1 0 1 X 16#BFC0.0400
All others 0 X X X 16#8000.0180
All others 1 X X X 16#BFC0.0380
‘X" denotesdon’t care

4.6 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own spe-
cial processing as described below, exceptions have the same basic processing flow:

68 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.6 General Exception Processing

« If the EXL bit in the Status register is zero, the EPC register is |loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 5.12). The value loaded into the
EPC register is dependent on whether the processor implements the M1PS16e ASE, and whether the instruction
isin the delay slot of abranch or jump which has delay slots. Table 4.8 shows the value stored in each of the CPO
PC registers, including EPC. For implementations of Release 2 of the Architecture if Statusggy = 0, the CSS

field in the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCHI register is hot changed.

Table 4.8 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16e In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with the |SA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2in
the MIPS16e |SA Mode and PC-4 in the 32-bit | SA
Mode), combined with the | SA Mode bit

» TheCE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field isloaded, but not defined, for any exception type other than a coprocessor unusable exception.

» TheEXL bitisset in the Satus register.
» The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unlessit wishesto
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. Thisis noted in the descrip-
tion of each exception type below.

Operation:

/* If Statusgy;, is 1, all exceptions go through the general exception vector */
/* and neither EPC nor Causepp nor SRSCtl are modified */
if Statusgy; = 1 then
vectorOffset « 16#180
else
if InstructionInBranchDelaySlot then
EPC ¢« restartPC/* PC of branch/jump */
Causepp « 1

else
EPC <« restartPC /* PC of instruction */
Causepp < 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet <« SRSCtlggg /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 69

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

vectorOffset « 16#000
elseif (ExceptionType = Interrupt) then
if (Causery = 0) then
vectorOffset « 16#180
else
if (Statusggy = 1) or (IntCtlyg = 0) then
vectorOffset « 16#200
else
if Config3ygiec = 1 then
VecNum < Causegypr,
NewShadowSet < SRSCtlgicgg
else
VecNum <« VIntPriorityEncoder ()
NewShadowSet <« SRSMapiprX4+3..1p1.%4
endif
vectorOffset < 16#200 + (VecNum X (IntCtlyg || 2#00000))
endif /* if (Statusggy = 1) or (IntCtlyg = 0) then */
endif /* if (Cause;y = 0) then */
endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */

/* Release 2 of the architecture */

if ((ArchitectureRevision 2 2) and (SRSCtlygg > 0) and (Statusggy = 0) and
(Statusgg;, = 0)) then
SRSCtlpgg ¢ SRSCtlcgg
SRSCtlpgg ¢ NewShadowSet

endif

endif /* if Statusgy;, = 1 then */

Causecy < FaultingCoprocessorNumber
Causepyccoge ¢ ExceptionType
Statusgyy, < 1

/* Calculate the vector base address */
if Statusggy = 1 then

vectorBase « 16#BFC0.0200
else

if ArchitectureRevision = 2 then

/* The fixed value of EBasej3; 37 forces the base to be in kseg0 or ksegl */
vectorBase < EBasesz; 15 || 16#000
else

vectorBase « 16#8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */

PC <« vectorBasesz; 3g || (vectorBasesg o + vectorOffset,g g)
/* No carry between bits 29 and 30 */

4.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

The DEPC register isloaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register isthe current PC if

70 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.7 Debug Exception Processing

theinstruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction isin the delay slot
of abranch.

e TheDSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and DDBSImpr bitsin the Debug register
are updated appropriately depending on the debug exception type.

» TheDebug?2 register is updated with additional information for complex breakpoints.
* Haltand Doze bitsin the Debug register are updated appropriately.

e DM bitinthe Debug register isset to 1.

» The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug reg-
ister unlessit wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception isindicated through the DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr,
and DDBSImpr bitsin the Debug register.

No other CPO registers or fields are changed due to the debug exception, thus no additiona state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC « PC-4
Debugppp ¢« 1
else
DEPC <« PC
Debugppp ¢« O
endif
Debugp+ pits ¢ DebugExceptionType
Debugy,i: ¢ HaltStatusAtDebugException
Debugp,,. ¢ DozeStatusAtDebugException
Debugpy « 1
if EJTAGControlRegisterp, prrgp = 1 then
PC <« OxFF20_0200
else
PC <« OxBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Prob-
Trap bit in the EJTAG Controal register (ECR), as shown in Table 4.9.

Table 4.9 Debug Exception Vector Addresses

ProbTrap bit in ECR
Register Debug Exception Vector Address
0 O0xBFCO_0480
1 O0xFF20_0200 in dmseg
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 71

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

4.8 Exceptions

72

The following subsections describe each of the exceptions listed in the same segquence as shown in Table 4.1.

4.8.1 Reset/SoftReset Exception

A reset exception occurs when the SI_ColdReset signal is asserted to the processor. A soft reset occurs when the
Sl_Reset signalsis asserted. These exception is not maskable. When one of these exceptions occurs, the processor
performs afull reset initialization, including aborting state machines, establishing critical state, and generally placing
the processor in astate in which it can execute instructions from uncached, unmapped address space. On a Reset/Soft-
Reset exception, the state of the processor is not defined, with the following exceptions:

The Config register isinitialized with its boot state.

TheRP, BEV, TS, SR, NMI, and ERL fields of the Status register areinitialized to a specified state.

The ErrorEPC register isloaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may
or may not be predictable.

PC is loaded with OxBFCO_0000.

Cause Register ExcCode Value:

None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Config ¢« ConfigurationState

Statusgp < 0

Statusppy < 1

Statuspg < O

Statusgg ¢ 0/1 (depending on Reset or SoftReset)

Statusyyr < O

Statusgg, < 1

if InstructionInBranchDelaySlot then
ErrorEPC ¢« PC - 4

else
ErrorEPC <« PC

endif

PC « O0xBFC0_0000

4.8.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to anon
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

in the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug regis-
ter, and are always disabled for the first one/two instructions after a DERET.

The DEPC register pointsto the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never
set for a debug single step exception, since the jJump/branch and the instruction in the delay slot is executed in one

step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For anormal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch)
just before the SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP
instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved
None

Entry Vector Used
Debug exception vector

4.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through
the TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler isthrough. The DBD hit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set
DINT

Additional State Saved
None

Entry Vector Used
Debug exception vector

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 73

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

74

4.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NM1 exception will be taken each timeit is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

e TheBEV, TS, SR, NMI, and ERL fields of the Status register areinitialized to a specified state.

» TheErrorEPC register isloaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tionin the delay slot of abranch. Otherwise, the ErrorEPC register isloaded with PC.

» PCisloaded with 0XBFCO_0000.

Cause Register ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Statusppy < 1
Statuspg < O
Statusgg < O
Statusyyr < 1
Statusgg, < 1
if InstructionInBranchDelaySlot then
ErrorEPC ¢« PC - 4
else
ErrorEPC <« PC
endif
PC « O0xBFC0_0000

4.8.5 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requestsis
enabled by the Status register and the interrupt input is asserted. See 4.3 “Interrupts’ on page 57 for more details
about the processing of interrupts.

Register ExcCode Value:
Int

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

Additional State Saved:

Table 4.10 Register States an Interrupt Exception

Register State Value

Cause|p indicates the interrupts that are pending.

Entry Vector Used:

See 4.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts’ on page 65 for the entry vector used,
depending on the interrupt mode the processor is operating in.

4.8.6 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD hit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:
DIB

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.8.7 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

» Fetch aninstruction, load aword, or store aword that is not aligned on aword boundary
» Load or store ahalfword that is not aligned on a halfword boundary
» Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on aword boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data
access the exception is taken if either an unaligned address or an address that was inaccessible in the current proces-
sor mode was referenced by aload or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was aload or an instruction fetch

ADES: Reference was a store

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 75

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

76

Additional State Saved:

Table 4.11 CPO Register States on an Address Exception Error

Register State Value

BadVAddr failing address

Entry Vector Used:
General exception vector (offset 0x180)

4.8.8 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request and that request terminatesin an
error. The bus error exception can occur on either an instruction fetch or a data access. Bus error exceptions that occur
on an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Bus errors taken on any external access on the M4K core are always precise.

Cause Register ExcCode Value:
IBE: Error on an instruction reference
DBE: Error on adatareference

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.9 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and
DBD bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.8.10 Execution Exception — System Call

The system call exception is one of the nine execution exceptions. All of these exceptions have the same priority. A
system call exception occurs when a SY SCALL instruction is executed.

Cause Register ExcCode Value:

Sys

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.11 Execution Exception — Breakpoint

The breakpoint exception is one of the nine execution exceptions. All of these exceptions have the same priority. A
breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:
Bp

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.12 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the nine execution exceptions. All of these exceptions have the same pri-
ority. A reserved instruction exception occurs when areserved or undefined major opcode or function field is exe-
cuted. Thisincludes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:
RI

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.13 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the nine execution exceptions. All of these exceptions have the same
priority. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for
one of the following:

* acorresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

» CPOinstructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:
CpuU

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 77

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

78

Additional State Saved:

Table 4.12 Register States on a Coprocessor Unusable Exception

Register State Value
Causecg unit number of the coprocessor being referenced

Entry Vector Used:
General exception vector (offset 0x180)

4.8.14 Execution Exception — CorExtend Unusable

The CorExtend unusable exception is one of the nine execution exceptions. All of these exceptions have the same pri-
ority. A CorExtend Unusable exception occurs when an attempt is made to execute a CorExtend instruction when Sta-
tusceg is cleared. It isimplementation dependent whether this functionality is supported. Generally, the functionality

will only be supported if a CorExtend block contains local destination registers

Cause Register ExcCode Value:
CEU

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.15 Execution Exception — Coprocessor 2 Exception

The Coprocessor 2 exception is one of the nine execution exceptions. All of these exceptions have the same priority.
A Coprocessor 2 exception occurs when avalid Coprocessor 2 instruction cause a general exception in the Coproces-
sor 2.

Cause Register ExcCode Value:

C2E

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be saved in a
Coprocessor 2 control register.

Entry Vector Used:
General exception vector (offset 0x180)

4.8.16 Execution Exception — Implementation-Specific 1 Exception

The Implementation-Specific 1 exception is one of the nine execution exceptions. All of these exceptions have the
same priority. An implementation-specific 1 exception occurs when avalid coprocessor 2 instruction cause an imple-
mentation-specific 1 exception in the Coprocessor 2.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

Cause Register ExcCode Value:
IS1

Additional State Saved:

Depending on the coprocessor 2 implementation, additional state information of the exception can be saved in a
coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.17 Execution Exception — Integer Overflow

Theinteger overflow exception is one of the nine execution exceptions. All of these exceptions have the same priority.
An integer overflow exception occurs when selected integer instructions result in a2’s complement overflow.

Cause Register ExcCode Value:
Ov

Additional State Saved:
None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.18 Execution Exception — Trap

The trap exception is one of the nine execution exceptions. All of these exceptions have the same priority. A trap
exception occurs when atrap instruction results in a TRUE value.

Cause Register ExcCode Value:
Tr

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.19 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the |oad/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD hit in the Debug register will indicate the load/store
instruction that caused the data hardware breakpoint to match. The load/store instruction that caused the debug excep-
tion has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from
the debug handler.

Debug Register Debug Status Bit Set:

DDBL for aload instruction or DDBS for a store instruction

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 79

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.8.20 Complex Break Exception

A complex data break exception occurs when the complex hardware breakpoint detects an enabled breakpoint. Com-
plex breaks are taken imprecisely—the instruction that actually caused the exception is allowed to complete and the
DEPC register and DBD hit in the Debug register point to afollowing instruction.

Debug Register Debug Status Bit Set:

DIBImpr, DDBLImpr, and/or DDBSImpr

Additional State Saved:

Debug? fields indicate which type(s) of complex breakpoints were detected.

Entry Vector Used:
Debug exception vector

4.9 Exception Handling and Servicing Flowcharts

80

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:
» Genera exceptions and their exception handler
* Resat, soft rese,t and NMI exceptions, and a guideline to their handler

» Debug exceptions

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Figure 4.3 General Exception Handler (HW)

Exceptions other than Reset, Soft Reset, NMI, or first-level TLB missNote: Interrupts can be
masked by IE or IMs and Watch is masked if EXL = 1

Set Cause EXCCode,CE
BadVA « VA

Check if exception within another

exception

Yes

EPC « (PC-4)
Cause.BD « 1

=0 (normal)

Instr. in Br.Dly.
Slot?

Comments

BadVA is set only for AdEL/S exceptions. Note:
not set if it is a Bus Error

EXL 1

No

EPC « PC
Cause.BD « 0

PC « 0x8000_0000 + 180
(unmapped, cached)

=1 (bootstrap)

Processor forced to Kernel Mode
&interrupt disabled

PC « 0xBFC0_0200 + 180
(unmapped, uncached)

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

<l
l

To General Exception Servicing Guidelines

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.9 Exception Handling and Servicing Flowcharts

81

Exceptions and Interrupts in the MAK™ Core

Figure 4.4 General Exception Servicing Guidelines (SW)

Comments

* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions

MFCO - * Only Reset, Soft Reset, NMI exceptions possible.
EPC, Status, Cause <

Y

MTCO -

Set Status bits: ’ . .
Optional - only to enable Interrupts while keeping Kernel Mode
UM 0, EXL ¢~0, [Ee~1 ©p y P ping)

Check Cause value & Jump to appropriate

* = H
Service Code After EXL=0, all exceptions allowed. (except

interrupt if masked by |E)

L e ¢ _________
EXL=1
MTCO -
EPC,STATUS
* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET's
ERET branch delay slot
*PC« EPC;EXL <0
* LLbit < 0
82 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

4.9 Exception Handling and Servicing Flowcharts

Figure 4.5 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

Reset Exception

Config «— Reset state
Soft Reset or NMI Exception Status:

atus: RP <0
— BEV «1 BEV « 1
= TS0 TS 0
= SR« 1/0 SR« 0
£ NMI « 0/1 NMI « 0
(‘«i\; ERL « 1 ERL « 1
T
o
=]
=3
[5]
(&)
>
(]
=
=
2 L
5]
(%)
(5]
o
=]
%) ErrorEPC «— PC
D
[72)
[5]
o

PC « 0xBFC0_0000

£

L

<

]

= =

==

3L r———=—==>"==-==-=-- \

— \ =0

L '

2L NMI Service Code | Status.SR

- |

2 Lo !

B |

(7]

<5 R NSNS, Fm e e e e - -

o ERET \ Soft Reset Service Code ' Reset Service Code :

N _________
(Optional) ’
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 83

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Exceptions and Interrupts in the MAK™ Core

84

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 5

CPO Registers of the MAK™ Core

The System Control Coprocessor (CPO) provides the register interface to the M4K processor core and supports mem-
ory management, address translation, exception handling, and other privileged operations. Each CPO register has a
unique number that identifiesit; this number is referred to as the register number. For instance, the PageMask regis-
ter isregister number 5. For more information on the EJTAG registers, refer to Chapter 8, “EJTAG Debug Support in
the M4K™ Core” on page 127.

After updating a CPO register there is a hazard period of zero or more instructions from the update instruction
(MTCO) and until the effect of the update has taken place in the core. Refer to Chapter 10, “M4K™ Processor Core
Instructions” on page 207 for further details on CPO hazards.

The current chapter contains the following sections:

e Section 5.1 “CPO Register Summary”

e Section 5.2 “CPO Register Descriptions”

5.1 CPO Register Summary

Table 5.1 lists the CPO registers in numerical order. The individual registers are described throughout this chapter.
Where more than one registers shares the same register number at different values of the “sel” field of the instruction,
their names are listed using a lash (/) as separator.

Table 5.1 CPO Registers

Register
Number Register Name Function
0-6 Reserved Reserved in the M4K core.
7 HWREna Enables access viathe RDHWR instruction to selected hardware
registers in non-privileged mode.
8 BadVAddrl Reports the address for the most recent address-related excep-
tion.
9 Count! Processor cycle count.
10 Reserved Reserved in the M4K core.
11 Compare! Timer interrupt control.
12 Status’ Processor status and control; interrupt control; and shadow set
IntCtl/ control.
SRSCl/
SRSMapl
13 Causet Cause of last exception.
14 epcl Program counter at last exception.
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 85

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

5.2 CPO Register Descriptions

86

Table 5.1 CPO Registers (Continued)

Register
Number Register Name Function
15 PRId/ Processor identification and revision; exception base address.
EBase
16 Config/ Configuration registers.
Configl/
Config2/
Config3
17-22 Reserved Reserved in the M4K core.
23 Debug/ Debug control/exception status and EJTAG trace control.
Debug2/
TraceControl/
TraceControl2/
UserTraceData/
TraceBPC?
24 DEPC2 Program counter at last debug exception.
25-29 Reserved Reserved in the M4K core.
30 ErrorEPC! Program counter at last error.
31 DeSAVE2 Debug handler scratchpad register.

1. Registers used in exception processing.
2. Registers used in debug.

The CPO registers provide the interface between the | SA and the architecture. Each register is discussed below, with
the registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the reset state
of the field. For the read/write properties of the field, the following notation is used:

Table 5.2 CPO Register Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of thisfield are visible by software reads. Software updates of thisfield are visi-

ble by hardware reads.

If the reset state of thisfield is“Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5.2 CPO Register Field Types (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation
R A field that is either static or is updated only by | A field to which the value written by softwareis
hardware. ignored by hardware. Software may write any
If the Reset State of thisfield iseither “0” or value to this field without affecting hardware
“Preset”, hardware initializesthisfield to zero or | behavior. Software reads of this field return the
to the appropriate state, respectively, on pow- last value updated by hardware.
erup. If the Reset State of thisfield is “Undefined,”
If the Reset State of thisfield is“Undefined”, software reads of thisfield result in an UNPRE-
hardware updates this field only under those DICTABLE value except after a hardware
conditions specified in the description of the update done under the conditions specified in
field. the description of the field.
w A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.
0 A field that hardware does not update, and for | A field to which the value written by software
which hardware can assume a zero value. must be zero. Software writes of non-zero val-
ues to thisfield may result in UNDEFINED
behavior of the hardware. Software reads of this
field return zero aslong as all previous software
writes are zero.
If the Reset State of thisfield is“Undefined,”
software must write thisfield with zero before it
is guaranteed to read as zero.

5.2.1 HWREna Register (CP0O Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible viathe RDHWR
instruction.

Figure 5.1 shows the format of the HWREna Register; Table 5.3 describes the HWREna register fields.

Figure 5.1 HWREna Register Format
31 4 3 0

0

0000 0000 0000 0000 0000 0000 0000 Masc

Table 5.3 HWREnNa Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State

0 31..4 Must be written with zero; returns zero on read 0 0

Mask 3.0 Each bit in this field enables access by the RDHWR R/W 0
instruction to a particular hardware register (which
may not be an actual register). If bit ‘n’ inthisfieldis
al, accessisenabled to hardware register ‘n’. If bit
‘n’ of thisfield isa0, accessis disabled.

See the RDHWR instruction for alist of valid hard-
ware registers.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 87

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

88

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In
doing so, aregister may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to provide direct access to the
Count register, access to that register may be individually disabled and the return value can be virtualized by the
operating system.

5.2.2 BadVAddr Register (CPO Register 8, Select 0)

The BadVVAddr register is aread-only register that captures the most recent virtual address that caused the following
exception:

e Addresseror (AdEL or AJES)
The BadVVAddr register does not capture address information for bus errors, since they are not addressing errors.
Figure 5.2 BadVAddr Register Format

31 0

BadVAddr

Table 5.4 BadVAddr Register Field Description

Fields
Read/Wr
Name Bits Description ite Reset State
BadVAddr 31:0 Bad virtual address. R Undefined

5.2.3 Count Register (CPO Register 9, Select 0)

The Count register acts as atimer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The counter increments every other clock, if the DC bit in the
Cause register isO.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
SOrs.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues
incrementing while the processor isin debug mode.

Figure 5.3 Count Register Format

31 0

Count

Table 5.5 Count Register Field Description

Fields
Read/Wr
Name Bits Description ite Reset State
Count 31:0 |Interval counter. R/W Undefined

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.4 Compare Register (CPO Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement atimer and timer interrupt function.
The timer interrupt is an output of the cores. The Compare register maintains a stable value and does not change on
its own.

When the value of the Count register equals the value of the Compare register, the SI_TimerlInt pinisasserted. This
pin will remain asserted until the Compare register iswritten. The SI_TimerInt pin can be fed back into the core on
one of the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware
interrupt 5 to set interrupt bit IP(7) in the Cause register.

For diagnostic purposes, the Compare register isaread/write register. In normal use, however, the Compare register
iswrite-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

Figure 5.4 Compare Register Format

31 0

Compare

Table 5.6 Compare Register Field Description

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Compare 31:0 |Interval count compare value. R/W Undefined

5.2.5 Status Register (CPO Register 12, Select 0)

The Status register is aread/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to

3.2 “Modes of Operation” on page 43 for adiscussion of operating modes, and 4.3 “Interrupts’ on page 57 for adis-
cussion of interrupt modes.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

« E=1
 EXL=0
 ERL=0
« DM=0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

Operating Modes: If the DM bit in the Debug register is 1, then the processor isin debug mode; otherwise the pro-
cessor isin either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode:

e Usermode: UM =1, EXL=0,andERL=0

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 89

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

31

e Kernel modes UM =0,or EXL=1,orERL=1

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any coprocessor is unus-
able, then an instruction that accesses it generates an exception.

Figure 5.5 shows the format of the Status register; Table 5.7 describes the Status register fields.

28 27 26 25 24

23

Figure 5.5 Status Register Format
22 21 20 19 18 17 16 15 10 9

8 7

6 5 4 3

2

CUS..CUO |RP FR| RE

BEV|TS|SRINMI| R |CEE| R IM7..1IM2 IM1..IMQ

R UM| R

ERL

EXL

90

IPL

Table 5.7 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

CuU3

31

Controls access to coprocessor 3. COP3 is not supported.
This bit cannot be written and will read as 0.

R

0

Cu2

30

Controls access to coprocessor 2. This bit can only be writ-
ten if coprocessor is attached to the COP2 interface. (C2 bit
in Configl is set). Thisbit will read as 0 if no coprocessor
is present.

RIW

Cul

29

Controls access to Coprocessor 1. COP1 is not supported.
This bit cannot be written and will read as 0.

Cuo0

28

Controls access to coprocessor 0

0: accessnot allowed

1: accessalowed

Coprocessor 0 is aways usable when the processor is run-
ning in kernel mode, independent of the state of the CUO
bit.

Undefined

RP

27

Enables reduced power mode. The state of the RP bit is
available on the external coreinterface asthe SI_RP sig-
nal.

0for Cold
Reset only.

FR

26

Thishitisrelated to floating point registers. Since the M4K
core does not contain a floating point unit, thisbit is
ignored on write and read as zero.

RE

25

Used to enable reverse-endian memory references while
the processor is running in user mode:

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianness

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

Undefined

24:23

Reserved. Thisfield isignored on write and read as 0.

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Table 5.7 Status Register Field Descriptions (Continued)

5.2 CPO Register Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

BEV

22

Controls the location of exception vectors:

Encoding

0 Normal
1 Bootstrap

Meaning

RIW

1

TS

21

TLB shutdown.
Since the M4K core does not contain a TLB, thisbitis
ignored on write and read as 0.

SR

20

Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Encoding Meaning

0 Not Soft Reset (NMI or Reset)

1 Soft Reset

Software can only write a0 to this bit to clear it and cannot
force a0-1 transition.

1 for Soft
Reset; 0 other-
wise

NMI

19

Indicates that the entry through the reset exception vector
was due to an NMI:

Encoding

0 Not NMI (Soft Reset or Reset)
1 NMI

Meaning

Software can only write a0 to this bit to clear it and cannot
forceaO-1 transition.

1for NMI; 0
otherwise

18

Reserved. Ignored on write and read as zero.

0

CEE

17

CorExtend Enable: Implementation dependent. If CorEx-
tend block indicates that this bit should be used, any
attempt to execute a CorExtend instruction with this bit
cleared will result in a CorExtend Unusable exception.
Thisbit isreserved if CorExtend is not present.

Undefined

16

Reserved. Ignored on write and read as zero.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

91

CPO Registers of the M4K™ Core

92

Table 5.7 Status Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset State

IM7..IM2

15..10

Interrupt Mask: Controls the enabling of each of the hard-
ware interrupts. Refer to 4.3 “Interrupts’ on page 57 for a
complete discussion of enabled interrupts.

Aninterrupt istaken if interrupts are enabled and the corre-
sponding bits are set in both the Interrupt Mask field of the
Status register and the Interrupt Pending field of the Cause
register and the IE bit is set in the Status register.

Encoding

0 Interrupt request disabled
1 Interrupt request enabled

Meaning

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled, these bits take on a
different meaning and are interpreted asthe IPL field,
described below.

RIW

Undefined

IPL

15..10

Interrupt Priority Level.

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled , thisfield isthe
encoded (0..63) value of the current IPL. An interrupt will
be signaled only if the requested IPL is higher than this
value.

If EIC interrupt mode is not enabled, these bits take on a
different meaning and are interpreted asthe IM7..IM2 bits,
described above.

Undefined

IM1..IMO

9.8

Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to Section 4.3 “Interrupts’for a
complete discussion of enabled interrupts.

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled, these bits are writ-
able, but have no effect on the interrupt system.

Undefined

75

Reserved. Thisfield isignored on write and read as 0.

0

UM

This bit denotes the base operating mode of the processor.
See 3.2 “Modes of Operation” on page 43 for afull dis-
cussion of operating modes. The encoding of this it is:

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Note that the processor can also be in kernel mode if ERL
or EXL is set, regardless of the state of the UM bit.

Undefined

Thishit isreserved. Thisbit isignored on write and read as
zero.

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

5.2 CPO Register Descriptions

Table 5.7 Status Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write | Reset State
ERL 2 Error Level; Set by the processor when a Reset, Soft Reset, R/W 1
NMI or Cache Error exception are taken.
Encoding Meaning
0 Normal level
1 Error level
When ERL is set:
» The processor isrunning in kernel mode
* Interrupts are disabled
» The ERET instruction will use the return addressheld in
ErrorEPC instead of EPC
« Thelower 22° bytes of kuseg are treated as an unmapped
and uncached region. See Chapter 3, “Modes of
Operation” on page 43. This allows main memory to be
accessed in the presence of cache errors. The operation
of the processor is UNDEFINED if the ERL hit is set
while the processor is executing instructions from kuseg.
EXL 1 Exception Level; Set by the processor when any exception | R/W Undefined
other than Reset, Soft Reset, or NMI exceptionsis taken.
Encoding Meaning
0 Normal level
1 Exception level
When EXL is set:

» The processor isrunning in Kernel Mode

* Interrupts are disabled.

+ EPC, Causegp and SRSCt! (implementations of Release
2 of the Architecture only) will not be updated if another
exception is taken

IE 0 Interrupt Enable: Acts as the master enable for software RIW Undefined
and hardware interrupts:

Encoding Meaning
0 Interrupts are disabled
1 Interrupts are enabled

In Release 2 of the Architecture, this bit may be modified
separately viathe DI and El instructions.

5.2.6 IntCtl Register (CPO Register 12, Select 1)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 93

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

Figure 5.6 shows the format of the IntCtl register; Table 5.8 describes the IntCtl register fields.

Figure 5.6 IntCtl Register Format
31 29 28 26 25 10 9 5 4 0

IPTI IPPCI 0 VS 0

Table 5.8 IntCtl Register Field Descriptions

Fields
Read/Wr Reset
Name Bits Description ite State
IPTI 31..29 | For Interrupt Compatibility and Vectored Interrupt R Externally

maodes, this field specifies the IP number to which the Set
Timer Interrupt request is merged, and allows software
to determine whether to consider Causer, for a potential

interrupt.

Hardware Interrupt
Encoding IP bit Source

HWO
HW1
HW2
HW3
HwW4
HW5

N Oolgalbh~lWN
N ol WN

The value of thisbit is set by the static input,
SI_IPTI[2:0]. This alows external logic to communi-
cate the specific SI_Int hardware interrupt pin to which
the SI_TimerInt signal is attached.

The value of thisfield is not meaningful if External
Interrupt Controller Mode is enabled. The external inter-
rupt controller is expected to provide this information
for that interrupt mode.

IPPCI 28..26 | For Interrupt Compatibility and Vectored Interrupt R 0
modes, this field specifies the IP humber to which the
Performance Counter Interrupt request is merged, and
allows software to determine whether to consider
Causepc for apotential interrupt.

Since performance counters are not implemented on the
M4K core (Configlpc = 0), thisfield isignored on write
and returns zero on read.

0 25..10 | Must be written as zero; returns zero on read. 0 0

94 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5.8 IntCtl Register Field Descriptions (Continued)

Fields
Read/Wr Reset
Name Bits Description ite State
VS 9.5 Vector Spacing. If vectored interrupts are implemented R/W 0
(as denoted by Config3y/,; or Config3y g c), thisfield
specifies the spacing between vectored interrupts.
Spacing
Spacing Between
Between Vectors
Encoding | Vectors (hex) (decimal)
16#00 16#000 0
16#01 16#020 32
16#02 16#040 64
16#04 16#080 128
16#08 16#100 256
16#10 16#200 512
All other values are reserved. The operation of the pro-
cessor isUNDEFINED if areserved valueis written to
thisfield.
0 4.0 Must be written as zero; returns zero on read. 0 0

5.2.7 SRSCtl Register (CP0O Register 12, Select 2)

The SRSCitl register controls the operation of GPR shadow setsin the processor. This register does not existinimple-
mentations of the architecture prior to Release 2.

Figure 5.7 shows the format of the SRSCtl register; Table 5.9 describes the SRSCtl register fields.

Figure 5.7 SRSCtl Register Format
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 0 0 0 0
00 HSS 0000 EICSS 00 ESS 00 PSS 00 CSS

Table 5.9 SRSCtl Register Field Descriptions

Fields
Read/Wr Reset
Name Bits Description ite State
0 31..30 | Must bewritten as zeros; returns zero on read. 0 0
MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 95

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

96

Table 5.9 SRSCtl Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Wr
ite

Reset
State

HSS

29..26

Highest Shadow Set. Thisfield contains the highest
shadow set number that isimplemented by this proces-
sor. A value of zero in thisfield indicates that only the
normal GPRs are implemented.

Possible values of thisfield for the M4K processor are:

Encoding Meaning

0 One shadow set (normal GPR sgt) is
present.

1 Two shadow sets are present.

3 Four shadow sets are present.

7 Eight shadow sets are present

2,4-6,9-15 |Reserved

The value in thisfield also represents the highest value
that can be written to the ESS, EICSS, PSS, and CSS
fields of this register, or to any of the fields of the
SRSMap register. The operation of the processor is
UNDEFINED if avaue larger than the onein thisfield
iswritten to any of these other fields.

R

Preset

25.22

Must be written as zeros; returns zero on read.

0

EICSS

21..18

EIC interrupt mode shadow set. If Config3y g cisl
(EIC interrupt modeis enabled), thisfield isloaded from
the external interrupt controller for each interrupt
reguest and is used in place of the SRSMap register to
select the current shadow set for the interrupt.

See 4.3.1.3 “External Interrupt Controller Mode” on
page 63 for a discussion of EIC interrupt mode. If
Config3y g c is0, thisfield must be written as zero, and
returns zero on read.

Undefined

17..16

Must be written as zeros; returns zero on read.

ESS

15..12

Exception Shadow Set. This field specifies the shadow
set to use on entry to Kernel Mode caused by any excep-
tion other than a vectored interrupt.

The operation of the processor is UNDEFINED if soft-
ware writesavalueinto thisfield that is greater than the
valuein the HSSfield.

RIW

11..10

Must be written as zeros; returns zero on read.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Table 5.9 SRSCtl Register Field Descriptions (Continued)

5.2 CPO Register Descriptions

Fields

Name

Bits

Description

Read/Wr
ite

Reset
State

PSS

9.6

Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the next
paragraph, thisfield is copied from the CSS field when
an exception or interrupt occurs. An ERET instruction
copies this value back into the CSSfield if Statusggy =
0.

Thisfield is not updated on any exception which sets
Statusgg to 1 (i.e., Reset, Soft Reset, NMI, cache
error), an entry into EJTAG Debug mode, or any excep-
tion or interrupt that occurs with Statusgy = 1, or Sta-
tusggy = 1. Thisfield is not updated on an exception
that occurs while Statusgg = 1.

The operation of the processor is UNDEFINED if soft-
ware writes avalue into thisfield that is greater than the
valuein the HSSfield.

RIW

5.4

Must be written as zeros; returns zero on read.

CSS

3.0

Current Shadow Set. If GPR shadow registers areimple-
mented, thisfield is the number of the current GPR set.
With the exclusions noted in the next paragraph, this
field is updated with a new value on any interrupt or
exception, and restored from the PSS field on an ERET.
Table 5.10 describes the various sources from which the
CSSfield is updated on an exception or interrupt.
Thisfield is not updated on any exception which sets
Statusgg, to 1 (i.e., Reset, Soft Reset, NMI, cache
error), an entry into EJTAG Debug mode, or any excep-
tion or interrupt that occurs with Statusgy; = 1, or Sta-
tusggy = 1. Neither isit updated on an ERET with
Statusgg = 1 or Statusggy = 1. Thisfield isnot updated
on an exception that occurs while Statusgg, = 1.

The value of CSS can be changed directly by software
only by writing the PSS field and executing an ERET
instruction.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

97

CPO Registers of the M4K™ Core

5.2.8 SRSMap Register (CP0O Register 12, Select 3)

Table 5.10 Sources for new SRSCtlcgg on an Exception or Interrupt

Exception Type Condition SRSCtlcss Source Comment
Exception All SRSCtlggs

Non-Vectored Inter- Causgy =0 SRSCltlgsg Treat as exception
rupt

Vectored Interrupt Causgy =1 and SRSMapyscrnum Source isinternal map register.

Config3ygc=0and (for VECTNUM see Table 4.3)
Config3y |t = 1

Vectored EIC Inter- Causgy =1 and SRSCtlg css Source is external interrupt con-

rupt Config3ygc=1 troller.

The SRSMap register contains 8 4-hit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or anon-vectored interrupt (Cause;, = 0 or IntCtly,5 = 0). In such cases, the shadow set number comes from
SRSCtlggs.

If SRSCtlygg iszero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if avalueiswritten to any field in thisregister that is greater than the
value of SRSCtlygs.

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from avector to asingle
shadow register set number.

Figure 5.8 shows the format of the SRSMap register; Table 5.11 describes the SRSMap register fields.

Figure 5.8 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
SSv7 SSV6 SSV5 SSv4 SSv3 SSv2 SSv1 SSVo
Table 5.11 SRSMap Register Field Descriptions
Fields
Read/Wr
Name Bits Description ite Reset State
Ssv7 31..28 | Shadow register set number for Vector Number 7 R/W 0
SSV6 27..24 | Shadow register set number for Vector Number 6 R/W 0
SSv5 23..20 | Shadow register set number for Vector Number 5 R/W 0
Ssv4 19..16 | Shadow register set number for Vector Number 4 R/W 0
SSsv3 15..12 | Shadow register set number for Vector Number 3 R/W 0
SSv2 11..8 | Shadow register set number for Vector Number 2 R/W 0
Ssvi 7.4 Shadow register set number for Vector Number 1 R/W 0

98

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5.11 SRSMap Register Field Descriptions (Continued)

Fields
Read/Wr
Name Bits Description ite Reset State
SSVo 3.0 Shadow register set number for Vector Number 0 R/W 0

5.2.9 Cause Register (CPO Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the [P, g, DC,

IV, and WP fields, all fieldsin the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP; , are interpreted as the Requested Interrupt

Priority Level (RIPL).
Figure 5.9 shows the format of the Cause register; Table 5.12 describes the Cause register fields.

Figure 5.9 Cause Register Format
31 30 29 28 27 26 25 24 23 22 21 16 15 100 9 8 7 6 2 1 0

BD Tl CE |DCPCI| O V| WP 0 IP7..1P2 IP1.IPO O Exc Code 0

RIPL

Table 5.12 Cause Register Field Descriptions

Fields)
Read/Wri

Name Bits Description te Reset State

BD 31 Indicates whether the last exception taken occurred in a R Undefined
branch delay slot:

Encoding Meaning

0 Not in delay slot
1 In delay slot

The processor updates BD only if Statusgy was zero
when the exception occurred.

Tl 30 Timer Interrupt. This bit denotes whether atimer inter- R Undefined
rupt is pending (analogous to the IP bits for other inter-
rupt types):

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

The state of the TI bit is available on the external core
interface asthe SI_TimerInt signal

CE 29..28 | Coprocessor unit number referenced when a Coproces- R Undefined
sor Unusable exception istaken. Thisfield isloaded by
hardware on every exception, but is UNPREDICT-
ABLE for all exceptions except for Coprocessor Unus-
able.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 99

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

Table 5.12 Cause Register Field Descriptions (Continued)

Fields)
Read/Wri

Name Bits Description te Reset State

DC 27 Disable Count register. In some power-sensitive appli- R/W 0
cations, the Count register is not used and is the source
of meaningful power dissipation. This bit allowsthe
Count register to be stopped in such situations.

Encoding Meaning

0 Enable counting of Count register
1 Disable counting of Count register

PCI 26 Performance Counter Interrupt. In an implementation of R 0
Release 2 of the Architecture, this bit denotes whether a
performance counter interrupt is pending (analogous to
the IP bits for other interrupt types):

Encoding Meaning

0 No timer interrupt is pending
1 Timer interrupt is pending

Since performance counters are not implemented
(Configlpc = 0), this bit must be written as zero and

returns zero on read.

v 23 Indicates whether an interrupt exception uses the gen- R/W Undefined
eral exception vector or a specia interrupt vector:

Encoding Meaning

0 Use the general exception vector
(16#180)

1 Use the special interrupt vector
(16#200)

In implementations of Release 2 of the architecture, if
the Causey is 1 and Statusggy, is O, the special interrupt

vector represents the base of the vectored interrupt table.

WP 22 Indicates that a watch exception was deferred because R 0
Statusgy | Or Statusgg, were aone at the time the watch
exception was detected. This bit both indicates that the
watch exception was deferred, and causes the exception
to be initiated once Statusgy and Statusgg,_ are both
zero. As such, software must clear this bit as part of the
watch exception handler to prevent awatch exception
loop.

Software should not writea 1 to thishit whenitsvalueis
a0, thereby causing a 0-to-1 transition. If such atransi-
tion is caused by software, it is UNPREDICTABLE
whether hardware ignores the write, accepts the write
with no side effects, or accepts the write and initiates a
watch exception once Statusgy and Statusgg, are both
zero.

Since watch registers are not implemented on the M4K
core, this bit isignored on write and read as zero.

100 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5.12 Cause Register Field Descriptions (Continued)

Fields)
Read/Wri
Name Bits Description te Reset State
IP7..1P2 15..10 | Indicatesaninterrupt is pending: R Undefined
Bit Name Meaning
15 IP7 |Hardware interrupt 5
14 IP6 |Hardware interrupt 4
13 IP5 |Hardware interrupt 3
12 IP4 |Hardware interrupt 2
11 IP3 |Hardware interrupt 1
10 IP2 |Hardware interrupt O

If EIC interrupt mode is not enabled, timer interrupts are
combined in a system-dependent way with any hard-
ware interrupt. If EIC interrupt mode is enabled, these
bits take on a different meaning and are interpreted as
the RIPL field, described below.

See 4.3 “Interrupts’ on page 57 for a general descrip-
tion of interrupt processing.

RIPL 15..10 | Requested Interrupt Priority Level. R Undefined
If EIC interrupt mode is enabled, thisfield isthe
encoded (0..63) value of the requested interrupt. A value
of zero indicates that no interrupt is requested.

If EIC interrupt modeis not enabled, these bitstake on a
different meaning and are interpreted asthe IP7..1P2
bits, described above.

IP1..IPO 9.8 Controls the request for software interrupts: R/W Undefined
Bit Name Meaning
9 IP1 |Request software interrupt 1
8 IPO |Request software interrupt O

These hits are exported to an external interrupt control-
ler for prioritization in EIC interrupt mode with other
interrupt sources. The state of these bitsis available on
the external core interface asthe SI_SWiInt[1:0] bus.

ExcCode 6..2 Exception code - see Table 5.13 R Undefined
0 25..24, | Must be written as zero; returns zero on read. 0 0
21..16, 7,
1.0

Table 5.13 Cause Register ExcCode Field

Exception Code Value
Decimal Hexadecimal Mnemonic Description
0 16#00 Int Interrupt
1-3 16#00-16#03 - Reserved
4 16#04 AdEL Address error exception (load or instruction fetch)
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 101

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

102

Table 5.13 Cause Register ExcCode Field (Continued)

Exception Code Value
Decimal Hexadecimal | Mnemonic Description

5 16#05 AdES Address error exception (store)
6 16#06 IBE Bus error exception (instruction fetch)
7 16#07 DBE Bus error exception (data reference: load or store)
8 16#08 Sys Syscall exception
9 16#09 Bp Breakpoint exception
10 16#0a RI Reserved instruction exception
11 16#0b CpU Coprocessor Unusable exception
12 16#0c Ov Arithmetic Overflow exception
13 16#0d Tr Trap exception

14-15 16#0e-164#0f - Reserved
16 16#10 I1S1 Implementation-Specific Exception 1 (COP2)
17 16#11 CEU CorExtend Unusable
18 16#12 C2E Coprocessor 2 exceptions

19-31 16#13-16#1f - Reserved

5.2.10 Exception Program Counter (CPO Register 14, Select 0)

The Exception Program Counter (EPC) is aread/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:
e Thevirtual address of theinstruction that was the direct cause of the exception

e Thevirtual address of theimmediately preceding branch or jump instruction, when the exception causing
instruction isin abranch delay dot and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL hit in the Status register is set,
however, the register can still be written viathe MTCO instruction.

In processors that implement the MIPS16e ASE, aread of the EPC register (via MFCO) returns the following value
in the destination GPR:

GPR[rt] ¢« ExceptionPC;; ; || ISAMode,

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field and written to the
GPR.

Similarly, awrite to the EPC register (viaMTCO) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, asfollows

ExceptionPC « GPR[rt]s; ; || O
ISAMode « 2#0 || GPR[rt],

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit isloaded from the lower bit

of the GPR.
Figure 5.10 EPC Register Format
31 0
EPC
Table 5.14 EPC Register Field Description

Fields)

Read/Wri
Name Bit(s) Description te Reset State

EPC 31:0 Exception Program Counter. R/W Undefined

5.2.11 Processor Identification (CPO Register 15, Select 0)

The Processor Identification (PRId) register is a 32 hit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 5.11 PRId Register Format

31 24 23 16 15 8 7 5 4 2 1 0

R Company |ID Processor ID Revision

Table 5.15 PRId Register Field Descriptions

Fields

Read/W
Name Bit(s) Description rite Reset State
R 31:24 [Reserved. Must be ignored on write and read as zero R 0

Company ID 23:16 | ldentifiesthe company that designed or manufactured the R
processor. In the M4K thisfield contains avalue of 1 to
indicate MIPS Technologies, Inc.

Processor ID 15:8 Identifies the type of processor. Thisfield allows software R 0x87
to distinguish between the various types of MIPS Technol-
0gies processors.

Revision 7.0 Specifies the revision number of the processor. Thisfield R Preset
alows software to distinguish between one revision and
another of the same processor type.

Thisfield is broken up into the following three subfields

Major Revi- 7.5 This number isincreased on mgjor revisions of the proces- R Preset
sion sor core

Minor Revi- 4:2 This number isincreased on each incremental revision of R Preset
sion the processor and reset on each new major revision

Patch Level 1.0 If apatch is made to modify an older revision of the pro- R Preset

cessor, this field will be incremented

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 103

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

104

5.2.12 EBase Register (CPO Register 15, Select 1)

The EBase register is aread/write register containing the base address of the exception vectors used when Statusggy,

equals 0, and aread-only CPU number value that may be used by software to distinguish different processorsin a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31..12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when Statusggy, is 0. The exception vector base address comes from the fixed defaults (see 4.5 “Exception
Vector Locations” on page 67) when Statusggy, is 1, or for any EJTAG Debug exception. The reset state of bits 31..12
of the EBase register initialize the exception base register to 16#8000. 0000, providing backward compatibility
with Release 1 implementations.

Bits 31..30 of the EBase Register are fixed with the value 2#1 0 to force the exception base address to bein the
ksegO or ksegl unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with Statusgg,, equal 1. The operation
of the processor is UNDEFINED if the Exception Base field is written with a different value when Statusggy is 0.

Combining bits 31..20 with the Exception Base field allows the base address of the exception vectorsto be placed at
any 4K Byte page boundary. If vectored interrupts are used, a vector offset greater than 4K Bytes can be generated. In
this case, hit 12 of the Exception Base field must be zero. The operation of the processor is UNDEFINED if soft-
ware writes bit 12 of the Exception Base field with a1 and enables the use of avectored interrupt whose offset is
greater than 4K Bytes from the exception base address.

Figure 5.12 shows the format of the EBase Register; Table 5.16 describes the EBase register fields.

Figure 5.12 EBase Register Format

31 30 29 12 11 10 9 0

1

0 Exception Base 00 CPUNum

Table 5.16 EBase Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State
1 31 This bit isignored on write and returns one on read. R 1
0 30 Thisbit isignored on write and returns zero on read. R 0
Exception 29.12 In conjunction with bits 31..30, thisfield specifiesthe | R/W 0
Base base address of the exception vectors when Status-
BEV is zero.

0 11..10 Must be written as zero; returns zero on read. 0 0
CPUNum 9.0 Thisfield specifies the number of the CPU in a R Externally Set
multi-processor system and can be used by software
to distinguish a particular processor from the others.

Thevalueinthisfield is set by the SI_ CPUNum([9:0]
static input pinsto the core. In asingle processor sys-
tem, this value should be set to zero.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.13 Config Register (CPO Register 16, Select 0)

The Config register specifies various configuration and capabilitiesinformation. Most of the fields in the Config reg-
ister areinitialized by hardware during the Reset exception process, or are constant.

Figure 5.13 Config Register Format — Select 0
31 30 2827 25 24 23 22 21 20 19 17 16 15 14 13 12 10 9 7 6 3 2 0

M| K23 | KU 0 |UDI|SB{MDU 0 DS|BE| AT AR MT 0 KO

Figure 5.14 Config Register Field Descriptions

Fields .
Read/Writ
Name Bit(s) Description e Reset State
M 31 Thisbit ishardwired to ‘1’ to indicate the presence of the R 1
Configl register.
K23 30:28 | Thisfield controls the cacheability of the kseg2 and kseg3 | FM: R/'W FM: 010

address segmentsin FM implementations.
Refer to Table 5.17 for the field encoding.

KU 27:25 | Thisfield controls the cacheability of the kuseg and useg FM: RIW FM: 010
address segments in FM implementations.
Refer to Table 5.17 for the field encoding.

0 24:23 Must be written as 0. Returns zero on reads. 0 0

uDI 22 Thisbit indicates that CorExtend User Defined Instructions R Preset
have been implemented.

0 = No User Defined Instructions are implemented
1 = User Defined Instructions are implemented

SB 21 Indicates whether SimpleBE bus mode is enabled. Set via R Externally Set
SI_SimpleBE[0] input pin.

0 = No reserved byte enables on SRAM interface

1 = Only simple byte enables allowed on SRAM interface

MDU 20 This bit indicates the type of Multiply/Divide Unit present. R Preset
0 = Fast, high-performance MDU
1 = Iterative, area-efficient MDU

0 19:17 Must be written as 0. Returns zero on reads. 0 0

DS 16 Dual SRAM interface. R Preset
0: Unified instruction/data SRAM interface
1: Dud instruction/data SRAM interfaces

BE 15 Indicates the endian mode in which the processor is run- R Externally Set
ning. Set via SI_Endian input pin.
0O: Little endian
1: Big endian

AT 14:13 | Architecture type implemented by the processor. This field R 00
is always 00 to indicate the MIPS32 architecture.

AR 12:10 | Architecturerevision level. Thisfield is always 001 to indi- R 001
cate MIPS32 Release 2.
0. Releasel
1. Release?2
2-7: Reserved

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 105

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

Figure 5.14 Config Register Field Descriptions (Continued)

Fields .
Read/Writ
Name Bit(s) Description e Reset State
MT 9:7 MMU Type: R 3
3: Fixed Mapping
0-2, 4-7: Reserved
0 6:3 Must be written as zeros; returns zeros on reads. 0 0
KO 2.0 K'seg0 coherency agorithm. Refer to Table 5.17 for the R/W 010
field encoding.
Table 5.17 Cache Coherency Attributes
C(2:0) Value Cache Coherency Attribute
2 Uncached.
3 Cached (Core treats as uncached, but passes attribute to the system for use with any external
caching mechanismes)

5.2.14 Configl Register (CPO Register 16, Select 1)

The Configl register is an adjunct to the Config register and encodes additional information about capabilities
present on the core. All fields in the Configl register are read-only.

Figure 5.15 Configl Register Format — Select 1

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL 1A DS DL DA |C2[{MD|PC| WR|CA|EPFP

Table 5.18 Configl Register Field Descriptions — Select 1

Fields)
Read/Wri
Name Bit(s) Description te Reset State
M 31 Thishit ishardwired to ‘1’ to indicate the presence of the R 1
Config2 register.
MMU Size 30:25 | Thisfield contains the number of entriesin the TLB minus R 0
one. Thefield isread as 0 decimal in the M4K cores, since
no TLB is present.
IS 24:22 | Thisfield contains the number of instruction cache sets per R 0
way. Since the M4K core does not include caches, thisfield
isalwaysread as 0.
IL 21:19 Thisfield contains the instruction cache line size. Since the R 0
M4K core does not include caches, thisfield is always read
asO.
1A 18:16 | Thisfield containsthe level of instruction cache associativ- R 0
ity. Sincethe M4K core does not include caches, thisfield is
awaysread as 0.
106 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5.18 Configl Register Field Descriptions — Select 1 (Continued)

Fields .
Read/Wri
Name Bit(s) Description te Reset State
DS 15:13 | Thisfield contains the number of data cache sets per way. R 0
Since the M4K core does not include caches, thisfield is
awaysread as 0.
DL 12:10 Thisfield contains the data cache line size. Since the M4K R 0
core does not include caches, thisfield is aways read as 0.
DA 9.7 Thisfield contains the type of set associativity for the data R 0

cache. Since the M4K core does not include caches, this
field isalways read as 0.

c2 6 Coprocessor 2 present. R Preset
0: No coprocessor is attached to the COP2 interface

1: A coprocessor is attached to the COP2 interface

If the Cop2 interface logic is not implemented, this bit will

read O.
MD 5 MDMX implemented. This bit always reads as 0 because R 0
MDMX is not supported.
PC 4 Performance Counter registers implemented. Alwaysa0 R 0
sincethe M4K core does not contain Performance Counters.
WR 3 Watch registers implemented. R 0

0: No Watch registers are present

1: One or more Watch registers are present

Thisbit is aways read as 0 since the M4K core does not
contain Watch registers.

CA 2 Code compression (M1PS16€) implemented. R Preset
0: No MIPS16e present
1: MIPS16eisimplemented

EP 1 EJTAG present: Thisbit is always set to indicate that the R 1
core implements EJTAG.

FP 0 FPU implemented. This bit is always zero since the core R 0
does not contain a floating point unit.

5.2.15 Config2 Register (CPO Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilitiesinforma-
tion. Config2 is alocated for showing the configuration of level 2/3 caches. These fields are reset to O because L2/L3
caches are not supported by the M4K core. All fields in the Config2 register are read-only.

Figure 5.16 Config2 Register Format — Select 2

31 30 0
M 0
MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 107

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

Table 5.19 Configl Register Field Descriptions — Select 1

Fields .
Read/Wri
Name Bit(s) Description te Reset State
M 31 Thisbit ishardwired to ‘1’ to indicate the presence of the R 1
Config3 register.
0 30:0 These bits are reserved. R 0

5.2.16 Config3 Register (CPO Register 16, Select 3)

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

Figure 5.17 shows the format of the Config3 register; Table 5.20 describes the Config3 register fields.

Figure 5.17 Config3 Register Format
31 30 9 8 7 6 5 4 3 2 1 0

M 0 ITL| O

000 0000 0000 0000 0000 0000 0 VEIQVInt SP - 0

TL

Table 5.20 Config3 Register Field Descriptions

Fields
Read/Wr

ite

Name Bits Description Reset State

M 31 This bit isreserved to indicate that a Config4 register is R 0
present. With the current architectural definition, this bit

should alwaysread as a0.

108

30:9,7,3:2

Must be written as zeros; returns zeros on read

0

ITL

Indicates that | FlowTrace hardware is present

Preset

VEIC

Support for an external interrupt controller isimple-
mented.

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

The value of this bit is set by the static input,
SI_EICPresent. This allows external logic to communi-
cate whether an external interrupt controller is attached
to the processor or not.

Externally Set

Vint

Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

Onthe M4K core, thisbit isaways a1 since vectored
interrupts are implemented.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5.20 Config3 Register Field Descriptions

Fields
! Read/Wr

Name Bits Description ite Reset State

SP 4 Small (1KByte) page support is implemented, and the R 0
PageGrain register exists. Thishit will alwaysread as0
on the M4K core, since no TLB is present.

Encoding Meaning

0 Small page support is not implemented
1 Small page support isimplemented

SM 1 SmartMIPS™ ASE implemented. This bit indicates R 0
whether the SmartMIPS ASE isimplemented. Since
SmartMIPSis not present on the M4K core, this bit will
alwaysbe 0.

Encoding Meaning

0 SmartMIPS ASE is not implemented
1 SmartMIPS ASE isimplemented

TL 0 Trace Logicimplemented. Thisbit indicates whether PC R Preset
or datatrace isimplemented..

Encoding Meaning

0 Tracelogic is not implemented

1 Tracelogic isimplemented

5.2.17 Debug Register (CPO Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The read
only information bits are updated every time the debug exception is taken or when anormal exception is taken when
already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and
fields are UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register iswritten from
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

 DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, DDBSImpr are updated on both debug excep-
tions and on exceptions in debug modes

» DExcCode isupdated on exceptions in debug mode, and is undefined after a debug exception

» Haltand Doze are updated on a debug exception, and are undefined after an exception in debug mode

» DBD isupdated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.

EJTAGver and DM.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 109

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

Figure 5.18 Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19

DBD | DM NOF'SC LSNM | Doze | Halt CorﬂntD IBUSEP MESEC Cac;'eE DB;SE IEXI gl?ni'r

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0
Br?]';’r Ver DExcCode Nsots sst| R ?T:Er' D'TN DIB gg BE DBp| DSS

Table 5.21 Debug Register Field Descriptions

Fields

Read/Wr
Name Bit(s) Description ite Reset State

DBD 31 Indicates whether the last debug exception or exception R Undefined
in debug mode, occurred in a branch delay slot:
0: Not in delay slot

1: Indelay dlot

DM 30 Indicates that the processor is operating in debug mode: R 0
0: Processor is operating in non-debug mode
1: Processor is operating in debug mode

NoDCR 29 Indicates whether the dseg memory segment is present R 0
and the Debug Control Register is accessible:
0: dseg is present

1: No dseg present

LSNM 28 Controls access of |oad/store between dseg and main R/W 0
memory:

0: Load/stores in dseg address range goes to dseg.

1: Load/stores in dseg address range goes to main mem-
ory.

Doze 27 Indicates that the processor wasin any kind of low R Undefined
power mode when a debug exception occurred:

0: Processor not in low power mode when debug excep-
tion occurred

1: Processor in low power mode when debug exception
occurred

Halt 26 Indicates that the internal system bus clock was stopped R Undefined
when the debug exception occurred:
0: Internal system bus clock stopped
1: Internal system bus clock running

CountDM 25 Indicates the Count register behavior in debug mode. R/W 1
0: Count register stopped in debug mode
1: Count register is running in debug mode

|BuseP 24 Instruction fetch Bus Error exception Pending. Setwhen | R/W1 0
an instruction fetch bus error event occursor if alis
written to the bit by software. Cleared when aBus Error
exception on instruction fetch is taken by the processor,
and by reset. If IBusEP is set when |EXI iscleared, a
Bus Error exception on instruction fetch is taken by the
processor, and |IBusEP is cleared.

110 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Table 5.21 Debug Register Field Descriptions (Continued)

5.2 CPO Register Descriptions

Fields

Name

Bit(s)

Description

Read/Wr
ite

Reset State

MCheckP

23

Indicates that an imprecise Machine Check exception is
pending. All Machine Check exceptions are precise on
the M4K processor so this bit will always read as 0.

R

0

CacheEP

22

Indicates that an imprecise Cache Error is pending.
Cache Errors cannot be taken by the M4K core so this
bit will always read as 0

DBuUsEP

21

Data access Bus Error exception Pending. Covers
imprecise bus errors on data access, similar to behavior
of IBusEP for imprecise bus errors on an instruction
fetch.

R/W1

1EXI

20

Imprecise Error eXception Inhibit controls exceptions
taken due to imprecise error indications. Set when the
processor takes a debug exception or exception in debug
mode. Cleared by execution of the DERET instruction;
otherwise modifiable by debug mode software. When
IEXI is set, the imprecise error exception from a bus
error on an instruction fetch or data access, cache error,
or machine check isinhibited and deferred until the bit
is cleared.

R/W

DDBSImpr

19

Indicates that an imprecise Debug Data Break Store
exception was taken. Impreci se data breaks only occur
on complex breakpoints.

Undefined

DDBLImpr

18

Indicates that an imprecise Debug Data Break Load
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

Undefined

Ver

17:15

EJTAG version.

010

DExcCode

14:10

Indicates the cause of the latest exception in debug
mode. Thefield is encoded as the ExcCode field in the
Cause register for those normal exceptions that may
occur in debug mode.

Value is undefined after a debug exception.

Undefined

NoSST

Indicates whether the single-step feature controllable by
the SSt hit is available in this implementation:

0: Single-step feature available

1: No single-step feature available

Controlsif debug single step exception is enabled:
0: No debug single-step exception enabled
1: Debug single step exception enabled

RIW

R

Reserved. Must be written as zeros; returns zeros on
reads.

DIBImpr

Indicates that an Imprecise debug instruction break
exception occurred (due to a complex breakpoint).
Cleared on exception in debug mode.

Undefined

DINT

Indicates that a debug interrupt exception occurred.
Cleared on exception in debug mode.

0: No debug interrupt exception

1: Debug interrupt exception

Undefined

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

111

CPO Registers of the M4K™ Core

Table 5.21 Debug Register Field Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/Wr
ite

Reset State

DIB

4

Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.
0: No debug instruction exception

1: Debug instruction exception

R

Undefined

DDBS

Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.

0: No debug data exception on a store

1: Debug instruction exception on a store

Undefined

DDBL

Indicates that a debug data break exception occurred on
aload. Cleared on exception in debug mode.

0: No debug data exception on aload

1: Debug instruction exception on aload

Undefined

DBp

Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.

0: No debug software breakpoint exception

1: Debug software breakpoint exception

Undefined

DSS

Indicates that a debug single-step exception occurred.
Cleared on exception in debug mode.
0: No debug single-step exception

1: Debug single-step exception

Undefined

5.2.18 Trace Control Register (CPO Register 23, Select 1)

The TraceControl register configuration is shown below. Note the specia behavior of the ASID_M, ASID, and G

fields for the M4K processor.

Thisregister is only implemented if the EJTAG Trace capability is present.

Figure 5.19 TraceControl Register Format

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3
U T
TS T 0 B IO[D|E|K|S|U ASID_M ASID G| Mode

Table 5.22 TraceControl Register Field Descriptions

ware and the software trace control bits. A value of
zero selects the external hardware trace block signals,
and avalue of one selects the trace control bitsin this
software control register.

Fields
Read/
Name Bits Description Write Reset State
TS 31 Thetrace select bit is used to select between the hard- | R/W 0

112

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5.22 TraceControl Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset State

uT

30

This bit is used to indicate the type of user-triggered
trace record. A value of zero implies a user type 1 and
avalue of oneimplies a user type 2.

The actual triggering of a user trace record happens on
awriteto the UserTraceData register.

R/W

Undefined

29:28

Reserved for future use; Must be written as zero;
returns zero on read.

TB

27

Trace All Branch. When set to one, thistells the pro-
cessor to trace the PC value for all taken branches, not
just the ones whose branch target address is statically
unpredictable.

Undefined

26

Inhibit Overflow. Thissignal is used to indicate to the
coretrace logic that slow but complete tracing is
desired. When set to one, the core tracing logic does
not allow aFIFO overflow or discard trace data. Thisis
achieved by stalling the pipeline when the FIFO is
nearly full, so that no trace records are ever |ost.

Undefined

25

When set to one, this enables tracing in Debug Mode
(see8.9.1 “Processor Modes’ on page 175). For trace
to be enabled in Debug mode, the On bit must be one.
When set to zero, trace is disabled in Debug Mode,
irrespective of other bits.

Undefined

24

When set to one, this enables tracing in Exception
Mode (see 8.9.1 “Processor Modes’ on page 175).
For trace to be enabled in Exception mode, the On hit
must be one.

When set to zero, traceis disabled in Exception Mode,
irrespective of other bits.

Undefined

23

When set to one, this enables tracing in Kernel Mode
(see8.9.1 “Processor Modes’ on page 175). For trace
to be enabled in Kernel mode, the On bit must be one.
When set to zero, trace is disabled in Kernel Mode,
irrespective of other bits.

Undefined

22

This bit is reserved. Must be written as zero; returns
zero on read.

21

When set to one, this enables tracing in User Mode
(see 8.9.1 “Processor Modes’ on page 175). For trace
to be enabled in User mode, the On bit must be one.
When set to zero, trace is disabled in User Mode, irre-
spective of other bits.

Undefined

ASID_M

20:13

In the M4K core where ASID is not supported, this
field isignored on write and returns zero on read.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

113

CPO Registers of the M4K™ Core

Table 5.22 TraceControl Register Field Descriptions (Continued)

Fields
Read/

Name Bits Description Write Reset State

ASID 12:5 R 0
In the M4K core where ASID is not supported, this
field isignored on write and returns zero on read.

In the M4K core where ASID is not supported, this
field isignored on write and returns 1 on read. This
causes al match equations to work correctly in the
absence of an ASID.

Mode 31 These three bits control the trace mode function. R/W Undefined

Mode Trace Mode

000 |[TracePC

001 |Trace PC and load address

010 |Trace PC and store address

011 |Trace PC and both load/store addresses
100 |Trace PC and load data

101 |Trace PC and load address and data
110 |Trace PC and store address and data

111 |Trace PC and both load/store address and
data

The TraceControl2y/4idmvodes field determines which
of these encodings are supported by the processor. The
operation of the processor is UNPREDICTABLE if
thisfield is set to avalue which is not supported by the
processor.

On 0 Thisisthe master trace enable switch in softwarecon- | R/W 0
trol. When zero, tracing is aways disabled. When set
to one, tracing is enabled whenever the other enabling
functions are also true.

5.2.19 Trace Control2 Register (CPO Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have areset state of “Undefined”. Thisis because these values are loaded
from the Trace Control Block (TCB) (see 8.11 “Trace Control Block (TCB) Registers (Hardware Control)” on
page 180). As such, these fields in the TraceControl2 register will not have valid values until the TCB asserts these
values.

Thisregister is only implemented if the EJTAG Trace capability is present.

Figure 5.20 TraceControl2 Register Format
31 7 6 5 4 3 2 0

Valid- B
0 Modes TBI U SyP

114 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5.23 TraceControl2 Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State
0 31:5 Reserved for future use; Must be written as zero; 0 0
returns zero on read.
ValidModes | 6:5 Thisfield specifiesthe type of tracing that issupported | R 10
by the processor, as follows:
Encoding Meaning
00 PC tracing only
01 PC and load and store address tracing
only
10 PC, load and store address, and load and
store data
11 Reserved
TBI 4 This bit indicates how many trace buffers areimple- R Per imple-
mented by the TCB, asfollows: mentation
Encoding Meaning
0 Only one trace buffer isimplemented,
and the TBU bit of thisregister indicates
which trace buffer isimplemented
1 Both on-chip and off-chip trace buffers
are implemented by the TCB and the
TBU bit of thisregister indicates to
which trace buffer the trace is currently
written.
TBU 3 This bit denotes to which trace buffer the traceis cur- R Undefined
rently being written and is used to select the appropri-
ate interpretation of the TraceControl2gp field.
Encoding Meaning
0 Trace datais being sent to an on-chip
trace buffer
1 Trace Datais being sent to an off-chip
trace buffer
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 115

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

Table 5.23 TraceControl2 Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State
SyP 2:0 Used to indicate the synchronization period. R Undefined

The period (in cycles) between which the periodic syn-
chronization information is to be sent is defined as
shown below, for both when the trace buffer is on-chip

and off-chip.
SyP On-chip Off-chip
000 22 27
001 23 28
010 s 29
011 25 210
100 26 o1l
101 27 912
110 28 213
111 9 14

The “On-chip” column value is used when the trace
datais being written to an on-chip trace buffer (e.g,
TraceControl2tgy = 0). Conversely, the “ Off-chip”
column is used when the trace datais being written to
an off-chip trace buffer (e.g, TraceControl2+gy = 1).

5.2.20 User Trace Data Register (CPO Register 23, Select 3)

A software write to any bitsin the UserTraceData register will trigger atrace record to be written indicating a type
1 or type 2 user format. The typeis based on the UT bit in the TraceControl register. This register cannot be written
in consecutive cycles. The trace output datais UNPREDICTABLE if thisregister iswritten in consecutive cycles.

Thisregister is only implemented if the EJTAG Trace capability is present.

Figure 5.21 User Trace Data Register Format \
31 0

Data

Table 5.24 UserTraceData Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State
Data 31:0 Software readable/writable data. When written, this RIW 0
triggers a user format trace record out of the PDtrace
interface that transmits the Datafield to trace memory.
116 MIPS32® M4K™ Processor Core Software User’'s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2.21 TraceBPC Register (CPO Register 23, Select 4)

5.2 CPO Register Descriptions

Thisregister is used to control start and stop of tracing using an EJTAG Hardware breakpoint. The Hardware break-
point would then be set as atrigger source and optionally also as a Debug exception breakpoint.

Thisregister is only implemented if both Hardware breakpoints and the EJTAG Trace capability are present.

31

30

Figure 5.22 Trace BPC Register Format
18 17 16 15 14

DE

DBPON| IE 0

IBPON

Table 5.25 TraceBPC Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

DE

31

Used to specify whether the trigger signal from
EJTAG data breakpoint should trigger tracing func-
tions or not:

0: disables trigger signals from data breakpoints

1: enablestrigger signals from data breakpoints

R/W

0

30:18

Reserved

DBPON

17:16

Each of the 2 bits correspondsto the 2 possible EJTAG
hardware data breakpoints that may be implemented.
For example, bit 16 corresponds to the first data break-
point. If 2 data breakpoints are present in the EJTAG
implementation, then they correspond to bits 16 and
17. Therest are aways ignored by the tracing logic
since they will never be triggered.

A value of one for each bit impliesthat atrigger from
the corresponding data breakpoint should start tracing.
And avalue of zero implies that tracing should be
turned off with the trigger signal.

15

Used to specify whether the trigger signal from
EJTAG instruction breakpoint should trigger tracing
functions or not:

0: disables trigger signals from instruction breakpoints
1: enablestrigger signals from instruction breakpoints

14:6

Reserved

IBPON

5.0

Each of the 6 bits correspondsto the 6 possible EJITAG
hardware instruction breakpoints that may be imple-
mented. Bit O corresponds to the first instruction
breakpoint, and so on. If only 2 instruction breakpoints
are present in the EJTAG implementation, then only
bits 0 and 1 are used. Therest are always ignored by
the tracing logic since they will never be triggered.

A value of one for each bit impliesthat atrigger from
the corresponding instruction breakpoint should start
tracing. And avalue of zero impliesthat tracing should
be turned off with the trigger signal.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

117

CPO Registers of the M4K™ Core

118

5.2.22 Debug?2 Register (CPO Register 23, Select 6)

Thisregister holds additional information about Complex Breakpoint exceptions.
Thisregister is only implemented if complex hardware breakpoints are present.

Figure 5.23 Debug?2 Register Format
31 4 3 2 1 0

0 Prm|DQ| Tup|PaCo

Table 5.26 Debug2 Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State

0 314 Reserved 0 0

Prm 3 Primed - indicates whether acomplex breakpoint with | R Undefined
an active priming condition was seen on the last debug
exception.

DQ 2 Data Qualified - indicates whether a complex break- R Undefined
point with an active data qualfier was seen on the last
debug exception.

Tup 1 Tuple - indicates whether atuple breakpoint wasseen | R Undefined
on the last debug exception.

PaCo 0 Pass Counter - indicates whether acomplex breakpoint | R Undefined
with an active pass counter was seen on the last debug
exception

5.2.23 Debug Exception Program Counter Register (CPO Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is aread/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:
» Thevirtual address of the instruction that was the direct cause of the debug exception, or

e Thevirtual address of theimmediately preceding branch or jump instruction, when the debug exception causing
instruction isin abranch delay dot, and the Debug Branch Delay (DBD) hit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC contains the virtual address of the
instruction where execution should resume after the debug handler code is executed.

In processors that implement the MIPS16e ASE, aread of the DEPC register (viaMFCO) returns the following value
in the destination GPR:

GPR[rt] ¢« DebugExceptionPCs; 4 || ISAMode,

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and writ-
ten to the GPR.

Similarly, awrite to the DEPC register (viaMTCO) takes the value from the GPR and distributes that value to the
debug exception PC and the ISAMode field, asfollows

DebugExceptionPC « GPR[rtls; ;1 || O
ISAMode « 2#0 || GPR[rt],

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit isloaded from the
lower bit of the GPR.

Figure 5.24 DEPC Register Format

31 0

DEPC

Table 5.27 DEPC Register Formats

Fields
Read/Wr
Name Bit(s) Description ite Reset
DEPC 31:0 |TheDEPC register is updated with the virtual address of R/W Undefined

the instruction that caused the debug exception. If the
instruction isin the branch delay dlot, then the virtual
address of the immediately preceding branch or jump
instruction is placed in this register.

Execution of the DERET instruction causes ajump to the
addressin the DEPC.

5.2.24 ErrorEPC (CPO Register 30, Select 0)

The ErrorEPC register is aread/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NM1) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
error. This address can be:

» Thevirtual address of the instruction that caused the exception

* Thevirtual address of theimmediately preceding branch or jump instruction when the error causing instructionis
in abranch delay slot

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

In processors that implement the MIPS16e ASE, aread of the ErrorEPC register (via MFCO) returns the following
value in the destination GPR:

GPR[rt] < ErrorExceptionPCszq || ISAMode

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 119

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

CPO Registers of the M4K™ Core

120

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, awriteto the ErrorEPC register (viaMTCO) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, asfollows

ErrprExceptionPC < GPR[rtls; 4 || O
ISAMode « 2#0 || GPR[rt],

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure 5.25 ErrorEPC Register Format

31 0

ErrorEPC

Table 5.28 ErrorEPC Register Field Description

Fields .
Read/Wri
Name Bit(s) Description te Reset State
ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

5.2.25 DeSave Register (CPO Register 31, Select 0)

The Debug Exception Save (DeSave) register is aread/write register that functions as a simple memory location.
Thisregister is used by the debug exception handler to save one of the GPRs that is then used to save the rest of the
context to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of
exception handlers and other types of code where the existence of avalid stack for context saving cannot be assumed.

Figure 5.26 DeSave Register Format

31 0

DESAVE

Table 5.29 DeSave Register Field Description

Fields
Read/Wr
Name Bit(s) Description ite Reset State
DESAVE 31:0 Debug exception save contents. R/W Undefined

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 6

Hardware and Software Initialization of the M4AK™ Core

A M4K processor core contains only aminimal amount of hardware initialization and relies on software to fully ini-
tialize the device.

This chapter contains the following sections:
* Section 6.1 “Hardware-Initialized Processor State”

e Section 6.2 “Software Initialized Processor State”

6.1 Hardware-Initialized Processor State

A M4K processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal
subset of the processor state is cleared. Thisis enough to bring the core up while running in unmapped and uncached
code space. All other processor state can then be initialized by software. SI_ColdReset is asserted after power-up to
bring the device into a known state. Soft reset can be forced by asserting the SI_Reset pin. This distinction is made
for compatibility with other MIPS processors. In practice, both resets are handled identically with the exception of
the setting of Statusgg.

6.1.1 Coprocessor 0 State
Much of the hardware initialization occurs in Coprocessor 0.
* Statuspggy - cleared to 1 on Reset/SoftReset
» Statustg - cleared to O on Reset/SoftReset
» Statusgp - cleared to 0 on Reset, set to 1 on SoftReset
+ Statusyyy, - cleared to 0 on Reset/SoftReset
* Statusgg, - set to 1 on Reset/SoftReset
» Statusgp - cleared to 0 on Reset/SoftReset

» Config fieldsrelated to static inputs - set to input value by Reset/SoftReset

» Configkg - set to 010 (uncached) on Reset/SoftReset
* Configgy - set to 010 (uncached) on Reset/SoftReset

+ Configkys - set to 010 (uncached) on Reset/SoftReset

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 121

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Hardware and Software Initialization of the M4K™ Core

* DebugDM - cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode, see
Chapter 8, “EJTAG Debug Support in the M4K™ Core” on page 127 for details)

* Debug, gym - cleared to 0 on Reset/SoftReset

* Debug,g,sep - cleared to 0 on Reset/SoftReset
* Debugpg,sep - cleared to 0 on Reset/SoftReset
* Debugey - cleared to 0 on Reset/SoftReset

» Debuggs; - cleared to 0 on Reset/SoftReset
6.1.2 Bus State Machines

All pending bus transactions are aborted and the state machines in the SRAM interface unit are reset when a Reset or
SoftReset exception is taken.

6.1.3 Static Configuration Inputs

All static configuration inputs should only be changed during Reset.

6.1.4 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOQOT option is used, the fetch is directed to VA OxBFC00000 (PA
O0x1FC00000). This addressisin KSegl,which is unmapped and uncached.

6.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

6.2.1 Register File

The register file powers up in an unknown state with the exception of rO which isaways 0. Initiaizing the rest of the
register fileis not required for proper operation in hardware. However, when simulating the operation of the core,
unknown values can cause problems. Thus, initializing the register file in the boot code may avoid simulation prob-
lems.

6.2.2 Coprocessor 0 State

Miscellaneous COPO states need to be initialized prior to leaving the boot code. There are various exceptions which
are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

» Cause: WP (Watch Pending), SWO0/1 (Software Interrupts) should be cleared.
» Config: Typically, the KO, KU and K23 fields should be set to the desired Cache Coherency Algorithm (CCA)

value prior to accessing the corresponding memory regions. But in the M4K core, all CCA values are treated
identically, so the hardware reset value of these fields need not be modified.

122 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

6.2 Software Initialized Processor State

* Count: Should be set to aknown value if Timer Interrupts are used.

» Compare: Should be set to aknown value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (Thus, Count should be set before Compare to avoid any unexpected interrupts).

» Status: Desired state of the device should be set.
» Other COPO state: Other registers should be written before they are read. Some registers are not explicitly write-

able, and are only updated as a by-product of instruction execution or ataken exception. Uninitialized bits should
be masked off after reading these registers.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 123

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Hardware and Software Initialization of the M4K™ Core

124 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 7

Power Management of the MAK™ Core

A M4K processor coreoffers a number of power management features, including low-power design, active power
management and power-down modes of operation. The core is a static design that supports a WAIT instruction
designed to signal the rest of the device that execution and clocking should be halted, reducing system power con-
sumption during idle periods.

The core provides two mechanisms for system level low-power support discussed in the following sections.
e Section 7.1 “Register-Controlled Power Management”

e Section 7.2 “Instruction-Controlled Power Management”
7.1 Register-Controlled Power Management

The RP bit in the CPO Status register enables a standard software mechanism for placing the system into alow power
state. The state of the RP bit is available externally viathe SI_RP output signal. Three additional pins, SI_EXL,
SI_ERL, and EJ_DebugM support the power management function by allowing the user to change the power state if
an exception or error occurs while the coreisin alow power state.

Setting the RP bit of the CPO Status register causes the core to assert the SI_RP signal. The external agent can then
decide whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device isin power down mode, that interrupt may need to be serviced depending on
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting
of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an
interrupt has occurred. At thistime the external agent can choose to either speed up the clocks and service the inter-

rupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ ERL signal on the external bus, indicating to the external
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the
processor takes a debug exception. If fast handling of thisis desired, the external agent can speed up the clocks.

The core provides four power down signalsthat are part of the system interface. Three of the pins change state as the
corresponding bitsin the CPO Status register are set or cleared. The fourth pin indicates that the processor isin debug
mode:

» The SI_RP signal represents the state of the RP bit (27) in the CPO Status register.

 TheSI_EXL signal represents the state of the EXL bit (1) in the CPO Status register.

 TheSI_ERL signal represents the state of the ERL bit (2) in the CPO Status register.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 125

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Power Management of the MAK™ Core

» TheEJ_DebugM signal indicates that the processor has entered debug mode.

7.2 Instruction-Controlled Power Management

126

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the busis
idle at the time the WAIT instruction reaches the M stage of the pipeline the internal clocks are suspended and the
pipelineis frozen. However, the internal timer and some of the input pins (S1_Int[5:0], SI_NMI, SI_Reset,
Sl|_ColdReset, and EJ_DINT) continueto run. If the busis not idle at the time the WAIT instruction reaches the M
stage, the pipeline stalls until the bus becomesidle, at which time the clocks are stopped. Once the CPU isininstruc-
tion controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the
CPU to exit this mode and resume normal operation. While the part isin thislow-power mode, the SI_SLEEP signal
is asserted to indicate to external agents what the state of the chipis.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 8

EJTAG Debug Support in the MAK™ Core

The EJTAG debug logic in the M4K processor core provides three optional modules:

1. Hardware breakpoints

2. Test Access Port (TAP) for a dedicated connection to a debug host

3. Tracing of program counter/data address/data value trace to On-chip memory or to a Trace probe

These features are covered in the following sections:

Section 8.1

Section 8.2

Section 8.3

Section 8.4

Section 8.5

Section 8.6

Section 8.7

Section 8.8

Section 8.9

Section 8.10

Section 8.11

Section 8.12

Section 8.13

Section 8.14

Section 8.15

“Debug Control Register”

“Hardware Breakpoints’

“Complex Breakpoint Usage”

“Test Access Port (TAP)”

“EJTAG TAP Registers’

“TAP Processor Accesses’

“Trace Mechanisms’

“iFlowtrace™ Mechanism”

“EJTAG Trace”
“PDtrace™ Registers (Software Control)”
“Trace Control Block (TCB) Registers (Hardware Control)”
“EJTAG Trace Enabling”
“TCB Trigger logic”
“EJTAG Trace Cycle-by-Cycle Behavior”

“TCB On-Chip Trace Memory”

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

127

EJTAG Debug Support in the M4AK™ Core

8.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always pro-
vided with the CPU core. The register is memory-mapped in drseg at offset Ox0.

The DataBrk and InstBrk bitsindicate if hardware breakpoints are included in the implementation, and debug soft-
ware is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which worksin addition to
the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit,
and a pending NMI isindicated through the NMIP bit.

The SRE bit alows implementation dependent masking of none, some or all sources for soft reset. The soft reset
masking may only be applied to a soft reset source if that source can be efficiently masked in the system, thus result-
inginnoreset at al. If that is not possible, then that soft reset source should not be masked, since a partial soft reset
may cause the system to fail or hang. Thereis no automatic indication of whether the SRE is effective, so the user
must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software running on the CPU if the probe expectsto service dmseg accesses. The reset valuein the table below
takes effect on both hard and soft resets.

Debug Control Register

31 30 29 28 18 17 16 15 14 13 11 10 9 8 6 5 4 3 2 1 0

Res

ENM Res DB|IB |IVM |[DVM| Res |CBrk|PCS|PCR|PCSe|INTE[NMIE|NMIP|SRE|PE

128

Table 8.1 Debug Control Register Field Descriptions

Fields .
Read/Wri
Name Bit(s) Description te Reset State
Res 31:30 | Reserved R 0
ENM 29 Endianessin Kernel and Debug mode. R Preset
0O: Little Endian
1: Big Endian
Res 28:18 | Reserved R 0
DB 17 Data Break Implemented. R Preset

0: No Data Break feature implemented
1: Data Break feature isimplemented

1B 16 Instruction Break Implemented. R Preset
0: No Instruction Break feature implemented
1: Instruction Break feature isimplemented

IVM 15 Inverted Value Match. Indicates that the data hardware R 1
breakpoints (if implemented) support an inverted value
match.

DVM 14 Data Value Match Register. Indicates that a DRSEG R 1

mapped register is present that will capture the load data
value on precise data value breakpoints.

Res 13:11 | Reserved R 0
CBrk 10 Indicates that Complex Breakpoint logic isimplemented R Preset

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.2 Hardware Breakpoints

Table 8.1 Debug Control Register Field Descriptions (Continued)

Fields .
Read/Wri

Name Bit(s) Description te Reset State

PCS 9 Program Counter Sampling implemented. R 0
Not supported on M4K core so this bit will read as 0

PCR 8:6 PC Sampling Rate. Controls how often the program counter R 0
issampled if PC Sampling isimplemented

PCE 5 PC Sampling Enable. Enables sampling of PC if imple- R 0
mented

INTE 4 Interrupt Enablein Norma Mode. This bit provides the R/W 1
hardware and software interrupt enable for non-debug
mode, in addition to other masking mechanisms:

0: Interrupts disabled.

1. Interrupts enabled (depending on other enabling mecha-
nisms).

NMIE 3 Non-Maskable Interrupt Enable for non-debug mode R/W 1
0: NMI disabled.
1: NMI enabled.

NMIP 2 NMI Pending Indication. R 0
0: No NMI pending.
1: NMI pending.

SRE 1 Soft Reset Enable R/W 1
This bit allows the system to mask soft resets. The core
does not internally mask soft resets. Rather the state of this
bit appears on the EJ_SRSstE external output signal, allow-
ing the system to mask soft resets if desired.

PE 0 Probe Enable R Same value as
This bit reflects the ProbEn bit in the EJTAG Control regis- ProbEnin ECR
ter. (see Table 9-4)
0: No accesses to dmseg allowed

1: EJTAG probe services accesses to dmseg

8.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data | oad/store transac-
tions. It is possibleto set instruction breakpoints on addresses even in ROM area. Data breakpoints can be set to cause
a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many
aspects, and are thus described in parallel in the following. The term hardware is not generally added to breakpoint,
unless required to distinguish it from a software breakpoint.

There are two types of simple hardware breakpointsimplemented in the M4K core; Instruction breakpoints and Data
breakpoints. The M4K core may also contain a complex breakpoint unit.

A core may be configured with the following breakpoint options:
* Nodataor instruction breakpoints, without complex break support
» Twoinstruction and one data breakpoint, without complex break support

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 129

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

130

» Four instruction and two data breakpoints, without complex break support

» Sixinstruction and two data breakpoints, with support for complex breaks

8.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address on the bus between
the CPU and the instruction cache. Finally, amask can be applied to the virtual address to set breakpoints on arange
of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) with the registers for each
instruction breakpoint including masking of address. When an instruction breakpoint matches, a debug exception
and/or atrigger is generated. An internal bit in the instruction breakpoint registersis set to indicate that the match
occurred.

8.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address values, similar to the Instruc-
tion breakpoint. Data breakpoints can be set on aload, a store or both. Data breakpoints can also be set based on the
value of the load/store operation. Finally, masks can be applied to both the virtual address and the |oad/store value.

Data breakpoints compare the transaction type (TY PE), which may be load or store, the virtual address of the transac-
tion (ADDR), accessed bytes (BY TELANE) and data value (DATA), with the registers for each data breakpoint
including masking or qualification on the transaction properties. When a data breakpoint matches, a debug exception
and/or atrigger is generated, and an internal bit in the data breakpoint registersis set to indicate that the match
occurred. The match is precise in that the debug exception or trigger occurs on the instruction that caused the break-
point to match.

8.2.3 Features of Complex Breakpoints

The complex breakpoint unit utilizes the instruction and data breakpoint hardware and |ooks for more specific match-
ing conditions. There are several different types of enabling that allow more exact breakpoint specification. Tuples
add an additional condition to data breakpoints of requiring an instruction breakpoint on the same instructions. Pass
counters are counters that decrement each time a matching breakpoint condition is taken. Once the counter reaches O,
the break or trigger effect of the breakpoint is enabled. Priming allows a breakpoint to only be enabled once another
trigger condition has been detected. Data qualification allows instruction breakpoints to only be enabled once a corre-
sponding load data triggerpoint has matched both address and data. Data qualified breakpoints are also disabled if a
load is executed that matches on the address portion of the triggerpoint, but has a mismatching data value. The com-
plex breakpoint features can be combined to create very complex sequences to match on.

In addition to the breakpoint logic, the complex break unit also includes a Stopwatch Timer block. This counter can
be used to measure time spent in various sections. It can either be free-running, or it can be set up to start and stop
counting based on atrigger from instruction breakpoints.

8.2.4 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or adata trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or atrigger indication. The BE and/or TE
bitsin the IBCn or DBCn registers are used to enable the breakpoints.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.2 Hardware Breakpoints

Debug software should not configure breakpoints to compare on an ASID value unlessa TLB is present in the imple-
mentation.

8.2.4.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.
The breakpoaint is not evaluated on instructions from a specul ative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level.
Theregisters for each instruction breakpoint have the values and mask used in the compare, and the equation that
determines the match is shown below in C-like notation.

IB_match =
(<all 1’s> == (IBMngy | ~ (PC ~ IBANigy))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the
IB_match to be true.

8.2.4.2 Conditions for Matching Data Breakpoints

When adata breakpoint is enabled, that breakpoint is evaluated for every data transaction due to aload/store instruc-
tion executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit |oad/store source or
destination address.

A breakpoint match depends on the transaction type (TY PE) as load or store, the address, and optionally the data
value of atransaction. The registers for each data breakpoint have the values and mask used in the compare, and the
equation that determines the match is shown below in C-like notation.

The overall match equation isthe DB_match.

DB_match =
(((TYPE == load) && ! DBCny,p) ||
((TYPE == store) && ! DBCny,gg)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR) and the
accessed bytes (BY TELANE) where BY TELANE[0] is 1 only if the byte at bits[7:0] on the busis accessed, and
BYTELANE[1] is1only if the byte at bits[15:8] is accessed, etc. The DB_addr_match is shown bel ow.

DB_addr_match =

(<all 1’s> == (DBMnpgy | ~ (ADDR ~ DBANpg,))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCngp and BY TELANE is4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BY TELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare
is shown below.

DB_no_value_compare =

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 131

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

132

(<all 1’s> == (DBCngy | DBCngar | ~ BYTELANE))
The size of DBCng 1, DBCngp @nd BY TELANE is 4 bits.

In case a data value compareisrequired, DB_no_value compareisfase, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The DBCy,\ bit inverts the sense of the
match - if set, the value match term will be high if the data value is not the same asthe datain the DBVn register. The
endianess is not considered in these match equations for value, as the compare uses the data bus value directly, thus
debug software is responsible for setup of the breakpoint corresponding with endianess.

DB_value_match =

(((DATA[7:0] == DBVnpgy(7.0;) || ! BYTELANE[O] || DBCngrymio; || DBChgarro;) &&

((DATA[15:8] == DBVnpgy[1s.g7) || ! BYTELANE[1] || DBCnpgpyrqy || DBCngarpry) &&
((DATA[23:16] == DBVNpgy(a3.167) || ! BYTELANE[2] || DBCngpya; || DBCngarpag) &&
((DATA[31:24] == DBVnpgy(31.247) || ! BYTELANE[3] || DBCngrys; || DBCngarpsy))

The match for a data breakpoint is always precise, since the match expression isfully evaluated at the time the
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the
DB_match to be true.

8.2.5 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition istrue, as
described below.

8.2.5.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the IBCn register, then a debug instruction break exception occursif the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register
point to the instruction that caused the IB_match equation to be true.

Theinstruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions receiv-
ing a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

8.2.5.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match con-
ditionistrue. The corresponding BS[n] hit in the DBS register is set when the breakpoint generates the debug excep-
tion.

A debug data break exception occurs when a data breakpoint indicates a match. In this case the DEPC register and
DBD bit in the Debug register points to the instruction that caused the DB_match equation to be true.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.2 Hardware Breakpoints

Theinstruction causing the debug data break exception does not update any registers due to the instruction, and the
following appliesto the load or store transaction causing the debug exception:

* A storetransaction is not allowed to complete the store to the memory system.

* A load transaction with no data value compare, i.e. wherethe DB_no_value_compare istrue for the match, is not
allowed to complete the load.

* A load transaction for a breakpoint with data value compare must occur from the memory system, since the value
isrequired in order to evaluate the breakpoint.

Theresult of thisisthat the load or store instruction causing the debug data break exception appears as not executed,
with the exception that aload from the memory system does occur for a breakpoint with data value compare, but the
register fileis not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the following rules apply with respect to updating the BS[n] bits.

* Onboth aload and store the BS[n] bits are required to be set for all matching breakpoints without a data value
compare.

* Onastorethe BS[n] bits are allowed but not required to be set for all matching breakpoints with a data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

* Onaload then none of the BS[n] bits for breakpoints with data value compare are allowed to be set, since the
load is not allowed to occur due to the debug exception from a breakpoint without a data value compare, and a
valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug
software.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
isre-executed. This re-execution may result in arepeated |oad from system memory, since the load may have
occurred previoudly in order to eval uate the breakpoint as described above. 1/O devices with side effects on loads may
not be reaccessible without changing the system behavior. The Load Data Value register wasintroduced to capture the
value that was read and allow debug software to synthesize the load instruction without reaccessing memory. Debug
software is responsible for disabling breakpoints when returning to the instruction, otherwise the debug data break
exception will reoccur.

8.2.6 Breakpoint Used as TriggerPoint

Both instruction and data hardware breakpoints can be setup by software so a matching breakpoint does not generate
adebug exception, but only an indication through the BS[n] bit. The TE bit in the IBCn or DBCn register controlsif
an instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only com-
pared for instructions executed in non-debug mode.

The BS[n] bit inthe IBS or DBS register is set when the respective IB_match or DB_match bit istrue.

The triggerpoint feature can be used to start and stop tracing. See 8.12 “EJTAG Trace Enabling” for details.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 133

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

8.2.7 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 8.2.

Table 8.2 Addresses for Instruction Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1000 IBS Instruction Breakpoint Status
0x1100 + n* 0x100 IBAN Instruction Breakpoint Addressn
0x1108 + n* 0x100 IBMn Instruction Breakpoint Address Mask n
0x1110 + n* 0x100 IBASIDn | Instruction Breakpoint ASID n
0x1118 + n* 0x100 IBCn Instruction Breakpoint Control n
0x1120 + n* 0x100 IBCCn Instruction Breakpoint Complex Control n
0x1128 + n* 0x100 IBPCn Instruction Breakpoint Pass Counter n
n is breakpoint number in range 0 to 5 (or 3 or 1, depending on the implemented hardware)

An example of some of the registers; IBAO is at offset 0x1100 and IBC2 is at offset 0x1318.

8.2.7.1 Instruction Breakpoint Status (IBS) Register (0x1000)
Compliance Level: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction

breakpoints.
IBS Register Format
31 30 29 28 27 24 23 6 5 0
Res| ASIDsup | Res BCN Res BS
Table 8.3 IBS Register Field Descriptions
Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31 Must be written as zero; returns zero on read. R
ASIDsup 30 Indicates that ASID compare is supported in instruction R
breakpoints.
0: No ASID compare.
1: ASID compare (IBASIDn register implemented).
Res 29:28 Must be written as zero; returns zero on read. R 0
BCN 27:24 Number of instruction breakpoints implemented. R 2,4, or 62
Res 23:6 Must be written as zero; returns zero on read. R 0
134 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.2 Hardware Breakpoints

Table 8.3 IBS Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
BS 5.0 Break status for breakpoint nisat BS[n], withn from 0 R/W Undefined

to 5. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched and IBCnyg or

IBCngg are set

[a] Based on actual hardware implemented.
[b] In case of fewer than 6 Instruction breakpoints the upper bits become reserved.

8.2.7.2 Instruction Breakpoint Address n (IBAn) Register (0x1100 + n * 0x100)
Compliance L evel: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAN) register has the address used in the condition for instruction breakpoint

n
IBANn Register Format

31

IBA

Table 8.4 IBAn Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
IBA 310 Instruction breakpoint address for condition. R/W Undefined

8.2.7.3 Instruction Breakpoint Address Mask n (IBMn) Register (0x1108 + n*0x100)
Compliance Level: Implemented only for implemented instruction breakpoints.
The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-

tion for instruction breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match.
A mask value of al 0'swould require an exact address match, while a mask value of all 1’swould match on any

address.
IBMn Register Format
31 0
IBM
Table 8.5 IBMn Register Field Descriptions
Fields
Read/W
Name Bit(s) Description rite Reset State
IBM 31:0 Instruction breakpoint address mask for condition: RIW Undefined
0: Corresponding address bit not masked.
1: Corresponding address bit masked.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 135

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

136

8.2.7.4 Instruction Breakpoint ASID n (IBASIDn) Register (0x1110 + n*0x100)

Compliance L evel: Implemented only for implemented instruction breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the M4K processor, this register is reserved and reads as 0.

31

IBASIDn Register Format

Res

ASID

Table 8.6 IBASIDn Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7.0 Instruction breakpoint ASID value for a compare. R 0

8.2.7.5 Instruction Breakpoint Control n (IBCn) Register (0x1118 + n*0x100)

Compliance L evel: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.

IBCn Register Format

31 24 23 22 3 2 1 0
Res ASIDuse Res TE | Res | BE
Table 8.7 IBCn Register Field Descriptions
Fields
Name Bits Description Read/Write Reset State
Res 31:24 | Must be written as zero; returns zero on read. R 0
ASIDuse 23 Use ASID vaue in compare for instruction breakpoint n: R 0
0: Don’'t use ASID valuein compare
1: Use ASID value in compare
Res 22:3 | Must be written as zero; returns zero on read. R
TE 2 Useinstruction breakpoint n as triggerpoint: R/W
0: Don't useit as triggerpoint
1: Useit astriggerpoint
Res 1 Must be written as zero; returns zero on read. R
BE 0 Useinstruction breakpoint n as breakpoint: R/W
0: Don't useiit as breakpoint
1: Useit as breakpoint

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.2 Hardware Breakpoints

8.2.7.6 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n*0x100)

Compliance L evel: Implemented only if complex breakpoints are implemented and only for implemented instruction
breakpoints.

The Instruction Breakpoint Complex Control n (IBCCn) register controls the complex break conditions for instruc-
tion breakpoint n.
IBCCn Register Format

31 14 13 100 9 8 5 4 3 2 1 O

Res PrCnd CBE| DBrkNum |Q Res

Table 8.8 IBCCn Register Field Descriptions

Fields

Name Bits Description Read/Write Reset State

Res 31:14, 9, | Must be written as zero; returns zero on read. R 0
3.0
PrCnd 13:12 | Upper bits of priming condition for | breakpoint n. M4K R 0
only supports 4 priming conditions so the upper 2 bitsare
read only as 0

PrCnd 11:10 | Priming condition for | Breakpoint n. R/W 0
00 - Bypass, no priming needed

Other - vary depending on the break number, refer to
Table 8.10 for mapping

CBE 9 Complex Break Enable - enables this breakpoint for use R/W 0
in acomplex sequence - as a priming condition for
another breakpoint, to start or stop the stopwatch timer, or
as part of atuple breakpoint.

DBrkNum 85 Indicates which data breskpoint channel is used to qual- R IBCCO..2-0
ify thisinstruction breakpoint IBCC3..6-1

Q 4 Quialify this breakpoint based on the data breakpoint indi- R/W 0
cated in DBrkNum.

0 - Not dependent on qualification

1 - Breakpoint must be qualified to be taken

8.2.7.7 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)

Compliance L evel: Implemented only if complex breakpoints are implemented and only for implemented instruction
breakpoints.

The Instruction Breakpoint Pass Counter n (IBPCn) register controls the pass counter associated with instruction
breakpoint n.

If complex breakpoints are implemented, there will be an 8b pass counter for each of the instruction breakpoints on
the M4K core.

IBPCn Register Format
31 8 7 0

0 PassCnt

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 137

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

Table 8.9 IBPCn Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
0 31:8 | Ignored on write, returns zero on read. R 0
PassCnt 7.0 Prevents a bresk/trigger action until the matching condi- R/W 0
tions on breakpoint n have been seen this number of
times.

Each time the matching condition is seen, this value will
be decremented by 1. Once the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at O.

The break or trigger action isimprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register iswritten to 0 by soft-
ware.

The instruction pass counter should not be set on instruc-
tion breakpoints that are being used as part of atuple
breakpoint.

8.2.8 Data Breakpoint Registers

Theregistersfor data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 8.10.

Table 8.10 Addresses for Data Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAN Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breskpoint Address Mask n

0x2110 + 0x100* n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n

0x2130 + 0x100* n DBPCn Data Breakpoint Pass Counter n
0x2ff0 DVM Data Value Match Register

n is breakpoint number as 0 or 1 (or just O, depending on the implemented hardware)

An example of some of the registers; DBMO is at offset 0x2108 and DBV 1 is at offset 0x2220.

138 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.2 Hardware Breakpoints

8.2.8.1 Data Breakpoint Status (DBS) Register (0x2000)

Compliance L evel: Implemented if data breakpoints are implemented.

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.

DBS Register Format
31 30 29 28 27 24 23 2 10

Res | ASIDsup | Res BCN Res BS

Table 8.11 DBS Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31 Must be written as zero; returns zero on read. R
ASID 30 Indicates that ASID compares are supported in data R
breakpoints.
0: Not supported
1: Supported
Res 29:28 Must be written as zero; returns zero on read. R 0
BCN 2724 Number of data breakpoints implemented. R 20r 12
Res 23:2 Must be written as zero; returns zero on read. R 0
BS 1.0 Break status for breakpoint nisat BS[n], with n from 0 R/WO Undefined
to 1°. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched.
[a] Based on actual hardware implemented.
[b] In case of only 1 data breakpoint bit 1 become reserved.

8.2.8.2 Data Breakpoint Address n (DBAN) Register (0x2100 + 0x100 * n)
Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAN) register has the address used in the condition for data breakpoint n.
DBAN Register Format

31 0

DBA

Table 8.12 DBAN Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
DBA 31:0 Data breakpoint address for condition. R/W Undefined

8.2.8.3 Data Breakpoint Address Mask n (DBMn) Register (0x2108 + 0x100 * n)

Compliance L evel: Implemented only for implemented data breakpoints.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

139

EJTAG Debug Support in the M4AK™ Core

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition

for data breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match. A mask

value of all 0’swould require an exact address match, while a mask value of all 1's would match on any address.
DBMn Register Format

31 0

DBM

Table 8.13 DBMn Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
DBM 31:0 Data breakpoint address mask for condition: R/W Undefined

0: Corresponding address bit not masked
1: Corresponding address bit masked

8.2.8.4 Data Breakpoint ASID n (DBASIDNn) Register (0x2110 + 0x100 * n)
Compliance L evel: Implemented only for implemented data breakpoints.

For processors with a TLB based MMU, thisregister is used to define an ASID value to be used in the match expres-
sion. On the M4K processor, this register is reserved and reads as 0.
DBASIDn Register Format

31 8 7 0
Res ASID

Table 8.14 DBASIDn Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7.0 Data breakpoint ASID value for compares. R 0

8.2.8.5 Data Breakpoint Control n (DBCn) Register (0x2118 + 0x100 * n)
Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.
DBCn Register Format

31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 0
Re ASIDuse Res BAI NoSB | NoLB Res BLM Res | TE|IVM | BE
140 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.2 Hardware Breakpoints

Table 8.15 DBCn Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
Res 31:24 | Must be written as zero; returns zero on reads. R 0
ASIDuse 23 Use ASID value in compare for data breakpoint n: R 0

0: Don’'t use ASID value in compare
1: Use ASID valuein compare

Res 22:18 | Must be written as zero; returns zero on reads. R 0

BAI 17:14 | Byte accessignore controlsignore of accessto aspecific RIW Undefined

byte. BAI[0] ignores access to byte at bits[7:0] of the
data bus, BAI[1] ignores access to byte at bits[15:8],
etc.

0: Condition depends on access to corresponding byte
1: Accessfor corresponding byte isignored

NoSB 13 Controlsif condition for data breakpoint is not fulfilled R/W Undefined
on a store transaction:

0: Condition may be fulfilled on store transaction
1: Condition is never fulfilled on store transaction

NoLB 12 Controlsif condition for data breakpoint is not fulfilled RIW Undefined
on aload transaction:

0: Condition may be fulfilled on load transaction
1: Condition is never fulfilled on load transaction

Res 11:8 Must be written as zero; returns zero on reads. R 0

BLM 74 Byte lane mask for value compare on data breakpoint. R/W Undefined
BLM[0] masks byte at bits[7:0] of the data bus,
BLM[1] masks byte at bits[15:8], etc.:

0: Compare corresponding byte lane

1: Mask corresponding byte lane

Res 3 Must be written as zero; returns zero on reads. R

TE 2 Use data breakpoint n as triggerpoint: R/W
0: Don't useit astriggerpoint
1: Useit astriggerpoint

IVM 1 Invert Value Match: When set, the data value compare R/W 0

will beinverted - abreak or trigger will betaken if the
value does not match the specified value

BE 0 Use data breakpoint n as breakpoint: R/W 0
0: Don't use it as breskpoint
1: Useit as breakpoint

8.2.8.6 Data Breakpoint Value n (DBVn) Register (0x2120 + 0x100 * n)
Compliance L evel: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 141

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

DBVn Register Format

31

DBV

Table 8.16 DBVn Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
DBV 31:0 Data breakpoint value for condition. R/W Undefined

8.2.8.7 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n*0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented data

breakpoints.
The Data Breakpoint Complex Control n (DBCCn) register controls the complex break conditions for data break-
point n.
DBCCn Register Format
31 20 19 16 15 14 13 0 9 8 5 43210
Res TIBrkNum TUP| R PrCnd CBE | DBrkNum |Q Res
Table 8.17 DBCCn Register Field Descriptions
Fields
Name Bits Description Read/Write Reset State
Res 31:14,9, | Must be written as zero; returns zero on read. R 0
3.0
TIBrkNum 19:16 | Tuple Instruction Break Number - Indicates which R DBCCO-0
instruction breakpoint will be paired with this data break- DBCC1-3
point to form atuple breakpoint
TUP 15 Tuple Enable - qualify this data breakpoint with a match R/W 0
on the TIBrkNum instruction breakpoint on the same
instruction.
PrCnd 13:12 | Upper bits of priming condition for D breakpoint n. M4K R 0
only supports 4 priming conditions so the upper 2 bitsare
read only as 0
PrCnd 11:10 | Priming condition for D Breakpoint n. R/W 0
00 - Bypass, no priming needed
Other - vary depending on the break number, refer to
Table 8.20 for mapping
CBE 9 Complex Break Enable - enables this breakpoint for use R/W 0
as apriming or qualifying condition for another break-
point.

142

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

8.2 Hardware Breakpoints

Table 8.17 DBCCn Register Field Descriptions

Fields

Name

Bits

Description

Read/Write

Reset State

DQBrkNum

8.5

Indicates which data breakpoint channel is used to qual-
ify this data breakpoint

Data qualification of data breakpointsis not supported on
aM4K core and thisfield will read as 0 and cannot be
written.

R

0

DQ

Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum.

Data qualification of data breakpointsis not supported on
aM4K core and thisfield will read as 0 and cannot be
written.

8.2.8.8 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented data

breakpoints.

The Data Breakpoint Pass Counter n (DBPCn) register controls the pass counter associated with data breakpoint n.

If complex breakpoints are implemented, there will be an 16b pass counter for each of the data breakpoints on the

M4K core.
DBPCn Register Format
31 16 15 0
0 PassCnt
Table 8.18 DBPCn Register Field Descriptions
Fields
Name Bits Description Read/Write Reset State
0 31:16 |Ignored on write, returns zero on read. R 0
PassCnt 15:0 | Preventsabreak/trigger action until the matching condi- R/W 0

tions on data breakpoint n have been seen this number of
times.

Each time the matching condition is seen, this value will
be decremented by 1. Once the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at O.

The break or trigger action isimprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until thisregister iswritten to 0 by soft-
ware.

8.2.8.9 Data Value Match (DVM) Register (0x2ffo)

Compliance Level: Implemented only if data breakpoints are implemented.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

143

EJTAG Debug Support in the M4AK™ Core

The Data Value Match (DVM) register captures the data value of aload that takes a precise data value breakpoint.
This allows debug software to synthesize the load instruction without reexecuting it in caseit is to a system register
that has destructive reads.

DVM Register Format

31 0

LDV

Table 8.19 DVM Register Field Descriptions

Fields
Read/W
Name Bit(s) Description rite Reset State
LDV 31:0 Load data value for the last precise |load data value R Undefined
breakpoint taken

8.2.9 Complex Breakpoint Registers

The registers for complex breakpoints are described bel ow. These registers have implementation information and are
used the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 8.20.

Table 8.20 Addresses for Complex Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1120 + 0x100 * n IBCCn Instruction Breakpoint Complex Control n - described above
with instruction breakpoint registers
0x1128 + 0x100 * n IBPCn Instruction Breakpoint Pass Counter n - described above with
instruction breakpoint registers
0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n - described above with
data breakpoint registers
0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n - described above with data
breakpoint registers
0x8000 CBTControl Complex Break and Triggerpoint Control - indicates which
of the complex breakpoint features are implemented
0x8300 + 0x20* n PrCndAin Prime Condition Register A for Instruction breakpoint n
0x84e0 + 0x20 * n PrCndADn Prime Condition Register A for Data breakpoint n
0x8900 STCtl Stopwatch Timer Control
0x8908 STCnt Stopwatch Timer Count
n is breakpoint number from 0 to 5 (range dependent on implemented hardware)

8.2.9.1 Complex Break and Trigger Control (CBTC) Register (0x8000)

Compliance Level: Implemented only if complex breakpoints are implemented.

144 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.2 Hardware Breakpoints

The CBTC register contains configuration bits that indicate which features of complex break are implemented aswell
asacontrol bit for the stopwatch timer. On aM4K core, if complex break isimplemented, all of the separate features
will be present.

CBTC Register Format

31 9 8 7 5 4 3 2 1 0

Res STMode| Res |STP|PP|{DQP|TP|PCP

Table 8.21 CBTC Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
Res 31:9, 7:5 | Reserved R 0
STMode 8 Stopwatch Timer Mode: controls whether the stopwatch R/W 1
timer is free-running or controlled by triggerpoints
0 - free-running
1 - started and stopped by instruction triggers
STP 4 Stopwatch Timer Present - indicates whether stopwatch R 1
timer isimplemented.
PP 3 Priming Present - indicates whether primed breakpoints R 1
are supported
DQP 2 Data Qualifiy Present - indicates whether data qualified R 1
breakpoints are supported.
TP 1 Tuple Present - indicates whether any tuple breakpoints R 1
are implemented
PCP 0 Pass Counters Present - indicates whether any break- R 1
points have pass counters associated with them

8.2.9.2 Priming Condition A (PrCndAl/Dn) Registers
Compliance L evel: Implemented if complex breakpoints are implemented.

The Prime Condition registers hold implementation specific information about which triggerpoints are used for the
priming conditions for each breakpoint register. On aM4K core, these connections are predetermined and these regis-
ters are read-only.

The architecture allows for up to 16 priming conditions to be specified and there can be up to 4 priming condition reg-
isters per breakpoint (A/B/C/D). A M4K core only allows for 4 priming conditions and thus only implements the
PrCndA registers. The general description is shown in Table 8.22. The actua priming conditions for each of the
breakpoints are shown in Table 8.23.

PrCndA Register Format

31 24 23 16 15 8 7 0

Cond3 Cond2 Condl Cond0

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 145

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

Table 8.22 PrCndA Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
CondN 31:24 Specifies which triggerpoint is connected to priming R Preset

23:16 | condition 3, 2, 1, or 0?for the current breakpoint.

15:8

7:0
31:30 Reserved R 0
23:22
15:14

7:6
29:28 Trigger type R Preset
21:20 00 - Specia/Bypass
13:12 01 - Instruction

5:4 10 - Data

11 - Reserved

27:24 Break Number, 0-14 R Preset
19:16

11:8

3.0

[a] Condition O is always Bypass and will read as 8 b0

Table 8.23 Priming Conditions and Register Values

Break CondO Cond1l Cond2 Cond3 PrCndA Value g;?seegt
Inst0 Bypass Data0 Instl Inst2 0x1211 2000 0x8300
Instl Bypass Data0 Inst0 Inst2 0x1210_2000 0x8320
Inst2 Bypass Data0 Inst0 Instl 0x1110_2000 0x8340
Inst3 Bypass Datal Inst4 InstS 0x1514 2100 0x8360
Inst4 Bypass Datal Inst3 Instb 0x1513 2100 0x8380
Inst5 Bypass Datal Inst3 Inst4 0x1413_2100 0x83a0
Data0 Bypass Inst0 Instl Inst2 0x1211 1000 0x84e0
Datal Bypass Inst3 Inst4 InstS 0x1514 1300 0x8500

8.2.9.3 Stopwatch Timer Control (STCtl) Register (0x8900)
Compliance L evel: Implemented if stopwatch timer isimplemented.
The Stopwatch Timer Control (STCtl) register gives configuration information about how the stopwatch timer regis-

ter is controlled. On aM4K core, the break channels that control the stopwatch timer are fixed and thisregister is
read-only.

146 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

31

STCtl Register Format
18 17 14 13 10 9

8 5

8.2 Hardware Breakpoints

4 1 0

Res

StopChanl | StartChanl | g1

StopChan0

StartChanO | EnO

Table 8.24 STCtl Register Field Descriptions

Fields

Name Bit(s)

Description

Read/Wr
ite

Reset State

Res 31:18

Must be written as zero; returns zero on read.

R

StopChanl 17:14

Indicates the instruction breakpoint channel that will
stop the counter if the timer is under pairl breakpoint
control

R

StartChanl 13:10

Indicates the instruction breakpoint channel that will
start the counter if the timer is under pairl breakpoint
control

Enl 9

Enablesthe second pair (pairl) of breakpoint registersto
control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlgty,)and thisbit is set,
the breakpointsindicated in the StartChanl and
StopChanl fields will control the timer.

The M4K core only supports 1 pair of stopwatch control
breakpoints so thisfield is not writeable and will read as
0

StopChan0 85

Indicates the instruction breakpoint channel that will
stop the counter if the timer is under pair0 breakpoint
control

Ox4

StartChan0 4.1

Indicates the instruction breakpoint channel that will
start the counter if the timer is under pairO breakpoint
control

0x1

EnO 0

Enables the first pair (pair0) of breakpoint registersto
control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlgty)and thisbit is set,
the breakpoints indicated in the StartChan0 and
StopChanO fields will control the timer.

The M4K core only supports 1 pair of stopwatch control
breakpoints so thisfield is not writeable and will read as
1

8.2.9.4 Stopwatch Timer Count (STCnt) Register (0x8908)

Compliance Level: Implemented if stopwatch timer isimplemented.

The Stopwatch Timer Count (STCnt) register is the count value for the stopwatch timer.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

147

EJTAG Debug Support in the M4AK™ Core

31

STCnt Register Format

Count

Table 8.25 STCtl Register Field Descriptions

Fields
Read/Wr
Name Bit(s) Description ite Reset State
Count 31.0 Current counter value R/W 0

8.3 Complex Breakpoint Usage

8.3.1 Checking for Presence of Complex Break Support

Software should verify that the complex breakpoint hardware isimplemented prior to attempting to use it. The full
sequence of stepsis shown below for general use. Spots where the aM4K core has restricted behavior are noted.

1

148

Read the Config1gp bit to check for the presence of EJTAG logic. EJTAG logic is always present on a M4K
core.

Read the Debugyopcr bit to check for the presence of the Debug Control Register(DCR). The DCR will always
be implemented on aM4K core.

Read the DCR g hit to check for the presence of any complex break and trigger features

Read the CBTControl register to check for the presence of each individual feature. If aM4K core implements
any complex break and trigger features, it will implement all of them

If Pass Counters are implemented, they may not be implemented for al break channels and may have different
counter sizes. To determine the size and presence of each pass counter, software can write -1 to each of the
IBPCn and DBPCn registers and read it back. If aM4K coreimplements pass counters, it will implement an 8b
counter for each instruction breakpoint and a 16b counter for each data breakpoint.

If tuples are implemented, they may only be supported on a subset of the data breakpoint channels. This can be
checked by seeing if the DBBCnyp bit can be set to 1. Additionally, some cores may support dynamically
changing which instruction breakpoint is associated with a given data breakpoint. This can be checked by
attempting to write the DBCCny g num figld. If aM4K core implements tuple support, it will support it for all
data breakpoint channels and the instruction breakpoint association will be fixed.

If Priming Conditions are supported, a core may only support a subset of the possible priming condition values.
This can be checked by 4'hf to the xBCCnp,cpq field. If only 1 or 2 bits can be written, the available priming
conditions will be described in the PrCndA registers. If 3 bits are writeable, PrCndA and PrCndB will describe
the conditions, and if al 4 bits are writeable, the PrCndA,PrCndB,PrCndC, and PrCndD registers will all
exist. Some cores may aso support changing the priming conditions and this can be checked by attempting to
write to the PrCnd registers. If aM4K core supports priming conditions, it will support 4 statically mapped
priming conditions per breakpoint which will be described in the PrCndA registers.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.

8.3 Complex Breakpoint Usage

If support for qualified breakpointsisindicated, it may only be supported for some of the breakpoints. Addition-
ally, the data breakpoint used for the qualification may be configurable. Software can check this by writing to the
XBCCnpgq and xBCCnpopknum fields. If aM4K core support qualified breakpoints, it will only support it on

instruction breakpoints and the data break used for qualification will be fixed for each instruction breakpoint.

If the stopwatch timer isimplemented, either one or two pairs of instruction breakpoints may be available for
controlling it and it may be possible to dynamically select which instruction breakpoints are used. This can be
tested by writing to the STCtl register.

8.3.2 General Complex Break Behavior

There is some general complex break behavior that is common to all of the features. This behavior is described
below:

Resets to a disabled state - when the core is reset, the complex break functionality will be disabled and debug
software that is not aware of complex break should continue to function normally.

Complex break state is not updated on exceptional instructions

Complex breakpoints are evaluated at the end of the pipeline and complex breakpoint exceptions are taken
imprecisely on the following instruction.

There is no hazard between enabling and enabled events. When an instruction causes an enabling event, the fol-
lowing instruction sees the enabled state and reacts accordingly.

8.3.3 Usage of Pass Counters

Pass counters specify that the breakpoint conditions must match N times before the breakpoint action will be enabled.

Controlled by writing to the per-breakpoint pass counter register
Resetsto 0

Writing to a non-zero value enables the pass counter. When enabled, each time the breakpoint conditions match,
the counter will be decremented by 1. After the counter value reaches 0, the breakpoint action (breakpoint excep-
tion, trigger, or complex break enable) will occur on any subsequent matches and the counter will not decrement
further. The action does not occur on the match that causes the 1->0 counter decrement.

If the breakpoint also has priming conditions and/or data qualified specified, the pass counter will only decre-
ment when the priming and/or qualified conditions have been met

If adata breakpoint is configured to be a tuple breakpoint, the data pass counter will only decrement on instruc-
tions where both the instruction and data break conditions match. The pass counter for the instruction break
involved in atuple should not be enabled if the tupleis enabled.

Once a pass counter has been enabled, it will be treated as enabled until the pass counter is explicitly written to 0.
Namely, breakpoint exceptionswill continue to be taken imprecisely until the pass counter is disabled by writing
to 0.

The counter register will be updated as matches are detected. The current count value can be read from the regis-
ter while operating in debug mode. Note that this behavior is architecturally recommended, but not required.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 149

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

8.3.4 Usage of Tuple Breakpoints

A tuple breakpoint isthe logical AND of adata breakpoint and an instruction breakpoint. Tuple breakpoints are spec-
ified as a condition on a data breakpoint. If the DBCCnyp bit is set, the data breakpoint will not match unless there

the corresponding instruction breakpoint conditions are also met.

* Usesthe data breakpoint resources to specify the break action, break status, pass counters, and priming condi-
tions.

» Theinstruction breakpoint involved in the tuple should be configured as follows:

d IBCC”CBE::L
. |Bccnprcnd = |BCC”DQ = IBC”TE = IBanE =IBPCn=0
8.3.5 Usage of Priming Conditions

Priming conditions provide away to have one breakpoint enabled by another one. Prior to the priming condition
being satisfied, any breakpoint matches are ignored.

» Priming condition resets to bypass which specifies that no priming is required

» 3other priming conditions are available for each breakpoint. These condition vary from breakpoint to breakpoint
(since it makes no sense for a breakpoint to prime itself). The conditions for each of the breakpoints are listed in
Table 8.23.

* Thepriming breakpoint must have xBCnyg or XBCCn¢gg Set.

e Once the priming condition has been seen, the primed breakpoint will remain primed until itsxBCCn register is
written

e The primed state is stored with the breakpoint being primed and not with the breakpoint that is doing the prim-
ing.

e Each Prime condition is the comparator output after it has been qualified by its own Prime condition, data quali-
fication, and pass counter. Using this, several stages of priming are possible (e.g. data cycle D followed by
instruction A followed by instruction B N times followed by instruction C).

8.3.6 Usage of Data Qualified Breakpoints

Each of the instruction breakpoints can be set to be data qualified. In qualified mode, a breakpoint will recognize its
conditions only after the specified data breakpoint matches both address and data. If the data breakpoint matches
address, but has a mismatch on the data value, the instruction breakpoint will be unqualified and will not match until
a subsequent qualifying match.

This feature can be used similarly to the ASID qualification that is available on cores with TLBs. If an RTOS loads a
process | D for the current process, that |oad can be used as the qualifying breakpoint. When amatching process D is
loaded (entering the desired RTOS process), qualified instruction breakpoints will be enabled. When a different pro-

cess|D isloaded (leaving the desired RTOS process), the qualified instruction breakpoints are disabled. Alternatively,
with the InvertValueMatch feature of the data breakpoint, the instruction breakpoints could be enabled on any process
ID other than the specified one.

150 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.4 Test Access Port (TAP)

The qualifying data break must have DBCnyg or DBCCnggg Set.
The qualifying data break should have data comparison enabled (via settings of DBCng), and DBCngp)

The qualifying data break should not have pass counters, priming conditions, or tuples enabled.

The qualifying data access can be either aload or store, depending on the settings of DBCnyogg @nd DBCnyg g

The Qualified/Unqualified state is stored with the instruction breakpoint that is being qualified. Writing it's
IBCCn register will unqualify that breakpoint.

Qualified instruction breakpoint can also have priming conditions and/or pass counters enabled. The pass counter
will only decrement when the priming and qualifying conditions have been met. The instruction breakpoint
action (break, trigger, or complex enable) will only occur when all priming, qualifying, and pass counter condi-
tions have been met.

Qualified instruction breakpoint can be used to prime another breakpoint

8.3.7 Usage of Stopwatch Timers

The stopwatch timer is a drseg memory mapped count register. It can be configured to be free running or controlled
by instruction breakpoints. This could be used to measure the amount of time that is spent in a particular function by
starting the counter upon function entry and stopping it upon exit.

Count valueisreset to 0

Reset state has counter stopped and under breakpoint control so that the counter is not running when the coreis
not being debugged.

Bit in CBTControl register controls whether the counter is free-running or breakpoint controlled.
Counter does not count in debug mode

When breakpoint controlled, the involved instruction breakpoints must have IBCn1g or IBCCncpgg Set in order
to start or stop the timer.

8.4 Test Access Port (TAP)

The following main features are supported by the TAP module;

5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compati-
ble with [EEE Std. 1149.1.

Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.
The processor can access external memory on the EJTAG Probe serialy through the EJTAG pins. Thisis
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-

tines.

Support for both ROM based debugger and debugging both through TAP.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 151

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

8.4.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the | EEE standard.

Table 8.26 EJTAG Interface Pins

Pin Type Description

TCK | Test Clock Input

Input clock used to shift datainto or out of the Instruction or dataregis-
ters. The TCK clock isindependent of the processor clock, so the EJTAG
probe can drive TCK independently of the processor clock frequency.
The core signal for thisiscalled EJ_TCK

TMS | Test Mode Select Input

The TMS input signal is decoded by the TAP controller to control test
operation. TMS is sampled on the rising edge of TCK.

The core signal for thisiscalled EJ_TMS

TDI | Test Data Input

Serial input data (TDI) is shifted into the Instruction register or data regis-
ters on therising edge of the TCK clock, depending on the TAP controller
state.

The core signal for thisiscalled EJ_TDI

TDO (0] Test Data Output

Serial output datais shifted from the Instruction or data register to the
TDO pin on the falling edge of the TCK clock. When no data is shifted
out, the TDO is 3-stated.

The core signdl for thisis called EJ_TDO with output enable controlled
by EJ_TDOzstate.

TRST_N | Test Reset Input (Optional pin)

The TRST_N pinisan active-low signal for asynchronous reset of the
TAP controller and instruction in the TAP module, independent of the pro-
cessor logic. The processor is not reset by the assertion of TRST_N.

The core signal for thisiscalled EJ_TRST_N

Thissignal is optional, but power-on reset must apply alow pulse on this
signal at power-on and then leaveit high, in case the signal is not available
as apin on the chip. If available on the chip, then it must be low on the
board when the EJTAG debug features are unused by the probe.

8.4.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small
controller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 8.1.
The TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes
on the falling edge of TCK.

At power-up the TAP isforced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test accessis required, a protocol is applied viathe TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or adata register scan can be issued to transition the TAP through the appropriate states shown in Figure 8.1.

152 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.4 Test Access Port (TAP)

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the
protocol sequences. Thefirst action that occurs when either block is entered is a capture operation. For the dataregis-
ters, the Capture-DR state is used to capture (or parallel 1oad) the datainto the selected serial data path. In the Instruc-
tion register, the Capture-IR state is used to capture status information into the Instruction register.

From the Capture states, the TAP transitions to either the Shift or Exitl states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause
state via Exitl. Thereason for entering the Pause state is to temporarily suspend the shifting of datathrough either the
Data or Instruction Register while arequired operation, such asrefilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel 1oad) with the new data that has been shifted into the selected scan path.

Figure 8.1 TAP Controller State Diagram

Test-Logic-Reset

8.4.2.1 Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state
when the TMS input isheld HIGH for at least five rising edges of TCK. The BY PASS instruction is forced into the
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state aslong as
TMS isHIGH.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 153

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

154

8.4.2.2 Run-Test/Idle State

The controller enters the Run-Test/Idle state between scan operations. The controller remainsin this state aslong as
TMS isheld LOW. Theinstruction register and all test data registersretain their previous state. The instruction cannot
change when the TAP controller isin this state.

When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select DR state.

8.4.2.3 Select DR_Scan State

Thisisatemporary controller statein which al test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture DR state.
A HIGH on TMS causes the controller to transition to the Select IR state. The instruction cannot change while the
TAP controller isin this state.

8.4.2.4 Select_IR_Scan State

Thisisatemporary controller statein which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture IR state. A
HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller isin this state.

8.4.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
valueisthen shifted out in the Shift_DR. If TMS issampled LOW at therising edge of TCK, the controller transitions
to the Shift DR state. A HIGH on TMS causes the controller to transition to the Exitl DR state. The instruction can-
not change while the TAP controller isin this state.

8.4.2.6 Shift DR State

In this state the test data register connected between TDI and TDO as aresult of the current instruction shifts data one
stage toward its seria output on the rising edge of TCK. If TMS is sampled LOW on therising edge of TCK, the con-
troller remainsin the Shift DR state. A HIGH on TMS causes the controller to transition to the Exitl DR state. The
instruction cannot change while the TAP controller isin this state.

8.4.2.7 Exitl_DR State

Thisisatemporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS issampled LOW at the rising edge of TCK, the controller transitions to the Pause DR state. A
HIGH on TMS causes the controller to transition to the Update DR state which terminates the scanning process. The
instruction cannot change while the TAP controller isin this state.

8.4.2.8 Pause_ DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
seria path between TDI and TDO. All test dataregisters selected by the current instruction retain their previous state.
If TMS is sampled LOW on therising edge of TCK, the controller remainsin the Pause DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller isin
this state.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.4 Test Access Port (TAP)

8.4.2.9 Exit2_DR State

Thisisatemporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS issampled LOW at the rising edge of TCK, the controller transitions to the Shift DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller isin this state.

8.4.2.10 Update DR State

When the TAP controller isin this state the value shifted in during the Shift_ DR state takes effect on the rising edge of
the TCK for the register indicated by the Instruction register.

If TMS issampled LOW at therising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select DR _Scan state. The instruction cannot change while the TAP
controller isin this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

8.4.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (00001,) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exitl IR state. The instruction cannot change while the TAP controller isin

this state.
8.4.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS issampled LOW at the rising edge of TCK, the controller remainsin the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exitl_IR state.

8.4.2.13 Exitl_IR State

Thisisatemporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the
rising edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transi-
tion to the Update IR state which terminates the scanning process. The instruction cannot change while the TAP con-
troller isin this state and the instruction register retains its previous state.

8.4.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
seria path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remainsin the
Pause IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller isin this state.

8.4.2.15 Exit2_IR State

Thisisatemporary controller state in which the instruction register retainsits previous state. If TMS is sampled
LOW at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another seria shift of
data. A HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning pro-
cess. The instruction cannot change while the TAP controller isin this state.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 155
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

156

8.4.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS issampled LOW at therising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select DR _Scan state.

8.4.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller isin the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BY PASS instruction.

Table 8.27 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select |mplementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

O0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 asreset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

Ox0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block
Ox11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block
0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

Ox1F BYPASS Bypass mode

8.4.3.1 BYPASS Instruction

Therequired BY PASSinstruction allows the processor to remain in afunctional mode and sel ects the Bypass register
to be connected between TDI and TDO. The BY PASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of thisinstruction is defined to be all ones by
the IEEE 1149.1 standard. Any unused instruction is defaulted to the BY PASS instruction.

8.4.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device I dentification
(ID) register to be connected between TDI and TDO. The Device ID register isa32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, access to the Identification Register isimmediately available, viaa
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.4 Test Access Port (TAP)

8.4.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

8.4.3.4 ADDRESS Instruction

Thisinstruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe
shifts 32 bits through the TDI pin into the Address register and shifts out the captured address viathe TDO pin.

8.4.3.5 DATA Instruction

Thisinstruction is used to select the Dataregister to be connected between TDI and TDO. The EJTAG Prabe shifts 32
bits of TDI data into the Data register and shifts out the captured data viathe TDO pin.

8.4.3.6 CONTROL Instruction
Thisinstruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG

Probe shifts 32 bits of TDI datainto the EJTAG Control register and shifts out the EJTAG Control register bitsvia
TDO.

8.4.3.7 ALL Instruction

Thisinstruction is used to select the concatenation of the Address and Data register, and the EJTAG Control register
between TDI and TDO. It can be used in particular if switching instructionsin the instruction register takes too many
TCK cycles. Thefirst bit shifted out is bit O.

Figure 8.2 Concatenation of the EJTAG Address, Data and Control Registers

TDI _;| Address 0 }_‘

;| Data 0 }‘

L_p{ EJTAG Control o|— 0

8.4.3.8 EJTAGBOQOT Instruction

When the EJTAGBOQT instruction is given and the Update-IR state is |eft, then the reset values of the ProbTrap,
ProbEn and EjtagBrk bitsin the EJTAG Control register are set to 1 after ahard or soft reset.

This EJTAGBOOT indication is effective until aNORMALBOOT instruction is given, TRST_N is asserted or aris-
ing edge of TCK occurs when the TAP controller isin Test-Logic-Reset state.

It is possible to make the CPU go into debug mode just after a hard or soft reset, without fetching or executing any
instructions from the normal memory area. This can be used for download of code to a system which have no codein
ROM.

The Bypass register is selected when the EJTAGBOQT instruction is given.

8.4.3.9 NORMALBOOT Instruction

When the NORMALBOQT instruction is given and the Update-IR state isleft, then the reset value of the ProbTrap,
ProbEn and EjtagBrk bitsin the EJTAG Control register are set to 0 after hard or soft reset.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 157

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

The Bypass register is selected when the NORMALBOQT instruction is given.

8.4.3.10 FASTDATA Instruction
This selects the Data and the Fastdata registers at once, as shown in Figure 8.3.

Figure 8.3 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

DI —p Data oy Fastata | TDO

8.4.3.11 TCBCONTROLA Instruction

Thisinstruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. Thisregister
is only implemented if the Trace Control Block is present. If no TCB is present, then thisinstruction will select the
Bypass register.

8.4.3.12 TCBCONTROLB Instruction

Thisinstruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register
isonly implemented if the Trace Control Block is present. If no TCB is present, then thisinstruction will select the
Bypass register.

8.4.3.13 TCBDATA Instruction

Thisinstruction is used to select the TCBDATA register to be connected between TDI and TDO. Thisregister isonly
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register. It should be noted that the TCBDATA register isonly an access register to other TCB registers. The width of
the TCBDATA register is dependent on the specific TCB register.

8.5 EJTAG TAP Registers

158

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

8.5.1 Instruction Register

TheInstruction register is accessed when the TAP receives an I nstruction register scan protocol. During an Instruction
register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The shift
register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruction
register scan operations, the TAP controls the register to capture status information and shift data from TDI to TDO.
Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the TDO
occurs on the falling edge of TCK. In the Test-L ogic-Reset and Capture-IR state, the instruction shift register is set to
00001,, asfor the IDCODE instruction. This forces the device into the functional mode and selects the Device ID
register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register
scan operation. A list of the implemented instructions are listed in Table 8.27.

8.5.2 Data Registers Overview

The EJTAG uses several dataregisters, which are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During adata register scan operation, the addressed scan register receives TAP control signals
to capture the register and shift datafrom TDI to TDO. During a data register scan operation, the TAP selects the out-

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.5 EJTAG TAP Registers

put of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the write
bits.

This description appliesin general to the following data registers:
* Bypass Register
» Device Identification Register
* Implementation Register
« EJTAG Control Register (ECR)
* Processor Access Address Register
* Processor Access Data Register
* FastData Register
8.5.2.1 Bypass Register
The Bypass register consists of a single scan register bit. When selected, the Bypass register provides asingle bit
scan path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in the test. The Bypass register is selected when the Instruction register isloaded with a pattern of all onesto
satisfy the IEEE 1149.1 Bypass instruction requirement.

8.5.2.2 Device Identification (ID) Register

The Device Identification register is defined by |EEE 1149.1, to identify the device's manufacturer, part number,
revision, and other device-specific information. Table 8.28 shows the bit assignments defined for the read-only
Device Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out
of the ID register after being selected. The register is selected when the Instruction register is loaded with the
IDCODE instruction.

Device Identification Register Format

31 28 27 12 11 10

Version PartNumber ManufID R

Table 8.28 Device Identification Register

Fields
Read/
Name Bit(s) Description Write Reset State

Version 31:28 |Version (4 bits) R EJ_Version[3:0]
Thisfield identifies the version number of the proces-
sor derivative.

PartNumber 27:12 | Part Number (16 bits) R EJ_PartNumber[15:0]

Thisfield identifies the part number of the processor
derivative.

ManufID 11:1 | Manufacturer Identity (11 bits) R EJ_ManuflD[10:0]
Accordingly to |EEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 159

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

Table 8.28 Device Identification Register

Fields
Read/
Name Bit(s) Description Write Reset State
R 0 reserved R 1

8.5.2.3 Implementation Register

This 32-hit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the core. The register is selected when the Instruction register isloaded with the IMPCODE

instruction.
Implementation Register Format
31 29 28 25 24 23 21 20 17 16 15 14 13 0
DINT- .
EJTAGver| reserved up ASIDsize| reserved | MIPS16| O [NoDMA reserved
Table 8.29 Implementation Register Descriptions
Fields
Read/Wr
Name Bit(s) Description ite Reset State
EJTAGver 31:29 | EJTAG Version. R 2
2: Version 2.6
reserved 28:25 |reserved R 0
DINTsup 24 DINT Signal Supported from Probe R EJ_DINTsup
Thishit indicatesif the DINT signal from the probe is supported:
0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.
ASIDsize 23:21 | Size of ASID field in implementation: R 0
0: No ASID in implementation
1: 6-bit ASID
2: 8-bit ASID
3: Reserved
reserved 20:17 |reserved R 0
MIPS16 16 Indicates whether MIPS16 isimplemented R
0: No MIPS16 support
1: MIPS16 implemented
reserved 15 reserved R 0
NoDMA 14 | No EJTAG DMA Support R
reserved 13:0 |reserved R 0

8.5.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. Thisregister is selected by shifting in the
CONTROL instruction. Bitsin the EJTAG Control register can be set/cleared by shifting in data; statusisread by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, iseither O
or written to 0. Thisisin order to ensure prober handling of processor accesses.

160 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.5 EJTAG TAP Registers

The value used for reset indicated in the table bel ow takes effect on both hard and soft CPU resets, but not on TAP

controller resetsby e.g. TRST_N. TCK clock is not required when the hard or soft CPU reset occurs, but the bits are
still updated to the reset value when the TCK applies. Thefirst 5 TCK clocks after hard or soft CPU resets may result
in reset of the bits, due to synchronization between clock domains.

EJTAG Control Register Format

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 20
Rocc| Psz | Res Dgz Ht""' PerRst| PRW |PrAcc| Res| PrRst | ProbEn | ProbTrap| Res E‘E:raf' Res |DM Ze

Table 8.30 EJTAG Control Register Descriptions

The bit indicates if ahard or soft reset has occurred:

0: No reset occurred since bit last cleared.

1: Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value aslong as a hard or
soft reset is applied.

This bit must be cleared by the praobe, to acknowledge
that the incident was detected.

The EJTAG Control register is not updated in the
Update-DR state unless Rocc is 0, or writtento 0. Thisis
in order to ensure proper handling of processor access.

Fields
Read/
Name Bit(s) Description Write Reset State
Rocc 31 Reset Occurred R/W 1

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

161

EJTAG Debug Support in the M4AK™ Core

Table 8.30 EJTAG Control Register Descriptions (Continued)

Fields
Read/

Name Bit(s) Description Write Reset State

Psz[1:0] 30:29 Processor Access Transfer Size R Undefined
These bits are used in combination with the lower two
address bits of the Address register to determine the size
of aprocessor access transaction. The bits are only valid
when processor access is pending.

PAA[1:0] | Psz[1:0] Transfer Size

00 00 Byte (LE, byte O; BE, byte
3)
01 00 Byte (LE, byte 1; BE, byte
2)
10 00 Byte (LE, byte 2; BE, byte
1)
11 00 Byte (LE, byte 3; BE, byte
0)
00 01 Hafword (LE, bytes 1:0;
BE, bytes 3:2)

10 01 Hafword (LE, bytes 3:2;
BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1,
0)

00 11 Triple (LE, bytes2, 1, 0; BE,
bytes 3, 2,1)

01 11 Triple (LE, bytes3, 2, 1; BE,
bytes 2, 1, 0)

All others Reserved

Note: LE=little endian, BE=big endian, the byte# refers
to the byte number in a 32-bit register, where byte 3 = bits
31:24; byte 2 = bits 23:16; byte 1 = bits 15:8; byte O=hits
7:0, independently of the endianess.

Res 28:23 reserved R

Doze 22 Doze state R
The Doze bit indicates any kind of low power mode. The
valueis sampled in the Capture-DR state of the TAP con-
troller:

0: CPU not in low power mode.

1: CPU isin low power mode

Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.

Halt 21 Halt state R 0
The Halt bit indicatesif the internal system bus clock is
running or stopped. The value is sampled in the Cap-
ture-DR state of the TAP controller:

0: Internal system clock is running

1: Internal system clock is stopped

162 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.5 EJTAG TAP Registers

Table 8.30 EJTAG Control Register Descriptions (Continued)

Fields
Read/
Name Bit(s) Description Write Reset State
PerRst 20 Peripheral Reset R/W 0

When the bit isset to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the read
value of thishitisaso 1. Thisisto ensure that the setting
from the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit is written to O, then the bit must also be read
as 0 beforeit isguaranteed that theindication iscleared in
the CPU clock domain also.

This bit controlsthe EJ_PerRst signal on the core.

PRnW 19 Processor Access Read and Write R Undefined
Thisbit indicatesif the pending processor accessisfor a
read or write transaction, and the bit isonly valid while
PrAccisset:

0: Read transaction

1: Write transaction

PrAcc 18 Processor Access (PA) R/WO 0
Read value of thishit indicatesif aProcessor Access (PA)
to the EJTAG memory is pending:

0: No pending processor access

1: Pending processor access

The probe’s software must clear this bit to O to indicate
the end of the PA. Write of 1 isignored.

A pending Processor Accessis cleared when Rocc is set,
but another PA may occur just after the reset if adebug
exception occurs.

Finishing a Processor Accessis not accepted while the
Rocc bit is set. Thisisto avoid that a Processor Access
occurring after the reset isfinished due to indication of a
Processor Access that occurred before the reset.

The FASTDATA access can clear this bit.

Res 17 reserved R

PrRst 16 Processor Reset (Implementation dependent behavior) R/W
When the bit isset to 1, then it isonly guaranteed that this
setting has taken effect in the system when the read value
of thishit isalso 1. Thisisto ensure that the setting from
the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit iswritten to 0, then the bit must also be read
as 0 beforeit isguaranteed that theindicationiscleared in
the CPU clock domain also.

This bit controlsthe EJ_PrRst signdl. If the signal is
used in the system, then it must be ensured that both the
processor and all devicesrequired for areset are properly
reset. Otherwise the system may fail or hang. The bit
resetsitself, since the EJTAG Control register is reset by
hard or soft reset.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 163

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

164

Table 8.30 EJTAG Control Register Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

ProbEn

15

Probe Enable

This bit indicates to the CPU if the EJTAG memory is
handled by the probe so processor accesses are answered:
0: The probe does not handle EJITAG memory transac-
tions

1: The probe does handle EJITAG memory transactions
Itisan error by the software controlling the probeif it sets
the ProbTrap bit to 1, but resets the ProbEn to 0. The
operation of the processor is UNDEFINED in this case.
The ProbEn bit is reflected as aread-only bit in the
ProbEn bit, bit 0, in the Debug Control Register (DCR).
The read value indicates the effective value in the DCR,
due to synchronization issues between TCK and CPU
clock domains; however, it is ensured that change of the
ProbEn prior to setting the EjtagBrk bit will have effect
for the debug handler executed due to the debug excep-
tion.

The reset value of the bit depends on whether the EJTAG-
BOQT indication is given or not:

No EJTAGBOOT indication given: O

EJTAGBOOT indication given: 1

R/W

Oorl
from
EJTAGBOOT

ProbTrap

14

Probe Trap

This bit controls the location of the debug exception vec-
tor:

0: In norma memory OxBFCO0.0480

1: In EJTAG memory at 0xFF20.0200 in dmseg

Valid setting of the ProbTrap bit depends on the setting of
the ProbEn bit, see comment under ProbEn bit.

The ProbTrap should not be set to 1, for debug exception
vector in EJTAG memory, unless the ProbEn bit is also
set to 1 to indicate that the EJTAG memory may be
accessed.

The read value indicates the effective value to the CPU,
due to synchronization issues between TCK and CPU
clock domains; however, it is ensured that change of the
ProbTrap bit prior to setting the EjtagBrk bit will have
effect for the EjtagBrk.

The reset value of the bit depends on whether the EJTAG-
BOQT indication is given or not:

No EJTAGBOQT indication given: 0

EJTAGBOOT indication given: 1

Oorl
from
EJTAGBOOT

Res

13

reserved

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

8.5 EJTAG TAP Registers

Table 8.30 EJTAG Control Register Descriptions (Continued)

Fields
Read/
Name Bit(s) Description Write Reset State
EjtagBrk 12 EJTAG Break R/W1 Oor1l

Setting this bit to 1 causes a debug exception to the pro- from
cessor, unless the CPU was in debug mode or another EJTAGBOOT
debug exception occurred.
When the debug exception occurs, the processor core
clock isrestarted if the CPU wasin low power mode. This
bit is cleared by hardware when the debug exceptionis
taken.
The reset value of the bit depends on whether the EJTAG-
BOQT indication is given or not:
No EJTAGBOOT indication given: O
EJTAGBOOT indication given: 1

Res 11:4 reserved R

DM 3 Debug Mode R
This bit indicates the debug or non-debug mode:
0: Processor isin non-debug mode
1: Processor isin debug mode
The bit is sampled in the Capture-DR state of the TAP
controller.

Res 2.0 reserved R 0

8.5.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor accessin the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

8.5.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of
the Dataregister is 32 hits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from
thisregister isonly valid when a processor access writeis pending. The register is used to provide the data value fora
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bitswide. Dataalignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read then O (zero) must be
shifted in for the unused bytes.

The organization of bytesin the PAD register depends on the endianess of the core, as shown in Figure 8.4. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 165

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

Figure 8.4 Endian Formats for the PAD Register

MSB LsB
bit 31 24 23 16 15 8 7 0
BIG.ENDIAN [ano=s || s || 6 || 7 | Anz=
Lamoo || 12 || 2 || 3 | anzeo

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

MSB LsB
bit 31 24 23 16 15 87 0
irmeeoay LA |6 [s [4 | Am2e
Lano=s || 2 || 1 | o | anzeo

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

8.5.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdataregister is 1 bit. During a Fastdata access, the Fastdata register iswritten and read, i.e., abit
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata
access was successful or not (if completion was requested).

Fastdata Register Format

0

Table 8.31 Fastdata Register Field Description

Fields

Read/ | Power-up
Name Bits Description Write State

SPrAcc 0 Shifting in a zero value requests compl etion of the Fast- R/W Undefined
data access. The PrAcc bit in the EJTAG Control register
is overwritten with zero when the access succeeds. (The
access succeedsif PrAcc is one and the operation address
isin the legal dmseg Fastdata area.) When successful, a
one s shifted out. Shifting out a zero indicates a Fastdata
access failure.

Shifting in a one does not compl ete the Fastdata access
and the PrAcc bit is unchanged. Shifting out a one indi-
cates that the access would have been successful if
allowed to complete and a zero indicates the access woul d
not have successfully completed.

166 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.6 TAP Processor Accesses

The FASTDATA accessis used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “ Fastdata area” specifies
the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The
Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata
area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to compl ete the access. Both upload and download
accesses are attempted by shifting in azero SPrAcc value (to request access completion) and shifting out SPrAcc to
seeif the attempt will be successful (i.e., there was an access pending and alegal Fastdata area address was used).

Downloads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will
shift out the data being stored to dmseg's Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:
* PrAcc must bel, i.e., there must be a pending processor access.
* The Fastdata operation must use a valid Fastdata area address in dmseg (OxFF20.0000 to OxFF20.000F).

Table 8.32 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access. .

Table 8.32 Operation of the FASTDATA access

PrAccin
Address the LSB PrAcc LSB
Probe Match Control (SPrAcc) Action in the changes shifted Data shifted
Operation check Register | shifted in | Data Register to out out
Download Fails X X none unchanged 0 invalid
using -
FASTDATA Passes 1 1 none unchanged 1 invalid
1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data
0 X none unchanged 0 invalid
Upload Fails X X none unchanged 0 invalid
using -
FASTDATA Passes 1 1 none unchanged 1 invalid
1 0 read data 0 (SPrAcc) 1 valid data
0 X none unchanged 0 invalid

Thereis no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

8.6 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like aslave unit connected to the on-chip bus. The core can then execute code taken from
the EJTAG Probe and it can access data (viaaload or store) which islocated on the EJTAG Probe. Thisoccursin a

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 167

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without
occupying the memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from OxFF20.0000 to OxFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM bit in the CPO Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a soft or hard reset.

8.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

1. Theinterna hardware latchesthe requested addressinto the PA Address register (in case of the Debug exception:
0xFF20.0200).

2. Theinterna hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRNnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit isfound 1, it means that the requested addressis available and
can be shifted out.

4. The EJTAG Probe checks the PRnW hit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Dataregister and shiftsin the instruction corresponding to this address.

7. TheEJTAG Probe selectsthe EJTAG Control register and shiftsaPrAcc = 0 bit into thisregister to indicate to the
processor that theinstruction is available.

8. Theinstruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whol e sequence again.

Using the same protocol, the processor can also execute aload instruction to access the EJTAG Probe’s memory. For
this to happen, the processor must execute aload instruction (e.g. aLW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: 0xFF20.0000 to OxFF2F.FFFF, the ProbEn bit must be set and the processor hasto
be in debug mode (DM=1). The sequence of actionsis found below:

1. Theinternal hardware latches the requested address into the PA Address register

2. Theinterna hardware latches the data to be written into the PA Dataregister.

168 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.7 Trace Mechanisms

3. Theinterna hardware sets the following bitsin the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRNW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit isfound 1, it means that the requested addressis available and
can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Dataregister and shifts out the data to be written.

8. TheEJTAG Probe selectsthe EJTAG Control register and shiftsaPrAcc = 0 bit into this register to indicate to the
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.
10. The processor detects that PrAcc bit = 0, which meansthat it is ready to handle a new access.
The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

Note: probe accesses and external bus accesses are serialized by the core. A probe access will not begin until all exter-
nal bus requests have completed. Similarly, a new probe or external bus access will not begin until a pending probe
access has compl eted.

8.7 Trace Mechanisms

There are two optional trace mechanismsthat are available to extract additional information about program execution.
EJTAG Trace is a powerful mechanism that allows for the tracing of the program flow aswell as load and store
addresses and data values. EJTAG Trace can be configured to only trace in specific modes and can produce cycle
accurate trace information. Tracing can be controlled by either a hardware (probe) or software interface. In contrast,
the iFlowtrace™ mechanism is much lighter weight. It only can only be controlled by debug software executing on
the core and it only provides the ability to trace the program flow. The reduced capabilities also reduce the silicon
arearequired to implement it and reduces the costs associated with tracing, while still providing valuable information
for software debugging.

These two trace mechanisms are described in further detail in the rest of the chapter.
8.8 iFlowtrace™ Mechanism

The iFlowtrace mechanism provides ameans to reconstruct a simple instruction trace from an execution stream. This
light-weight instruction-only tracing scheme is sufficient to reconstruct the execution flow in an M4K core under con-
ditionsthat are classified as appropriate.

The presence of the iFlowtrace mechanism isindicated by the CPO Config3,1,_ register bit.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 169

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

170

8.8.1 A Simple Instruction-Only Tracing Scheme

A trace methodology can often be mostly defined by its inputs and outputs. Hence this basic scheme is described by
the inputs to the core tracing logic and by the trace output format from the core. We assume here that the execution
flow of the program is traced at the end of the execution path in the core similar to PDtrace.

8.8.1.1 Trace Inputs

1

In_TraceOn: when on, legal trace words are coming from the core and at the point when it isturned on, that isfor
the first traced instruction, afull PC valueis output. When off, it cannot be assumed that legal trace words are
available at the core interface.

In_Stall: Thissays, stall the processor to avoid buffer overflow that can lose trace information. When off, a buffer
overflow will smply throw away trace data and start over again. When on, the processor is signalled from the
tracing logic to stall until the buffer is sufficiently drained and then the pipeline is restarted.

8.8.1.2 Trace Outputs

1.

Stall cyclesin the pipe areignored by the tracing logic and are not traced. Thisisindicated by avalid signal
Out_Valid that is turned off when no valid instruction is being traced. When the valid signal is on, instructions
aretraced out as described in the rest of this section. The traced instruction PC is a virtual address.

In the output format, every sequentially executed instruction is traced as bit O.

Every instruction that is not sequential to the previous one istraced as either a10 or an 11. Thisimplies that the
target instruction of abranch or jump is traced this way, not the actual branch or jump instruction (thisis similar
to PDtrace):

A 10 instruction implies ataken branch for a conditional branch instruction whose condition is unpredictable
statically, but whose branch target can be computed statically and hence the new PC does not need to be traced
out. Note that if this branch was not taken, it would have been indicated by a 0 bit, that is sequential flow.

A 11 instruction implies a taken branch for an indirect jump-like instruction whose branch target could not be
computed statically and hence the taken branch addressis now given in the trace. Thisincludes, for example,
instructions likejr, jalr, and interrupts:

e« 1100- followed by 8 bits of 1-hit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:
[3:0] =4'b0011
[11:4] = PCdelta[8:1]
[35:12] =24'b0

e« 1101- followed by 16 bits of 1-bit shifted offset from the last PC. The bit assignments of thisformat on the
bus between the core tracing logic and the ITCB is:
[3:0] =4'b1011
[19:4] = PCdeltg] 16:1]
[35:20] - 16'b0

« 1110-followed by 31 of the most significant bits of the PC value, followed by abit (NCC) that indicates no
code compression. Note that for aMIPS32 or MIPS64 instruction, NCC=1, and for MIPS16e instruction
NCC=0. Thistrace record will appear at al transition points between MI1PS32/MIPS64 and MIPS16e
instruction execution.

Thisform is also a special case of the 11 format and it is used when the instruction is not a branch or jump,

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.8 iFlowtrace™ Mechanism

but nevertheless the full PC value needs to be reconstructed. Thisis used for synchronization purposes, sim-
ilar to the Sync in PDtrace. A preset sync period of 256 instructions is counted down and when an internal
counter runs through all the values, thisformat is used. The bit assignments of this format on the bus
between the core tracing logic and the ITCB is:

[3:0] =4'b0111

[34:4] = PC[31:1]

[35] =NCC

11 11 - Used to indicate trace resumption after adiscontinuity occurred. The next format isa 1110 that sends
afull PC value. A discontinuity might happen due to various reasons, for example, an internal buffer over-
flow, and at trace-on/trace-off trigger action.

8.8.2 ITCB Overview

TheIFlowTrace Control Block (ITCB) isresponsible for accepting trace signals from the CPU core, formatting them,
and storing them into an on-chip FIFO. The figure also shows the Probe I nterface Block (PIB) which reads the FIFO
and outputs the memory contents through a narrow off-chip trace port.

Figure 8.5 Trace Logic Overview

Pipeline

Out_\alid

write FIFO read

port port

IFlowTrace

I
I Off-chip
ITCB | PIB —
In_TraceOn | trace
I
|
I

D — port
In Sall

FIFO
Trigger ~<&—® Control]

trace-on/off >

I

I

I

I

I

I

I

I

I .
| Logic
I

I

I

I

I

I

I

I

I

8.8.3 ITCB IFlowTrace Interface

TheIFlowTraceinterface consists of 36 datasignals plusavalid signal. The 36 data signals encode information about
what the CPU isdoing in each clock cycle. Valid indicates that the CPU is executing an instruction in this cycle and

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 171

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

therefore the 36 data signals carry valid execution information. The IFlowTrace data bus is encoded as shown in
Table 8.33. Note that all the non-defined upper bits of the bus are zeroes.

Table 8.33 Data Bus Encoding

Valid Data (LSBs) Description

0 X No instructions executed in this cycle

1 0 Sequential instruction executed

1 01 Branch executed, destination predictable from code

1 <8>0011 Discontinuous instruction executed, PC offset is 8 bit signed offset

1 <16>1011 Discontinuous instruction executed, PC offset is 16 bit signed offset

1 <NCC><31>0111 Discontinuous instruction or synchronization record, No Code Com-
pression (NCC) hit included as well as 31 M SBs of the PC value

1 1111 Internal overflow

The ITCB controls trace using the In_TraceOn signal. When 0, all data appearing on the [FlowTrace outputsis con-
sidered invalid. To turn on trace, the ITCB switches In_TraceOn from O to 1. A 1011 record represents the first
instruction executed thereafter with afull PC indicating the current execution point.

8.8.4 ITCB IFlowTrace Storage Representation

Records from IFlowTrace are inserted into amemory stream exactly as they appear on the IFlowTrace data output.
Records are concatenated into a continuous stream starting at the LSB. When atrace word isfilled, it iswritten to
memory along with some tag bits. Each record consists of a 64-bit word, which comprises 58 message bits and 6 tag
bits or header bits that clarify information about the message in that word.

ThelTCB includes a 58-hit shift register to accumul ate trace messages. Once 58 or more bits are accumul ated, the 58
bits and 6 tag bits are sent to the memory write interface. Messages may span atrace word boundary. In this case, the
6 tag bits indicate the bit number of the first full trace message in the 58-bit data field.

The tag bits are not strictly binary because they serve a secondary purpose of indicating to off-chip trace hardware
when avalid trace word transmission begins. At least one of the 4 LSB’s of the tag isalwaysa 1. The longest trace
message is 36 bits, so the starting position indicated by the tag bitsis aways between 0 and 35.

When trace stops (ON set to zero), any partially filled trace words are written to memory. Any unused space above the
final message isfilled with 1's. The decoder distinguishes 1111 patterns used for fill in this position from an 1111
overflow message by recognizing that it is the last trace word.

These trace formats are written to atrace memory that is off-chip. No particular size of SRAM is specified; thesizeis

user selectable based on the application needs and area trade-offs. Each trace word can typically store about 20 to 30
instructions, so a1 KWord trace memory could store the history of 20K to 30K executed instructions.

8.8.5 ITCB IFlowTrace Interface

The ITCB includes adrseg memory interface to allow the MIPS CPU to set up tracing and read current status. There
are two drseg register locationsin the ITCB as shown in Table 8.34.

172 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.8 iFlowtrace™ Mechanism

Table 8.34 Registers in the ITCB

drseg Location Defined
Offset Register Bits Code Description

O0x3FCO Control/Status 0 ON Software control of trace collection. 0 disables all collection and
flushes out any partialy filled trace words.

1 EN Trace enable. This bit may be set by software or by
Trace-on/Trace-off action bits caused by EJTAG hardware breaks.
Software writes EN with the desired initia state of tracing when the
ITCB isfirst turned on and EN is controlled by hardware thereafter.
EN turning on and off does not flush partly filled trace words.

2 10 Inhibit overflow. If set, the CPU is stalled whenever the trace memory
isfull. Ignored unless OfC is also set.

3 OfC | Offchip. 1 enablesthe PIB (if present) to unload the trace memory. O
disables the PIB and would be used when on-chip storage is desired
or if aPIB is not present.

The M4K core only supports off-chip storage so this bit will be a
read-only 1.

4 OfClk |Controlsthe Off-chip clock ratio. When the bit is set, thisimplies 1:2,

that isthetrace clock isrunning at 1/2 the core clock, and when the

bitis clear, implies 1:4 ratio, that is the trace clock is at 1/4 the core
clock

O0x3FC8 Tracewrite address N:0 WAddr |Thisregister isused only if the SRAM is supported in on-chip mode.
pointer The current write pointer for trace memory. Each completed trace
word iswritten to memory, then WAddr increments. When trace con-
cludes, WAddr contains the first address in trace memory not yet writ
ten.

31 Wrap | Trace wrapped. This bit indicates that the entire trace depth has been

written at least once. After trace concludes, this bit along with WAddr

is used by software to determine the oldest and youngest wordsin the
buffer.

8.8.6 ITCB IFlowTrace Off-Chip Interface

The off-chip interface consists of a4-bit dataport (TR_DATA) and atrace clock (TR_CLK). TR_CLK canbeaDDR
clock, that is, both edges are significant. TR_DATA and TR_CLK follow the same timing and have the same output
structure as the PDtrace TCB described in MIPS specifications. The trace clock is the same as the system clock or
related to the system clock as either divided or multiplied. The OfClk bit in the Control/Status register is of the form
X:Y, where X isthetrace clock and Y isthe core clock. The Trace clock is always 1/2 of the trace port data rate,
hence the “full speed” ITCB outputs data at the CPU core clock rate but the trace clock is half that, hence the 1.2
OfClk valueisthe full speed, and the 1:4 OfCIk ratio is half-speed.

When a 64-bit trace word is ready to transmit, the PIB readsit from the FIFO and begins sending it out on TR_DATA.
Itissent in 4-bit increments starting at the LSB’s. In avalid trace word, the 4 LSB’s are never al zero, so aprobelis-
tening on the TR_DATA port can easily determine when the transmission begins and then count 15 additional cycles
to collect the whole 64-bit word. Between valid transmissions, TR_DATA Isheld at zero and TR_CLK continues to
run.

TR_CLK runs continuously whenever a probeis connected. An optional signal TR_PROBE_N may be pulled high
when a probeis not connected and could be used to disable the off-chip trace port. If not present, this signal must be
tied low at the PIB input.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 173

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

The following encoding is used for the 6 tag bitsto tell the PIB receiver that avalid transmission is starting:

// if (srcount == 0), EncodedSrCount = 111000 = 56

// else if (srcount == 16) EncodedSrCount = 111001 = 57
// else if (srcount == 32) EncodedSrCount = 111010 = 58
// else EncodedSrCount = srcount

8.8.7 Breakpoint-Based Enabling of Tracing

Each hardware breakpoint in the EJTAG block has a control bit associated with it that enables atrigger signal to be
generated on a break match condition. Thistrigger signal can be used to turn trace on or off, thus allowing a user to
control the trace on/off functionality using breakpoints. For the simple hardware breakpoints, there are already
defined registers Tracel BPC, TraceDBPC, etc in PDtrace that are used to control tracing functionality. Similar regis-
ters need to be defined to control the start and stop of IFlowTrace. And in addition, the new complex Tuple break-
points need to be added to the list of breakpoints that can trigger trace. The details on the actual register names and
drseg addresses are shown in Table 8.35.

Table 8.35 Registers that Enable/Disable Trace from Complex Triggers and their drseg Addresses

Register Name drseg Address Reset value Description
I TrigiFlowTrcEn 0x3FDO 0 Instruction break Trigger iFlowtrace
Enable register
DTrigiFlowTrcEn Ox3FD8 0 Data break Trigger iFlowtrace Enable reg-
ister

The bitsin each register are defined as follows:

* Bit 28 (IE/DE) : Used to specify whether the trigger signal from EJTAG simple or complex instruction or data
break should trigger iFlowtrace tracing functions or not. Value of O disables trigger signals from EJTAG instruc-
tion breaks, and 1 enables triggers for the same.

* Bits14..0 (IBrk/DBrk): Used to explicitly specify which instruction or data bresks enable or disable iFlowtrace.
A value of 0 impliesthat trace isturned off (unconditional trace stop) and a value of 1 specifiesthat the trigger
enables trace (unconditional trace start). If both trace on and trace off events happen on the same instruction,
tracing will be enabled.

8.9 EJTAG Trace

EJTAG Trace enables the ability to trace program flow, |oad/store addresses and |oad/store data. Several run-time
options exist for the level of information which is traced, including tracing only when in specific processor modes
(i.e. UserMode or KernelMode). EJTAG Traceis an optional block in the M4K core. If EJTAG Trace isnot imple-
mented, the rest of this chapter isirrelevant. If EJTAG Trace is implemented, the CPO Config3t_bit is set.

The pipeline specific part of EJTAG Trace is architecturally specified in the PDtrace™ Interface Specification. The
PDtrace modul e extracts the trace information from the processor pipeline, and presentsit to a pipeline-independent
module called the Trace Control Block (TCB). The TCB is specified in the EJTAG Trace Control Block Specification.
The collective implementation of the two is called EJTAG Trace.

When EJTAG Trace isimplemented, the M4K core includes both the PDtrace and the Trace Control Block (TCB)
modules. The two modules “talk” to each other on the generic pin-interface called the PDtrace™ Interface. Thisinter-
faceis embedded inside the M4K core, and will not be discussed in detail here (read the PDtrace™ Interface Specifi-

174 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.9 EJTAG Trace

cation for a detailed description). While working closely together, the two parts of EJTAG Trace are controlled
separately by software. Figure 8.6 shows an overview of the EJTAG Trace modules within the core.

Figure 8.6 EJTAG Trace Modules in the MAK™ Core

CPO control bus EJTAG TAP access TAP
Control path
- - B P - - I > Probe
- T I
I
Pipeline specific PDtrace™ Pipeline independant |
module PDtrace™ Interface Trace Contol Block (TCB) module |
Trace
Back-stall to] -
pipeline , - o == Probe
- ' Trace On -chip Trace I‘
Extracted Pipeline Trace < ' > compression and emory optlonal): |
: . extraction allignment N
information I I I vk bolindary
I. ko o oo | (mdk_top)
|

To some extent, the two modules both provide similar trace control features, but the access to these featuresis quite
different. The PDtrace controls can only be reached through accessto CPO registers. The TCB controls can only be
reached through EJTAG TAP access. The TCB can then control what is traced through the PDtrace™ Interface.

Before describing the EJTAG Trace implemented in the M4K core, some common terminology and basic features are
explained. The remaining sections of this chapter will then provide a more thorough explanation.

8.9.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these modes.
The terminology is then used elsewhere in the document.

DebugMode <« (Debugpy = 1)

ExceptionMode ¢« (not DebugMode) and ((Statusgyg;, = 1) or (Statusgg; = 1))
KernelMode <« (not (DebugMode or ExceptionMode)) and (Statusyy = 0)
UserMode ¢« (not (DebugMode or ExceptionMode)) and (Statusyy = 1)

8.9.2 Software Versus Hardware Control

In some of the specifications and in this text, the terms “ software control” and “hardware control” are used to refer to
the method for how trace is controlled. Software control iswhen the CPO register TraceControl is used to select the
modes to trace, etc. Hardware control is when the EJTAG register TCBCONTROLA in the TCB, viathe PDtrace
interface, is used to select the trace modes. The TraceControl. TS bit determines whether software or hardware con-
trol isactive.

8.9.3 Trace Information

The main object of traceisto show the exact program flow from a specific program execution or just a small window
of the execution. In EJTAG Trace thisis done by providing the minimal cycle-by-cycle information necessary on the
PDtrace™ interface for trace regeneration software to reproduce the trace. The following is a summary of the type of
information traced:

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 175

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

» Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag. The
PC isimplicitly pointing to the next instruction.

e Loadinstructions are indicated with aload-flag.

e Storeinstructions are indicated with astoreﬂagl.
» Taken branches are indicated with a branch-taken-flag on the target instruction.

* New PCinformation for abranch is only traced if the branch target is unpredictable from the static program
image.

* When branch targets are unpredictable, only the delta value from current PC is traced, if it is dynamically deter-
mined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC valueis traced.

* When acompleting instruction is executed in a different processor mode from the previous one, the new proces-
sor mode is traced.

» Thefirst instruction is always traced as a branch target, with processor mode and full PC.

» Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and full
PC.

All theinstruction flags above are combined into one 3-bit value, to minimize the bit information to trace. The possi-
ble processor modes are explained in 8.9.1 “Processor Modes’” on page 175.

Thetarget addressis statically predictable for al branch and all jump-immediate instructions. If the branch is taken,
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software is required to know the static program image in memory, in order to reproduce the
dynamic flow with the above information. But this is usually not a problem. Only the virtual value of the PC is used.
Physical memory location will typically differ.

It is possible to turn on PC delta/full information for al branches, but this should not normally be necessary. Asa
safety check for trace regeneration software, a periodic synchronization with afull PC is sent. The period of this syn-
chronization is cycle based and programmable.

8.9.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written.
When enabled, the following information is optionally added to the trace.

» When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced to com-
press the information which must be sent.

* When store-address tracing is on, the full store address of the first store instruction is traced (indicated by the
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

Iasc (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.

176 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.9 EJTAG Trace
* When load-datatracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

* When store-datatracing is on, the full store data written by each store instruction is traced (indicated by the
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced
with the full addressif load/store address tracing is enabled.

8.9.5 Programmable Processor Trace Mode Options

To enable tracing, aglobal Trace On signal must be set. When traceis on, it is possible to enable tracing in any com-
bination of the processor modes described in 8.9.1 “Processor Modes” on page 175. .

Additionally, an EJTAG Simple Break trigger point can override the processor mode and turn them all on. Another
trigger point can disable this override again.

8.9.6 Programmable Trace Information Options

The processor mode changes are always traced:

* Onthefirst instruction.

» Onany synchronization instruction.

» When the mode changes and either the previous or the current processor mode is selected for trace.
The amount of extrainformation traced is programmable to include:

* PCinformation only.

* PCand load address.

* PC and store address.

+ PCand load and store address.

* PCand load address and load data.

* PC and store address and store data.

* PCand load and store address and load and store data.

* PCandload data only.

The last option is helpful when used together with instruction accurate simulators. If the full internal state of the pro-

cessor is known prior to trace start, PC and load data are the only information needed to recreate all register values on
an instruction by instruction basis.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 177

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

178

8.9.6.1 User Data Trace

In addition to the above, a special CPO register, UserTraceData, can generate a data trace. When this register iswrit-
ten, and the global Trace On is set, then the 32-bit datawritten is put in the trace as special User Data information.

Remark: The User Datais sent even if the processor is operating in an un-traced processor mode.

8.9.7 Enable Trace to Probe/On-Chip Memory

When trace is On, based on the options listed in 8.9.5 “Programmable Processor Trace Mode Options’, the trace
information is continuously sent on the PDtrace™ interface to the TCB. The TCB must, however, be enabled to trans-
mit the trace information to the Trace probe or to on-chip trace memory, by having the TCBCONTROLBEy bit set. It

is possible to enable and disable the TCB in two ways:

» Set/clear the TCBCONTROLBgy bit viaan EJTAG TAP operation.

» Initializea TCB trigger to set/clear the TCBCONTROLBgy bit.

8.9.8 TCB Trigger

The TCB can optionally include O to 8 triggers. A TCB trigger can be programmed to fire from any combination of:

Probe Trigger Input to the TCB.
Chip-level Trigger Input to the TCB.

Processor entry into DebugM ode.

When atrigger firesit can be programmed to have any combination of actions:

Create Probe Trigger Output from TCB.
Create Chip-level Trigger Output from TCB.

Set, clear, or start countdown to clear the TCBCONTROLBEgy bit (start/end/about trigger).

Put an information byte into the trace stream.

Trace triggers may prove useful for various types of system debug. If the system has a reasonable capahility to pro-
gram the external triggers, awide variety of system information can be included in the trace:

Insert system eventsinto atrace.

e Using atimer event as atrigger that inserted a trace record would allow for performance analysis (at a
coarser granularity than cycle accurate mode, but with better compression)

e Thetrace could be annotated with interesting system events like each time a packet isreceived or transmitted

Trigger traces

e Stop tracing when abus error is detected so that the trace buffer contains the code sequence leading up to the
error

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.10 PDtrace™ Registers (Software Control)

Note that trace triggers are independent from EJTAG triggerpoints and the presence or absence of trace triggers does
not impact the ability to start or stop trace with triggerpoints.

8.9.9 Cycle by Cycle Information

All of the trace information listed in 8.9.3 “Trace Information” and 8.9.4 “L oad/Store Address and Data Trace
Information”, will be collected from the PDtrace™ interface by the TCB. The trace will then be compressed and
aligned to fit in 64 bit trace words, with no loss of information. It is possible to exclude/include the exact
cycle-by-cycle relationship between each instruction. If excluded, the number of bits required in the trace information
from the TCB is reduced, and each trace word will only contain information from completing instructions.

8.9.10 Trace Message Format

The TCB collects trace information every cycle from the PDtrace™ interface. Thisinformation is collected into six
different Trace Formats (TF1 to TF6). One important feature isthat all Trace Formats have at least one non-zero bit.

8.9.11 Trace Word Format

After the PDtrace™ data has been turned into Trace Formats, the trace information must be streamed to either
on-chip trace memory or to the trace probe. Each of the major Trace Formats are of different size. This complicates
how to store this information into an on-chip memory of fixed width without too much wasted space. It also compli-
cates how to transmit data through a fixed-width trace probe interface to off-chip memory. To minimize memory
overhead and or bandwidth-loss, the Trace Formats are collected into Trace Words of fixed width.

A Trace Word (TW) is defined to be 64 bits wide. An empty/invalid TW is built of all zeros. A TW which contains
one or more valid TF s is guaranteed to have a non-zero value on one of the four least significant bits[3:0]. During

operation of the TCB, each TW is built from the TF's generated each clock cycle. When all 64 bits are used, the TW
isfull and can be sent to either on-chip trace memory or to the trace probe.

8.10 PDtrace™ Registers (Software Control)

The CPO registers associated with PDtrace are listed in Table 8.36 and described in Chapter 5, “ CPO Registers of the
M4K™ Core” on page 85

Table 8.36 A List of Coprocessor 0 Trace Registers

Register | Se Register
Number | Name Reference
23 1 TraceControl | 5.2.18 “Trace Control Register (CPO Register 23, Select 1)” on page 112
23 2 TraceControl2 | 5.2.19 “Trace Control2 Register (CPO Register 23, Select 2)” on page 114
23 3 UserTraceData | 5.2.20 “User Trace Data Register (CPO Register 23, Select 3)”
23 4 TraceBPC 5.2.21 “TraceBPC Register (CPO Register 23, Select 4)”
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 179

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

8.11 Trace Control Block (TCB) Registers (Hardware Control)

The TCB registers used to control its operation are listed in Table 8.37 and Table 8.38. These registers are accessed
viathe EJTAG TAP interface.

Table 8.37 TCB EJTAG registers

EJTAG
Register Name Reference Implemented
0x10 TCBCONTROLA ([8.11.1 “TCBCONTROLA Register” on page 180 Yes
0x11 TCBCONTROLB |[8.11.2 “TCBCONTROLB Register” on page 183 Yes
0x12 TCBDATA 8.11.3 “TCBDATA Register” on page 187 Yes
Table 8.38 Registers selected by TCBCONTROLB
TCBCONTROLBRg
c field Name Reference Implemented
0 TCBCONFIG 8.11.4 “TCBCONFIG Register (Reg 0)” on page 188 Yes
4 TCBTW 8.11.5 “TCBTW Register (Reg 4)” on page 189 Yes
5 TCBRDP 8.11.6 “TCBRDP Register (Reg 5)” on page 190 if °“'°:>'(f’str:em°ry
6 TCBWRP 8.11.7 “TCBWRP Register (Reg 6)” on page 190 Otherwise No
7 TCBSTP 8.11.8 “TCBSTP Register (Reg 7)" on page 190
16-23 TCBTRIGX 8.11.9 “TCBTRIGx Register (Reg 16-23)” on page 191 Only the number
indicated by
TCBCONFIGTRig
are implemented.

8.11.1 TCBCONTROLA Register

The TCB isresponsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the
core'stracing logic. Most of the control is done using the TCBCONTROLA register.

The TCBCONTROLA register iswritten by an EJTAG TAP controller instruction, TCBCONTROLA (0x10).

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 8.39.
TCBCONTROLA Register Format

31 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 1 0

0 VModes | ADW SyP TB|{IO|D|E|O|K|U ASID G| Mode | On

Table 8.39 TCBCONTROLA Register Field Descriptions

Fields
Read/Wr
Name Bits Description ite Reset State
0 31:26 | Reserved. Must be written as zero; returns zero on read. R 0
180 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.11 Trace Control Block (TCB) Registers (Hardware Control)

Table 8.39 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Wr
ite

Reset State

VModes

25:24

Thisfield specifies the type of tracing that is supported by the
processor, as follows:

Encodin
g Meaning

00 PC tracing only
01 PC and Load and store address tracing only

10 PC, load and store address, and load and
store data.

This field is preset to the value of PDO_ValidModes.

R

10

ADW

23

PDO_AD bus width.
0: The PDO_AD busis 16 hitswide.
1: The PDO_AD bhusis 32 bitswide.

SyP

22:20

Used to indicate the synchronization period.

The period (in cycles) between which the periodic synchroni-
zation information isto be sent is defined as shown in the table
bel ow, when the trace buffer is either on-chip or off-chip (as
determined by the TCBCONTROLB ¢ bit).

SyP On-chip Off-chip
000 22 27
001 23 28
010 ! 9
011 25 210
100 26 ol1
101 o7 212
110 8 213
111 9 S14

Thisfield defines the value on the PDI_SyncPeriod signal.

RIW

100

B

19

Trace All Branches. When set to one, this field indicates that
the core must trace either full or incremental PC valuesfor all
branches. When set to zero, only the unpredictable branches
are traced.

Thisfield defines the value on the PDI_TraceAllBranch sig-
nal.

R/W

Undefined

18

Inhibit Overflow. This bit is used to indicate to the core trace
logic that slow but complete tracing is desired. Hence, the core
tracing logic must not allow a FIFO overflow and discard trace
data. Thisisachieved by stalling the pipeline whenthe FIFO is
nearly full so that no trace records are ever lost.

Thisfield defines the value on the PDI_InhibitOverflow sig-
nal.

RIW

Undefined

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

181

EJTAG Debug Support in the M4AK™ Core

Table 8.39 TCBCONTROLA Register Field Descriptions (Continued)

Fields
Read/Wr

Name Bits Description ite Reset State

D 17 When set to one, this enables tracing in Debug mode, i.e., R/W Undefined
when the DM bit is one in the Debug register. For trace to be
enabled in Debug mode, the On bit must be one.

When set to zero, trace is disabled in Debug mode, irrespective
of other bits.

Thisfield defines the value on the PDI_DM signal.

E 16 This controls when tracing is enabled. When set, tracing is R/W Undefined
enabled when either of the EXL or ERL bitsin the Satus reg-
ister is one, provided that the On bit (bit 0) is also se.
Thisfield defines the value on the PDI_E signal.

15 Reserved. Must be written as zero; returns zero on read. R 0

K 14 When set, this enables tracing when the On bit is set and the R/W Undefined
coreisin Kernel mode. Unlike the usual definition of Kernel
Mode, this bit enables tracing only when the ERL and EXL
bitsin the Status register are zero. Thisis provided the On bit
(bit 0) isalso set.

Thisfield defines the value on the PDI_K signal.

U 13 When set, this enables tracing when the coreisin User mode R/W Undefined
as defined in the MIPS32 or M1PS64 architecture specifica-
tion. Thisis provided the On hit (bit 0) is also set.
Thisfield defines the value on the PDI_U signal.

ASID 12:5 | The ASID field to match when the G bit is zero. When the G R/W Undefined
bit is one, thisfield isignored.

Thisfield isignored on the M4K core because there is no
ASID.

Thisfield defines the value on the PDI_ASID signal.

G 4 When set, thisimpliesthat tracing is to be enabled for all pro- R/W Undefined
cesses, provided that other enabling functions (like U, S, etc.,)
are also true.

Thisfield isignored on the M4K core because there is no
ASID.

Thisfield defines the value on the PDI_G signal.

182 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.11 Trace Control Block (TCB) Registers (Hardware Control)

Table 8.39 TCBCONTROLA Register Field Descriptions (Continued)

Fields
Read/Wr
Name Bits Description ite Reset State
Mode 31 When tracing is turned on, this signal specifies what informa- R/W Undefined
tion isto be traced by the core.
Mode Trace Mode
000 Trace PC

001 Trace PC and load address

010 Trace PC and store address

011 Trace PC and both | oad/store addresses
100 Trace PC and load data

101 Trace PC and load address and data
110 Trace PC and store address and data

111 Trace PC and both load/store address and
data

The VModes field determines which of these encodings are
supported by the processor. The operation of the processor is
UNPREDICTABLE if Modeis set to avalue which is not
supported by the processor

Thisfield defines the value on the PDI_TraceMode signal.

On 0 Thisisthe global trace enable switch to the core. When zero, R/W 0
tracing from the core is always disabled, unless enabled by
coreinternal software override of the PDI_* input pins.
When set to one, tracing is enabled whenever the other
enabling functions are al so true.

Thisfield defines the value on the PDI_TraceOn signal.

8.11.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). This register generally controls what to do
with the trace information received.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 8.40.
TCBCONTROLB Register Format

31 30 26 25 21 20 19 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0
WE 0 REG WR 0 RM|TR|BF| TM |0 CR |Cd 0 CA | OfC| EN
Table 8.40 TCBCONTROLB Register Field Descriptions
Fields
Read/Wr
Name Bits Description ite Reset State
WE 31 Write Enable. R 0
Only when set to 1 will the other bits be written in
TCBCONTROLB.
This bit will always read 0.
0 30:26 | Reserved. Must be written as zero; returns zero on read. R 0
MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 183

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

Table 8.40 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read/Wr

Name Bits Description ite Reset State

REG 25:21 | Register select: Thisfield select the registers accessible through R/W 0
the TCBDATA register. Legal values are shown in Table 8.38.

WR 20 Write Registers: When set, the register selected by REG field is R/W 0
read and written when TCBDATA is accessed. Otherwise the
selected register isonly read.

0 19:17 | Reserved. Must be written as zero; returns zero on read. R

RM 16 Read on-chip trace memory. R/W1
When written to 1, the read address-pointer of the on-chip
memory is set to point to the oldest memory location written
since the last reset of pointers.

Subsequent access to the TCBTW register (through the
TCBDATA register), will automatically increment the read
pointer (TCBRDP register) after each read. [Note: The read
pointer does not auto-increment if the WR field isone.]

When the write pointer isreached, thisbit is automatically reset
to 0, and the TCBTW register will read all zeros.

Once set to 1, writing 1 again will have no effect. The bit is
reset by setting the TR bit or by reading the last Trace word in
TCBTW.

Thisbit isreserved if on-chip memory is not implemented.

TR 15 Trace memory reset. R/W1 0
When written to one, the address pointers for the on-chip trace
memory are reset to zero. Also the RM bit isreset to 0.
Thisbit isautomatically de-asserted back to 0, when thereset is
compl eted.

Thisbit isreserved if on-chip memory is not implemented.

BF 14 Buffer Full indicator that the TCB uses to communicate to R 0
external softwarein the situation that the on-chip trace memory
is being deployed in the trace-from and trace-to mode. (See
8.15 “TCB On-Chip Trace Memory”)

Thisbit is cleared when writing 1 to the TR bit

Thisbit isreserved if on-chip memory is not implemented.

184 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.11 Trace Control Block (TCB) Registers (Hardware Control)

Table 8.40 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Read/Wr
Name Bits Description ite Reset State

™ 13:12 | Trace Mode. Thisfield determines how the trace memory is R/W 0
filled when using the simple-break control in the PDtrace™
interface to start or stop trace.

™ Trace Mode
00 Trace-To

01 Trace-From

10 Reserved

11 Reserved

In Trace-To mode, the on-chip trace memory isfilled, continu-
ously wrapping around and overwriting older Trace Words, as
long asthere is trace data coming from the core.

In Trace-From mode, the on-chip trace memory isfilled from
the point that PDO_lamTracing is asserted, and until the
on-chip trace memory isfull.

In both cases, de-asserting the EN hit in this register will also
stop fill to the trace memory.

If aTCBTRIGX trigger control register is used to start/stop
tracing, then thisfield should be set to Trace-To mode.
Thisbit isreserved if on-chip memory is not implemented.

0 11 Reserved. Must be written as zero; returns zero on read. R 0

CR 10:8 | Off-chip Clock Ratio. Writing thisfield, setsthe ratio of the R/W 100
core clock to the off-chip trace memory interface clock. The
clock-ratio encoding is shown in Table 8.41.

Remark: Asthe Probe interface works in double data rate
(DDR) mode, a 1:2 ratio indicates one data packet sent per core
clock rising edge.

This bit isreserved if off-chip trace option is not implemented.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 185

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

Table 8.40 TCBCONTROLB Register Field Descriptions (Continued)

Fields
Read/Wr

Name Bits Description ite Reset State

Ca 7 Calibrate off-chip trace interface. R/W 0
If set to one, the off-chip trace pinswill produce the following
pattern in consecutive trace clock cycles. If more than 4 data
pins exist, the pattern is replicated for each set of 4 pins. The
pattern repeats from top to bottom until the Cal bit is
de-asserted.

Calibrations pattern

N
[EY

pins.

4 bits of TR_DATA

This pattern is replicated for every
O P | | Ol Ol Ol k| | O Ol Pl Ol W
R Ol R Ol Ol O]l Ol k| O] »r|l O
P = O k| O »r| Ol O| | O O| k| O
| R R O R O Ol Ol Ol k| Ol »r| O O

Note: The clock source of the TCB and PIB must be running.
This bit isreserved if off-chip trace option is not implemented.

0 6:3 Reserved. Must be written as zero; returns zero on read. R 0

CA 2 Cycle accurate trace. R/W 0
When set to 1, the trace will include stall information.
When set to O, the trace will exclude stall information, and
remove bit zero from all transmitted TF's.

The stall information included/excluded is:

¢ TF6 formats with TCBcode 0001 and 0101.

* All TF1 formats.

ofC 1 If setto 1, traceis sent to off-chip memory using TR_DATA R/W Preset
pins.

If set to O, trace info is sent to on-chip memory.

Thisbit isread only if asingle memory option exists (either
off-chip or on-chip only).

186 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.11 Trace Control Block (TCB) Registers (Hardware Control)

Table 8.40 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Read/Wr
Name Bits Description ite Reset State

EN 0 Enable trace. R/W 0
Thisisthe master enable for trace to be generated from the
TCB. This bit can be set or cleared, either by writing thisregis-
ter or from a start/stop/about trigger.

When set to 1, trace information is sampled on the PDO_*
pins. Trace Words are generated and sent to either on-chip
memory or to the Trace Probe. The target of thetraceis
selected by the Of C bit.

When set to 0, trace information on the PDO_* pinsisignored.
A potential TF6-stop (from a stop trigger) is generated as the
last information, the TCB pipe-lineis flushed, and trace output
is stopped.

Table 8.41 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio

000 8:1 (Trace clock is eight times that of core clock)

001 4:1 (Trace clock isfour times that of core clock)

010 2:1 (Trace clock is double that of core clock)

011 1:1 (Trace clock is same as core clock)

100 1:2 (Trace clock is one half of core clock)

101 1:4 (Trace clock is one fourth of core clock)

110 1:6 (Trace clock is one sixth of core clock)

111 1:8 (Trace clock is one eighth of core clock)

8.11.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBRg field; see Table

8.38. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLByR bit is set. For read-only registers, the TCBCONTROLB,yr isadon’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 8.42. The width of
TCBDATA is 64 bits when on-chip trace words (TWSs) are accessed (TCBTW access).
TCBDATA Register Format

31(63) 0

Data

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 187

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

Table 8.42 TCBDATA Register Field Descriptions

Fields
Reset
Names Bits Description Read/Write State
Data 31:0 | Register fields or data as defined by the Only writableif 0
63.0 |TCBCONTROLBRgs field TCBCONTROLByg
isset

8.11.4 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the
TCBCONFIG register is shown below, and the field is described in Table 8.43.
TCBCONFIG Register Format

21 20 11 10 9 8 6 5 4 3 0

Of T REV

31 30 25 24 17 16 14 13

CF1 0 TRIG SZ CRMax | CRMin PW PiIN | OnT

Table 8.43 TCBCONFIG Register Field Descriptions

Fields
Read/Wr

ite

Name Bits Description Reset State

CF1 31 Thisbitisset if aTCBCONFIGL1 register exists. In this revi- R 0

sion, TCBCONFIG1 does not exist and this bit always reads
Zero.

30:25

Reserved. Must be written as zero; returns zero on read.

0

TRIG

24:21

Number of triggers implemented. This a so indicates the num-
ber of TCBTRIGX registers that exist.

Preset
Legal values
ae0-8

20:17

On-chip trace memory size. Thisfield holds the encoded size of
the on-chip trace memory.

The sizein bytesis given by 2(528) implying that the mini-
mum size is 256 bytes and the largest is 8Mb.

This bit isreserved if on-chip memory is not implemented.

Preset

CRMax

16:14

Off-chip Maximum Clock Ratio.

Thisfield indicates the maximum ratio of the core clock to the
off-chip trace memory interface clock. The clock-ratio encod-
ing isshown in Table 8.41.

This bit isreserved if off-chip trace option is not implemented.

Preset

CRMin

13:11

Off-chip Minimum Clock Ratio.

Thisfield indicates the minimum ratio of the core clock to the
off-chip trace memory interface clock.The clock-ratio encoding
isshown in Table 8.41.

This bit isreserved if off-chip trace option is not implemented.

Preset

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.11 Trace Control Block (TCB) Registers (Hardware Control)

Table 8.43 TCBCONFIG Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Wr
ite

Reset State

PW

10:9

Probe Width: Number of bits available on the off-chip trace
interface TR_DATA pins. The number of TR_DATA pinsis
encoded, as shown in the table.

PW Number of bits used on TR_DATA

00 |4 bits
01 |8hits
10 |16 hits
11 |reserved

Thisfield is preset based on input signalsto the TCB and the
actual capability of the TCB.
Thisbit isreserved if off-chip trace option is not implemented.

R

Preset

PiN

8.6

Pipe number.
Indicates the number of execution pipelines.

onT

When set, this bit indicates that on-chip trace memory is
present. Thisbit is preset based on the sel ected option when the
TCB isimplemented.

Preset

OfT

When set, this bit indicates that off-chip trace interface is
present. Thishit is preset based on the sel ected option when the
TCB isimplemented, and on the existence of a PIB module
(TC_PibPresent asserted).

Preset

REV

3.0

Revision of TCB. An implementation that conforms to the
described architecture in this document must have revision 0.

8.11.5 TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the one pointed to
by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register increments to

the next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment
wraps back to address zero.

Thisregister isreserved if on-chip trace memory is not implemented.

The format of the TCBTW register is shown below, and the field is described in Table 8.44.

63

TCBTW Register Format

Data

Table 8.44 TCBTW Register Field Descriptions

Fields
Read/W Reset
Names Bits Description rite State
Data 63:0 | Trace Word R/W 0

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

189

EJTAG Debug Support in the M4AK™ Core

8.11.6 TCBRDP Register (Reg 5)

The TCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBRy bit to 1, this pointer is reset to the current value of

TCBSTP.
This register isreserved if on-chip trace memory is not implemented.

The format of the TCBRDP register is shown below, and the field is described in Table 8.45. The value of n depends
on the size of the on-chip trace memory. As the address pointsto a 64-bit TW, lower three bits are always zero.
TCBRDP Register Format

31 n+1l n 0

Address

Table 8.45 TCBRDP Register Field Descriptions

Fields
Read/W Reset
Names Bits Description rite State
Data 31:(n+1) |Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

8.11.7 TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new
TW for on-chip trace will be written.

Thisregister isreserved if on-chip trace memory is not implemented.

The format of the TCBWRP register is shown below, and the fields are described in Table 8.46. The value of n
depends on the size of the on-chip trace memory. Asthe address pointsto a 64-bit TW, the lower three bits are always
zero.

TCBWRP Register Format

31 n+1 n 0

Address

Table 8.46 TCBWRP Register Field Descriptions

Fields
Read/W Reset
Names Bits Description rite State
Data 31:(n+l) |Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

8.11.8 TCBSTP Register (Reg 7)

The TCBSTP register isthe start pointer register. This register points to the on-chip trace memory address at which
the oldest TW islocated. This pointer is reset to zero when the TCBCONTROLBg bit iswritten to 1. If a continu-

ous trace to on-chip memory wraps around the on-chip memory, TSBSTP will have the same value as TCBWRP.

190 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.11 Trace Control Block (TCB) Registers (Hardware Control)

Thisregister isreserved if on-chip trace memory is not implemented.

The format of the TCBSTP register is shown below, and the fields are described in Table 8.47. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always
zero.

TCBSTP Register Format
31 n+1 n 0

Address

Table 8.47 TCBSTP Register Field Descriptions

Fields
Read/W Reset
Names Bits Description rite State
Data 31:(n+1) |Reserved. Must be written zero, reads back zero. 0 0
Address n:0 Byte address of on-chip trace memory word. R/W 0

8.11.9 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGX, where x isasingle digit num-
ber from Oto 7 (TCBTRIGO is Reg 16). The actual number of trigger registersimplemented is defined in the
TCBCONFIGTRg field. An unimplemented register will read al zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger isfired, and the action to be taken when the trigger
occurs. Please also read Chapter 8, “TCB Trigger logic” on page 197, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 8.48.
TCBTRIGx Register Format

31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

CHTr | PDTr

TCBinfo Trace 0 CHTro | PDTro 0 I\E/l) i i Type |FO|TR

Table 8.48 TCBTRIGx Register Field Descriptions

Fields
Read/W Reset

Names Bits Description rite State

TCBinfo 31:24 | TCBinfoto beused in apossible TF6 trace format when thistrigger R/W 0
fires.

Trace 23 When set, generate TF6 trace information when this trigger fires. R/W 0
Use TCBinfo field for the TCBinfo of TF6 and use Typefield for
the two M SB of the TCBtype of TF6. Thetwo LSB of TCBtypeare
00.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicateif the
TF6 format was ever suppressed by a simultaneous trigger. If so,
the read value will be 0. If the write value was 0O, the read value is
aways 0. This specia read valueisvalid until the TCBTRIGxX reg-
ister iswritten.

0 22:16 | Reserved. Must be written as zero; returns zero on read. R 0

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 191

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

Table 8.48 TCBTRIGx Register Field Descriptions (Continued)

Fields
Read/W Reset
Names Bits Description rite State
CHTro 15 When set, generate asingle cycle strobe on TC_ChipTrigOut when R/W 0
thistrigger fires.
PDTro 14 When set, generate a single cycle strobe on TC_ProbeTrigOut R/W 0
when thistrigger fires.
0 13:7 | Reserved. Must be written as zero; returns zero on read. R 0
DM 6 When set, this Trigger will fire when arising edge on the Debug R/W 0

mode indication from the core is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will changeto indicateif this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread value is always 0. This special read valueisvalid until the
TCBTRIGX register iswritten.

CHTri 5 When set, this Trigger will fire when arising edge on R/W 0
TC_ChipTrigIn is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will changeto indicateif this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread value is always 0. This special read valueisvalid until the
TCBTRIGX register iswritten.

PDTri 4 When set, this Trigger will fire when arising edge on R/W 0
TC_ProbeTrigln is detected.

The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if this
source was ever the cause of atrigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
theread value is always 0. This special read valueisvalid until the
TCBTRIGX register iswritten.

192 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.11 Trace Control Block (TCB) Registers (Hardware Control)

Table 8.48 TCBTRIGx Register Field Descriptions (Continued)

Fields
Read/W Reset
Names Bits Description rite State
Type 32 Trigger Type: The Type indicates the action to take when this trig- R/W 0
ger fires. The table below show the Type values and the Trigger
action.
Type Trigger action

00 |Trigger Start: Trigger start-point of trace.
01 |Trigger End: Trigger end-point of trace.

10 |Trigger About: Trigger center-point of trace.

11 |Trigger Info: No action trigger, only for trace
info.

The actual action isto set or clear the TCBCONTROLBEgy bit. A
Start trigger will set TCBCONTROLBEgy, aEnd trigger will clear
TCBCONTROLBEgy. The About trigger will clear
TCBCONTROLBEgy haf way through the trace memory, from the
trigger. The size determined by the TCBCONFIGg; field for
on-chip memory. Or from the TCBCONTROLAgp field for
off-chip trace.

If Traceis set, then a TF6 format is added to the trace words. For
Start and Info triggers thisis done before any other TF'sin that
same cycle. For End and About triggers, the TF6 format is added
after any other TF'sin that same cycle.

If the TCBCONTROLBT), field isimplemented it must be set to
Trace-To mode (00), for the Type field to control on-chip tracefill.
The write value of this bit always controls the behavior of thistrig-
ger.

When thistrigger fires, the read value will change to indicate if the
trigger action was ever suppressed. If so the read value will be 11.
If the write value was 11 the read value is always 11. This special
read valueisvalid until the TCBTRIGX register iswritten.

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is R/W 0
de-asserted. When de-asserted thistrigger will fire each time one of
the trigger sources indicates trigger.

TR 0 Trigger happened. When set, thistrigger fired sincethe TR bitwas | R/WO 0
last written 0.

This bit is used to inspect whether the trigger fired since this bit
was last written zero.

When set, all the trigger source bits (bit 4 to 13) will change their
read value to indicate if the particular bit was the source to fire this
trigger. Only enabled trigger sources can set the read value, but
more than oneis possible.

Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a
higher priority trigger.

8.11.10 Register Reset State

Reset state for all register fields is entered when either of the following occur:

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 193

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

1. TAPcontroller enters/isin Test-Logic-Reset state.

2. EJ_TRST_N input isasserted low.

8.12 EJTAG Trace Enabling

194

Asthere are several waysto enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This
section should help clarify the enabling of trace.

8.12.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the M4K core, then these breakpoint can be used
astriggersto start/stop trace. When used for this, the breakpoints need not also generate a debug exception, but are
capable of only generating an internal trigger to the tracelogic. Thisis done by only setting the TE bit and not the BE
bit in the Breakpoint Control register. Please see 8.2.7.5 “Instruction Breakpoint Control n (IBCn) Register (0x1118
+ n*0x100)” on page 136 and 8.2.8.5 “Data Breakpoint Control n (DBCn) Register (0x2118 + 0x100 * n)” on

page 140, for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace
action when atrigger happens. When a breakpoint is enabled as atrigger (TE = 1), it can be selected to be either a
start or a stop trigger to thetracelogic. Please see 5.2.21 “TraceBPC Register (CPO Register 23, Select 4)” on
page 117 for detail in how to define a start/stop trigger.

8.12.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bitsin the
control register are used instead of the input enable signals from the TCB. The TraceControlg bit controls whether

hardware (viathe TCB), or software (viathe TraceControl register) controls tracing functionality.

Trace isturned on when the following expression eval uates true:
(

(TraceControlsg and TraceControly,) or
((not TraceControlgg) and TCBCONTROLAy,)
)

and
(MatchEnable or TriggerEnable)
)

where,

MatchEnable <«
(

TraceControlqg
and
(
TraceControly and UserMode) or

TraceControly and ExceptionMode) or

(
(TraceControly and KernelMode) or
(
(TraceControl, and DebugMode)

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.12 EJTAG Trace Enabling

or
(
(not TraceControlnpg)
and
(
(TCBCONTROLA; and UserMode) or
(TCBCONTROLA; and KernelMode) or
(TCBCONTROLA; and ExceptionMode) or
(TCBCONTROLApy and DebugMode)
)
)
and where,

TriggerEnable «
(

DBCiqg and
DBSps[i] and
TraceBPCpg and
(TraceBPCpgponi] = 1)

)

or

(
IBCigg and
IBSgg[i] and
TraceBPCip and
(TraceBPCrgponri] = 1)

)

As seen in the expression above, trace can be turned on only if the master switch TraceControlg, or
TCBCONTROLAQ, isfirst asserted.

Once thisis asserted, there are two ways to turn on tracing. The first way, the MatchEnable expression, uses the input
enable signalsfrom the TCB or the bitsin the TraceControl register. Thistracing is done over general program areas.
For example, al of the user-level code, and so on.

The second way to turn on tracing, the Trigger Enable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG isimplemented, and hardware breakpoints can be set, then using this method
enablesfiner grain tracing control. It is possible to send atrigger signal that turns on tracing at a particular instruction.
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

The easiest way to unconditionally turn on trace isto assert either hardware or software tracing and the corresponding
trace on signal with other enables. For example, with TraceControlyg=0, i.e., hardware controlled tracing, assert

TCBCONTROLAG, and all the other signalsin the second part of expression MatchEnable. When using the EJTAG
hardware triggers to turn trace on and off, it is best if TCBCONTROLAQ, is asserted and &l the other processor

mode selection bitsin TCBCONTROLA are turned off. Thiswould be the least confusing way to control tracing with
the trigger signals. Tracing can be controlled via software with the TraceControl register in asimilar manner.

8.12.3 Turning Off PDtrace™ Trace

Trace isturned off when the following expression evaluates true:

(

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 195

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

(TraceControlgpg and (not TraceControlg,))) or
((not TraceControlpg) and (not TCBCONTROLAy,))

or
(
(not MatchEnable) and
(not TriggerEnable) and
TriggerDisable
)
where,

TriggerDisable «
(

DBCipg and
DBSps[i] and
TraceBPCpg and
(TraceBPCpgponi] = 0)

)

or

(
IBCipg and
IBSgg(i] and
TraceBPCig and
(TraceBPCrgponi; = 0)

)

Tracing can be unconditionally turned off by de-asserting the TraceControlg,, bit or the TCBCONTROLAg, signal.

When either of these are asserted, tracing can be turned off if all of the enables are de-asserted. EJTAG hardware
breakpoints can be used to trigger trace off aswell. Note that if simultaneous triggers are generated, and even one of
them turns on tracing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on. This
condition is reflected in presence of the “(not TriggerEnable)” term in the expression above.

8.12.4 TCB Trace Enabling

The TCB must be enabled in order to produce atrace on the probe or to on-chip memory, when trace information is
sent on the PDtrace™ interface. The main switch for thisisthe TCBCONTROLBgy bit. When set, the TCB will

send trace information to either on-chip trace memory or to the Trace Probe, controlled by the setting of the
TCBCONTROLB g hit.

The TCB can optionally include trigger logic, which can control the TCBCONTROLBEgy bit. Please see 8.13 “TCB
Trigger logic” for details.

8.12.5 Tracing a Reset Exception

Tracing areset exception is possible. However, the TraceControlyg bit isreset to O at core reset, so al the trace con-

trol must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace fifo and the entire TCB
are reset based on an EJTAG reset. It isthus possible to set up the trace modes, etc., using the TAP controller, and
then reset the processor core.

196 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.13 TCB Trigger logic

8.13 TCB Trigger logic

The TCB isoptionally implemented with trigger unit. If thisis the case, then the TCBCONFIGtg, field is non-zero.
This section will explain some of the issues around triggersin the TCB.

8.13.1 Trigger Units Overview

TCB trigger logic features three main parts:

1. A common Trigger Source detection unit.

2. 1to 8 separate Trigger Control units.

3. A common Trigger Action unit.

Figure 8.7 show the functional overview of the trigger flow in the TCB.

Figure 8.7 TCB Trigger Processing Overview

Trigger sources

Y YUYV

Trigger Source Unit

T

=

gger strobes

y

Trigger control Unit 1to 7 Trigger Control Unit 7
are optional, when trigger P
logic is implemented. -

Trigger Control Unit 1

Trigger Control Unit 0

Priority/
OR-function
Depending on the trigger action,

the Action strobes must pass
through a priority function or an
OR-gate

Priority/
OR-function

Trigger Action Unit

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 197

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

8.13.2 Trigger Source Unit

The TCB has three trigger sources:

1. Chip-level trigger input (TC_ChipTrigin).

2. Probetrigger input (TR_TRIGIN).

3. Debug Mode (DM) entry indication from the processor core.

Theinput triggers are all rising-edge triggers, and the Trigger Source Units convert the edge into asingle cycle strobe
to the Trigger Control Units.

8.13.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them hasits own Trigger Control Register (TCBTRIGX,
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger
Sources as possible trigger event and they can fire one or more of the Trigger Actions. Thisis all defined in the Trig-
ger Control register TCBTRIGX (see 8.11.9 “TCBTRIGx Register (Reg 16-23)" on page 191).

8.13.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut).

2. Probetrigger output (TR_TRIGOUT).

3. Traceinformation. Put a programmable byte into the trace stream from the TCB.

4. Start, End or About (delayed end) control of the TCBCONTROLBgy bit.

The basic function of the trigger actionsis explained in 8.11.9 “TCBTRIGx Register (Reg 16-23)” on page 191.
Please also read the next 8.13.5 “Simultaneous Triggers’.

8.13.5 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them,
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ed.

8.13.5.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes precedence
over the higher numbered units. The x in TCBTRIGX registers defines the number. The oldest trigger takes prece-
dence over everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

* Trigger Start, End and About type triggers (TCBTRIGXyy e field set to 00, 01 or 10), which will assert/de-assert
the TCBCONTROLBEgy bit. The About trigger is delayed and will always change TCBCONTROLBgy because

198 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.14 EJTAG Trace Cycle-by-Cycle Behavior

it isthe oldest trigger when it de-asserts TCBCONTROLBEy. An About trigger will not start the countdown if
an even older About trigger is using the Trace Word counter.

» Triggerswhich produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxXtR bit is set when the trigger fires. Thisisso even if atrigger action is sup-
pressed by a higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGXgq bit is set), then the
suppressed trigger action will not happen until after TCBTRIGxtg iswritten O.

If aTrigger action is suppressed by ahigher priority trigger, then the read value, when the TCBTRIGx g bit is set, for
the TCBTRIGX T4 field will be O for suppressed TF6 trace information actions. The read value in the
TCBTRIGXType field for suppressed Start/End/About triggers will be 11. Thisindication of asuppressed action is
sticky. If any of the two actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxXgg bit is
zero), then the read values in Trace and/or Type are set to indicate any suppressed action.

About Trigger

The About triggers delayed de-assertion of the TCBCONTROLBEy bit is always executed, regardless of priority
from another Start trigger at the time of the TCBCONTROLBgy change. This meansthat if a simultaneous About
trigger action on the TCBCONTROLBgy bit (n/2 Trace Words after the trigger) and a Start trigger hit the same
cycle, then the About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then anew About trigger,
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11in
the TCBTRIGXype field. But, if the TCBTRIGX e bit is set, a TF6 trace information will still go in the trace.

8.13.5.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ ed together to produce the
final trigger. One or more expected trigger strobesoni.e. TC_ChipTrigOut can thus disappear. External logic should
not rely on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.

8.14 EJTAG Trace Cycle-by-Cycle Behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the
real-time behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

8.14.1 Fifo Logic in PDtrace and TCB Modules

Both the PDtrace module and the TCB module contain afifo. This might seem like extra overhead, but there are good
reasons for this. The vast mgjority of the information compression happensin the PDtrace module. Any datainforma-
tion, like PC and load/store address values (delta or full), load/store data and processor mode changes, are all sent on
the same 16 data bus to the TCB on the PDtrace™ interface. When an instruction requires more than 16 bits of infor-
mation to be traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock cycles.

In the TCB, the on-chip trace memory is defined as a 64-bit wide synchronous memory running at core-clock speed.
In this case thefifo is not needed. For off-chip trace through the Trace Probe, the fifo comesinto play, because only a
limited number of pins (4, 8 or 16) exist. Also the speed of the Trace Probe interface can be different (either faster or
slower) from that of the M4K core. So for off-chip tracing, a specific TCB TW fifo is needed.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 199

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

200

8.14.2 Handling of Fifo Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 16-bit datainter-
faceisneeded, it is possible for the PDtrace fifo overflow from time to time. There are two ways to handle this case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.
2. Prevent the overflow by back-stalling the core, until the fifo has enough empty slots to accept new trace data.

The PDtrace fifo option is controlled by either the TraceControl;g or the TCBCONTROLA, g bit, depending on the
setting of TraceControlyg bit.

Thefirst option is free of any cycle-by-cycle change whether trace is turned on or not. Thisis achieved at the cost of
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is
traced asif it was the start of the trace (processor mode and full PC are traced). This guarantees that only the
un-traced fifo information is lost.

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved
by back-stalling the core pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trace
information from anew instruction. This option can obviously change the real-time behavior of the core when tracing
isturned on.

If PC trace information is the only thing enabled (in TraceControlyopg or TCBCONTROLAopE, depending on
the setting of TraceControlyg), and Trace of all branchesisturned off (via TraceControlyg or TCBCONTROLAg,
depending on the setting of TraceControltg), then thefifo is unlikely to overflow very often, if at all. Thisis of

course very dependent on the code executed, and the frequency of exception handler jumps, but with this setting there
isvery little information overhead.

8.14.3 Handling of Fifo Overflow in the TCB

The TCB aso holds afifo, used to buffer the TW’swhich are sent off-chip through the Trace Probe. The datawidth of
the probe can be either 4, 8 or 16 pins, and the speed of these data pins can be from 16 times the core-clock to 1/4 of
the core clock (the trace probe clock aways runs at a double data rate multiple to the core-clock). See

8.14.3.1 “Probe Width and Clock-Ratio Settings’ for a description of probe width and clock-ratio options. The com-
bination between the probe width (4, 8 or 16) and the data speed, allows for data rates through the trace probe from
256 bits per core-clock cycle down to only 1 bit per core-clock cycle. The high extremeis not likely to be supported
in any implementation, but the low one might be.

The datarate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maxi-
mum produce one full 64-bit TW per core-clock cycle. Thisistrue for any selection of trace modein
TraceControly,opg o0f TCBCONTROLAope- The PDtrace module will guarantee the limited amount of data. If

the TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB fifo can possibly over-
flow. Thereisonly one way to handle this:

1. Prevent the overflow by asserting a stall-signal back to the core (PDI_StallSending). Thiswill in turn stall the
core pipeline.

There is no way to guarantee that this back-stall from the TCB is never asserted, unless the effective data rate of the
Trace Probe interface is at least 64-bits per core-clock cycle.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

8.15 TCB On-Chip Trace Memory

Asapractical matter, the amount of datato the TCB can be minimized by only tracing PC information and excluding
any cycle accurate information. Thisis explained in 8.14.2 “Handling of Fifo Overflow in the PDtrace Module” and
below in 8.14.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data rate of 8-bits per
core-clock cycleis usually sufficient. No guarantees can be given here, however, as heavy interrupt activity can
increase the number of unpredictable jumps considerably.

8.14.3.1 Probe Width and Clock-Ratio Settings

The actual number of data pins (4, 8 or 16) is defined by the TCBCONFIGpy, field. Furthermore, the frequency of

the Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) isadouble datarate
clock. This means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace
clock isrunning at clock ratio of 1:2 (one half) of core clock, the data output registers are running a core-clock fre-
quency. The clock ratio is set in the TCBCONTROLBR field. The legal range for the clock ratio is defined in

TCBCONFIGcrMax @d TCBCONFIGcrpmin (both valuesinclusive). If TCBCONTROLBR is set to an unsup-
ported value, the result is UNPREDICABLE. The maximum possible valuefor TCBCONFIGcryax 1S8:1 (TR_CLK
is running 8 times faster than core-clock). The minimum possible value for TCBCONFIGcgpin iS1:8 (TR_CLK is
running at one eighth of the core-clock). See Table 8.41 for a description of the encoding of the clock ratio fields.

8.14.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each
instruction in the trace. Thisinformation is added to the trace, when the TCBCONTROLB bit is set. The overhead

on the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the likeli-
hood of the TCB fifo overflowing.

8.15 TCB On-Chip Trace Memory

When on-chip trace memory is available (TCBCONFIG o7 is set) the memory istypically of smaller size than if it
were external in atrace probe. The assumption isthat it is of some value to trace a smaller piece of the program.

With on-chip trace memory, the TCB can work in three possible modes:
1. Trace-From mode.

2. Trace-To mode.

3. Under Trigger unit control.

Software can select this mode using the TCBCONTROLB, field. If one or more trigger control registers
(TCBTRIGX) are implemented, and they are using Start, End or About triggers, then the trace mode in

TCBCONTROLBq), should be set to Trace-To mode.
8.15.1 On-Chip Trace Memory Size

The supported On-chip trace memory size can range from 256 byte to 8Mbytes, in powers of 2. The actua sizeis
shown in the TCBCONFIGg; field.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 201
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

EJTAG Debug Support in the M4AK™ Core

8.15.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor entersinto a processor mode which is defined to be traced
or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is stopped when the buffer is
full. The TCB then signals buffer full using TCBCONTROLBgr When external software polling this register finds

the TCBCONTROLBgE hit set, it can then read out the internal trace memory. Saving the trace into the internal
buffer will re-commence again only when the TCBCONTROLBgE hit isreset and if the coreis sending valid trace

data (i.e., PDO_lamTracing not equal 0).
8.15.3 Trace-To Mode

In the Trace-To mode, the TCB keeps writing into the internal trace memory, wrapping over and overwriting the old-
est information, until the processor is reaches an end of trace condition. End of trace is reached by leaving the proces-
sor mode which istraced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this point, the
on-chip trace buffer is then dumped out in a manner similar to that described abovein 8.15.2 “Trace-From Mode”.

202 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 9

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immedi-
ate, Jump, and Register. Refer to Chapter 10, “M4K™ Processor Core Instructions’ on page 207 for acomplete list-
ing and description of instructions.

This chapter discusses the following topics

e Section 9.1 “CPU Instruction Formats”

e Section 9.2 “Load and Store Instructions”

e Section 9.3 “Computational Instructions’

e Section 9.4 “Jump and Branch Instructions’

e Section 9.5 “Control Instructions’

e Section 9.6 “Coprocessor Instructions’
9.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on aword boundary. There are three instruction for-
mats immediate (I-type), jump (J-type), and register (R-type)—as shown in Figure 9.1. The use of asmall number of
instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less
frequently used) operations and addressing modes from these three formats as needed.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 203

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Instruction Set Overview

Figure 9.1 Instruction Formats

I-Type (Immediate)
31 2625 2120 1615 0
op rs 1t immediate
J-Type (Jump)
31 2625 0
op target
R-Type (Register)
31 2625 2120 16 15 1110 65 0
op rs rt rd sa funct
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch

condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier
sa 5-bit shift amount

funct 6-bit function field

9.2 Load and Store Instructions

9.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called adelayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as the load
delay dot.

InaM4K core, the instruction immediately following aload instruction can use the contents of the loaded register;
however in such cases hardware interlocks insert additional real cycles. Although not required, the scheduling of load
delay dots can be desirable, both for performance and R-Series processor compatibility.

9.2.2 Defining Access Types

Access type indicates the size of a core dataitem to be loaded or stored, set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For abig-endian configuration, the low-order byte is the most-significant byte; for alittle-endian con-
figuration, the low-order byte is the least-significant byte.

204 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

9.3 Computational Instructions

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown in Table 9.1. Only the combinations shown in Table 9.1 are permissible; other combinations cause
address error exceptions.

Table 9.1 Byte Access Within a Word

Bytes Accessed

Low Order Big Endian Little Endian
Address Bits
Access Type 2 1 0
Word 0 0 0
Triplebyte 0 0 0
0 0 1
Halfword 0 0 0
0 1 0
Byte 0 0 0
0 0 1
0 1 0
0 1 1

9.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or inimme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

* Arithmetic
* Logicd

» Shift

o Multiply

» Divide

These operationsfit in the following four categories of computational instructions:
* ALU Immediate instructions

» Three-operand Register-type Instructions

* Shift Instructions

* Multiply And Divide Instructions

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 205

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Instruction Set Overview

9.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipelineis transferred to the multiplier as remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction isfollowed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the M4K™ Core” on page 23 for more information on
instruction latency and repeat rates.

9.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of oneinstruction: that is, the instruction immediately following the jump or branch (thisis known asthe
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

9.4.1 Overview of Jump Instructions

Subroutine callsin high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are Jtypeinstructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructionsin 10.3 “MIPS32® Instruction Set
for the M4K™ core” on page 210.

9.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-hit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of oneinstruction.

If aconditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

9.5 Control Instructions
Control instructions allow the software to initiate traps; they are always R-type.

9.6 Coprocessor Instructions

CPO instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 10, “M4K™ Processor Core Instructions’
on page 207 for alisting of CPO instructions.

206 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 10

M4K™ Processor Core Instructions

This chapter supplements the MIPS32 Architecture Reference Manual by describing instruction behavior that is spe-
cific to aMIPS32 M4K processor core. The chapter is divided into the following sections:

e Section 10.1 “Understanding the Instruction Descriptions’

e Section 10.2 “M4K™ Opcode Map”

* Section 10.3 “MIPS32® Instruction Set for the M4K™ core”

The M4K processor core also supports the MIPS16 ASE to the MIPS32 architecture. The MIPS16 ASE instruction

set isdescribed in Chapter 11, “MIPS16e™ A pplication-Specific Extension to the MIPS32® Instruction Set” on
page 229.

10.1 Understanding the Instruction Descriptions

Refer to Volume 11 of the MIPS32 Architecture Reference Manual for more information about the instruction descrip-
tions. Thereis a description of the instruction fields, definition of terms, and a description function notation available
in that document.

10.2 M4K™ Opcode Map

Key
» CAPITALIZED text indicates an opcode mnemonic
» |talicized text indicates to look at the specified opcode submap for further instruction bit decode

» Entries containing the oo symbol indicate that a reserved instruction fault occursif the core executes this instruc-
tion.

» Entries containing the B symbol indicate that a coprocessor unusable exception occurs if the core executes this
instruction

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 207

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

M4K™ Processor Core Instructions

Table 10.1 Encoding of the Opcode Field

opcode | bits28..26
0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0|000| Specia Reglmm J AL BEQ BNE BLEZ BGTZ
1] 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 | 010 COPO B COP2 B BEQL BNEL BLEZL BGTZL
3|011 o o o o Special2 VAAE o EneyloA3
4 | 100 LB LH LWL LW LBU LHU LWR [0
51| 101 SB SH SWL Sw o o SWR CACHE
6 | 110 LL B LWC2 PREF o B o o
71111 SC B SWC2 o o B o o
Table 10.2 Special Opcode encoding of Function Field
[function| bits2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 SLL B SRL/ SRA SLLV o SRLV/ SRAV
ROTR ROTRV
1| 001 JR JALR MOVZ MOVN SYSCALL | BREAK o SYNC
2 (010 MFHI MTHI MFLO MTLO o o o o
3| 011 MULT MULTU DIV DIVU [0 o o [0
4 | 100 ADD ADDU SUB SUBU AND OR XOR NOR
5| 101 o o SLT SLTU o o o o
6 | 110 TGE TGEU TLT TLTU TEQ o TNE o
7111 o o o o o o o o
Table 10.3 Special2 Opcode Encoding of Function Field
[function| bits2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 MADD MADDU MUL o MSUB MSUBU o a
1] 001 o o o o o o o
2 | 010 UDItor o
3 (011
4 | 100 CLz CLO o o o o o o
5| 101 o o o o o o o o
6 | 110 o o o o o o o o
7111 o o o o o o o SDBBP

1. CorExtend instructions are a build-time option of the M4K Pro core, if not implemented this instructions space will
cause areserved instruction exception. If assembler support exists, the mnemonics for CorExtend instructions are

most likely UDIO, UDI1, .., UDI15.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

10.2

Table 10.4 Special3 Opcode Encoding of Function Field

M4K™ Opcode Map

function | bits2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 EXT o o o INS o o o
1| 001 o o o o o o o o
2| 010 o o o o o o o o
3011 o o o o o o o o
4| 100 BSHFL o o o o o o o
51101 o o o o o o o o
6 | 110 o o o o o o o o
71111 o o o PAHQP o o o o
Table 10.5 Reglmm Encoding of rt Field
rt bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL BGEZL o o o o
1| 01 TGEI TGEIU TLTI TLTIU TEQI o TNEI o
2| 10 | BLTZAL | BGEZAL | BLTZALL | BGEZALL o o o o
3| 11 o o o o o o o TWNXI
Table 10.6 COP2 Encoding of rs Field
[rs |bits23.21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC2 o CFC2 M®HX?2 MTC2 o CTC2 MTHX2
1| 01 BC2 BC2!
2| 10 Cco
3| 11

1. The core will treat the entire row as a BC2 instruction. However compiler and assembler support only exists for the

first one. Some compiler and assembler products may allow the user to add new instructions.

Table 10.7 COP2 Encoding of rt Field When rs=BC2

[rt] nits1e
bits 17 0 1
0 BC2F BC2T
1 BC2FL | BC2TL

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

M4K™ Processor Core Instructions

Table 10.8 COPO Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFCO o o o MTCO o o o
1| 01 o o PAIITTIP | M®MXO0 o o QPIITTIP o
2| 10 Cco
3| 11
Table 10.9 COPO Encoding of Function Field When rs=CO
[function| bits2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000 o o o o o o o o
1| 001 o o o o o o o o
2| 010 o o o o o o o o
3 (011 ERET TAXK o o o o o DERET
4| 100 WAIT o o o o o o o
51101 o o o o o o o o
6 | 110 o o o o o o o o
71111 o o o o o o o o

10.3 MIPS32® Instruction Set for the M4K™ core

This section describes the M1PS32 instructions for the M4K cores. Table 10.10 lists the instructions in a phabetical
order. Instructions that have implementation dependent behavior are described afterwards. The descriptions for other
instructions exist in the architecture reference manual and are not duplicated here.

Table 10.10 Instruction Set

Instruction Description Function
ADD Integer Add Rd=Rs+ Rt
ADDI Integer Add Immediate Rt = Rs+ Immed
ADDIU Unsigned Integer Add Immediate Rt = Rs +, Immed
ADDU Unsigned Integer Add Rd = Rs+y Rt
AND Logical AND Rd=Rs& Rt
ANDI Logical AND Immediate Rt = Rs & (04 || Immed)
B Unconditional Branch PC += (int)offset
(Assembler idiom for: BEQ r0, r0, offset)
BAL Branch and Link GPR[31] =PC + 8
(Assembler idiom for: BGEZAL r0, offset) PC += (int)offset
BC2F Branch On COP2 Condition False if COP2Condition(cc) ==
PC += (int)offset

210

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

10.3 MIPS32® Instruction Set for the MAK™ core

Table 10.10 Instruction Set (Continued)

Instruction

Description

Function

BC2FL

Branch On COP2 Condition False Likely

if COP2Condition(cc) ==
PC += (int)offset

else
Ignore Next Instruction

BC2T

Branch On COP2 Condition True

if COP2Condition(cc) == 1
PC += (int)offset

BC2TL

Branch On COP2 Condition True Likely

if COP2Condition(cc) ==
PC += (int)offset

else
Ignore Next Instruction

BEQ

Branch On Equal

if Rs==Rt
PC += (int)offset

BEQL

Branch On Equal Likely

if Rs==Rt
PC += (int)offset
else
Ignore Next Instruction

BGEZ

Branch on Greater Than or Equal To Zero

if IR931]
PC += (int)offset

BGEZAL

Branch on Greater Than or Equal To Zero And
Link

GPR[31] =PC + 8
if IRS[31]
PC += (int)offset

BGEZALL

Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] =PC+8
if IR931]
PC += (int)offset
else
Ignore Next Instruction

BGEZL

Branch on Greater Than or Equal To Zero
Likely

if 'Rg[31]
PC += (int)offset
else
Ignore Next Instruction

BGTZ

Branch on Greater Than Zero

if IR931] && Rs!=0
PC += (int)offset

BGTZL

Branch on Greater Than Zero Likely

if IR931] && Rs!=0
PC += (int)offset

else
Ignore Next Instruction

BLEZ

Branch on Less Than or Equal to Zero

if R931] ||Rs==0
PC += (int)offset

BLEZL

Branch on Less Than or Equal to Zero Likely

if RY31] || Rs==
PC += (int)offset
else
Ignore Next Instruction

BLTZ

Branch on Less Than Zero

if R[31]
PC += (int)offset

BLTZAL

Branch on Less Than Zero And Link

GPR[31] =PC+38
if R[31]
PC += (int)offset

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc.

All rights reserved.

211

M4K™ Processor Core Instructions

212

Table 10.10 Instruction Set (Continued)

Instruction Description Function
BLTZALL Branch on Less Than Zero And Link Likely GPR[31] =PC + 8
if Re[31]
PC += (int)offset
ese
Ignore Next Instruction
BLTZL Branch on Less Than Zero Likely if RY31]
PC += (int)offset
else
Ignore Next Instruction
BNE Branch on Not Equal if Rs!=Rt
PC += (int)offset
BNEL Branch on Not Equal Likely if Rs!=Rt
PC += (int)offset
else
Ignore Next Instruction
BREAK Breakpoint Break Exception
CACHE Cache Operation See Cache Description
CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]
CLO Count Leading Ones Rd = NumL eadingOnes(Rs)
CLz Count Leading Zeroes Rd = NumL eadingZeroes(Rs)
COPO Coprocessor 0 Operation See Coprocessor Description
COP2 Coprocessor 2 Operation See Coprocessor 2 Description
CTC2 Move Control Word To Coprocessor 2 CCR[2,n] =Rt
DERET Return from Debug Exception PC = DEPC
Exit Debug Mode
DI Disable Interrupts Rt=Status
Status; =0
DIV Divide LO = (int)Rs/ (int)Rt
HI = (int)Rs % (int)Rt
DIVU Unsigned Divide LO = (uns)Rs/ (uns)Rt
HI = (uns)Rs % (uns)Rt
EHB Execution Hazard Barrier Stall until execution hazards are
cleared
El Enable Interrupts Rt=Status
Status =1
ERET Return from Exception if SR[2]
PC = ErrorEPC
ese
PC=EPC
SR[1] =0
SR[2] =0
LL=0
EXT Extract Bit Field Rt=ExtractField(Rs,mshd,|sb)
INS Insert Bit Field Rt=InsertField(Rt,Rs,msb,Isb)

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

10.3 MIPS32® Instruction Set for the MAK™ core

Table 10.10 Instruction Set (Continued)

Instruction Description Function
J Unconditional Jump PC = PC[31:28] || offset<<2
JAL Jump and Link GPR[31] =PC+8
PC = PC[31:28] || offset<<2
JALR Jump and Link Register Rd=PC+8
PC=Rs
JALR.HB Jump and Link Register with Hazard Barrier Rd=PC+8
PC=Rs
Stall until all execution and instruc-
tion hazards are cleared
JR Jump Register PC=Rs
JR.HB Jump Register with Hazard Barrier PC=Rs
Stall until all execution and instruc-
tion hazards are cleared
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]
LL Load Linked Word Rt = Mem[Rs+offset]
LL=1
LLAdr = Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
Lw Load Word Rt = Mem[Rs+offset]
LwcC2 Load Word To Coprocessor 2 CPR[2, n, 0] = Mem[Rs+offset]
LWL Load Word L eft See LWL instruction.
LWR Load Word Right See LWR instruction.
MADD Multiply-Add HI, LO += (int)Rs* (int)Rt
MFCO Move From Coprocessor O Rt = CPR[0, n, sel]
MFC2 Move From Coprocessor 2 Rt = CPR[2, n, sel3; q]
MFHC2 Move From High Word Coprocessor2 Rt= CPR[2,n,s€l]63 30
MFHI Move From HI Rd = HI
MFLO Move From LO Rd=LO
MOVN Move Conditional on Not Zero if GPR[rt] # 0 then
GPR[rd] = GPR[rg]
MOvVZz Move Conditiona on Zero if GPR[rt] = 0then
GPR[rd] = GPR][rg]
MSUB Multiply-Subtract HI, LO -=(int)Rs* (int)Rt
MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPR[O, n, sel] =Rt
MTC2 Move To Coprocessor 2 CPR[2,n, sel]3; g =Rt
MTHC2 Move To High Word Coprocessor 2 CPR[2, n, sel]g3. 30 = Rt

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc.

All rights reserved.

213

M4K™ Processor Core Instructions

Table 10.10 Instruction Set (Continued)

Instruction Description Function
MTHI Move To HI Hl =Rs
MTLO Move To LO LO=Rs
MUL Multiply with register write HI | LO =Unpredictable
Rd=LO
MULT Integer Multiply HI |LO = (int)Rs* (int)Rd
NOP No Operation
(Assembler idiom for: SLL rO, r0, rO)
NOR Logical NOR Rd =~(Rs| Rt)
OR Logical OR Rd=Rs|Rt
ORI Logical OR Immediate Rt = Rs| Immed
PREF Prefetch Nop
RDHWR Read HardWare Register Rt=HWR[Rd]
RDPGPR Read GPR from Previous Shadow Set Rd=SGPR[SRSCltlpsg, Rt]
ROTR Rotate Word Right Rd=Rtgy1 oll Rtz s
ROTRV Rotate Word Right Variable Rd = Rtgs1 0l Rt31 Rs
SB Store Byte (byte)Mem[Rs+offset] = Rt
SC Store Conditional Word if LL=1
mem[Rxoffs] = Rt
Rt=LL
SDBBP Software Debug Breakpoint Trap to SW Debug Handler
SEB Sign Extend Byte Rd=SignExtend(Rt; o)
SEH Sign Extend Half Rd=SignExtend(Rt;5, o)
SH Store Halfword (haf)Mem[Rs+offset] = Rt
SLL Shift Left Logical Rd=Rt<<sa
SLLV Shift Left Logica Variable Rd = Rt << Rg[4:0]
SLT Set on Less Than if (int)Rs< (int)Rt
Rd=1
ese
Rd=0
SLTI Set on Less Than Immediate if (int)Rs < (int)lmmed
Rt=1
else
Rt=0
SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)lmmed
Rt=1
else
Rt=0
SLTU Set on Less Than Unsigned if (uns)Rs < (uns)immed
Rd=1
else
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
214 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

10.3 MIPS32® Instruction Set for the MAK™ core

Table 10.10 Instruction Set (Continued)

Instruction Description Function
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rg[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rg[4:0]
SSNOP Superscalar Inhibit No Operation Nop
SUB Integer Subtract Rt = (int)Rs- (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
SW Store Word Mem[Rs+offset] = Rt
SwcC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2, n, Q]
SWL Store Word Left See SWL instruction description.
SWR Store Word Right See SWR instruction description.
SYNC Synchronize See SYNC instruction below.
SYNCI Synchronize Cachesto Make Instruction Writes | Nop
Effective
SYSCALL System Call SystemCallException
TEQ Trap if Equal if Rs==Rt
TrapException
TEQI Trap if Equal Immediate if Rs== (int)lmmed
TrapException
TGE Trap if Greater Than or Equal if (int)Rs>= (int)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate if (int)Rs>= (int)lmmed
TrapException
TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)lmmed
Unsigned TrapException
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException
TLT Trap if Less Than if (int)Rs< (int)Rt
TrapException
TLTI Trap if Less Than Immediate if (int)Rs < (int)lmmed
TrapException
TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)immed
TrapException
TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException
TNE Trap if Not Equal if Rs!=Rt
TrapException
TNEI Trap if Not Equal Immediate if Rs!=(int)lmmed
TrapException
WAIT Wait for Interrupts Stall until interrupt occurs
WRPGPR Writeto GPR in Previous Shadow Set SGPR[SRSCltlpss,Rd]=Rt
WSBH Word Swap Bytes within Halfwords Rd=SwapByteswithinHalfs(Rt)

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc.

All rights reserved.

215

M4K™ Processor Core Instructions

Table 10.10 Instruction Set (Continued)

Instruction Description Function
XOR Exclusive OR Rd=Rs” Rt
XORI Exclusive OR Immediate Rt = Rs” (uns)immed
216 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

31 26 25 21 20 16 15 0
CACHE
101111 base op offset
6 5 5 16
Format: CACHE op, offset (base) M1PS32

Purpose: Perform Cache Operation
To perform the cache operation specified by op.

Description:

CACHE isawaystreated asa NOP on the M4K core (aslong as access to Coprocessor 0 is enabled), since it does not
contain caches.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective addressis used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 10.1 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address
Index N/A

Assuming that the total cache size in bytesis CS, the associativity is A, and the
number of bytes per tag is BPT, the following cal culations give the fields of the
address which specify the way and the index:

OffsetBit « Log2 (BPT)

IndexBit <« Log2(CS / A)

WayBit ¢« IndexBit + Ceiling(Log2 (A))
Way <« AderayBitfl..IndexBit

Index ¢ AddAringexpit-1..0ffsetBit

Figure 10.1 Usage of Address Fields to Select Index and Way

’._ WayBit/— IndexBit /_ OffsetBit .
Wi

Unused ay Index byte index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as aby-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 217

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

Bits[17:16] of the instruction specify the cache on which to perform the operation, as follows:
Table 10.2 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
0b00 I Primary Instruction

0b01 D Primary Data

0b10 T

Obll S

Bits[20:18] of the instruction specify the operation to perform.

Table 10.3 Encoding of Bits [20:18] of the CACHE Instruction

Effective
Address
Operand
Code Caches Name Type Operation ?
0b000 | Index Invalidate Index Set the state of the cache block at the specified
index to invalid.
This encoding may be used by software to inval-
idate the entire instruction cache by stepping
through all valid indices.
D Index
ST Index This encoding may be used by software to inval-
' idate the entire data cache by stepping through
all valid indices. Note that Index Store Tag
should be used to initialize the cache at pow-
erup.
0b001 Index Load Tag Index
0b010 Index Store Teg Index This encoding may be used by software to ini-
tialize the entire instruction or data caches by
stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Unspecified
0b100 I,D Hit Invalidate Address If the cache block contains the specified address,
set the state of the cache block to invalid.

ST Address This encoding may be used by software to inval-
idate arange of addresses from the instruction
cache by stepping through the address range by
the line size of the cache.

218 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE

Table 10.3 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Effective
Address
Operand
Code Caches Name Type Operation ?
Ob101 I Fill Address Fill the cache from the specified address.
D Address | Thisencoding may be used by softwareto inval-
idate arange of addresses from the data cache
ST Address by stepping through the address range by the
line size of the cache.
0b110 D Address
ST Address

Restrictions:
The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation(vAddr, DataReadReference)
CacheOp (op, VvAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical addressis used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */
MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 219

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Load Linked Word LL

220

31 26 25 21 20 16 15 0
LL
110000 base rt offset
6 5 5 16
Format: LL rt, offset (base) MIPS32

Purpose: Load Linked Word
To load aword from memory for an atomic read-modify-write

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
seguence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and 1/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition. The addressed |ocation may be uncached
for the M4K core.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is
non-zero, an Address Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword
LLbit « 1

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:
Thereisno Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

MIPS32® M4K™ Processor Core Software User’'s Manual, Revision 02.03 221
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Prefetch PREF

31 26 25 21 20 16 15 0
PREF .
110011 base hint offset
6 5 5 16
Format: PREF hint,offset (base) MIPS32

Purpose: Prefetch
To move data between memory and cache.

Description: prefetch_memory (GPR[base] + offset)

PREF adds the 16-hit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the datais expected to be used.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition isignored and no data movement occurs.However even if no datais
moved, some action that is not architecturally visible, such aswriteback of adirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as abyproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., ksegl), the programmed coherency
attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by aload or store to the effective address.

Table 10.1 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched datais expected to be read (not modified).
Action: Fetch data asif for aload.

1 store Use: Prefetched datais expected to be stored or modified.
Action: Fetch data as if for a store.

2-3 Reserved

4 load_streamed Use: Prefetched datais expected to be read (not modified) but not reused
extensively; it “streams’ through cache.

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams’ through cache.

6 load_retained Use: Prefetched datais expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

222 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Prefetch PREF

Table 10.1 Values of hint Field for PREF Instruction

7 store_retained Use: Prefetched datais expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

8-24 Reserved

25 writeback_invalidate (also
known as “nudge”)

26-29
30
31

Restrictions:
None

Operation:
vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have trangations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typicaly, this only occurs in systems which have
high-reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 223

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Store Conditional Word SC

224

31 26 25 21 20 16 15 0
SC
111000 base rt offset
6 5 5 16
Format: SC rt, offset (base) M1PS32

Purpose: Store Conditional Word

To store aword to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] <« GPR[rt], GPR[rt] « 1
else GPR[rt] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

e The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

e A, indicating success, iswritten into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt. On the M4K core, the SRAM
interface supports alock protocol and the success or failure can be indicated by external hardware.

If the following event occurs between the execution of LL and SC, the SC fails:

* AnERET instruction is executed.
If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

* A memory accessinstruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

» Theinstructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:
» Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
addressinthe LL and SC. The addressisthe same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Store Conditional Word

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] « 03! || LLbit

Exceptions:
TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1, (T0) # load counter
ADDI T2, Tl, 1 # increment
SC T2, (TO0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

SC

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

|ation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on

uniprocessor systems that do not support cached coherent memory access types.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

225

Synchronize Shared Memory SYNC

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 e SYNC
000000 00 0000 0000 0000 0 yp 001111
6 15 5 6
Format: SYNC (stype = 0 implied) MIPS32

Purpose: Synchronize Shared Memory
To order loads and stores.

Description:
Smple Description:

* SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the
SYNC must be completed before the loads and stores after the SYNC are allowed to start.

* Loads are completed when the destination register is written. Stores are completed when the stored valueis visi-
ble to every other processor in the system.

* SYNCiisrequired, potentially in conjunction with SSNOP (in Release 1 of the Architecture) or EHB (in Release
2 of the Architecture), to guarantee that memory reference results are visible across operating mode changes. For
example, a SYNC isrequired on entry to and exit from Debug Mode to guarantee that memory affects are han-
dled correctly.

Detailed Description:

* SYNC does not guarantee the order in which instruction fetches are performed. The stype values 1-31 are
reserved for future extensions to the architecture. A value of zero will always be defined such that it performsall
defined synchronization operations. Non-zero values may be defined to remove some synchronization opera-

tions. As such, software should never use a non-zero value of the stype field, as this may inadvertently cause
future failures if non-zero values remove synchronization operations.

» The SYNC instruction is externalized on the SRAM interface of the M4K core. External logic can use thisinfor-
mation in a system-dependent manner to enforce memory ordering between various memory elementsin the sys-
tem.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:
None

226 MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Enter Standby Mode WAIT

31 26 25 24 6 5 0
COPO CO . WAIT
010000 1 Implementation-Dependent Code 100000
6 1 19 6
Format: WAIT MI1PS32

Purpose: Enter Standby Mode
Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipelineis stalled and when all external requests are
completed, the processor's main clock is stopped. The processor will restart when reset (SI_Reset or
Sl_ColdReset) is signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the M4K
core does not use the code field in thisinstruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).
Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter lower power mode
I+l:/* Potential interrupt taken here */

Exceptions:
Coprocessor Unusable Exception

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03 227

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

228 MIPS32® M4K™ Processor Core Software User’'s Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Chapter 11

MIPS16e™ Application-Specific Extension to the MIPS32®
Instruction Set

This chapter describes the MIPS16e ™ ASE asimplemented in the M4K core. Refer to \blume I'V-a of the MIPS32

Architecture Reference Manual for ageneral description of the MIPS16e ASE as well asinstruction descriptions.

This chapter covers the following topics:

e Section 11.1 “Instruction Bit Encoding”

e Section 11.2 “Instruction Listing”

11.1 Instruction Bit Encoding

Table 11.2 through Table 11.9 describe the encoding used for the MIPS16e ASE. Table 11.1 describes the meaning
of the symbols used in the tables.

Table 11.1 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

%

Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction cause a Reserved Instruction Exception.

(Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction cause a Reserved Instruction Exception.

Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc. when
one of these encodingsis used. If no instruction is encoded with this value, executing such an
instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings or coprocessor
instruction encodings for a coprocessor to which accessis allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which accessis not allowed).

Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 | SA. Software should avoid using these operation or field codes.

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

229

MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

Table 11.2 MIPS16e Encoding of the Opcode Field

opcode | hits13..11
0 1 2 3 4 5 6 7
bits 15..14 000 001 010 011 100 101 110 111
0| 00 | ADDIUSP! | ADDIUPC2 B JAL(X) & BEQZ BNEZ SHIFT S B
1] 01 | RR-AS | ApDIus? SLTI SLTIU 188 LI CMPI B
2| 10 LB LH LWSP* LW LBU LHU LWPCS B
3| 11 SB SH SWspb Sw RRR RR3 | EXTEND S B
1. The ADDIUSP opcodeis used by the ADDIU rx, sp, immediate instruction
2. The ADDIUPC opcodeis used by the ADDIU rx, pc, immediate instruction
3. The ADDIUS opcode is used by the ADDIU rx, immediate instruction
4. The LWSP opcodeis used by the LW rx, offset(sp) instruction
5. The LWPC opcode is used by the LW rx, offset(pc) instruction
6. The SWSP opcode is used by the SW rx, offset(sp) instruction
Table 11.3 MIPS16e JAL(X) Encoding of the x Field
X bit 26
0 1
JAL JALX
Table 11.4 MIPS16e SHIFT Encoding of the f Field
f bits 1..0
0 1 2 3
00 01 10 11
SLL B SRL SRA
Table 11.5 MIPS16e RRI-A Encoding of the f Field
f bit 4
0 1
ADDIUY B
1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction
Table 11.6 MIPS16e 18 Encoding of the funct Field
funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BTEQZ | BTNEZ | swrAsP!| ADJSP? | SVRSS | movazr® * MOVR32*

1. The SWRASP function is used by the SW ra, offset(sp) instruction

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

11.1 Instruction Bit Encoding

2. The ADJSP function is used by the ADDIU sp, immediate instruction
3. The MOV 32R function is used by the MOVE r32, rz instruction
4, The MOVR32 function is used by the MOVE ry, r32 instruction

Table 11.7 MIPS16e RRR Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
B ADDU B SUBU

Table 11.8 MIPS16e RR Encoding of the Funct Field

funct bits2..0
0 1 2 3 4 5 6 7
bits 4..3 000 001 010 011 100 101 110 111
0| 00 |JAL)R(C) S| SDBBP SLT SLTU SLLV BREAK SRLV SRAV
1] 01 B * CMP NEG AND OR XOR NOT
2| 10 MFHI CNVT§ MFLO B B * B B
3|11 | MULT MULTU DIV DIVU B B B B
Table 11.9 MIPS16e 18 Encoding of the s Field when funct=SVRS
S bit 7
0 1
RESTORE | SAVE
Table 11.10 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)
ry bits 7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
JR rx JRra JALR * JRC rx JRCra JALRC *
Table 11.11 MIPS16e RR Encoding of the ry Field when funct=CNVT
[ry | bits7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
ZEB ZEH B * SEB SEH B *

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03
Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

231

MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

11.2 Instruction Listing

Table 11.12 through 11.19 list the MIPS16e instruction set.

Table 11.12 MIPS16e Load and Store Instructions

Extensible

Mnemonic Instruction Instruction
LB Load Byte Yes
LBU Load Byte Unsigned Yes
LH Load Halfword Yes
LHU Load Halfword Unsigned Yes
LW Load Word Yes
SB Store Byte Yes
SH Store Halfword Yes
SW Store Word Yes

Table 11.13 MIPS16e Save and Restore Instructions

Extensible

Mnemonic Instruction Instruction
RESTORE Restore Registers and Deallocate Stack Frame Yes
SAVE Save Registers and Setup Stack Frame Yes

Table 11.14 MIPS16e ALU Immediate Instructions

Extensible

Mnemonic Instruction Instruction
ADDIU Add Immediate Unsigned Yes
CMPI Compare Immediate Yes
LI Load Immediate Yes
SLTI Set on Less Than Immediate Yes
SLTIU Set on Less Than Immediate Unsigned Yes

Table 11.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Extensible
Mnemonic Instruction Instruction
ADDU Add Unsigned No
AND AND No
CMP Compare No
232 MIPS32® M4K™ Processor Core Software User’'s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

11.2 Instruction Listing

Table 11.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Extensible

Mnemonic Instruction Instruction
MOVE Move No
NEG Negate No
NOT Not No
OR OR No
SEB Sign-Extend Byte No
SEH Sign-Extend Halfword No
SLT Set on Less Than No
SLTU Set on Less Than Unsigned No
SUBU Subtract Unsigned No
XOR Exclusive OR No
ZEB Zero-Extend Byte No
ZEH Zero-Extend Halfword No

Table 11.16 MIPS16e Special Instructions

Extensible

Mnemonic Instruction Instruction
BREAK Breakpoint No
SDBBP Software Debug Breakpoint No
EXTEND Extend No

Table 11.17 MIPS16e Multiply and Divide Instructions

Extensible

Mnemonic Instruction Instruction
DIV Divide No
DIVU Divide Unsigned No
MFHI Move From HI No
MFLO Move From LO No
MULT Multiply No
MULTU Multiply Unsigned No

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

233

MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

Table 11.18 MIPS16e Jump and Branch Instructions

Extensible

Mnemonic Instruction Instruction
B Branch Unconditional Yes
BEQZ Branch on Equal to Zero Yes
BNEZ Branch on Not Equal to Zero Yes
BTEQZ Branch on T Equal to Zero Yes
BTNEZ Branch on T Not Equal to Zero Yes
JAL Jump and Link No
JALR Jump and Link Register No
JALRC Jump and Link Register Compact No
JALX Jump and Link Exchange No
JR Jump Register No
JRC Jump Register Compact No

Table 11.19 MIPS16e Shift Instructions

Extensible

Mnemonic Instruction Instruction
SRA Shift Right Arithmetic Yes
SRAV Shift Right Arithmetic Variable No
SLL Shift Left Logical Yes
SLLV Shift Left Logical Variable No
SRL Shift Right Logical Yes
SRLV Shift Right Logical Variable No

234 MIPS32® M4K™ Processor Core Software User’'s Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

Appendix A

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document sinceitslast
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture

document

Revision

Date

Description

00.90

June 27, 2002 Preliminary release

01.00

August 28, 2002 .

Initial commercial release.

Removed TLB-related instruction descriptions from Chapter 10,
“M4K™ Processor Core Instructions’ on page 207 The associ-
ated opcodes are shown asreserved in Table 10.9.

Updated HSS field in SRSCtl register to show possible values.
Added description of MT field in Config register that was previ-
ously missing.

Changed KO, KU, and K23 fields in Config register to be
read-only, with a static value of 2.

01.01

August 29, 2002 o

Removed EIC field from IntCtl register, per change in MIPS32
Release 2 Architecture. External interrupt controller modeis
specified by Config3ygc.

01.02

December 15, 2003

CPO Configl register: Added CA field description, corrected
typoinlS, IL, IA, DS, DL, DA field description.

Trademark updates

Replaced reference to obsolete MD00232 with MD00086
Updated crossrefsin Status register description

01.03

October 29,2004

Added CorExtend Unusable exception
Added note that EJTAG accesses and external memory accesses
are serialized by the core

02.00

June 22, 2006 o

Corrected minor errors related to EJTAG trace.

Clarified read-only nature of several CPO register fields and
removed several referencesto ASID since the M4K core does not
containaTLB.

Clarified description of mapped and unmapped segments with
FM-based memory management unit.

Added description on possible uses for trace triggers.

02.01

September 28, 2006 ¢

Minor changes for addition of M4K Lite core to the M4K family.

02.02

March 21, 2008 .

Fixed select number for Debug? register

02.03

August 29, 2008 -

Fixed address for Data Value Match Register

MIPS32® M4K™ Processor Core Software User's Manual, Revision 02.03

Copyright © 2002-2008 MIPS Technologies Inc. All rights reserved.

235

	MIPS32® M4K™ Processor Core Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32® M4K™ Processor Core
	1.1 Features
	1.2 M4K™ Core Block Diagram
	1.2.1 Required Logic Blocks
	1.2.1.1 Execution Unit
	1.2.1.2 Multiply/Divide Unit (MDU)
	1.2.1.3 System Control Coprocessor (CP0)
	1.2.1.4 Memory Management Unit (MMU)
	1.2.1.5 SRAM Interface
	1.2.1.6 Power Management

	1.2.2 Optional Logic Blocks
	1.2.2.1 MIPS16e™ Application Specific Extension
	1.2.2.2 EJTAG Controller
	1.2.2.3 Coprocessor 2 Interface (CP2)
	1.2.2.4 CorExtend® User Defined Instructions (UDI)

	Pipeline of the M4K™ Core
	2.1 Pipeline Stages
	2.1.1 I Stage: Instruction Fetch
	2.1.2 E Stage: Execution
	2.1.3 M Stage: Memory Fetch
	2.1.4 A Stage: Align
	2.1.5 W Stage: Writeback

	2.2 Multiply/Divide Operations
	2.3 MDU Pipeline (High-Performance MDU)
	2.3.1 32x16 Multiply (High-Performance MDU)
	2.3.2 32x32 Multiply (High-Performance MDU)
	2.3.3 Divide (High-Performance MDU)

	2.4 MDU Pipeline (Area-Efficient MDU)
	2.4.1 Multiply (Area-Efficient MDU)
	2.4.2 Multiply Accumulate (Area-Efficient MDU)
	2.4.3 Divide (Area-Efficient MDU)

	2.5 Branch Delay
	2.6 Data Bypassing
	2.6.1 Load Delay
	2.6.2 Move from HI/LO and CP0 Delay

	2.7 Coprocessor 2 Instructions
	2.8 Interlock Handling
	2.9 Slip Conditions
	2.10 Instruction Interlocks
	2.11 Hazards
	2.11.1 Types of Hazards
	2.11.1.1 Execution Hazards
	2.11.1.2 Instruction Hazards

	2.11.2 Instruction Listing
	2.11.2.1 Instruction Encoding

	2.11.3 Eliminating Hazards

	Memory Management of the M4K™ Core
	3.1 Introduction
	3.2 Modes of Operation
	3.2.1 Virtual Memory Segments
	3.2.1.1 Unmapped Segments
	3.2.1.2 Mapped Segments

	3.2.2 User Mode
	3.2.3 Kernel Mode
	3.2.3.1 Kernel Mode, User Space (kuseg)
	3.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)
	3.2.3.3 Kernel Mode, Kernel Space 1 (kseg1)
	3.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)
	3.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

	3.2.4 Debug Mode
	3.2.4.1 Conditions and Behavior for Access to drseg, EJTAG Registers
	3.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

	3.3 Fixed Mapping MMU
	3.4 System Control Coprocessor

	Exceptions and Interrupts in the M4K™ Core
	4.1 Exception Conditions
	4.2 Exception Priority
	4.3 Interrupts
	4.3.1 Interrupt Modes
	4.3.1.1 Interrupt Compatibility Mode
	4.3.1.2 Vectored Interrupt Mode
	4.3.1.3 External Interrupt Controller Mode

	4.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

	4.4 GPR Shadow Registers
	4.5 Exception Vector Locations
	4.6 General Exception Processing
	4.7 Debug Exception Processing
	4.8 Exceptions
	4.8.1 Reset/SoftReset Exception
	4.8.2 Debug Single Step Exception
	4.8.3 Debug Interrupt Exception
	4.8.4 Non-Maskable Interrupt (NMI) Exception
	4.8.5 Interrupt Exception
	4.8.6 Debug Instruction Break Exception
	4.8.7 Address Error Exception - Instruction Fetch/Data Access
	4.8.8 Bus Error Exception - Instruction Fetch or Data Access
	4.8.9 Debug Software Breakpoint Exception
	4.8.10 Execution Exception - System Call
	4.8.11 Execution Exception - Breakpoint
	4.8.12 Execution Exception - Reserved Instruction
	4.8.13 Execution Exception - Coprocessor Unusable
	4.8.14 Execution Exception - CorExtend Unusable
	4.8.15 Execution Exception - Coprocessor 2 Exception
	4.8.16 Execution Exception - Implementation-Specific 1 Exception
	4.8.17 Execution Exception - Integer Overflow
	4.8.18 Execution Exception - Trap
	4.8.19 Debug Data Break Exception
	4.8.20 Complex Break Exception

	4.9 Exception Handling and Servicing Flowcharts

	CP0 Registers of the M4K™ Core
	5.1 CP0 Register Summary
	5.2 CP0 Register Descriptions
	5.2.1 HWREna Register (CP0 Register 7, Select 0)
	5.2.2 BadVAddr Register (CP0 Register 8, Select 0)
	5.2.3 Count Register (CP0 Register 9, Select 0)
	5.2.4 Compare Register (CP0 Register 11, Select 0)
	5.2.5 Status Register (CP0 Register 12, Select 0)
	5.2.6 IntCtl Register (CP0 Register 12, Select 1)
	5.2.7 SRSCtl Register (CP0 Register 12, Select 2)
	5.2.8 SRSMap Register (CP0 Register 12, Select 3)
	5.2.9 Cause Register (CP0 Register 13, Select 0)
	5.2.10 Exception Program Counter (CP0 Register 14, Select 0)
	5.2.11 Processor Identification (CP0 Register 15, Select 0)
	5.2.12 EBase Register (CP0 Register 15, Select 1)
	5.2.13 Config Register (CP0 Register 16, Select 0)
	5.2.14 Config1 Register (CP0 Register 16, Select 1)
	5.2.15 Config2 Register (CP0 Register 16, Select 2)
	5.2.16 Config3 Register (CP0 Register 16, Select 3)
	5.2.17 Debug Register (CP0 Register 23, Select 0)
	5.2.18 Trace Control Register (CP0 Register 23, Select 1)
	5.2.19 Trace Control2 Register (CP0 Register 23, Select 2)
	5.2.20 User Trace Data Register (CP0 Register 23, Select 3)
	5.2.21 TraceBPC Register (CP0 Register 23, Select 4)
	5.2.22 Debug2 Register (CP0 Register 23, Select 6)
	5.2.23 Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	5.2.24 ErrorEPC (CP0 Register 30, Select 0)
	5.2.25 DeSave Register (CP0 Register 31, Select 0)

	Hardware and Software Initialization of the M4K™ Core
	6.1 Hardware-Initialized Processor State
	6.1.1 Coprocessor 0 State
	6.1.2 Bus State Machines
	6.1.3 Static Configuration Inputs
	6.1.4 Fetch Address

	6.2 Software Initialized Processor State
	6.2.1 Register File
	6.2.2 Coprocessor 0 State

	Power Management of the M4K™ Core
	7.1 Register-Controlled Power Management
	7.2 Instruction-Controlled Power Management

	EJTAG Debug Support in the M4K™ Core
	8.1 Debug Control Register
	8.2 Hardware Breakpoints
	8.2.1 Features of Instruction Breakpoint
	8.2.2 Features of Data Breakpoint
	8.2.3 Features of Complex Breakpoints
	8.2.4 Conditions for Matching Breakpoints
	8.2.4.1 Conditions for Matching Instruction Breakpoints
	8.2.4.2 Conditions for Matching Data Breakpoints

	8.2.5 Debug Exceptions from Breakpoints
	8.2.5.1 Debug Exception by Instruction Breakpoint
	8.2.5.2 Debug Exception by Data Breakpoint

	8.2.6 Breakpoint Used as TriggerPoint
	8.2.7 Instruction Breakpoint Registers
	8.2.7.1 Instruction Breakpoint Status (IBS) Register (0x1000)
	8.2.7.2 Instruction Breakpoint Address n (IBAn) Register (0x1100 + n * 0x100)
	8.2.7.3 Instruction Breakpoint Address Mask n (IBMn) Register (0x1108 + n*0x100)
	8.2.7.4 Instruction Breakpoint ASID n (IBASIDn) Register (0x1110 + n*0x100)
	8.2.7.5 Instruction Breakpoint Control n (IBCn) Register (0x1118 + n*0x100)
	8.2.7.6 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n*0x100)
	8.2.7.7 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)

	8.2.8 Data Breakpoint Registers
	8.2.8.1 Data Breakpoint Status (DBS) Register (0x2000)
	8.2.8.2 Data Breakpoint Address n (DBAn) Register (0x2100 + 0x100 * n)
	8.2.8.3 Data Breakpoint Address Mask n (DBMn) Register (0x2108 + 0x100 * n)
	8.2.8.4 Data Breakpoint ASID n (DBASIDn) Register (0x2110 + 0x100 * n)
	8.2.8.5 Data Breakpoint Control n (DBCn) Register (0x2118 + 0x100 * n)
	8.2.8.6 Data Breakpoint Value n (DBVn) Register (0x2120 + 0x100 * n)
	8.2.8.7 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n*0x100)
	8.2.8.8 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)
	8.2.8.9 Data Value Match (DVM) Register (0x2ffo)

	8.2.9 Complex Breakpoint Registers
	8.2.9.1 Complex Break and Trigger Control (CBTC) Register (0x8000)
	8.2.9.2 Priming Condition A (PrCndAI/Dn) Registers
	8.2.9.3 Stopwatch Timer Control (STCtl) Register (0x8900)
	8.2.9.4 Stopwatch Timer Count (STCnt) Register (0x8908)

	8.3 Complex Breakpoint Usage
	8.3.1 Checking for Presence of Complex Break Support
	8.3.2 General Complex Break Behavior
	8.3.3 Usage of Pass Counters
	8.3.4 Usage of Tuple Breakpoints
	8.3.5 Usage of Priming Conditions
	8.3.6 Usage of Data Qualified Breakpoints
	8.3.7 Usage of Stopwatch Timers

	8.4 Test Access Port (TAP)
	8.4.1 EJTAG Internal and External Interfaces
	8.4.2 Test Access Port Operation
	8.4.2.1 Test-Logic-Reset State
	8.4.2.2 Run-Test/Idle State
	8.4.2.3 Select_DR_Scan State
	8.4.2.4 Select_IR_Scan State
	8.4.2.5 Capture_DR State
	8.4.2.6 Shift_DR State
	8.4.2.7 Exit1_DR State
	8.4.2.8 Pause_DR State
	8.4.2.9 Exit2_DR State
	8.4.2.10 Update_DR State
	8.4.2.11 Capture_IR State
	8.4.2.12 Shift_IR State
	8.4.2.13 Exit1_IR State
	8.4.2.14 Pause_IR State
	8.4.2.15 Exit2_IR State
	8.4.2.16 Update_IR State

	8.4.3 Test Access Port (TAP) Instructions
	8.4.3.1 BYPASS Instruction
	8.4.3.2 IDCODE Instruction
	8.4.3.3 IMPCODE Instruction
	8.4.3.4 ADDRESS Instruction
	8.4.3.5 DATA Instruction
	8.4.3.6 CONTROL Instruction
	8.4.3.7 ALL Instruction
	8.4.3.8 EJTAGBOOT Instruction
	8.4.3.9 NORMALBOOT Instruction
	8.4.3.10 FASTDATA Instruction
	8.4.3.11 TCBCONTROLA Instruction
	8.4.3.12 TCBCONTROLB Instruction
	8.4.3.13 TCBDATA Instruction

	8.5 EJTAG TAP Registers
	8.5.1 Instruction Register
	8.5.2 Data Registers Overview
	8.5.2.1 Bypass Register
	8.5.2.2 Device Identification (ID) Register
	8.5.2.3 Implementation Register
	8.5.2.4 EJTAG Control Register

	8.5.3 Processor Access Address Register
	8.5.3.1 Processor Access Data Register

	8.5.4 Fastdata Register (TAP Instruction FASTDATA)

	8.6 TAP Processor Accesses
	8.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

	8.7 Trace Mechanisms
	8.8 iFlowtrace™ Mechanism
	8.8.1 A Simple Instruction-Only Tracing Scheme
	8.8.1.1 Trace Inputs
	8.8.1.2 Trace Outputs

	8.8.2 ITCB Overview
	8.8.3 ITCB IFlowTrace Interface
	8.8.4 ITCB IFlowTrace Storage Representation
	8.8.5 ITCB IFlowTrace Interface
	8.8.6 ITCB IFlowTrace Off-Chip Interface
	8.8.7 Breakpoint-Based Enabling of Tracing

	8.9 EJTAG Trace
	8.9.1 Processor Modes
	8.9.2 Software Versus Hardware Control
	8.9.3 Trace Information
	8.9.4 Load/Store Address and Data Trace Information
	8.9.5 Programmable Processor Trace Mode Options
	8.9.6 Programmable Trace Information Options
	8.9.6.1 User Data Trace

	8.9.7 Enable Trace to Probe/On-Chip Memory
	8.9.8 TCB Trigger
	8.9.9 Cycle by Cycle Information
	8.9.10 Trace Message Format
	8.9.11 Trace Word Format

	8.10 PDtrace™ Registers (Software Control)
	8.11 Trace Control Block (TCB) Registers (Hardware Control)
	8.11.1 TCBCONTROLA Register
	8.11.2 TCBCONTROLB Register
	8.11.3 TCBDATA Register
	8.11.4 TCBCONFIG Register (Reg 0)
	8.11.5 TCBTW Register (Reg 4)
	8.11.6 TCBRDP Register (Reg 5)
	8.11.7 TCBWRP Register (Reg 6)
	8.11.8 TCBSTP Register (Reg 7)
	8.11.9 TCBTRIGx Register (Reg 16-23)
	8.11.10 Register Reset State

	8.12 EJTAG Trace Enabling
	8.12.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	8.12.2 Turning On PDtrace™ Trace
	8.12.3 Turning Off PDtrace™ Trace
	8.12.4 TCB Trace Enabling
	8.12.5 Tracing a Reset Exception

	8.13 TCB Trigger logic
	8.13.1 Trigger Units Overview
	8.13.2 Trigger Source Unit
	8.13.3 Trigger Control Units
	8.13.4 Trigger Action Unit
	8.13.5 Simultaneous Triggers
	8.13.5.1 Prioritized Trigger Actions
	8.13.5.2 OR’ed Trigger Actions

	8.14 EJTAG Trace Cycle-by-Cycle Behavior
	8.14.1 Fifo Logic in PDtrace and TCB Modules
	8.14.2 Handling of Fifo Overflow in the PDtrace Module
	8.14.3 Handling of Fifo Overflow in the TCB
	8.14.3.1 Probe Width and Clock-Ratio Settings

	8.14.4 Adding Cycle Accurate Information to the Trace

	8.15 TCB On-Chip Trace Memory
	8.15.1 On-Chip Trace Memory Size
	8.15.2 Trace-From Mode
	8.15.3 Trace-To Mode

	Instruction Set Overview
	9.1 CPU Instruction Formats
	9.2 Load and Store Instructions
	9.2.1 Scheduling a Load Delay Slot
	9.2.2 Defining Access Types

	9.3 Computational Instructions
	9.3.1 Cycle Timing for Multiply and Divide Instructions

	9.4 Jump and Branch Instructions
	9.4.1 Overview of Jump Instructions
	9.4.2 Overview of Branch Instructions

	9.5 Control Instructions
	9.6 Coprocessor Instructions

	M4K™ Processor Core Instructions
	10.1 Understanding the Instruction Descriptions
	10.2 M4K™ Opcode Map
	10.3 MIPS32® Instruction Set for the M4K™ core

	MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set
	11.1 Instruction Bit Encoding
	11.2 Instruction Listing

	Revision History

