
Beck, Gupta Lab #1

1

Version 2 : 2.13.2006
Idan Beck (ib54)

Rohit Gupta (rg242)
Wednesday 4:30

Lab 1: Stop Watch
February 8th, 2006

Introduction

The purpose of this lab was to build a stopwatch, with a start/stop, reset, and split

function. The reset button would only work if the stopwatch is stopped, and the split

function will copy the current measured interval to the second line of the display without

disturbing the current time displayed on the first line. The numeric display is a 2 lined, 16

character LCD. The outcome was a successful working stopwatch.

Homework

2. Referring to the protoboard design page (and, of course, the Mega32 datasheet),

describe the function of each of the components connected to pins 9, 10, 30,31,32

of the MCU.

Pin 9: This pin is connected to the RESET push button

Pin 10: This pin is connected to Vcc which in our case is usually +5V.

Pin 30: This pin is AVCC or is simply connected to Vcc if the analog digital

converter isn’t being used. If it is being used pin 11 should be connected to V cc

through a low pass filter.

Pin 31: This pin is connected to ground.

Pin 32: This pin is connected to the analog reference voltage used for the analog

to digital converter.

3. Estimate the Thevinin equvalent output resistance of an i/o pin from the Mega32

data sheet. There will be two separate estimates corresponding to whether the

output is logic-high or logic-low.

From the DC characteristics sheet we found that the DC current per i/o pin is 40

mA. This means for an output high the Thevenin resistance would be about,

http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Protoboard476/index.html

Beck, Gupta Lab #1

2

assuming a high logic of +5 V (since the high voltage is in-between 4.4V and

5.0V),

And for a logic low of about .7 V, we actually have a lower out put resistance of

17.5 Ω . The logic levels will vary and thusly the resistances will as well, but this

is marginal and taken into account.

4. Look up the specifications (foward voltage and current) for a typical LED. Use

these specifications to justify the choice of 300 ohms for the resistor on the lower

right side of the protoboard design (revision 2).

From looking at the datasheet for the Panasonic: LN28RALUS the forward voltage

is ~ +4V and the forward current is ~25mA. This is for a wavelength of ~660 nm

or approximately red. This justifies using a 300 Ω resistor since this is a resistance

that is in series with the LED. Since Vcc is tied to +9-12 V is too much voltage

and would blow out the LED. The 300 ohm resistor produces a voltage divider

which dissipates 65% of the voltage giving us a voltage range of 3.2V – 4.2V.

This allows the LED to operate without burning out.

http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Protoboard476/index.html

Beck, Gupta Lab #1

3

5.

Timer@0 Timer Running

Timer not @ 0

Check Button States
Includes debouncing

state machine for
start/stop

Split Press Update
LCDbuffer[1]

Increment
Ticks

Previous
state Start.
Now press

Stop
ISR[TIM0_CMP]

Increment
DecasecondsTicks==10

Previous state stop, now press Start

Dsec==10 Increment
seconds Sec==60 Increment

minutes

Update
LCDBuffer[0]

Update display

DSEC<10

SEC<60

Previous state stop, now
press Stop/Reset

Beck, Gupta Lab #1

4

Design and Test

Initial Setup:
Hardware
 This lab had very simple hardware interface which consisted of an LCD
display that was wired up to port C which we interfaced with using the LCD
library functions. The buttons were wired up to port D which passed logic lows to
the CPU when they were pushed. Also later we implemented a tone generator
for every button pressed, using the 8 bit timer2 on the CPU, using a piezo driven
speaker that was hooked up to port B.0 which was toggled every time the timer2
compare interrupt was thrown. This produced a 1.4 V peak to peak signal in the
speaker that produced a tone.

Software
 We wrote most of the code before we got to lab. The code was written to
comply with all the specifications stated on the assignment sheet. After getting
all the basics working we also implemented a tone generator that produced a
different tone for each button pressed. This was implemented using the timer2
TIM2_CMP interrupt service routine. The frequency of the tone was altered for
each button press by changing the OCR2 register so that port B.0 was toggled
more frequently or less frequently.

Design
Design of the Hardware
 No design of the hardware or hardware interface was needed here except
for the actual construction of the protoboard on which the LCD display was
mounted.

Design of the Software
 The software was designed in very close compliance with the state
machine. Essentially when the CPU is powered on and boots the program
initializes all the proper variables and registers to the proper values. Timer0 and
Timer2 are turned on and their TCCR registers are set.
 Timer0 was used for the actual timing algorithms in the stop watch and so
it was set to a divide by 64 prescalar. This meant that if the OCR0 register was
set to the value of 250 the timer0 compare interrupt service routine was called a
thousand times a second. We used this to set up a variable tick which was
initially set to 0. This variable was incremented by one every time the ISR was
called (only if the tim er w as “on” w hich is explained m ore later). T he value of
ticks controlled all the timing calculations such that after 100 ticks the tick
variable was reset to 0 and the decaSeconds variable was incremented by one.
Similar calculations were performed for seconds and minutes (e.g. 10
decaSeconds +1 second ; 60 seconds +1 minute). Also every time a
decaSecond was incremented the LCD string buffer for the first line was updated
and the LCD display was updated as well. This allowed us to only update the

Beck, Gupta Lab #1

5

LCD display and buffer when we knew something had changed and saved
precious CPU cycles which could be crucial in a precision timing program.
 Timer2 was used for the purpose of generating tones every time the
buttons w ere pressed. T his tim er’s T C C R w as set to a prescalar w here w e w ere
happy with the frequency that it output. The tone signal was generated by setting
the OCR2 to a value where each time the compare ISR was called port B.0 was
toggled between 0 and 1. This output a .7V peak to peak square wave. Since
no real frequency specifications were given we played around with the prescalar
until the base frequency (when OCR2 = 200) sounded pleasing to the ear. To
alter the tone for the different button presses we used different OCR2 values and
only toggled when a button press was flagged (for button2 this was not the same
as finding the logic level on that bit to be low since this button required a
debouncer).
 The rest of the initializer simply sets up the LCD display and all the
variables such that the timer is initialized at time 0. The last thing the program
does before entering the main program loop is initialize both the LCD buffer
strings to “0:00.0” and update the LC D display to display the LC D buffer since
we want to know that when we turn on the stop watch that it is actually on. Not
only is this a good debug function but also it is a general specification expected
in a user interface.
 At this point our program was pretty much ready to operate other than the
button checking algorithm. This was a simply algorithm. We set up a buttonFlag
array of three unsigned chars globally so that at any point the program could
simply index this array and find out w hat that specific button’s state w as. F or the
first two buttons this was simply done by checking the logic level of their
respective bits. For the third button (button2) we had to implement a debouncer
to eliminate the start/stop toggle variable to toggle an arbitrary number of times
and unreliable timing results. All of this was done in task3() while the update()
function was used to update the state of the program variables (and indirectly the
state of the machine) every time the appropriate button was pressed. For sake
of simplicity the start/stop functionality was hard coded into the debouncer and
utilizing a two generation memory could guarantee that the start/stop button
would not double bounce and maintain its value even if the user held the button
down.

 T he start/stop button controlled a variable nam ed started w hich if it’s
value was 0 the timer stopped and the ISR would not increment the tick variable,
if it was 1 then the timer would be running and the ISR would increment the tick
variable. The reset button would set the started variable to 0 and reset all the
timing variables but would only be functional if the started was at 0 meaning the
timer was stopped. The split time would simply update the LCD buffer for the
second line and the LCD display was updated whenever the ticks were
incremented anyways so there was no need to call this function twice. The way
we implemented the split time button was that the elapsed time was recorded
when the button was released and while the button was pressed the elapsed
time display ran along side with the timer.

Beck, Gupta Lab #1

6

Testing, Hurdles and Solutions
(note, the software explained above was the final software)
 When we first tested our raw code we found that the timer was working
correctly except it was running at a very fast rate. This was rectified by changing
the value of a decaSecond from 10 ticks to 100 ticks (a simple define at the top
of the code done to anticipate any such timing calculation mistakes). The next
problem we noticed was that the start/stop button was skipping and not
debouncing properly. We utilized a two generation history variable to record the
previous state to when the button was pushed such that we could tell when the
button changed state and used this change to toggle the button flag rather than
use only the state machine. This allowed the user to hold down the button and
the timer would not perform any erratic functions. We also had to alter the task3()
buttonFlag routine timing to make sure that the program was checking the button
states at a proper interval since even using this two generation variable it was
possible to get defunct results with intervals that were too large or too small.
 After we had all of these things working we went on to implement the
signal generator for the speaker that was a different frequency for each button
press. This was all done using the timer2 compare ISR.

Questions
1) To measure the time-base accuracy we could toggle a port bit on the CPU and
plug it into an oscilloscope and see how accurately the ISR is being called to the
value we assume it to be (a thousandth of a second). The same could be done
for the decaSecond, second, or minute variables where every time they are
incremented a port bit is toggled, the resulting waveform them put into an
oscilloscope and the error found.

2) Wait-loops are software based and are not very accurate since the other code
in the loop will alter the refresh rate of the wait-loop. Also an interrupt will halt the
CPU and run the ISR code right away while a software based wait-loop will wait
until the C P U is done doing its current function before it can run it’s code.

3) As described above we used a polling loop at a certain interval to detect the
pushbutton states for all the of the push buttons.

4/5) design aspects are listed above, code is attached in the appendix.

Conclusions and observations:
 This lab was successful in that our code worked mostly when we got to lab
except for that the start/stop button seemed to be delayed (initially it
seemed it was a debouncing error). After looking over our code again, we
noticed that we were not saving the previous state of the stop watch
properly, and a quick fix made it work. We feel that we could have created
a more pleasing sound to each button rather than have a single frequency
being produced for the extra credit. We also think this lab could be

Beck, Gupta Lab #1

7

expanded by having a L C D “pow er on” button (possibly the first tim e the
start button is pushed), and an LCD automatic turn-off if the stopwatch is
stopped and has not been used for over a minute.

