Review: Upper Limb Prostheses

By Edward Yip
ULP Classifications

- Cosmetic
- Body-powered
- Externally-powered
 - Open/Close
 - Multi-finger
 - Multi-functional

Image source: [1-3], Data source [3]
Myoelectric Prostheses

- Using biological signals to control movement of prosthetic
Myoelectric Prostheses

- Uses electrodes to measure action potential
 - Normally obtains signal from two positions for opening/closing
- Emissions measured on skin surface
 - Microvolt level
- Electrodes
 - Signal amplified to use as controls for prosthetic motors
 - External source (6V battery) needed to operate motor

Data source [3]
Myoelectric Prostheses

• Flow diagram

Arm → Electrodes → Amplifier → EMG Signal

Prosthesis ← DAQ ← DSP

1. Feature extraction
2. Classification of signal

Data source [6,7]
Electrode Considerations

- Factors affecting EMG signal
 - Muscle atrophy
 - Muscle displacement after amputation or injury
- Changes in signal pattern over time
 - Electrode position
 - Sweat
 - Fatigue
Electrode Considerations

- **Konishi et al.**
 - **Purpose:** find optimal electrode position
 - **Band-type multi-electrode**
 - Ag-AgCl (10mm diameter)
 - Impedance converter
 - **Myoelectric signal amplifier**
 - Amplifier gain: 60dB
 - **Data processing**
 - Sampling Freq at 1 kHz
 - Two processing types: full wave rectification & 10Hz low-pass filtering to get IEMG
 - **Display data:** Radar plot IEMG

Data source [6]
Electrode Considerations

• Factors affecting EMG signal
 - Muscle atrophy
 - Muscle displacement after amputation or injury
• Changes in signal pattern over time
 - Electrode position
 - Sweat
 - Fatigue
Classifier

- Classifies extracted features into desired motion patterns
 - Herle et al:
 - Ex: Feed-forward neural network (FFNN)
 - Extension, flexion, pronation, supination
 - Feature extraction: amplitude, power spectrum, time-domain
Classifier

Figure 1. System architecture

Figure 5. Neural network architecture

Data source [6]
Classifier

- More degrees of freedom requires
 - More motors and more complex classification system
- Boschmann approach
 - Support Vector Machines (SVMs) used for robust, comprehensive classification
Myoelectric Prostheses

- **Pros**
 - Robust
 - Simple to implement
 - Non-invasive

- **Cons**
 - “Switch” operated
 - Limited number of channels of control
 - One joint movement at a time (2 D.O.F.)
 - Number of signal sources decreases with level of amputation
 - No sensory function

Myoelectric Prosthetic

• Touch Bionics – i-LIMB
 ▫ First commercially available “true 5-finger hand prosthesis”
 ▫ Controlled by action potential
 ▫ Two input myoelectric (SEMG)
 • Open/close fingers
 ▫ Independently driven motor in each finger
 • Computer in the back of the hand: interprets signals from electrodes

Image, data source [12]
i-LIMB cont’d

- **Drawback**
 - Finger control coupled with open/close function, so not completely independent
 - No sensory control to control grip strength
 - Pre-programmed grip patterns to learn
 - Signal not physiologically relevant
Multi-function

- Myoelectric Summary
 - Effective but limited
 - Non-physiologically relevant signals
 - Causes control complexity, complicates user training

- To circumvent:
 - Targeted Muscle Reinnervation (TMR)
 - Implanted electrodes
Targeted Muscle Reinnervation

- Neural-machine interface
 - Takes nerves that innervated severed limb, redirects them to proximal muscle and skin sites
 - Redirect high to low functional significance

Image source [14], Data source [15]
Targeted Muscle Reinnervation

- Muscles serve as biological amplifiers of motor commands
- Bipolar EMG electrodes placed on skin over reinnervated muscles

Image source [14,17], Data source [16]
Targeted Muscle Reinnervation

Data source [24]
Targeted Muscle Reinnervation

• **Pros**
 ▫ Simultaneous control of multiple D.O.F.
 • 14/21 D.O.F. (DeKa)
 ▫ Natural feel, connection to nervous system
 ▫ Potential for sensory feedback
 • TSR

• **Cons**
 ▫ Invasive
 ▫ Controlling EMG signal isolation
 ▫ SEMG concerns

Data source [17, 18]
Implanted Electrodes

- Neuroprosthetic interface
 - Allows for sensory feedback and higher number of control channels
 - Four miniature electrodes (thin-film longitudinal intra-fascicular electrodes [tfLIFE]) implanted in the nerve

Image source [19, 20], data source [19,11]
Implanted Electrodes

• Pros
 ▫ Accurate, complex hand movement allowed
 ▫ Hand movement truly controlled by thought

• Cons
 ▫ Implant remains in patient only a month at a time
 ▫ Technology not yet perfected
 ▫ Invasive

Image source [21], data source [11]
Future Steps

- Ultimate goal:
 - Arm that ties directly into nervous system
- Increase degrees of freedom of prosthetic arm
- Feature Extraction
 - Optimizing classifier
- Sensory Functions
 - Targeted Sensory Reinnervation
 - FILMskin

Data source [22]
Future Steps

- Electrode technology (tfLIFE)
 - Biocompatibility
 - Integrity of signal
- Darpa Funded
 - JHU Applied Physics Laboratory
 - Rehabilitation Institute of Chicago
 - DeKa Research (Dean Kamen)
- European Union Funded
 - University of Rome (Bio-Medical Campus)

Data source [24]
References

13. PD Marasco, et al. “Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest” Brain; 2009: 132; 1441-1448
16. PD Marasco, et al. “Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest” Brain; 2009: 132; 1441-1448