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Introduction 

As you read this, there are thousands of chemical reactions going on in your body. Some are 

very fast, for instance, the binding of neurotransmitters in your brain occurs on a time scale of 

microseconds, while protein production has a time scale of seconds or minutes.  Understanding 

physiology requires understanding how chemicals react and how fast each reaction is. Chemical 

kinetics is the name given to the study of reaction speed. But why would an article on chemical 

kinetics appear in this electronics magazine? The short explanation is that hardware 

instantiated on an FPGA can accelerate the modeling of some reactions and is an interesting 

example of parallel computation.  The details follow. 

To make things specific, let’s consider one reaction, the breakdown of starch into sugar by the 

enzyme amylase.  Amylase is present in saliva and is the reason that rice or potato becomes 

sweeter as you chew, as the starch is converted to sugar.  An enzyme is a chemical which 

accelerates the reaction rate of another chemical, so you can immediately see that this is a 

nontrivial (and nonlinear) example. The reaction is often represented as  

amylase + starch  ↔ (amylase- bound-to-starch)  →  amylase + sugars 

 

Which should be read as: Amylase and starch in water solution react to form a loosely bound 

entity, which clips the starch apart into sugars. The sugars then fall off the amylase, so that the 

amylase is free to react with more starch. The bidirectional arrow representing the binding also 

suggests that the combination of amylase- bound-to-starch can also just fall apart without 

conversion to sugar. However, the second reaction, where the bound combination falls apart to 

the sugar products never reverses. This formulation is known as a Michaelis-Menten 

description of the reaction. 

There are three reaction rates associated with this reaction; the binding rate of amylase to 

starch, the unbinding rate of the combination back to amylase and starch, and the reaction rate 

to sugar.  Let us now consider what determines to reaction rates. Since the chemicals  are in a 

water solution, the individual molecules are dispersed and have to physically collide with each 

other to react. The rate at which they collide is partly determined by how many there are in a 

given volume. Doubling the concentration doubles the chances of collision and therefore the 

reaction rate.  The rate is also sensitive to all kinds of influences from temperature, pH, etc, but 

we will model all those effects as a rate constant independent of the concentration of the 

chemicals.   

Now we need a bit of notation. We will use square brackets to mean concentration of x, written 

[x]. We will call the rate constant of the binding reaction k1, the unbinding rate constant  k2, 



and the conversion rate constant k3. The proportionality of reaction rate with concentration 

implies that for the first reaction the rate is k1*[amylase]*[starch].  The classical way of solving 

this system is to convert the rates to differential equations, then solve the set of differential 

equations. Quite often, including this example, we cannot solve the equations analytically, but 

need to simulate the solutions. For these reactions we can write 

d [amylase]/dt  = - k1*[amylase]*[starch]   + ( k2+k3)*[ amylase- bound-to-starch]  

d[sugars]/dt = k3*[ amylase- bound-to-starch] 

Hidden in these equations is the assumption of differential smoothness in concentration. For 

huge numbers of molecules (like the number of water molecules in a teaspoon) differential 

smoothness makes sense because removing one molecule is completely undetectable.  But 

what if the volume of interest is a single cell that might have only a few copies of a molecule in 

a tiny volume? The concentration is still high, so the reaction goes quickly, but the 

concentration can only change in units of one molecule and cannot change smoothly, so the 

differential equation approach fails. Instead, you have to treat each molecule as having some 

probability of reacting. This finally leads us back to the topic of this article: Using an FPGA to 

accelerate probabilistic simulations of chemical reactions by counting reaction events based on 

random number generation.   

The algorithm 

The approach we will take is to step back to a more fundamental level than differential 

equations and treat each potential reaction event as a random occurrence, biased by chemical 

concentration and rate constants. But to emphasize that chemicals are discrete molecules, we 

will replace concentrations by number of molecules, with notation Nmolecule. During any small 

interval of time we can calculate the probability of the reaction occurring as the product of rate 

constants and number of molecules, just as before. So we could map reaction calculations to 

parallel multipliers on the FPGA, then ask if the product, say, k1*Namylase*Nstarch  is greater 

than a uniform random number and allow one reaction to occur if it is. However hardware 

multipliers tend  to be limited in number on FPGAs, relative to general logic elements so we 

need to simplify  the calculation. As explained in Salwinski and Eisenberg , if we compare each 

number of molecules  (and rate constant)  to a uniformly distributed random number  then the 

probability of (Nchemical>random-number) is proportional to number (or rate constant). Since 

each chemical number, rate constant and random number is independent, the probability of 

the product of the concentrations and rate constants be above some value is equal to the 

probability that  

(k1>rand1) && (Namylase>rand2) && (Nstarch>rand3) 

where && is the usual logical and operation. Thus we have replaced expensive multiplies with 



cheap, fast random number generation and logical operations. Each term of the differential 

equation is replaced with these stochastic operations and the left hand side rate term is 

replaced with an increment/decrement or no change operation. 

We still need to generate random numbers, without using multipliers.  It is possible to generate 

very high quality pseudorandom numbers using a fairly long shift register with exclusive-or 

feedback from the appropriate stages to stage 1. You can find out how to do this by searching 

for linear feedback shift register (for instance 

en.wikipedia.org/wiki/Linear_feedback_shift_register).  Hoogland et.al. show how to construct 

a high quality 16-bit or 32-bit pseudorandom number in one or two shift cycles by folding a long 

(127-bit) shift register into 16 sections and shifting all of them at once. The Verilog code will 

give details.  

Some care has to be taken that the actual reaction rates are not too large or too small.  Too 

large and more than one or two reactions may happen per time step which makes the process 

of computing the probabilities harder. Too small and the simulation takes too long.  I modified 

the system used by in Salwinski and Eisenberg to allow up to two reactions at each time step, 

whereas they used only one.  Limiting the actual reaction rate to an average probability of no 

more than 0.085/step keeps the error due to missed events below 0.01% (based on a Poisson 

distribution). If you can relax the missed events on 0.1% then a probability of 0.15 may be used. 

Computing the actual reaction rate means multiplying out the rate constant, and the one or 

two chemical concentrations (as a fraction of 2^16, since I used 16-bit concentrations). For 

instance, a first order reaction with rate constant 4096 and concentration 8192 would have a 

reaction probability of (4096/2^16)*(8192/2^16) or (1/16)*(1/8)=0.0078. 

Hardware organization 

The hardware on the FPGA is organized into several modules.  System control is a state machine 

which sequences through eight states. In the first state, all random numbers are generated and 

reaction results computed. In the next seven states, the reaction results are added/subtracted 

to the various chemical number counters. The logical result is a cycle of computing reactions, 

then updating chemical numbers on each time step. There is a chemical module instantiated for 

each different chemical and a reaction module for each different reaction path.  All of the 

reaction modules and all of the chemical modules compute their contribution to the current 

time step in eight clock cycles, independent of the number of chemicals or reactions. 

The following code fragment shows the structure of the enzyme reaction when it is converted 

into Verilog code. There is a module defined for each chemical and one for each reaction. Each 

chemical is defined by one hardware module which outputs the current number of molecules 

for the chemical. Inputs include an initial concentration, slots for up to six 



increment/decrement commands (from reaction modules), the reaction clock, reaction state, 

and a reset command. Internally, the chemical module is a state machine which uses the 

increment/decrement commands to compute the updated number of molecules at each time 

step. 

Each reaction is defined by one hardware module which outputs increment/decrement 

commands to feed back to chemical modules. Inputs are the number of molecules of one or 

two chemicals, a rate constant, the reaction clock, reaction state, a random number seed and a 

reset command. The random number seed should be distinct for each different reaction 

module. Internally, the reaction module computes six random numbers in parallel (three for 

each of two possible reactions at each time step), compares them to the molecular numbers 

and rate constant, then determines if zero, one or two reactions actually occurs by performing  

the logical and operation described above. 

Code sidebar caption: This Verilog code defines the reaction explained in the introduction for 

simulating a enzymatic reaction.  Three chemicals and three reactions are defined. The Full 

Verilog code contains the modules chemical and reaction modules. See 

http://instruct1.cit.cornell.edu/courses/ece576/Chemical_Simulation/index.html 

// Michaelis and Menten ////////////////////////////////  

//////////////////////////////////////////////////////// 

// define A + E <-> AE -> S + E  (enzyme reaction) 

///////////////////////////////////////////////////////// 

wire [15:0] A, S, AE, E ; // concentrations 

// concentration inc/dec from reactions 

wire [2:0] AtoAE_inc, AtoAE_dec,   

 AEtoA_inc, AEtoA_dec, 

 AEtoS_inc, AEtoS_dec; 

 

// Handy constants used for unused inputs to modules 

parameter no_chem = 16'hffff, no_inc = 3'b000 ; 

 

// Read this as:  

// For chemical A the initial condition is 240 molecules. 

// When A is converted to AE, decrement A. 

// When AE is converted back to A, increment A. 

// Four increment inputs are not used. 

// All chemical modules need the state variable, reaction clock and reset. 

chemical chem_A( A, 16'd240,  

   AtoAE_dec, AEtoA_inc,  

   no_inc, no_inc, 

   no_inc, no_inc, 



   state, reaction_clock, reset); 

    

chemical chem_S( S, 16'h0000,  

   AEtoS_inc, no_inc,  

   no_inc, no_inc, 

   no_inc, no_inc, 

   state, reaction_clock, reset); 

 

chemical chem_E( E, 16'd60,  

   AtoAE_dec, AEtoA_inc, AEtoS_inc, no_inc, 

   no_inc, no_inc, 

   state, reaction_clock, reset); 

    

chemical chem_AE( AE, 16'h0000,  

   AtoAE_inc, AEtoA_dec, AEtoS_dec, no_inc, 

   no_inc, no_inc, 

   state, reaction_clock, reset); 

    

// define the forward and backward reactions. 

// inc/dec output signals are nonzero  if the reaction occurs. 

// unused concentration inputs should be set to no_chem=16'hffff. 

// Read this as: 

// If the reaction of A+E to AE occurs, set the inc/dec lines to nonzero. 

// The input chemicals are A and E, with rate constant 16'hffff 

// All reaction modules require state, clock, reset and a unique seed. 

reaction AtoAE(AtoAE_inc, AtoAE_dec, A, E, 16'hffff,  

   state, reaction_clock, reset, 128'haaaaaaaa54555555+seed_offset); 

    

reaction AEtoA(AEtoA_inc, AEtoA_dec, AE, no_chem, 16'h0010,  

   state, reaction_clock, reset, 128'haaaaaaaa55555555+seed_offset); 

 

reaction AEtoS(AEtoS_inc, AEtoS_dec, AE, no_chem, 16'd256,  

   state, reaction_clock, reset, 128'haaaaaaaa53555555+seed_offset); 

 

I wanted to be able to visualize the reactions, so I wrote a time-series  VGA display module 

which takes three different data inputs and plots them as they are calculated in three different 

colors. The VGA interface used dual-ported memory on the FPGA as display memory and 

operates completely in parallel with the reaction state machine. The screen refresh side of the 

VGA controller read from memory (Altera M4K blocks) when it needed to draw the screen, 

while the data formatting side of the controller wrote to display memory in a state machine. 

Since it takes a lot of small time steps to compute some reactions, not every reaction time step 

is plotted on the VGA.  The state machine handles the display time increment. 

 



Hardware performance and comparison with software algorithms  

The reaction simulation results from the FPGA were compared to both the same stochastic 

algorithm coded in Matlab and to a differential equation formulation coded in Matlab ( A. van 

Oudenaarden, MIT). Two chemical systems tested were the Michaelis-Menten formulation of 

enzymatic action explained in the introduction and a nonlinear oscillator known as the 

Oregonator model because it was originally developed at the University of Oregon by Field and 

Noyes.  

The Michaelis-Menten formulation is a good test case because it is familiar to all biochemists 

and includes a nonlinear term.  Figure 1 shows a typical result comparing the FPGA hardware 

with Matlab differential equation code. Since the numbers of molecules is fairly large in this 

example (4096 substrate, 1024 enzyme) we expect the FPGA stochastic  simulation hardware to 

approximate closely the differential equation solution because the stochastic RMS  variation is 

proportional to the square-root of the number of molecules. So the RMS variation should be 

around sqrt(1024)/1024 , or about 3%.  The inset suggests a few percent RMS variation near the 

peak of the bound enzyme. The close correspondence between the Matlab and FPGA results 

suggests that the FPGA parallel design is correct. 



 

Caption Figure 1. Michaelis-Menten  kinetics were used to test the stochastic solver. The cyan 

curve is the substrate number,  red curve is the product, and lower curve the concentration of 

bound enzyme. The black lines are the values computed by a Matlab differential equation 

solver.  The inset shows the stochastic variability near the bound enzyme peak. 

Figure 2 shows the effect of dropping the number of molecules down to only 60 enzyme 

molecules. At the peak, only about 25 enzyme molecules are bound and the statistical 

fluctuations are sqrt(25)/25, or about 20%, which are clearly visible.  In this case, the averaging 

properties of the differential equation become obvious. In real cells, the number of enzyme 

molecules is often quite small, and the reality of stochastic variation directly effects  cell 

operation and is more 'real' than the differential equation average. 



 

Caption Figure 2. Michaelis-Menten  kinetics at lower concentration. The cyan curve is the 

substrate number,  red curve is the product, and green curve the concentration of bound 

enzyme. The black lines are the values computed by a Matlab differential equation solver.  The 

stochastic variation is quite noticeable, and  in some ways is a better representation of what 

goes on in individual biological cells. 

 

The Oregonator is a good test case because it a classic example of a stiff system. A stiff system 

is one in which there are a large range of characteristic reaction rates. This feature makes the 

system harder to solve with a differential equation solver, but it works well with a stochastic 

solver .  This system was devised by Field and Noyes at the University of Oregon (1974) and 

used by Gillespie (1977) as a test case for an exact stochastic simulator method. The reaction 

scheme is: 



X1 + Y2 → Y1 (rate constant  c1) 

Y1 + Y2 → Z1 (rate constant  c2) 

X2 + Y1 → 2Y1 + Y3 (rate constant  c3) 

Y1 + Y1 → Z2 (rate constant  c4) 

X3 + Y1 → Y2 (rate constant  c5) 

The X's represent large pools of chemical and do not change concentration during simulation, 

so they are just constants. The Z's are reaction products which are not reused and therefore do 

not need to be modeled. The three Y molecule numbers are shown in figure 3. The results of 

seven stochastic runs are plotted. You can see that there is considerable variability, centering 

around the differential equation solution (black lines). 

 

Figure 3. Oregonator kinetics calculated by Matlab ODE solver (black lines) and the FPGA 

stochastic  solver. There are three communication glitches on the traces. Cyan is Y1, red is Y2 

and green is Y3. 



Conclusions 

Even though the clock rate of the FPGA is rather low compared to a PC, the computational rate 

of the FPGA stochastic simulation is faster than the PC because so many operations can be 

carried out in parallel. In the case of the Oregonator simulation, thirty 16-bit random numbers 

are computed in one cycle to support computation of the reaction and three chemical 

concentrations are updated in seven cycles. The update rate is independent of the number of 

chemicals or reactions (up to the size limit of the FPGA), so bigger models show more speedup 

over the PC solution.  The Matlab stochastic simulator I wrote  took 870 seconds to run on my 

desk machine (3.2 GHz Core Duo with 8 Gbyte memory) and 8 seconds to run on the FPGA, a 

factor of 100 speed up. 

The Oregonator model (with serial readout and VGA display) uses about 15% of the CycloneII 

FPGA on the Altera DE2 educational board. The VGA alone requires about 2% and the serial 

readout module is of negligible size.  

Full Verilog code and further details are available at 

http://instruct1.cit.cornell.edu/courses/ece576/Chemical_Simulation/index.html 
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