
Stochastic chemical kinetics on an FPGA: Bruce R Land

Introduction

As you read this, there are thousands of chemical reactions going on in your body. Some are

very fast, for instance, the binding of neurotransmitters in your brain occurs on a time scale of

microseconds, while protein production has a time scale of seconds or minutes. Understanding

physiology requires understanding how chemicals react and how fast each reaction is. Chemical

kinetics is the name given to the study of reaction speed. But why would an article on chemical

kinetics appear in this electronics magazine? The short explanation is that hardware

instantiated on an FPGA can accelerate the modeling of some reactions and is an interesting

example of parallel computation. The details follow.

To make things specific, let’s consider one reaction, the breakdown of starch into sugar by the

enzyme amylase. Amylase is present in saliva and is the reason that rice or potato becomes

sweeter as you chew, as the starch is converted to sugar. An enzyme is a chemical which

accelerates the reaction rate of another chemical, so you can immediately see that this is a

nontrivial (and nonlinear) example. The reaction is often represented as

amylase + starch ↔ (amylase- bound-to-starch) → amylase + sugars

Which should be read as: Amylase and starch in water solution react to form a loosely bound

entity, which clips the starch apart into sugars. The sugars then fall off the amylase, so that the

amylase is free to react with more starch. The bidirectional arrow representing the binding also

suggests that the combination of amylase- bound-to-starch can also just fall apart without

conversion to sugar. However, the second reaction, where the bound combination falls apart to

the sugar products never reverses. This formulation is known as a Michaelis-Menten

description of the reaction.

There are three reaction rates associated with this reaction; the binding rate of amylase to

starch, the unbinding rate of the combination back to amylase and starch, and the reaction rate

to sugar. Let us now consider what determines to reaction rates. Since the chemicals are in a

water solution, the individual molecules are dispersed and have to physically collide with each

other to react. The rate at which they collide is partly determined by how many there are in a

given volume. Doubling the concentration doubles the chances of collision and therefore the

reaction rate. The rate is also sensitive to all kinds of influences from temperature, pH, etc, but

we will model all those effects as a rate constant independent of the concentration of the

chemicals.

Now we need a bit of notation. We will use square brackets to mean concentration of x, written

[x]. We will call the rate constant of the binding reaction k1, the unbinding rate constant k2,

and the conversion rate constant k3. The proportionality of reaction rate with concentration

implies that for the first reaction the rate is k1*[amylase]*[starch]. The classical way of solving

this system is to convert the rates to differential equations, then solve the set of differential

equations. Quite often, including this example, we cannot solve the equations analytically, but

need to simulate the solutions. For these reactions we can write

d [amylase]/dt = - k1*[amylase]*[starch] + (k2+k3)*[amylase- bound-to-starch]

d[sugars]/dt = k3*[amylase- bound-to-starch]

Hidden in these equations is the assumption of differential smoothness in concentration. For

huge numbers of molecules (like the number of water molecules in a teaspoon) differential

smoothness makes sense because removing one molecule is completely undetectable. But

what if the volume of interest is a single cell that might have only a few copies of a molecule in

a tiny volume? The concentration is still high, so the reaction goes quickly, but the

concentration can only change in units of one molecule and cannot change smoothly, so the

differential equation approach fails. Instead, you have to treat each molecule as having some

probability of reacting. This finally leads us back to the topic of this article: Using an FPGA to

accelerate probabilistic simulations of chemical reactions by counting reaction events based on

random number generation.

The algorithm

The approach we will take is to step back to a more fundamental level than differential

equations and treat each potential reaction event as a random occurrence, biased by chemical

concentration and rate constants. But to emphasize that chemicals are discrete molecules, we

will replace concentrations by number of molecules, with notation Nmolecule. During any small

interval of time we can calculate the probability of the reaction occurring as the product of rate

constants and number of molecules, just as before. So we could map reaction calculations to

parallel multipliers on the FPGA, then ask if the product, say, k1*Namylase*Nstarch is greater

than a uniform random number and allow one reaction to occur if it is. However hardware

multipliers tend to be limited in number on FPGAs, relative to general logic elements so we

need to simplify the calculation. As explained in Salwinski and Eisenberg , if we compare each

number of molecules (and rate constant) to a uniformly distributed random number then the

probability of (Nchemical>random-number) is proportional to number (or rate constant). Since

each chemical number, rate constant and random number is independent, the probability of

the product of the concentrations and rate constants be above some value is equal to the

probability that

(k1>rand1) && (Namylase>rand2) && (Nstarch>rand3)

where && is the usual logical and operation. Thus we have replaced expensive multiplies with

cheap, fast random number generation and logical operations. Each term of the differential

equation is replaced with these stochastic operations and the left hand side rate term is

replaced with an increment/decrement or no change operation.

We still need to generate random numbers, without using multipliers. It is possible to generate

very high quality pseudorandom numbers using a fairly long shift register with exclusive-or

feedback from the appropriate stages to stage 1. You can find out how to do this by searching

for linear feedback shift register (for instance

en.wikipedia.org/wiki/Linear_feedback_shift_register). Hoogland et.al. show how to construct

a high quality 16-bit or 32-bit pseudorandom number in one or two shift cycles by folding a long

(127-bit) shift register into 16 sections and shifting all of them at once. The Verilog code will

give details.

Some care has to be taken that the actual reaction rates are not too large or too small. Too

large and more than one or two reactions may happen per time step which makes the process

of computing the probabilities harder. Too small and the simulation takes too long. I modified

the system used by in Salwinski and Eisenberg to allow up to two reactions at each time step,

whereas they used only one. Limiting the actual reaction rate to an average probability of no

more than 0.085/step keeps the error due to missed events below 0.01% (based on a Poisson

distribution). If you can relax the missed events on 0.1% then a probability of 0.15 may be used.

Computing the actual reaction rate means multiplying out the rate constant, and the one or

two chemical concentrations (as a fraction of 2^16, since I used 16-bit concentrations). For

instance, a first order reaction with rate constant 4096 and concentration 8192 would have a

reaction probability of (4096/2^16)*(8192/2^16) or (1/16)*(1/8)=0.0078.

Hardware organization

The hardware on the FPGA is organized into several modules. System control is a state machine

which sequences through eight states. In the first state, all random numbers are generated and

reaction results computed. In the next seven states, the reaction results are added/subtracted

to the various chemical number counters. The logical result is a cycle of computing reactions,

then updating chemical numbers on each time step. There is a chemical module instantiated for

each different chemical and a reaction module for each different reaction path. All of the

reaction modules and all of the chemical modules compute their contribution to the current

time step in eight clock cycles, independent of the number of chemicals or reactions.

The following code fragment shows the structure of the enzyme reaction when it is converted

into Verilog code. There is a module defined for each chemical and one for each reaction. Each

chemical is defined by one hardware module which outputs the current number of molecules

for the chemical. Inputs include an initial concentration, slots for up to six

increment/decrement commands (from reaction modules), the reaction clock, reaction state,

and a reset command. Internally, the chemical module is a state machine which uses the

increment/decrement commands to compute the updated number of molecules at each time

step.

Each reaction is defined by one hardware module which outputs increment/decrement

commands to feed back to chemical modules. Inputs are the number of molecules of one or

two chemicals, a rate constant, the reaction clock, reaction state, a random number seed and a

reset command. The random number seed should be distinct for each different reaction

module. Internally, the reaction module computes six random numbers in parallel (three for

each of two possible reactions at each time step), compares them to the molecular numbers

and rate constant, then determines if zero, one or two reactions actually occurs by performing

the logical and operation described above.

Code sidebar caption: This Verilog code defines the reaction explained in the introduction for

simulating a enzymatic reaction. Three chemicals and three reactions are defined. The Full

Verilog code contains the modules chemical and reaction modules. See

http://instruct1.cit.cornell.edu/courses/ece576/Chemical_Simulation/index.html

// Michaelis and Menten ////////////////////////////////

//

// define A + E <-> AE -> S + E (enzyme reaction)

///

wire [15:0] A, S, AE, E ; // concentrations

// concentration inc/dec from reactions

wire [2:0] AtoAE_inc, AtoAE_dec,

 AEtoA_inc, AEtoA_dec,

 AEtoS_inc, AEtoS_dec;

// Handy constants used for unused inputs to modules

parameter no_chem = 16'hffff, no_inc = 3'b000 ;

// Read this as:

// For chemical A the initial condition is 240 molecules.

// When A is converted to AE, decrement A.

// When AE is converted back to A, increment A.

// Four increment inputs are not used.

// All chemical modules need the state variable, reaction clock and reset.

chemical chem_A(A, 16'd240,

 AtoAE_dec, AEtoA_inc,

 no_inc, no_inc,

 no_inc, no_inc,

 state, reaction_clock, reset);

chemical chem_S(S, 16'h0000,

 AEtoS_inc, no_inc,

 no_inc, no_inc,

 no_inc, no_inc,

 state, reaction_clock, reset);

chemical chem_E(E, 16'd60,

 AtoAE_dec, AEtoA_inc, AEtoS_inc, no_inc,

 no_inc, no_inc,

 state, reaction_clock, reset);

chemical chem_AE(AE, 16'h0000,

 AtoAE_inc, AEtoA_dec, AEtoS_dec, no_inc,

 no_inc, no_inc,

 state, reaction_clock, reset);

// define the forward and backward reactions.

// inc/dec output signals are nonzero if the reaction occurs.

// unused concentration inputs should be set to no_chem=16'hffff.

// Read this as:

// If the reaction of A+E to AE occurs, set the inc/dec lines to nonzero.

// The input chemicals are A and E, with rate constant 16'hffff

// All reaction modules require state, clock, reset and a unique seed.

reaction AtoAE(AtoAE_inc, AtoAE_dec, A, E, 16'hffff,

 state, reaction_clock, reset, 128'haaaaaaaa54555555+seed_offset);

reaction AEtoA(AEtoA_inc, AEtoA_dec, AE, no_chem, 16'h0010,

 state, reaction_clock, reset, 128'haaaaaaaa55555555+seed_offset);

reaction AEtoS(AEtoS_inc, AEtoS_dec, AE, no_chem, 16'd256,

 state, reaction_clock, reset, 128'haaaaaaaa53555555+seed_offset);

I wanted to be able to visualize the reactions, so I wrote a time-series VGA display module

which takes three different data inputs and plots them as they are calculated in three different

colors. The VGA interface used dual-ported memory on the FPGA as display memory and

operates completely in parallel with the reaction state machine. The screen refresh side of the

VGA controller read from memory (Altera M4K blocks) when it needed to draw the screen,

while the data formatting side of the controller wrote to display memory in a state machine.

Since it takes a lot of small time steps to compute some reactions, not every reaction time step

is plotted on the VGA. The state machine handles the display time increment.

Hardware performance and comparison with software algorithms

The reaction simulation results from the FPGA were compared to both the same stochastic

algorithm coded in Matlab and to a differential equation formulation coded in Matlab (A. van

Oudenaarden, MIT). Two chemical systems tested were the Michaelis-Menten formulation of

enzymatic action explained in the introduction and a nonlinear oscillator known as the

Oregonator model because it was originally developed at the University of Oregon by Field and

Noyes.

The Michaelis-Menten formulation is a good test case because it is familiar to all biochemists

and includes a nonlinear term. Figure 1 shows a typical result comparing the FPGA hardware

with Matlab differential equation code. Since the numbers of molecules is fairly large in this

example (4096 substrate, 1024 enzyme) we expect the FPGA stochastic simulation hardware to

approximate closely the differential equation solution because the stochastic RMS variation is

proportional to the square-root of the number of molecules. So the RMS variation should be

around sqrt(1024)/1024 , or about 3%. The inset suggests a few percent RMS variation near the

peak of the bound enzyme. The close correspondence between the Matlab and FPGA results

suggests that the FPGA parallel design is correct.

Caption Figure 1. Michaelis-Menten kinetics were used to test the stochastic solver. The cyan

curve is the substrate number, red curve is the product, and lower curve the concentration of

bound enzyme. The black lines are the values computed by a Matlab differential equation

solver. The inset shows the stochastic variability near the bound enzyme peak.

Figure 2 shows the effect of dropping the number of molecules down to only 60 enzyme

molecules. At the peak, only about 25 enzyme molecules are bound and the statistical

fluctuations are sqrt(25)/25, or about 20%, which are clearly visible. In this case, the averaging

properties of the differential equation become obvious. In real cells, the number of enzyme

molecules is often quite small, and the reality of stochastic variation directly effects cell

operation and is more 'real' than the differential equation average.

Caption Figure 2. Michaelis-Menten kinetics at lower concentration. The cyan curve is the

substrate number, red curve is the product, and green curve the concentration of bound

enzyme. The black lines are the values computed by a Matlab differential equation solver. The

stochastic variation is quite noticeable, and in some ways is a better representation of what

goes on in individual biological cells.

The Oregonator is a good test case because it a classic example of a stiff system. A stiff system

is one in which there are a large range of characteristic reaction rates. This feature makes the

system harder to solve with a differential equation solver, but it works well with a stochastic

solver . This system was devised by Field and Noyes at the University of Oregon (1974) and

used by Gillespie (1977) as a test case for an exact stochastic simulator method. The reaction

scheme is:

X1 + Y2 → Y1 (rate constant c1)

Y1 + Y2 → Z1 (rate constant c2)

X2 + Y1 → 2Y1 + Y3 (rate constant c3)

Y1 + Y1 → Z2 (rate constant c4)

X3 + Y1 → Y2 (rate constant c5)

The X's represent large pools of chemical and do not change concentration during simulation,

so they are just constants. The Z's are reaction products which are not reused and therefore do

not need to be modeled. The three Y molecule numbers are shown in figure 3. The results of

seven stochastic runs are plotted. You can see that there is considerable variability, centering

around the differential equation solution (black lines).

Figure 3. Oregonator kinetics calculated by Matlab ODE solver (black lines) and the FPGA

stochastic solver. There are three communication glitches on the traces. Cyan is Y1, red is Y2

and green is Y3.

Conclusions

Even though the clock rate of the FPGA is rather low compared to a PC, the computational rate

of the FPGA stochastic simulation is faster than the PC because so many operations can be

carried out in parallel. In the case of the Oregonator simulation, thirty 16-bit random numbers

are computed in one cycle to support computation of the reaction and three chemical

concentrations are updated in seven cycles. The update rate is independent of the number of

chemicals or reactions (up to the size limit of the FPGA), so bigger models show more speedup

over the PC solution. The Matlab stochastic simulator I wrote took 870 seconds to run on my

desk machine (3.2 GHz Core Duo with 8 Gbyte memory) and 8 seconds to run on the FPGA, a

factor of 100 speed up.

The Oregonator model (with serial readout and VGA display) uses about 15% of the CycloneII

FPGA on the Altera DE2 educational board. The VGA alone requires about 2% and the serial

readout module is of negligible size.

Full Verilog code and further details are available at

http://instruct1.cit.cornell.edu/courses/ece576/Chemical_Simulation/index.html

References

Salwinski L, Eisenberg D., In silico simulation of biological network dynamics.

Nature Biotechnology, 2004 Aug;22(8):1017-9

A. Hoogland, J. Spaa, B. Selman and A. Compagner, A special-purpose processor for the Monte

Carlo simulation of ising spin systems, Journal of Computational Physics, Volume 51, Issue 2,

August 1983, Pages 250-260

A. van Oudenaarden, 7.32/7.81J/8.591J Systems Biology, MIT, September 2009

http://web.mit.edu/biophysics/sbio/PDFs/L2_notes.pdf

R. J. Field, R. M. Noyes, Oscillations in Chemical Systems IV. Limit cycle behavior in a model of a

real chemical reaction, J. Chem. Phys. 60(1974)1877-84.

D. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, Journal of Physical

Chemistry, No. 81, pp. 2340-2361, 1977.

