
ADC Controller for
DE-series Boards

For Quartus Prime 16.0

1 Core Overview

The ADC Controller for DE-series Boards IP Core provides an interface between a processor and the Analog-to-
Digital Converter (ADC) present on DE-series boards. The core supports the ADCs on the DE0-Nano, DE0-Nano-
SoC, and DE1-SoC boards.

2 Functional Description

The ADC Controller for DE-series Boards IP Core provides access to all 8 input channels of the Analog-to-Digital
Converters found on the DE-series boards. It controls all required digital signals both to and from the ADC, and
provides the user with a memory mapped register interface to read converted values.

3 Instantiating the Core in Qsys

The ADC Controller for DE-series Boards IP core can be instantiated in a system using Qsys or as a standalone
component from the IP Catalog within the Quartus II software. Designers use the core’s configuration wizard to
specify the board for which they are instantiating the core, as well as the number of channels to be read by the ADC
Controller. The configuration wizard is shown in in Figure 1. The ADC controller will only read channels 0 to n-1,
where n is the number of channels specified in the wizard. Designers also specify the frequency of the clock that
will drive the ADC chip. The acceptable clock frequency range differs for each board, and is listed in Table 1 below.

Board ADC Chip ADC Clock Freq. Voltage Range Channels Resolution
DE0-Nano ADC128S022 0.8 - 3.2 MHz 0 - 3.3 V 8 12 bit
DE0-Nano-SoC LTC2308 0.01 - 20 MHz 0 - 5 V 8 12 bit
DE1-SoC (rev. A-E) AD7928 0.01 - 20 MHz 0 - 5 V 8 12 bit
DE1-SoC (rev. F+) LTC2308 0.01 - 20 MHz 0 - 5 V 8 12 bit

Table 1. ADC Chips on DE-series Boards

Altera Corporation - University Program
May 2016

1

https://www.altera.com/support/training/university/overview.html

ADC CONTROLLER FOR DE-SERIES BOARDS For Quartus Prime 16.0

Figure 1. ADC Controller’s Configuration Wizard.

4 Software Programming Model

4.1 Register Map

The ADC Controller for DE-series Boards IP Core provides eight registers for reading and two for writing, as
shown in Table 2. The eight readable registers contain the outputs from the ADC for the eight analog inputs. The
two writable registers are used to control the ADC. Writing to the Update register triggers an update of the stored
conversions, and writing to Auto-Update enables or disables the automatic update feature.

4.1.1 Channel Registers

These eight registers hold the 12-bit outputs from the eight ADC channels. They are refreshed upon completion of an
update operation. An update operation can be triggered manually by writing to the Update register, or automatically
by enabling the Auto-Update mode via the Auto-Update register. In Auto-Update mode, the 16th bit of the channel
register acts as a refresh flag. After all channels are refreshed, the flags are high. Upon reading a channel, that
channel’s flag is set to low.

2 Altera Corporation - University Program
May 2016

https://www.altera.com/support/training/university/overview.html

ADC CONTROLLER FOR DE-SERIES BOARDS For Quartus Prime 16.0

Offset in bytes Register name Read/Write Purpose

0
CH_0 R Converted value of channel 0

Update W Update the converted values

4
CH_1 R Converted value of channel 1

Auto-Update W Enables or disables auto-updating
8 CH_2 R Converted value of channel 2

12 CH_3 R Converted value of channel 3
16 CH_4 R Converted value of channel 4
20 CH_5 R Converted value of channel 5
24 CH_6 R Converted value of channel 6
28 CH_7 R Converted value of channel 7

Table 2. ADC Controller register map

4.1.2 Update Register

Writing any value to the Update register begins a conversion cycle on the ADC. During this time, all desired channels
(as specified in the Qsys configuration wizard) are sampled. The new values become available in the Channel
registers once the entire update operation has finished. If reads to the channel registers are attempted during the
conversion cycle, the wait_request signal will be raised, causing the processor to stall until the update has finished.

4.1.3 Auto-Update Register

On system startup, this register will be loaded with a zero value. Writing a ‘1’ to this register will enable auto-
updating, while writing a ‘0’ will disable it.

When auto-update is enabled, the system will automatically begin another update operation after the previous one
finishes. Additionally, if reads to the channel registers are attempted during an update operation, the stored values
from the previous update operation will be read without waiting for the latest update to finish. This is in contrast to
a read during an update operation triggered by the Update register, where the wait_request signal would be asserted
until the current update operation finishes.

4.2 Programming with the ADC Controller

The ADC Controller for DE-series Boards core is packaged with C-language functions accessible through the hard-
ware abstraction layer (HAL). These functions implement basic operations for the ADC Controller.

To use the functions, the C code must include the statement:

#include "altera_up_avalon_adc.h"

Altera Corporation - University Program
May 2016

3

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
https://www.altera.com/support/training/university/overview.html

ADC CONTROLLER FOR DE-SERIES BOARDS For Quartus Prime 16.0

4.2.1 alt up adc open dev

Prototype: alt_up_adc_dev* alt_up_adc_open_dev(const char

*name)
Include: <altera_up_avalon_adc.h>
Parameters: name – the ADC Controller name. For example, if the ADC controller

name in Qsys is "ADC", then name should be "/dev/ADC"
Returns: The corresponding device structure, or NULL if the device is not found.
Description: Open the ADC controller device specified by name .

4.2.2 alt up adc read

Prototype: unsigned int alt_up_adc_read (alt_up_adc_dev

*adc, unsigned channel)
Include: <altera_up_avalon_adc.h>
Parameters: adc – struct for the ADC controller device .

channel – the channel to be read, from 0 to 7.
Returns: data – The converted value from the desired channel.
Description: Read from a channel of the ADC.

4.2.3 alt up adc update

Prototype: void alt_up_adc_update(alt_up_adc_dev *adc)
Include: <altera_up_avalon_adc.h>
Parameters: adc – struct for the ADC controller device .
Description: Trigger the controller to convert all channels and store the values.

4.2.4 alt up adc auto enable

Prototype: void alt_up_adc_auto_enable(alt_up_adc_dev

*adc)
Include: <altera_up_avalon_adc.h>
Parameters: adc – struct for the ADC controller device .
Description: Enable automatic converting of channels.

4.2.5 alt up adc auto disable

Prototype: void alt_up_adc_auto_disable(alt_up_adc_dev

*adc)
Include: <altera_up_avalon_adc.h>
Parameters: adc – struct for the ADC controller device .
Description: Disable automatic converting of channels.

4 Altera Corporation - University Program
May 2016

https://www.altera.com/support/training/university/overview.html

	1 Core Overview
	2 Functional Description
	3 Instantiating the Core in Qsys
	4 Software Programming Model
	4.1 Register Map
	4.1.1 Channel Registers
	4.1.2 Update Register
	4.1.3 Auto-Update Register

	4.2 Programming with the ADC Controller
	4.2.1 alt_up_adc_open_dev
	4.2.2 alt_up_adc_read
	4.2.3 alt_up_adc_update
	4.2.4 alt_up_adc_auto_enable
	4.2.5 alt_up_adc_auto_disable

