Intel® Quartus® Prime Standard
Edition Handbook Volume 3

Verification

Updated for Intel® Quartus® Prime Design Suite: 17.1

N\ Subscribe QPS5V3 | 2017.11.06
C] Send Feedback Latest document on the web: PDF | HTML

https://www.altera.com/bin/rssdoc?name=mwh1410385117325
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Standard%20Edition%20Handbook%20Volume%203%20Verification%20(QPS5V3%202017.11.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-5v3.pdf
https://www.altera.com/documentation/mwh1410385117325.html

(intel“ﬁ>

Contents
1 Simulating Intel FPGA DeSigNS...ciciciieieimimrererarasinimsasasarasassssssasasasasasassssssasasasasasssssnasannnass 11
1.1 SimMUIAEOr SUP PO et e 11
1.2 SimUIGtIoN LeVEIS. ...uiuiiiiii 12
B I o 1 T Y U s o o] o o 12
1.4 SimMUIAEION FIOWS. .ttt e e 13
1.5 Preparing for SImMUIAtioN. ... e eeas 14
1.5.1 Compiling Simulation MOdeIS.........ciuiiiiiiiii e 14
1.6 Simulating INtel FPGA IP COMES. . uuiiuiitieiit it iiieae et stie sttt se st sae st e sreaeenneeaneanans 15
1.6.1 Generating IP Simulation Files......cviiiiiiii i e 15
1.6.2 Scripting IP SimuUlation....ocuiiiii i e 17
1.7 Using NativeLink Simulation (Intel Quartus Prime Standard Edition)...........cccvvvieiiennnnn. 24
1.7.1 Setting Up NativeLink Simulation (Intel Quartus Prime Standard Edition).......... 25
1.7.2 Running RTL Simulation (NativeLink FIOW)......ccvoiiiiiiiiii e 25
1.7.3 Running Gate-Level Simulation (NativeLink FIOW).......cccoviiiiiiiiiiiiieen 26
1.8 Running a Simulation (CUSTOM FIOW) ...t aaeas 26
1.9 DocumeENt ReVISION HiStOrY .o ittt e et a e s st s sane e eane e aanneaanes 27
2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support*.........ccciciiiiiiiiniananas 29
2.1 Quick Start Example (ModelSim with Verilog)......coooeiiiiiiiiiii e 29
2.2 ModelSim, ModelSim-Intel FPGA Edition, and QuestaSim Guidelines............c.ccvvvvvininnen. 30
2.2.1 Using ModelSim-Intel FPGA Edition Precompiled Libraries.............ccoceviviiinnen. 30
2.2.2 Disabling Timing Violation on Registers.......ccvviiiiiiiiiiiiii i aeaaas 30
2.2.3 Passing Parameter Information from Verilog HDL to VHDL........cccooviviniiiiennnnne. 31
2.2.4 Increasing Simulation Speed.........cccoiiiiiiiiiiii e 31
2.2.5 Simulating Transport DelaysS.ccviiiiiiiiiii e 31
2.2.6 Viewing Simulation MESSageS. .. cuu ittt 32
2.2.7 Generating Power Analysis FileS.......iiuiiiiiiiiiii i e e 33
2.2.8 Viewing Simulation WaveformsS.o 33
2.2.9 Simulating with ModelSim-Intel FPGA Edition Waveform Editor........................ 34
2.3 ModelSim Simulation Setup Script EXample..... oo 34
2.4 UNSUPPOrTEd FEATUIES. .. ettt et s e et e e e e e e neaeaens 35
2.5 Document ReVISiON HiStOry . ..uuiiiii i e e e e e e s ae e an e aneas 35
3 Synopsys VCS and VCS MX SUPPOIt...ccciiciiiammimimimasmssmsesiassasssssssssassasssssssssassasssnssnsnnnsa 37
3.1 Quick Start Example (VCS With Verilog).....c.ccvoe i 37
3.2 VCS and QuestaSim GUIAEIINES.oiriiiiiiieiii e s e e e e e eas 37
3.2.1 Simulating TransSport DelayS. ...ciuui it e e 38
3.2.2 Disabling Timing Violation on Registers.......ccuoviiiiiiiiiiiii e 38
3.2.3 Generating Power Analysis Fil@S.....c.iiuiiiiiiiiiiiii i e eas 39
3.3 VCS Simulation Setup Script EXample.o e e 39
3.4 Document ReVISION HiStOIY .. .oiuiiiiiiii it raeeas 40
4 Cadence* Incisive Enterprise (IES) SUPPOrt.....c.ccicrimmmieramsmrimsessmsasssassssnsssnsassnsansnsansns 41
4.1 Quick Start EXample (NC-Verilog)....uiuiiuiiiiiieiieitii it e e raneae e ennanes 41
4.2 Cadence Incisive Enterprise (IES) GUIdeliNgS........ceiniiiii e 42
4.2.1 Using GUI or Command-Line INterfaces.......ccvviiiiiiiiiii e eeees 42
4.2.2 Elaborating YoUr DeSIgN....cuiiiiiiiiiii it et et ee s ae e s e e e e e snenens 42
4.2.3 Back-Annotating Simulation Timing Data (VHDL Only)...cccoviiiiiiiiiiiiiiiiiaens 43

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
2

intel)

4.2.4 Disabling Timing Violation on Registers.......ocvviiiiiiiiiiiii i 43

4.2.5 Simulating Pulse Reject Delays.....ccvviiiiiiiiiiiiiiiiii i aa e 43

4.2.6 Viewing Simulation Waveforms.o e e 44

4.3 IES Simulation Setup Script EXample. ..o 44
4.4 Document ReViSion HiStOry .. ouuiuiiiiii i e 45
5 Aldec* Active-HDL and Riviera-PRO SUuppoOrt.....cciciciimmmimimmasmasmsesssssssasssasssssassassnnssnns 46
5.1 Quick Start Example (Active-HDL VHDL).....couiuiiie i ee e 46
5.2 Aldec Active-HDL and Riviera-PRO GUIAEIINES......iivviiriiiiiiiiiiie i snre e snnennenneens 47
5.2.1 Compiling SystemVerilog Files........cccoiiiiiiii e 47

5.2.2 Simulating Transport Delays. ...oouviiiiiiiii e e e 47

5.2.3 Disabling Timing Violation on ReGISters.......cvcviiiiiiiiiiiiieer e 47

5.3 Using SimMulation SetUp SCriPtS. . uiuiiriiiieii it e ae e e e e e e enaans 48
5.4 Document ReVISION HiStOMY . ..uiuiiiriiiiiiiiii i 48
6 Designh Debugging Using In-System Sources and Probes...........cccvcrvnimirnmrsimnsssasnnsasas 49
6.1 Hardware and Software ReqUITEMENTS. . .ciiiiiii it eaaaeas 51
6.2 Design Flow Using the In-System Sources and Probes Editor..........ccooeviiiiiiiiiiiiinnnnns 51
6.2.1 Instantiating the In-System Sources and Probes IP Core........c.cvvvvivviiininnnnnnnn. 52

6.2.2 In-System Sources and Probes IP Core Parameters......c.oovvvviiiiniieiinnnnennnennes 53

NG @0e] o] o] 17 e [aT=T B 111 [| o VAP 53
6.4 Running the In-System Sources and Probes Editor........cccvviiiiiiiiiiiiic e 54
6.4.1 In-System Sources and Probes Editor GUI.........coooiiiiiiiiiiii e 54

6.4.2 Programming Your Device With JTAG Chain Configuration...........ccccoviviniininnnnnn 54

6.4.3 INStANCE MANAGEI. .. uiiiiiii e 55

6.4.4 In-System Sources and Probes Editor Pane........ccocviiiiiiii i 55

6.5 Tcl interface for the In-System Sources and Probes Editor........coovviiiiiiiii i 57
6.6 Design Example: Dynamic PLL Reconfiguration........ccocviiiiiiiiiiiiic i eea s 59
6.7 Document ReVISION HisStOry . ..ouoii i s e e e 61
7 TiMIiNg ANAlySiS OVeIrVI@W. uuiuiierariarsmrararariamssmarsssamssmsmssmssssmsssssssssssssssssssssassnsasassassnsasnnsas 63
7.1 TiMIiNG ANalYSiS OVEIVIEWttt et e et e s s e s e e e ra e e e e e 63
7.2 Timing Analyzer Terminology and CONCEPTS. . .uviiiitiiitii i i e aeaaeeas 63
7.2.1 Timing Netlists and Timing Paths.......ccooiiiiiiiiii e 63

7.2.2 ClOCK SeEUP ChECK. it ittt ettt a et aaeeaaeans 66

220G T @ [Yol gl = [o] [« I @] o 1= ol PR 67

7.2.4 Recovery and RemMOVal TimMe. ...t e e e e raeens 68

7.2.5 MUIICYCIE Paths. ... e 69

7.2.6 Metastabiliy . .coieiii i e 70

7.2.7 Common Clock Path Pessimism Removal.......ccuviiiiiiiiiiiiiiini e 71

7.2.8 CloCK-As-Data ANalySiS. . uiiuiiiiiiiiiii i 72

7.2.9 Multicycle Clock Setup Check and Hold Check Analysis.........c.coovieieiiiiieinnnnens 74
7 O I 10Tk Tele] o =T ol AN F= 1 1Y £ 77

7.3 Document ReVISION HiStOry . .o.uiri i e e e e aeenaes 78
8 The Intel Quartus Prime Timing Analyzer....cccciiciiimmmimiesesmasmasssnssassassasssassasssnsanssnssnnnas 79
8.1 Enhanced Timing Analysis for Intel Arria 10 DeVICES.....ucieiuiiiiie e 79
8.2 Recommended FIow for First Time USEIS...iuiiiiiiiiiiiiii i iieiteit it s st sie e e e aeeaens 80
8.2.1 Creating and Setting Up youUr DeSIgN.....couiiiiiiiiiiiiii i 80

8.2.2 Specifying Timing ReQUIrEMENTS.iiiiiii i e aaeas 80

8.2.3 Performing a Full Compilation......cooiiiiiiiiii e 82

8.2.4 Verifying TimMiNG....cou it e e e e s e e e e 83

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
3

(intel“ﬁ>

8.2.5 Analyzing Timing in Designs Compiled in Previous Versions............cccvvevviennnnne. 84

8.3 TImMiING CONSErAINES. vttt e e i eneas 84
8.3.1 Recommended Starting SDC CONSLraints.couviieieiiiii e e 84

8.3.2 Creating Clocks and Clock CONSEraiNtS. . .uviuiiieiireiineiie i riesnneranesieranernnerneannes 90

8.3.3 Creating I/O ReqUIrEMIENES. .. oottt 101

8.3.4 Creating Delay and Skew Constraints.......cviiiiiiiiiiiiiiic e 103

8.3.5 Creating Timing EXCEPLIONS. ...iiiui i s e assnaaes 107

8.3.6 A Sample Design With SDC Fil€.....c.iiiiiiiiiii e 132

8.4 Running the TimiNg ANAlYZer. ... e e e e e e eeeees 133
8.4.1 Intel Quartus Prime Settings......ccviiiriiiiiiiiiii e 135

8.4.2 SDC File PreCed@NCe. .. ittt e e ae e aeeas 135

8.5 Understanding ReSUIES.c.uiiiiiiii i e e 136
8.5.1 Iterative Constraint Modificationcoooiiiiiiiii e 136

8.5.2 Set Operating Conditions Dialog BOX.......uiereiuiiiiiiiiiiiiiiiiiinereenesseesaans 137

8.5.3 Report Timing (Dialog BOX)...cuu et e e e e e e e e 139

8.5.4 Report CDC Viewer COMMANG.....o.viuiiiieieiieiiaeiaerereaseaeresesnsneaesnereananes 139

8.5.5 Analyzing Results with Report Timing.......ccoieiiiiiiii i 146

8.5.6 Correlating Constraints to the Timing Report........coociiiiiiiiiiiiiiiii e 149

8.6 Constraining and Analyzing with Tcl CommandsS.......ovvviiiiiiiiii e 153
8.6.1 Collection COMMANGAS.....uiiiiiiiie it e e e e s e e aenans 153

8.6.2 Identifying the Intel Quartus Prime Software Executable from the SDC File..... 156

8.6.3 Locating Timing Paths in Other TOOIS........ccoiiiiiii e 157

8.7 Generating TimiNg REPOMS. ...uiuii i e e e e e e e ens 157
8.8 Document ReViSiON HiStOry . .o.uiiiii i s e e e e e e aaaeens 159
O POWer ANAlYSiS. iruereriararsaransarsnmarsnsansassnmamsnsenssmessssssssssssssssssssssssssssnsassnsassnsassassnsasansnsnns 161
9.1 TYPES Of POWET AN@IYSES. . ettt e et e e e e e e e e e e e e e a e eeneanenenes 162
9.1.1 Differences between the EPE and the Intel Quartus Prime Power Analyzer....... 162

9.2 Factors Affecting Power ConSUMPLION. ...ttt e aaes 163
9.2.1 DeViCe SelECliON. ittt 163

9.2.2 Environmental ConditionS. . ..uiuiieiiiiiii i 164

9.2.3 DeViCe RESOUICE USAQE. .. uuiuiiniitititiieiteatit e et se e ass st e s aase e aneas 165

9.2.4 Signal ACTIVITIES. .o v i e 165

9.3 POWEr ANAIYZEE FIOW...u e et e e e e neeas 166
9.3.1 Operating Settings and ConditioNS......c.viiiiiiiiic i i e 166

9.3.2 Signal Activities Data SOUMCES.cviiiiiiiii i aaeae e raenees 167

9.4 Using Simulation Files in Modular Design FIOWS........cciiiiiiiiiiiiiii e 168
9.4.1 Complete Design Simulation.o e eees 170

9.4.2 Modular Design Simulation........ooeiiiiiii e 170

9.4.3 Multiple Simulations on the Same Entity.......c.coooviiiiiii 171

9.4.4 Overlapping SimuUIatioNS. . .cuiiii i 171

9.4.5 Partial Simulations.....ciuiiii e 171

9.4.6 Node Name Matching Considerationsc.coviviiiiiiiiiiii e e 172

1S I S 1 [} el I 1 =Y o T T P 173

9.4.8 Node and Entity ASSIGNMENES.....ouiieiiiii e 174

9.4.9 Default Toggle Rate ASSIgNMENt......ccoiiiiiii e 175
9.4.10 Vectorless EStimation.......co.vviiiiiiiiiiin e 175

9.5 UsiNg the POWEr ANalYzZer. vttt e et et e e e e aneanaanans 176
9.5.1 Common ANalySisS FIOWS.....iiiiiiiii i e e 176

9.5.2 Using .vcd for Power EStimation.........c.ocieieiiiii e e e eens 176

9.6 Power Analyzer Compilation REPOItieiiiiiiii e e 178

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
4

intel)

£ TR S Yol T] g T IS U] 0o o v 180
9.7.1 Running the Power Analyzer from the Command-Line...........ccoviiiiiniiinenn. 180

9.8 Document RevVisSion HiStOry.....uuiiiiii e 181
10 System Debugging TOOIS OVeIrVIEW......ccriererimrssmrsmsnsnssassmsassnsansasansassnsansnsansnsansnsnnsnnnns 183
10.1 System Debugging TOOIS POrtfolio......uuuiiiiiiiiiii i e e aeaes 183
10.1.1 System Debugging TOOIS COMPAriSON......uuieiiiieiiiiiie e raeeereraeees 183
10.1.2 System-Level Debugging Infrastructure...........oooeiiiiiiiiiiii e, 184
10.1.3 Debugging ECOSYStEIM .. .u ittt e e s e e e e e e eaes 184
10.1.4 Tools to Analyze RTL NOAES......cciueiriiiiiiiiiie e e e 185
10.1.5 Suggested On-Chip Debugging Tools for Common Debugging Features......... 188
10.1.6 Stimulus-Capable ToOIS. . c.iiii i e 189

10.2 Document ReVISION HisStOry .. .uuiiii i e e e eranea e 191
11 Analyzing and Debugging Designs with System Console...........ccciciciiriiimimiirrerananas. 193
11.1 Introduction to SyYStemM CONSOI . ittt e e reaanenn 193
11.2 Debugging Flow with the System Console.......c.cviiiiiiiiiii e 194
11.3 IP Cores that Interact with System Console......cciciiiiiiiiiiiiii 195
11.3.1 Services Provided through Debug Agents.........cccoieiiiiiiiiiiii e 195

11.4 Starting System CONSOIE. .. . e 196
11.4.1 Starting System Console from Nios II Command Shell.............cocvviiiiinnnn. 196
11.4.2 Starting Stand-Alone System CONSOIE.....icuiiiiii i e 196
11.4.3 Starting System Console from Platform Designer (Standard).............ccovuvens 196
11.4.4 Starting System Console from Intel Quartus Prime.........cccooiviiiiiiiiiiiiinnnnens 197
11.4.5 Customizing SEartUpP....ocvieiiii e 197

11.5 System Console GUI.....cuiiiiieiiiii i et a e e neaes 197
11.5.1 System EXPlorer Pane.......cuieiiiiiiiii i e 198

11.6 System Console ComMMaNGdS. . o.uiiiiie it e a et e e aaneaaes 199
11.7 Running System Console in Command-Lineg Mode.......ccoiiiiiiiiiiiiii i 201
11.8 SyStem CONSOIE SOIVICES. .ttt ittt ittt ettt e et e it e e et e atane e renranes 202
11.8.1 Locating Available ServiCes. ... oo 202
11.8.2 Opening and ClOSING SeIVICES.uiueiiiiiiiie i aaeeaeaes 203
BT B] I I] Y oV T PP 203
11.8.4 In-System Sources and Probes ServiCe......coviiiiiiiiiiiiiiii i 204
11.8.5 MONIEOr SO VICE. ittt e st 206
B G T B T [0l Y =T Y ol 208

B I T B 1T o o BT =T T N 209
11.8.8 Bytestream ServiCe. .. .o 210
11.8.9 JTAG DEDUG SOIVICE. ittt ittt et r e e e e e ene e enanes 211

11.9 Working With TOOIKITS.uisieiiieii e 212
11.9.1 Convert your Dashboard Scripts to Toolkit APIL.......c.ccoiiiiiiiiiiiiiiiiic i 212
11.9.2 Creating a Toolkit Description Fil@......cuviiiiiiii e 212
11.9.3 Registering @ TOOIKIT........cieiei e e e 213
11.9.4 Launching @ TOOIKIE.uie e 213
11.9.5 Matching Toolkits With IP COres......cciiiiiiiiiii i e e 214
11.9.6 TOOIKIT AP .. ettt e 214

B O Y T oY o 251
3 I 0 T Y T O o To (I~ o =T PR 254
11.10.2 Setting the Frequency of the Reference Signal...........ccocoiiiiiiiiiiiiiinens 254
11.10.3 Tuning the Signal Generator........cvviiiiiiii e 255
11.10.4 Running a Signal QUality Test.....cccviiiiii i 257

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
5

(intel“)

11.10.5 Running @ Linearity Test....ciiiiiiii i i e ae e 258
11.10.6 ADC TOOIKIt Data ViEWS.. .t et e e e e e 258

11.11 System Console Examples and TUEOFIalS.oueeiniiii e e 261
11.11.1 Board Bring-Up with System Console Tutorial..........cooiiiiiiiiiiies 261
11.11.2 Nios II Processor EXample. . ..ot e ae e 269

11.12 On-Board Intel FPGA Download Cable II SUpport......ccccviiiiiiiiiici i 270
11.13 About Using MATLAB and Simulink in a System Verification Flowc.ooviniiei. 270
1 % 0 D 1Y oY =Yt Y o =Te I @0 0] g = o £ 272
11.15 Document ReViSioN HiSTOry.....uiiuiiiiiiii i 273
12 Debugging Transceiver LINKS.....cciciriririmmrimrsims s s s s s ssmsassnsassssnnsnsansansnsnnsnnnns 274
37 O o Yo o L= I = T= T = o P 274
12.1.1 Channel Display MOAES. . .ciiuiiiiiii i et aaaeaaeas 276

12.2 Transceiver Debugging Flow Walkthrough...........ccooiiiiii e 276
12.3 Configuring your System with Debugging ComponentsS........coovevieieiiiiiieriieieneeeenenes 276
12.3.1 Adapting an Intel FPGA Design EXampleccooiiiiiiiiiiiiiiinie e 276
12.3.2 Stratix V Debug System Configuration.........cccoviiiiiiiiiiiiii e 279
12.3.3 Instantiating and Parameterizing Intel Arria 10 Debug IP cores.................... 285

12.4 Programming the Design into an Intel FPGA........oiiiiiiii e 287
12.5 Loading the Design in the Transceiver TOOIKIt........oeieiiii e 288
12.6 LINKiNG HardWare RESOUICES. .. .c.uiiieiititie et s e s e s e e e e e s e rneees 288
12.6.1 Linking One Design t0 ONe DeVICE....i.iiviiiiiiiiiiiii et 291
12.6.2 Linking Two Designs t0 TWO DeVICES....iuuiiiiiiiiiii i aeeas 291
12.6.3 Linking One Design 0N TWO DeVICES....cuiiiiiiiiiiiiiiie it srenesaeaeenennanes 291
12.6.4 Linking Designs and Devices on Separate Boards..........ccvoeviiiiiiniiiiiiiinnnnnn. 292

12.7 Verifying Hardware CONNECHIONS.uiue i e e e e e e e e e e eees 292
12.8 Identifying Transceiver Channels.o e e e e 292
12.8.1 Controlling Transceiver ChannelsS.......ccoviiiiiiiiiii s 293
12.8.2 Creating LinKS...o.iuiiii i 293
12.8.3 Manually Creating a Transceiver LiNK.......ccvviviiiiiiiiii s nenienenaans 293

12.9 RUNNING LINK T@SES. .ttt e r e e e e e e e enerne e 293
12.9.1 RUNNING BER T@SES. ..ttt e e e e e e e e 294
12.9.2 Signal Eye Margin Testing (Stratix V only)....cooiiiiiiiiiiiieee 294
12.9.3 Running Custom Traffic Tests (Stratix V only)cccvviiiiiiiiiiiiiieeee 296
12.9.4 Link Optimization TeStS.....iiiiiiiiiii 297

12.10 Controlling PMA ANalog SettingsS. . ..icviiiiiiiiiiiiiiiiiiiii i essie e enrssansan e reananeans 297
12.11 User Interface Settings ReferenCe......oviiiiiiii i e 300
12.12 Troubleshooting COMMON EFrOrS. ...c.c et e e eae e e e e e e e e e e e e nenee e enanes 304
12.13 Scripting APL Ref@IENCE. .. ettt e e e e e e e eees 304
12.13.1 Transceiver TOOIKIt COMMANAS......oviiiiiiiiii e e 304
12.13.2 Data Pattern Generator Commands........cccvviiiiiiiiiiiiiiii s 311
12.13.3 Data Pattern Checker Commands......cocvuiuiiiiiiiiiiiirre e 313

12.14 Document ReViSion HiStOry...oiiiiiiii i e e e e e e aaneeas 314
13 Quick Design Debugging Using Signal Probe........c.ciciiiiiiiiiiisicin i csss s sanasans 317
13.1 Design Flow Using Signal Probe.......ccoiiiiiiiiii e aaea 317
13.1.1 Perform a Full Compilation......coiiiiiiiii i e 317
13.1.2 Reserve Signal Probe PiNs........coiiiiiiiiiiii e e 318
13.1.3 Assign Signal Probe SOUICES.couiniiii e 318
13.1.4 Add Registers Between Pipeline Paths and Signal Probe Pins.................c.c.i 318
13.1.5 Perform a Signal Probe Compilation.........cocoviiiiiiiii e 319

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
6

intel)

13.1.6 Analyze the Results of a Signal Probe Compilation...........ccccvvviiiiiiiiininnnne. 319
13.1.7 What a Signal Probe Compilation DOES........cciviiiiiiiiiiiiiiiii i neeeae 320
13.1.8 Understanding the Results of a Signal Probe Compilation.................c.c.ooee.t. 320
B I Yol o) o[Vo IS U o o o v P 322
13.2.1 Making a Signal Probe Pin.......cciiiiiii s 322
13.2.2 Deleting a Signal Probe Pin.....c.oiiiiiiiii i 322
13.2.3 Enabling @ Signal Probe Pin.......cccciiiiiiii i 323
13.2.4 Disabling @ Signal Probe Pin.....c.oiiiiiiiiiic e e eaas 323
13.2.5 Performing a Signal Probe Compilation.........c.cooviiiiiiiiiii e 323
13.2.6 Reserving Signal Probe PiNs.......cociiiiiiiiiiiii e re s 323
13.2.7 Adding Signal Probe SOUIMCES.civiiiiiiiiiiiiii et aeaeas 324
13.2.8 Assigning I/O StandardsS.....o.viieiiiiii i i e 324
13.2.9 Adding Registers for Pipelining.......cviiiiiiiiiiiiii i e re e 324
13.2.10 Running Signal Probe Immediately After a Full Compilation....................... 325
13.2.11 Running Signal Probe Manually.........cooiiiiii e 325
13.2.12 Enabling or Disabling All Signal Probe ROUtiNG........c.ccvvviiiiiiiiiiiieans 325
13.2.13 Allowing Signal Probe to Modify Fitting Results...........ccooviiiiiiiiiiiiiiennen 325
13.3 Document ReVISION HisStOry . ..uuiiii i e rane e ranea s 325
14 Design Debugging with the Signal Tap Logic Analyzer........ccivrieimimimrasasisinsmsesesesanass 327
14.1 About the Signal Tap LOGIC ANAlYZEr......iuiiiiiiii e eees 327
14.1.1 Hardware and Software Requirements........ccovieiiiiiiiiiiii e e 328
14.1.2 Open Standalone Signal Tap Logic Analyzer GUIL........c.coviiiiiiiiiiiiiiieans 330
14.1.3 Backward Compatibility with Previous Versions of Intel Quartus Prime
RS0 T = 330
14.2 Signal Tap Logic Analyzer Task FIOW OVerVIEW......ciiiiiuiiiii i vieve s e naenaaas 330
14.2.1 Add the Signal Tap Logic Analyzer to Your DeSign........cocvuiuiiiieiniieneinaeennne. 331
14.2.2 Configure the Signal Tap LOGIC ANAlYZEr.....ouiiieiiii i 331
14.2.3 Define Trigger ConditionS.....o.iieiiiiiiii i e e e aeeanes 332
14.2.4 Compile the DESIgN ...ttt e e e 332
14.2.5 Program the Target Device OF DeVICEeS....c.iviiiiiiiiiiiiiiiii e eeaaeneaas 332
14.2.6 Run the Signal Tap LOGIiC ANAlYzZer.....cciviiiiiiiiiiii i 332
14.2.7 View, Analyze, and Use Captured Data.........ccovuiiiiiiiiiii e 333
14.3 Configuring the Signal Tap LOGIC ANAlYZEr......iuiuiiieiiii e e enens 333
14.3.1 Assigning an AcquiSition CIOCK.viuiiiiiiiiii e 333
14.3.2 Adding Signals to the Signal Tap File.....ccoiiiiiiiiiii e 334
14.3.3 Adding Signals with @ PIug-INn......c.cciiiiiiiiiiii e e e 337
14.3.4 Adding Finite State Machine State Encoding Registers...........cocvveviiiiinnnnnns 338
14.3.5 Specify the Sample Depth..... ..o 339
14.3.6 Capture Data to @ Specific RAM Ty P, .. e e e enens 339
14.3.7 Select the Buffer AcqQuisition Mode.........ccovviiiiiiiiii e 340
14.3.8 Specify the Pipeline Factor......cviiiiiii e 342
14.3.9 Using the Storage Qualifier Feature........coviiiiiiiiii e 343
14.3.10 Manage Multiple Signal Tap Files and Configurations...........cccoveviiiiiiiinnnens 350
B 1) [o1 T TR T o =T o= PP 352
14.4.1 Basic Trigger CONAitiONS. ... oot e e e e e raens 352
14.4.2 Comparison Trigger CONAitiONS.coiieiiiiiiiii i e 353
14.4.3 Advanced Trigger CoNditioNS.iiiiiiiii i aes 355
14.4.4 Custom Trigger HDL ObjJeCt.....civiiriiiiiiiiiii i e e e naaaeas 358
14.4.5 Trigger Condition FIOW CONEIOl.....civiiiiiiiii e 361
14.4.6 SpecCify Trigger POSITION. e e e e e e nenes 372

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
7

(intel“ﬁ>

14.4.7 Create @ POWeEr-Up Trigger. . cciieiiii i it st s s s s e saassesnnnsnaanes 373
14.4.8 EXEerNal Triggers. .. ou e it iiiii it e e e e e as 375
IR @fe] o o] [T g I o a U= B T=T1 [o P 376
14.5.1 Faster Compilations with Intel Quartus Prime Incremental Compilation......... 376
14.5.2 Prevent Changes Requiring Recompilation..........cccoiiiiiiiiiiiiiiins 378
14.5.3 Incremental Route with Rapid Recompile.......ccooiiiiiiiiiiiiiiiee 378
14.5.4 Timing Preservation with the Signal Tap Logic Analyzer.........cccovvviiieiiinnnnnn. 380
14.5.5 Performance and Resource Considerations.........coovvviiiiiiiiiniiniiiinineeeeaans 380
14.6 Program the Target DeViCe OF DEVICES.uiuie i e e e e e e eeeeanan 381
14.6.1 Ensure Setting Compatibility Between .stp and .sof Files.........c.cccovevninienenn. 382
14.6.2 Verify Whether You Need to Recompile Your Project.........cccovveiiiiiiinnnnnnn. 382
14.7 Running the Signal Tap LOGIiC ANalYzZer.....cciiuiiiiiiii i e 382
14.7.1 Runtime Reconfigurable OptionS.......ciieiiiiiiiiii i naenaas 383
14.7.2 Signal Tap Status MESSAgES.uiiiiiiiiiiii i 385
14.8 View, Analyze, and Use Captured Data.........ccooiieieiiiiie i ae e e ene e 386
14.8.1 Capturing Data Using Segmented BUffers........c.oooviiiiiiiniiienneeeneeeene 386
14.8.2 Differences in Pre-fill Write Behavior Between Different Acquisition Modes..... 387
14.8.3 Creating Mnemonics for Bit Patterns.......c.ccoviiiiiiiiii 389
14.8.4 Automatic Mnemonics with @ PIug-IN.......ccoiiiiiiiiiiiiii e 389
14.8.5 Locating a Node in the Design......c.viiiiiiiiiiiiii e eaes 390
14.8.6 Saving Captured Data.......cocieiriiiiie et 390
14.8.7 Exporting Captured Data to Other File Formats.........coovviiiiiiiiiiin 391
14.8.8 Creating a Signal Tap List File.....c.ooeiiiiiiiii s 391
14,9 Other FEatUIES. . ittt 391
14.9.1 Creating Signal Tap File from Design INStances.........ccviviviiiiieiiiiiiiniieiennns, 391
14.9.2 Using the Signal Tap MATLAB MEX Function to Capture Data..............ccvuvnee. 393
14.9.3 Using Signal Tap in a Lab Environment.........ccoiiiiiiiiiii e 395
14.9.4 Remote Debugging Using the Signal Tap Logic Analyzer...........c.covvievinnnen. 395
14.9.5 Using the Signal Tap Logic Analyzer in Devices with Configuration
BitStream SeCUNItY . ..uiiei i 396
14.9.6 Monitor FPGA Resources Used by the Signal Tap Logic Analyzer................... 396
14.10 Design Example: Using Signal Tap LOgiC Analyzers.......ccvvviiiiiiiiieiiiniiii e 396
14.11 Custom Triggering Flow Application EXamples.......ovviiiiiiiiiiiiiiiiii i neneenens 397
14.11.1 Design Example 1: Specifying a Custom Trigger Position.............c.ccceevvnnene. 397
14.11.2 Design Example 2: Trigger When triggercondl Occurs Ten Times
between triggercond2 and triggercond3.........coiiiiiiiiiiiiiii 398
14.12 Signal Tap SCripting SUPPOIt. ... e e ae e 399
14.12.1 Signal Tap Tcl ComMMands. ..cieiiriiiie i e it aneaaeas 399
14.12.2 Signal Tap Command-Ling OptioNS.....iiiiiiiiiiii i 399
14.13 Document ReViSion HiStOry...oiiiiiiii i i i e e e e e e e aneeas 401
16 Debugging Single Event Upset Using the Fault Injection Debugger..........c.ccciiininnnnes 403
16.1 Single Event Upset Mitigation.......coiiiiiiiiii e 403
16.2 Hardware and Software ReqUIr€mMENtS. . ..ot e as 404
16.3 Using the Fault Injection Debugger and Fault Injection IP Core......c.covvvviviiiiiiiiinennnns 404
16.3.1 Instantiating the Intel FPGA Fault Injection IP Core........cocviiiiiiniiiinninienens 405
16.3.2 Defining Fault INJection Ar€as......ccvieieieiiie i e e e e ns 407
16.3.3 Using the Fault Injection Debugger........cooiiiiiiiiiiiii e 408
16.3.4 Command-Line Interface.......cocviiiiiiiiiii 413
16.4 Document ReVIiSioN HisStOry . ..uuiiii i i s e anea e 417

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
8

intel)

17 In-System Debugging Using External Logic Analyzers........coicvrimremsemsssersnsessnsassassnsans 418
17.1 About the Intel Quartus Prime Logic Analyzer Interface........cooovvieiiiiiiiiiiiineeeene 418
17.2 ChoOSIiNG @ LOGIC ANAIYZEI .. e ittt e s e e e raeeans 418

17.2.1 Required ComMPONENES. ..ttt e et e e e eaane s 419
17.3 FIOW fOr USIiNG The LAl ..uri it e e e e e a e e e raneanes 420
17.4 WOrking With LA FilS. .. uuuiieiitiii it e ettt e e st e e e e e naa e aeeneanans 421
17.4.1 Configuring the File Core Parameters...... ..o 421
17.4.2 Mapping the LAI File Pins to Available I/O PinS.......ccooviiiiiiiiiiiineee 421
17.4.3 Mapping Internal Signals to the LAI Banks........coocviiiiiiiiiiiiiiiiiiiiieieans 422
17.4.4 Using the NOde FINAer......ciiiiiiiii i e i eees 422
17.4.5 Compiling Your Intel Quartus Prime Project.......ccoviiiiiiiiiiiiiiiiieieinnnenennns 422
17.4.6 Programming Your Intel-Supported Device Using the LAL...........cccvveiiiinnnnn 423
17.5 Controlling the Active Bank During RUNTIME. ..o e 423
17.5.1 Acquiring Data on Your LOGQiC ANalyzZer......coiuiiiiiiiiiiiiiiii e 423
17.6 Using the LAI with Incremental Compilation.........cocviiiiiiiiii e 423
17.7 Document ReVIiSiON HisS Oyviiii i e e raneans 424

18 In-System Modification of Memory and Constants........cccciciiiimicnic i sn s s sresnn s nnenes 425
18.1 About the In-System Memory Content Editor........coovviiiiiiiiiii e 425
18.2 Design Flow Using the In-System Memory Content Editor..........ccoooviiiiiiiiiiiiinnnens 425
18.3 Creating In-System Modifiable Memories and Constants..........cccoviiiiiiiiiiiic e, 426
18.4 Running the In-System Memory Content Editor........ccooiiiiiiiiiiiiiic e 426

18.4.1 INStANCE MANAGEIttt 426

18.4.2 Editing Data Displayed in the Hex Editor Pane............ccooiiiiiiiiiiii s 427

18.4.3 Importing and Exporting Memory Files.......ccoooiiiiiiiiii s 427

18.4.4 SCripting SUP PO i e 427

18.4.5 Programming the Device with the In-System Memory Content Editor............ 428
18.4.6 Example: Using the In-System Memory Content Editor with the Signal Tap

(o Yo [{ol AN =1 Y= PPN 428

18.5 Document ReVISION HiStOrYoiuiiiiiii e ae s 429

19 Design Debugging Using In-System Sources and Probes...........ccuimimimimnnerasnniniesanaes 430
19.1 Hardware and Software ReqUINrEMENTS. .. .ciiui it aaaeas 432
19.2 Design Flow Using the In-System Sources and Probes Editor...........c.coovvviiiiiiinnnnnn. 432

19.2.1 Instantiating the In-System Sources and Probes IP Core.........ccocvviviininnnnnn 433
19.2.2 In-System Sources and Probes IP Core Parameters..........cocvoviiiiiiiiiiiinnns 434
19.3 Compiling the DeSIgN. .. .ttt et e et e e e s e e e aaans 434
19.4 Running the In-System Sources and Probes Editor.........ccovviiiiiiiiiiiiii e 435
19.4.1 In-System Sources and Probes Editor GUI..........cccciiiiiiiiiiiiiiiii e 435
19.4.2 Programming Your Device With JTAG Chain Configuration............c.covvvinvnnnns 435
RS T G I [=] = (ol = g =T =T PP 436
19.4.4 In-System Sources and Probes Editor Pane.........c.cooviiiiiiiiiiiiii e 436
19.5 Tcl interface for the In-System Sources and Probes Editor.........c.ovoviiiiiiiiiiiiiincnnnnns 438
19.6 Design Example: Dynamic PLL Reconfiguration.........c.ccviiiiiiiiiiiiii e 440
19.7 Document ReVISION HisStOryuiiiii i a e rane e ranea s 442

20 Programming INtel FPGA DeViCeS...uicrimrerimrariamansaransassssassasansasassassnsassnsassasassasansassnnnsss 444

20.1 Programming FlOW. ...t ettt ettt e e e e et e e e e ra e e e e 444
20.1.1 Stand-Alone Intel Quartus Prime Programmer.......c.cooviiiiiiiiiiiiiiiineneeens 444
20.1.2 Optional Programming or Configuration Files.........c.ccciiiiiiiiiiiiiii i 445
20.1.3 Secondary Programming FilesS.......ceiiiiiiiiiii i e 445

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
9

(intel“’

20.2 Intel Quartus Prime Programmer WindOW.ooviuiieiiiiie i iiensenesieenesenaaneaneanens 446
20.2.1 Editing the Details of an Unknown DevViCe.......ciovviiiiiiiiiiiiiii i e 446
20.2.2 Setting Up YOUr HardWare.t e e e e e e e e e e neeneas 447
20.2.3 Setting the JTAG HardWare.ot e ae e 447
20.2.4 Using the JTAG Chain Debugger TOOI......cuiieiiiiiiiiiii e 447

20.3 Programming and Configuration MOdES.ciiiiiiiiiiiii i i ee e 448

20.4 DeSigN SECUNIEY KBY S, . ittt ettt s e s st s s e st se e e aaeeraes 448

20.5 Convert Programming Files Dialog BOX......ciuiuiiieiuiiiiiiiiie st e e 448
20.5.1 Debugging Your Configuration........cc.oeiiieieiiii e e 449
20.5.2 Converting Programming Files for Partial Reconfiguration.............c.ccocvvvvienne 451

B4 O J F= 1= o T o = o [=P 453

20.7 JTAG Debug Mode for Partial Reconfiguration.........ccoviiiiiiiiii e 453
20.7.1 Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode 454

20.8 Verifying if Programming Files Correspond to a Compilation of the Same Source Files. 459
20.8.1 Obtaining Project Hash for Arria V, Stratix V, Cyclone V and Intel MAX 10

D 0] 459

20.8.2 Obtaining Project Hash for Intel Arria 10 DeVIiCeS.....cviviriiiiieiiiiieineeienennnn 459

20.9 SCriPHiNG SUP POt ettt et e e e et e 460

20.9.1 The jtagconfig Debugging TOOl......c.viiiiiii i e 460
20.9.2 Generating a Partial-Mask SRAM Object File using a Mask Settings File

and @ SRAM ObjJecCt File. . ouiiuiiiiiiiii i e ae e 461

20.9.3 Generating Raw Binary File for Partial Reconfiguration using a .pmsf............ 461

20.10 Document ReVISION HiStOIY....iuiiiiiiiiiiiii e e s 461

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
10

QPS5V3 | 2017.11.06

1 Simulating Intel FPGA Designs

This document describes simulating designs that target Intel FPGA devices. Simulation
verifies design behavior before device programming. The Intel® Quartus® Prime
software supports RTL- and gate-level design simulation in supported EDA simulators.
Simulation involves setting up your simulator working environment, compiling
simulation model libraries, and running your simulation.

1.1 Simulator Support

The Intel Quartus Prime software supports specific EDA simulator versions for RTL and
gate-level simulation.

Table 1. Supported Simulators
Vendor Simulator Version Platform

Aldec Active-HDL* 10.3 Windows

Aldec Riviera-PRO* 2016.10 Windows, Linux
Cadence Incisive Enterprise* 15.20 Linux

Mentor Graphics* ModelSim* - Intel FPGA Edition 10.5c Windows, Linux
Mentor Graphics ModelSim PE 10.5c¢ Windows
Mentor Graphics ModelSim SE 10.5c¢ Windows, Linux
Mentor Graphics QuestaSim* 10.5c Windows, Linux
Synopsys* VCS* 2016,06-SP-1 Linux

VCS MX
Table 2. Supported Simulators
Vendor Simulator Version Platform

Aldec Active-HDL 10.3 Windows

Aldec Riviera-PRO 2015.10 Windows, Linux
Cadence Incisive Enterprise* 14.20 Linux

Mentor Graphics ModelSim - Intel FPGA Edition 10.5b Windows, Linux
Mentor Graphics ModelSim PE 10.4d Windows
Mentor Graphics ModelSim SE* 10.4d Windows, Linux
Mentor Graphics QuestaSim 10.4d Windows, Linux
Synopsys VCS 2014,12-SP1 Linux

VCS MX

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so .
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services :OOEI..tZOOg
egistere

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

intel.

1.2 Simulation Levels

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

The Intel Quartus Prime software supports RTL and gate-level simulation of IP cores in

supported EDA simulators.

Table 3. Supported Simulation Levels
Simulation Level Description Simulation Input
RTL Cycle-accurate simulation using Verilog HDL, e Design source/testbench

SystemVerilog, and VHDL design source code with |
simulation models provided by Intel and other IP
providers.

Intel simulation libraries

Intel FPGA IP plain text or IEEE
encrypted RTL models

IP simulation models

Intel FPGA IP functional simulation
models

Intel FPGA IP bus functional models

Platform Designer (Standard)-
generated models

Verification IP

Gate-level functional Simulation using a post-synthesis or post-fit .
functional netlist testing the post-synthesis .
functional netlist, or post-fit functional netlist.

Testbench
Intel simulation libraries

Post-synthesis or post-fit functional
netlist

Intel FPGA IP bus functional models

Gate-level timing Simulation using a post-fit timing netlist, testing .
functional and timing performance. Supported .
only for the Arria® IT GX/GZ,Cyclone® 1V, MAX®
II, MAX V, and Stratix® IV device families.

Testbench

Intel simulation libraries

Post-fit timing netlist

Post-fit Standard Delay Output File
(-sdo).

Note: Gate-level timing simulation of an entire design can be slow and should be avoided.
Gate-level timing simulation is supported only for the Arria II GX/GZ,Cyclone IV, MAX
II, MAX V, and Stratix IV device families.. Use Timing Analyzer static timing analysis

rather than gate-level timing simulation.

1.3 HDL Support

The Intel Quartus Prime software provides the following HDL support for EDA

simulators.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
12

] ®
1 Simulating Intel FPGA Designs l n tel

QPS5V3 | 2017.11.06

Table 4. HDL Support

Language

Description

VHDL

e For VHDL RTL simulation, compile design files directly in your simulator. You must also
compile simulation models from the Intel FPGA simulation libraries and simulation models
for the IP cores in your design. Use the Simulation Library Compiler to compile simulation
models.

e To use NativeLink automation, analyze and elaborate your design in the Intel Quartus Prime
software, and then use the NativeLink simulator scripts to compile the design files in your
simulator.

e For gate-level simulation, the EDA Netlist Writer generates a synthesized design netlist VHDL
Output File (-vho). Compile the .vho in your simulator. You may also need to compile
models from the Intel FPGA simulation libraries.

e IEEE 1364-2005 encrypted Verilog HDL simulation models are encrypted separately for each
simulation vendor that the Quartus Prime software supports. To simulate the model in a
VHDL design, you must have a simulator that is capable of VHDL/Verilog HDL co-simulation.

Verilog HDL
-SystemVerilog

e For RTL simulation in Verilog HDL or SystemVerilog, compile your design files in your
simulator. You must also compile simulation models from the Intel FPGA simulation libraries
and simulation models for the IP cores in your design. Use the Simulation Library Compiler
to compile simulation models.

e For gate-level simulation, the EDA Netlist Writer generates a synthesized design netlist
Verilog Output File (-v0). Compile the .vo in your simulator.

Mixed HDL

e If your design is a mix of VHDL, Verilog HDL, and SystemVerilog files, you must use a mixed
language simulator. Choose the most convenient supported language for generation of Intel
FPGA IP cores in your design.

e Intel FPGA provides the entry-level ModelSim - Intel FPGA Edition software, along with
precompiled Intel FPGA simulation libraries, to simplify simulation of Intel FPGA designs.
Starting in version 15.0, the ModelSim - Intel FPGA Edition software supports native, mixed-
language (VHDL/Verilog HDL/SystemVerilog) co-simulation of plain text HDL.

If you have a VHDL-only simulator and need to simulate Verilog HDL modules and IP cores,
you can either acquire a mixed-language simulator license from the simulator vendor, or use
the ModelSim - Intel FPGA Edition software.

Schematic

You must convert schematics to HDL format before simulation. You can use the converted VHDL
or Verilog HDL files for RTL simulation.

1.4 Simulation Flows

The Intel Quartus Prime software supports various simulation flows.

Table 5. Simulation Flows

Simulation Flow Description

Scripted Simulation Flows

Scripted simulation supports custom control of all aspects of simulation, such
as custom compilation commands, or multipass simulation flows. Use a
version-independent top-level simulation script that "sources" Intel Quartus
Prime-generated IP simulation setup scripts. The Intel Quartus Prime
software generates a combined simulator setup script for all IP cores, for
each supported simulator.

NativeLink Simulation Flow

NativeLink automates Intel Quartus Prime integration with your EDA
simulator. Setup NativeLink to generate simulation scripts, compile simulation
libraries, and automatically launch your simulator following design
compilation. Specify your own compilation, elaboration, and simulation scripts
for testbench and simulation model files. Do not use NativeLink if you require
direct control over every aspect of simulation.

Note: The Intel Quartus Prime Pro Edition software does not support
NativeLink simulation.

Specialized Simulation Flows Supports specialized simulation flows for specific design variations, including

the following:

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
13

] ®
l n tel) 1 Simulating Intel FPGA Designs

QPS5V3 | 2017.11.06

Simulation Flow Description

e For simulation of example designs, refer to the documentation for the
example design or to the IP core user guide.

e For simulation of Platform Designer designs, refer to Creating a System
with Platform Designer (Standard) or Creating a System with Platform
Designer.

e For simulation of designs that include the Nios® II embedded processor,
refer to Simulating a Nios II Embedded Processor.

Related Links
e IP User Guide Documentation
e AN 351: Simulating Nios II Embedded Processors Designs

e Creating a System With Platform Designer (Standard)
In Intel Quartus Prime Standard Edition Handbook Volume 3

1.5 Preparing for Simulation

Preparing for RTL or gate-level simulation involves compiling the RTL or gate-level
representation of your design and testbench. You must also compile IP simulation
models, models from the Intel FPGA simulation libraries, and any other model libraries
required for your design.

1.5.1 Compiling Simulation Models

Note:

The Intel Quartus Prime software includes simulation models for all Intel FPGA IP
cores. These models include IP functional simulation models, and device family-
specific models in the <Intel Quartus Prime installation path>/eda/
sim_lib directory. These models include IEEE encrypted Verilog HDL models for both
Verilog HDL and VHDL simulation.

Before running simulation, you must compile the appropriate simulation models from
the Intel Quartus Prime simulation libraries using any of the following methods:

e Use the NativeLink feature to automatically compile your design, Intel FPGA IP,
simulation model libraries, and testbench.

¢ To automatically compile all required simulation model libraries for your design in
your supported simulator, click Tools 0 Launch Simulation Library Compiler.
Specify options for your simulation tool, language, target device family, and output
location, and then click OK.

e Compile Intel Quartus Prime simulation models manually with your simulator.

Use the compiled simulation model libraries to simulate your design. Refer to your
EDA simulator's documentation for information about running simulation.

The specified timescale precision must be within 1ps when using Intel Quartus Prime
simulation models.
Related Links

Intel Quartus Prime Simulation Models
In Intel Quartus Prime Pro Edition Help

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

14

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/an/an351.pdf
https://www.altera.com/documentation/mwh1410385117325.html#mwh1409958596582
http://quartushelp.altera.com/current/index.htm#eda/eda_topics/quartus2/eda_ref_presynth_lib.htm

| | ®
1 Simulating Intel FPGA Designs l n tel

QPS5V3 | 2017.11.06

1.6 Simulating Intel FPGA IP Cores

The Intel Quartus Prime software supports IP core RTL simulation in specific EDA
simulators. IP generation creates simulation files, including the functional simulation
model, any testbench (or example design), and vendor-specific simulator setup scripts
for each IP core. Use the functional simulation model and any testbench or example
design for simulation. IP generation output may also include scripts to compile and run
any testbench. The scripts list all models or libraries you require to simulate your IP
core.

The Intel Quartus Prime software provides integration with many simulators and
supports multiple simulation flows, including your own scripted and custom simulation
flows. Whichever flow you choose, IP core simulation involves the following steps:

1.

Generate simulation model, testbench (or example design), and simulator setup
script files.

Set up your simulator environment and any simulation scripts.
Compile simulation model libraries.

Run your simulator.

1.6.1 Generating IP Simulation Files

The Intel Quartus Prime software optionally generates the functional simulation model,
any testbench (or example design), and vendor-specific simulator setup scripts when
you generate an IP core. To control the generation of IP simulation files:

To specify your supported simulator and options for IP simulation file generation,
click Assignment 00 Settings 0 EDA Tool Settings (0 Simulation.

To parameterize a new IP variation, enable generation of simulation files, and
generate the IP core synthesis and simulation files, click Tools O IP Catalog.

To edit parameters and regenerate synthesis or simulation files for an existing IP
core variation, click View 0 Utility Windows [0 Project Navigator O IP
Components.

Table 6. Intel FPGA IP Simulation Files

File Type

Description File Name

Simulator setup
scripts

Vendor-specific scripts to compile, elaborate, and simulate <ny_di r>/aldec/

Intel FPGA IP models and simulation model library files. rivierapro_setup.tcl
Optionally, generate a simulator setup script for each : -
vendor that combines the individual IP core scripts into one <rrde| r >{cadeﬂce/

file. Source the combined script from your top-level nc5|m._se up-s }

simulation script to eliminate script maintenance. <my_di r >/mentor/msim_setup.tcl

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
15

intel.

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

File Type

Description

File Name

<ny_di r >/synopsys/vcs/
vcs_setup.sh

Simulation IP File
(Intel Quartus
Prime Standard
Edition)

Contains IP core simulation library mapping information. To
use NativeLink, add the .qip and .sip files generated for
IP to your project.

<desi gn nane>.sip

IP functional
simulation models
(Intel Quartus
Prime Standard
Edition)

IP functional simulation models are cycle-accurate VHDL or
Verilog HDL models a that the Intel Quartus Prime software
generates for some Intel FPGA IP cores. IP functional
simulation models support fast functional simulation of IP
using industry-standard VHDL and Verilog HDL simulators.

<ny_i p>.vho

<ny_i p>.vo

IEEE encrypted
models (Intel
Quartus Prime
Standard Edition)

Intel provides Arria V, Cyclone V, Stratix V, and newer
simulation model libraries and IP simulation models in
Verilog HDL and IEEE-encrypted Verilog HDL. Your
simulator's co-simulation capabilities support VHDL

<ny_i p>.v

simulation of these models. IEEE encrypted Verilog HDL
models are significantly faster than IP functional simulation
models. The Intel Quartus Prime Pro Edition software does
not support these models.

Note: Intel FPGA IP cores support a variety of cycle-accurate simulation models, including
simulation-specific IP functional simulation models and encrypted RTL models, and
plain text RTL models. The models support fast functional simulation of your IP core
instance using industry-standard VHDL or Verilog HDL simulators. For some IP cores,
generation only produces the plain text RTL model, and you can simulate that model.
Use the simulation models only for simulation and not for synthesis or any other

purposes. Using these models for synthesis creates a nonfunctional design.

1.6.1.1 Generating IP Functional Simulation Models (Intel Quartus Prime
Standard Edition)

Intel provides IP functional simulation models for some Intel FPGA IP supporting 40nm
FPGA devices.

To generate IP functional simulation models:

1. Turn on the Generate Simulation Model option when parameterizing the IP
core.

2. When you simulate your design, compile only the .vo or .vho for these IP cores
in your simulator. Do not compile the corresponding HDL file. The encrypted HDL
file supports synthesis by only the Intel Quartus Prime software.

Note: o Intel FPGA IP cores that do not require IP functional simulation models
for simulation, do not provide the Generate Simulation Model option

in the IP core parameter editor.

e Many recently released Intel FPGA IP cores support RTL simulation using
IEEE Verilog HDL encryption. IEEE encrypted models are significantly
faster than IP functional simulation models. Simulate the models in both
Verilog HDL and VHDL designs.

Related Links
AN 343: Intel FPGA IP Evaluation Mode of AMPP IP

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
16

http://www.altera.com/literature/an/an343.pdf

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

1.6.2 Scripting IP Simulation

Figure 1.

intel)

The Intel Quartus Prime software supports the use of scripts to automate simulation
processing in your preferred simulation environment. Use the scripting methodology

that you prefer to control simulation.

Use a version-independent, top-level simulation script to control design, testbench,
and IP core simulation. Because Intel Quartus Prime-generated simulation file names
may change after IP upgrade or regeneration, your top-level simulation script must
"source" the generated setup scripts, rather than using the generated setup scripts
directly. Follow these steps to generate or regenerate combined simulator setup

scripts:

Incorporating Generated Simulator Setup Scripts into a Top-Level Simulation

Script

Top-Level Simulation Script
m Specify project-specific settings:
— TOP_LEVEL_NAME
— Add optional QSYS_SIMDIR variable
— Additional compile and elaboration options
m Source the Combined IP Setup Simulator Script
(e.g., source msim_setup.tcl)

m Compile design files:
— Use generated scripts to compile device libraries
and IP files
— Compile your design and testbench files
m Elaborate
= Simulate

Individual IP
Simulation Scripts

Click “Generate Simulator Script for IP”

Combined IP
Simulator Script

(Includes Templates)

1. Click Project O Upgrade IP Components [Generate Simulator Script for IP
(or run the ip-setup-simulation utility) to generate or regenerate a combined
simulator setup script for all IP for each simulator.

2. Use the templates in the generated script to source the combined script in your
top-level simulation script. Each simulator's combined script file contains a
rudimentary template that you adapt for integration of the setup script into a top-

level simulation script.

This technique eliminates manual update of simulation scripts if you modify or

upgrade the IP variation.

1.6.2.1 Generating a Combined Simulator Setup Script

Run the Generate Simulator Setup Script for IP command to generate a combined

simulator setup script.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

17

™ ®
l n tel) 1 Simulating Intel FPGA Designs

QPS5V3 | 2017.11.06

Source this combined script from a top-level simulation script. Click Tools O
Generate Simulator Setup Script for IP (or use of the ip-setup-simulation
utility at the command-line) to generate or update the combined scripts, after any of
the following occur:

e IP core initial generation or regeneration with new parameters
e Intel Quartus Prime software version upgrade

e IP core version upgrade

To generate a combined simulator setup script for all project IP cores for each
simulator:

1. Generate, regenerate, or upgrade one or more IP core. Refer to Generating IP
Cores or Upgrading IP Cores.

2. Click Tools O Generate Simulator Setup Script for IP (or run the ip-setup-
simulation utility). Specify the Output Directory and library compilation
options. Click OK to generate the file. By default, the files generate into the /
<proj ect directory>/<sinulator>/ directory using relative paths.

3. To incorporate the generated simulator setup script into your top-level simulation
script, refer to the template section in the generated simulator setup script as a
guide to creating a top-level script:

a. Copy the specified template sections from the simulator-specific generated
scripts and paste them into a new top-level file.

b. Remove the comments at the beginning of each line from the copied template
sections.

c. Specify the customizations you require to match your design simulation
requirements, for example:

e Specify the TOP_LEVEL_NAME variable to the design’s simulation top-level
file. The top-level entity of your simulation is often a testbench that
instantiates your design. Then, your design instantiates IP cores or
Platform Designer systems. Set the value of TOP_LEVEL_NAME to the top-
level entity.

e If necessary, set the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files.

e Compile the top-level HDL file (for example, a test program) and all other
files in the design.

e Specify any other changes, such as using the grep command-line utility to
search a transcript file for error signatures, or e-mail a report.

4. Re-run Tools 0 Generate Simulator Setup Script for IP (or ip-setup-
simulation) after regeneration of an IP variation.

Table 7. Simulation Script Utilities
Utility Syntax
ip-setup-simulation generates a ip-setup-simulation
combined, version-independent simulation -—quartus-project=<my proj >
script for all Intel FPGA IP cores in your project. --output-directory=<ny_dir>
The command also automates regeneration of --use-relative-paths

the script after upgrading software or IP ==CRiple=Eo=1at

versions. Use the compi le-to-work option to

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
18

| | ®
1 Simulating Intel FPGA Designs l n tel

QPS5V3 | 2017.11.06

libraries.

more .spd files and an output directory in the
command. Running the script compiles IP
simulation models into various simulation

Utility Syntax
compile all simulation files into a single work --use-relative-paths and —--compi le-to-work are optional. For
library if your simulation environment requires. | command-line help listing all options for these executables, type:
Use the —-use-relative-paths option to <utility name> --help.
use relative paths whenever possible.
ip-make-simscript generates a combined ip-make-simscript
simulation script for all IP cores that you --spd=<i pA. spd, i pB. spd>
specify on the command line. Specify one or --output-directory=<di rectory>

The following sections provide step-by-step instructions for sourcing each simulator
setup script in your top-level simulation script.

1.6.2.2 Incorporating Simulator Setup Scripts from the Generated Template

You can incorporate generated IP core simulation scripts into a top-level simulation
script that controls simulation of your entire design. After running ip-setup-
simulation use the following information to copy the template sections and modify
them for use in a new top-level script file.

1.6.2.2.1 Sourcing Aldec* Simulator Setup Scripts

Follow these steps to incorporate the generated Aldec simulation scripts into a top-
level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, sim_top.tcl.

#

Start of template

If the copied and modified template file is "aldec.do', run it as:

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

vsim -c -do aldec.do

#

Source the generated sim script
source rivierapro_setup.tcl

Compile eda/sim_lib contents first
dev_com

Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top

Compile the standalone IP.

com

Compile the top-level

vlog -sv2k5 ../../top.sv

Elaborate the design.

elab

Run the simulation

run

Report success to the shell

exit -code O

End of template

2. Delete the first two characters of each line (comment and space):

H*

HHHFHHFH

Start of template
IT the copied and modified template file is "aldec.do", run it as:
vsim -c -do aldec.do

Source the generated sim script source rivierapro_setup.tcl
Compile eda/sim_lib contents first dev_com
Override the top-level name (so that elab is useful)

set TOP_LEVEL_NAME top

#

Compile the standalone IP.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
19

com

Compile the top-level vlog -sv2k5 ../../top.sv
Elaborate the design.

elab

Run the simulation

run

Report success to the shell

exit -code O

End of template

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on

the simulation’s top-level file. For example:

set TOP_LEVEL_NAME sim_top
vlog —sv2k5 ../../sim_top.sv

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes that you require to match
your design simulation requirements. The scripts offer variables to set compilation

or simulation options. Refer to the generated script for details.

5. Run the new top-level script from the generated simulation directory:

vsim —c —do <path to simtop>.tcl

1.6.2.2.2 Sourcing Cadence* Simulator Setup Scripts

Follow these steps to incorporate the generated Cadence IP simulation scripts into a

top-level project simulation script.

1. The generated simulation script contains the following template lines. Cut and

paste these lines into a new file. For example, ncsim.sh.
Start of template

./ncsim.sh

#

Do the file copy, dev_com and com steps
source ncsim_setup.sh \

SKIP_ELAB=1 \

SKIP_SIM=1

Compile the top level module
ncvlog -sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name

Override the sim options, so the simulation
runs forever (until $finish()).-
source ncsim_setup.sh \
SKIP_FILE_COPY=1 \

SKIP_DEV_COM=1 \

SKIP_COM=1 \

TOP_LEVEL_NAME=top \
USER_DEFINED_SIM_OPTIONS="""

End of template

HHEFHFHFHRFEFH RS

1T the copied and modified template file is "ncsim.sh™, run it as:

2. Delete the first two characters of each line (comment and space):

Start of template

1T the copied and modified template file is "ncsim.sh"™, run it as:

./ncsim.sh

#

Do the file copy, dev_com and com steps
source ncsim_setup.sh \

SKIP_ELAB=1 \

SKIP_SIM=1

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
20

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

Compile the top level module
ncvlog -sv "$QSYS_SIMDIR/../top.sv"
Do the elaboration and sim steps
Override the top-level name

Override the sim options, so the simulation
runs forever (until $finish()).
source ncsim_setup.sh \
SKIP_FILE_COPY=1 \

SKIP_DEV_COM=1 \

SKIP_COM=1 \

TOP_LEVEL_NAME=top \
USER_DEFINED_SIM_OPTIONS="""

End of template

3. Modify the TOP_LEVEL NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=sim_top \
ncvlog -sv "$QSYS_SIMDIR/../top.sv"

4. 1If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes that you require to match
your design simulation requirements. The scripts offer variables to set compilation
or simulation options. Refer to the generated script for details.

5. Run the resulting top-level script from the generated simulation directory by
specifying the path to ncsim.sh.

1.6.2.2.3 Sourcing ModelSim* Simulator Setup Scripts

Follow these steps to incorporate the generated ModelSim IP simulation scripts into a
top-level project simulation script.

1. The generated simulation script contains the following template lines. Cut and
paste these lines into a new file. For example, sim_top.-tcl.

Start of template

ITf the copied and modified template file is "mentor.do”, run it
as: vsim -c -do mentor.do

#

Source the generated sim script

source msim_setup.tcl

Compile edas/sim_lib contents first
dev_com

Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top

Compile the standalone IP.

com

Compile the top-level

vlog -sv ../../top.sv

Elaborate the design.

elab

Run the simulation

run -a

Report success to the shell

exit -code O

End of template

2. Delete the first two characters of each line (comment and space):

Start of template
IT the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script source msim_setup.tcl
Compile eda/sim_lib contents first

#
#
#
#
#
#
dev_com

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
21

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top

Compile the standalone IP.

com

Compile the top-level vlog -sv ../../top.sv
Elaborate the design.

elab

Run the simulation

run -a

Report success to the shell

exit -code O

End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

set TOP_LEVEL_NAME sim_top vlog -sv ../../sim_top.sv

4. 1If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

5. Run the resulting top-level script from the generated simulation directory:

vsim —c —do <path to simtop>.tcl

1.6.2.2.4 Sourcing VCS* Simulator Setup Scripts

Follow these steps to incorporate the generated Synopsys VCS simulation scripts into
a top-level project simulation script.

1. The generated simulation script contains these template lines. Cut and paste the
lines preceding the “helper file” into a new executable file. For example,
synopsys_vcs. f.

Start of template
IT the copied and modified template file is '"vcs_sim.sh™, run it
as: ./vcs_sim.sh

Override the top-level name

specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the sim options, so the simulation

runs forever (until $finish()).

source vcs_setup.sh \

TOP_LEVEL_NAME=top \

USER_DEFINED_ELAB OPTIONS=""-f __./../../synopsys_vcs.f"" \
USER_DEFINED_SIM_OPTIONS="""

HHEFHFHIERER

helper file: synopsys_vcs.f
+systemverilogext+.sv
../../../top.sv

End of template

HHEHHHHEFEHEFTE SRR

2. Delete the first two characters of each line (comment and space) for the vcs.sh
file, as shown below:

Start of template
IT the copied and modified template file is "vcs_sim.sh™, run it
as: ./vcs_sim.sh

Override the top-level name

specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the sim options, so the simulation

HHFHHFHHR

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
22

1 Simulating Intel FPGA Designs

QPS5V3 | 2017.11.06

runs forever (until $Ffinish()).

source vcs_setup.sh \

TOP_LEVEL_NAME=top \

USER_DEFINED_ELAB_OPTIONS=""-f ../._./../synopsys_vcs.f"" \
USER_DEFINED_SIM_OPTIONS=""*

Delete the first two characters of each line (comment and space) for the
synopsys_vcs. T file, as shown below:

helper file: synopsys vcs.T
+systemverilogext+.sv
../../._/top.sv

End of template

Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:

TOP_LEVEL_NAME=sim_top \

If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

Run the resulting top-level script from the generated simulation directory by
specifying the path to vcs_sim.sh.

1.6.2.2.5 Sourcing VCS* MX Simulator Setup Scripts

Follow these steps to incorporate the generated Synopsys VCS MX simulation scripts
for use in top-level project simulation scripts.

1.

The generated simulation script contains these template lines. Cut and paste the
lines preceding the “helper file” into a new executable file. For example,
vecsmx.sh.

Start of template

ITf the copied and modified template file is "vcsmx_sim.sh™, run
1t as: ./vcsmx_sim.sh

#

Do the file copy, dev_com and com steps

source vcsmx_setup.sh \

SKIP_ELAB=1 \

SKIP_SIM=1

#

Compile the top level module vlogan +v2k

+systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps

Override the top-level name

Override the sim options, so the simulation runs
forever (until $Ffinish())-

source vcsmx_setup.sh \

SKIP_FILE_COPY=1 \

SKIP_DEV_COM=1 \

SKIP_COM=1 \

HHHFHHFEHHHR

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

23

intel.

2.

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

TOP_LEVEL_NAME=""-top top"" \
USER_DEFINED_SIM_OPTIONS=""""
End of template

Delete the first two characters of each line (comment and space), as shown
below:

Start of template

If the copied and modified template file is "vcsmx_sim.sh', run
It as: ./vcsmx_sim.sh

#

Do the file copy, dev_com and com steps

source vcsmx_setup.sh \

SKIP_ELAB=1 \

SKIP_SIM=1

Compile the top level module
vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name

Override the sim options, so the simulation runs
forever (until $finish())-
source vcsmx_setup.sh \
SKIP_FILE_COPY=1 \

SKIP_DEV_COM=1 \

SKIP_COM=1 \

TOP_LEVEL_NAME="""-top top"" \
USER_DEFINED_SIM_OPTIONS="""

End of template

Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on
the simulation’s top-level file. For example:
TOP_LEVEL_NAME="-top sim_top>” \

Make the appropriate changes to the compilation of the your top-level file, for
example:

vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../sim_top.sv"

If necessary, add the QSYS_SIMDIR variable to point to the location of the
generated IP simulation files. Specify any other changes required to match your
design simulation requirements. The scripts offer variables to set compilation or
simulation options. Refer to the generated script for details.

Run the resulting top-level script from the generated simulation directory by
specifying the path to vesmx_sim.sh.

1.7 Using NativeLink Simulation (Intel Quartus Prime Standard
Edition)

The Nativelink feature integrates your EDA simulator with the Intel Quartus Prime
Standard Edition software by automating the following:

Generation of simulator-specific files and simulation scripts.
Compilation of simulation libraries.

Launches your simulator automatically following Intel Quartus Prime Analysis &
Elaboration, Analysis & Synthesis, or after a full compilation.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

24

] ®
1 Simulating Intel FPGA Designs l n tel)

QPS5V3 | 2017.11.06

Note: The Intel Quartus Prime Pro Edition does not support NativeLink simulation. If you use
NativeLink for Intel Arria 10 devices in the Intel Quartus Prime Standard Edition, you
must add the .qsys file generated for the IP or Platform Designer (Standard) system
to your Intel Quartus Prime project. If you use NativeLink for any other supported
device family, you must add the .qip and .sip files to your project.

1.7.1 Setting Up NativelLink Simulation (Intel Quartus Prime Standard
Edition)

Before running NativelLink simulation, specify settings for your simulator in the Intel
Quartus Prime software.

To specify NativeLink settings in the Intel Quartus Prime Standard Edition software,
follow these steps:
1. Open an Intel Quartus Prime Standard Edition project.

2. Click Tools > Options and specify the location of your simulator executable file.

Table 8. Execution Paths for EDA Simulators
Simulator Path
Mentor Graphics <drive letter>:\<sinulator install path>\win32aloem (Windows)
ModelSim-AE

/<simul ator install path>/bin (Linux)

Mentor Graphics ModelSim <drive letter>:\<sinulator install path>\win32 (Windows)
Mentor Graphics QuestaSim <sinulator install path>/bin (Linux)

Synopsys VCS/VCS MX <simulator install path>/bin (Linux)
Cadence Incisive Enterprise <simulator install path>/tools/bin (Linux)
Aldec Active-HDL <drive letter>:\<sinulator install path>\bin (Windows)

Aldec Riviera-PRO <sinulator install path>/bin (Linux)

3. Click Assignments 0 Settings and specify options on the Simulation page and
the More NativelLink Settings dialog box. Specify default options for simulation
library compilation, netlist and tool command script generation, and for launching
RTL or gate-level simulation automatically following compilation.

4. If your design includes a testbench, turn on Compile test bench. Click Test
Benches to specify options for each testbench. Alternatively, turn on Use script
to compile testbench and specify the script file.

5. To use a script to setup a simulation, turn on Use script to setup simulation.

1.7.2 Running RTL Simulation (NativeLink Flow)

To run RTL simulation using the NativeLink flow, follow these steps:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
25

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

Set up the simulation environment.

Click Processing > Start > Analysis and Elaboration.

Click Tools > Run Simulation Tool > RTL Simulation.

NativeLink compiles simulation libraries and launches and runs your RTL simulator
automatically according to the NativelLink settings.

Review and analyze the simulation results in your simulator. Correct any functional
errors in your design. If necessary, re-simulate the design to verify correct
behavior.

1.7.3 Running Gate-Level Simulation (NativeLink Flow)

To run gate-level simulation with the NativeLink flow, follow these steps:

Prepare for simulation.

Set up the simulation environment. To generate only a functional (rather than
timing) gate-level netlist, click More EDA Netlist Writer Settings, and turn on
Generate netlist for functional simulation only.

To synthesize the design, follow one of these steps:

e To generate a post-fit functional or post-fit timing netlist and then
automatically simulate your design according to your NativeLink settings, Click
Processing > Start Compilation. Skip to step 6.

o To synthesize the design for post-synthesis functional simulation only, click
Processing > Start > Start Analysis and Synthesis.

To generate the simulation netlist, click Start EDA Netlist Writer.
Click Tools > Run Simulation Tool > Gate Level Simulation.

Review and analyze the simulation results in your simulator. Correct any
unexpected or incorrect conditions found in your design. Simulate the design again
until you verify correct behavior.

1.8 Running a Simulation (Custom Flow)

Use a custom simulation flow to support any of the following more complex simulation
scenarios:

Custom compilation, elaboration, or run commands for your design, IP, or
simulation library model files (for example, macros, debugging/optimization
options, simulator-specific elaboration or run-time options)

Multi-pass simulation flows

Flows that use dynamically generated simulation scripts

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

26

] ®
1 Simulating Intel FPGA Designs l n tel

QPS5V3 | 2017.11.06

Use these to compile libraries and generate simulation scripts for custom simulation
flows:

e NativelLink-generated scripts—use NativelLink only to generate simulation script
templates to develop your own custom scripts.

e Simulation Library Compiler—compile Intel FPGA simulation libraries for your
device, HDL, and simulator. Generate scripts to compile simulation libraries as part
of your custom simulation flow. This tool does not compile your design, IP, or
testbench files.

e IP and Platform Designer (Standard) simulation scripts—use the scripts generated
for Intel FPGA IP cores and Platform Designer (Standard) systems as templates to
create simulation scripts. If your design includes multiple IP cores or Platform
Designer (Standard) systems, you can combine the simulation scripts into a single
script, manually or by using the
ip-make-simscript utility.

Use the following steps in a custom simulation flow:

1. Compile the design and testbench files in your simulator.

2. Run the simulation in your simulator.

Post-synthesis and post-fit gate-level simulations run significantly slower than RTL
simulation. Intel FPGA recommends that you verify your design using RTL simulation
for functionality and use the Timing Analyzer for timing. Timing simulation is not
supported for Arria V, Cyclone V, Stratix V, and newer families.

1.9 Document Revision History

This document has the following revision history.

Date Version Changes
2017.11.06 17.1.0 | « Added Simulation Library Compiler details to Quick Start Example
2017.05.08 17.0.0 | ¢ Gate-level timing simulation limited to Arria II GX/GZ,Cyclone IV, MAX II, MAX V, and
Stratix IV device families.
2016.10.31 16.1.0 | « Updated simulator support table with latest version information.
e Clarified license requirements for mixed language simulation with VHDL.
e Gate-level timing simulation limited to Stratix IV and Cyclone IV devices.
2016.05.02 16.0.0 | « Noted limitations of NativeLink simulation.
e Updated simulator support table with latest version information.
2015.11.02 15.1.0 | » Added new Generating Version-Independent IP Simulation Scripts topic.
e Added example IP simulation script templates for all supported simulators.
e Added new Incorporating IP Simulation Scripts in Top-Level Scripts topic.
e Updated simulator support table with latest version information.
e Changed instances of Quartus II to Quartus Prime.
2015.05.04 15.0.0 | « Updated simulator support table with latest.
* Gate-level timing simulation limited to Stratix IV and Cyclone IV devices.
e Added mixed language simulation support in the ModelSim - Intel FPGA Edition software.
2014.06.30 14.0.0 | « Replaced MegaWizard Plug-In Manager information with IP Catalog.
May 2013 13.0.0 | » Updated introductory section and system and IP file locations.
continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
27

intel.

1 Simulating Intel FPGA Designs
QPS5V3 | 2017.11.06

Date

Version

Changes

November 2012 | 12.1.0

Revised chapter to reflect latest changes to other simulation documentation.

June 2012

12.0.0

Reorganization of chapter to reflect various simulation flows.
Added NativeLink support for newer IP cores.

November 2011 | 11.1.0

Added information about encrypted Altera simulation model files.
Added information about IP simulation and NativeLink.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

28

https://www.altera.com/search-archives

QPS5V3 | 2017.11.06 l

2 ModelSim - Intel FPGA Edition, ModelSim, and
QuestaSim Support*

Note:

You can include your supported EDA simulator in the Intel Quartus Prime design flow.
This document provides guidelines for simulation of designs with ModelSim or

QuestaSim software. The entry-level ModelSim - Intel FPGA Edition includes
precompiled simulation libraries.

The latest version of theModelSim - Intel FPGA Edition software supports native,

mixed-language (VHDL/Verilog HDL/SystemVerilog) co-simulation of plain text HDL. If
you have a VHDL-only simulator, you can use the ModelSim-Intel FPGA Edition
software to simulate Verilog HDL modules and IP cores. Alternatively, you can

purchase separate co-simulation software.

Related Links
e Simulating Designs on page 11

e Managing Intel Quartus Prime Projects

2.1 Quick Start Example (ModelSim with Verilog)

You can adapt the following RTL simulation example to get started quickly with

ModelSim:

1. To specify your EDA simulator and executable path, type the following Tcl package

command in the Intel Quartus Prime tcl shell window:

set _user_option -name EDA TOOL_PATH MODELSIM <modelsim executable

path>

set _global _assignment -name EDA SIMULATION _TOOL *'MODELSIM

(verilog)"

2. Compile simulation model libraries using one of the following methods:

e Run NativeLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. If you

complete this step you can ignore the remaining steps.

e To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools O Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device

family, and output location, and then click OK.

e Type the following commands to create and map Intel FPGA simulation

libraries manually, and then compile the models manually:

vlib <libl> ver
vmap <l|ibl>_ver <libl>_ver
vlog -work <libl> <libl>

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Inte
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958212952
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

| | ®
l n tel) 2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support*

QPS5V3 | 2017.11.06

Use the compiled simulation model libraries during simulatation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

3. Compile your design and testbench files:
vlog -work work <desi gn or testbench name>.v

4. Load the design:

vsim -L work -L <libl>_ver -L <lib2>_ver work.<testbench name>

2.2 ModelSim, ModelSim-Intel FPGA Edition, and QuestaSim
Guidelines

The following guidelines apply to simulation of designs in the ModelSim, ModelSim-
Intel FPGA Edition, or QuestaSim software.

2.2.1 Using ModelSim-Intel FPGA Edition Precompiled Libraries

Precompiled libraries for both functional and gate-level simulations are provided for
the ModelSim-Intel FPGA Edition software. You should not compile these library files
before running a simulation. No precompiled libraries are provided for ModelSim or

QuestaSim. You must compile the necessary libraries to perform functional or gate-
level simulation with these tools.

The precompiled libraries provided in <install path>/altera/ must be compatible
with the version of the Intel Quartus Prime software that creates the simulation
netlist. To verify compatibility of precompiled libraries with your version of the Intel
Quartus Prime software, refer to the <install path>/altera/version.txt file. This
file indicates the Intel Quartus Prime software version and build of the precompiled
libraries.

Note: Encrypted simulation model files shipped with the Intel Quartus Prime software
version 10.1 and later can only be read by ModelSim-Intel FPGA Edition software
version 6.6c and later. These encrypted simulation model files are located at the
<Intel Quartus Prime System directory>/quartus/eda/sim_I1ib/<mentor>
directory.

2.2.2 Disabling Timing Violation on Registers

In certain situations, you may want to ignore timing violations on registers and disable
the “X” propagation that occurs. For example, this technique may be helpful to
eliminate timing violations in internal synchronization registers in asynchronous clock-
domain crossing. Intel Arria 10 devices do not support timing simulation. Intel Arria
10 devices do not support timing simulation.

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of “X” at timing violation. To disable “X"” propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Intel
Quartus Prime Settings File (-gs¥).

set_instance_assignment -name X _ON_VIOLATION_OPTION OFF -to \
<regi st er _name>

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
30

| | ®
2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support* l n tel)

QPS5V3 | 2017.11.06

2.2.3 Passing Parameter Information from Verilog HDL to VHDL

Example 1.

Note:

You must use in-line parameters to pass values from Verilog HDL to VHDL.

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of "X” at timing violation. To disable “X" propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Intel
Quartus Prime Settings File (.qgs¥).

set_instance_assignment -name X _ON_VIOLATION_OPTION OFF -to \
<regi st er _name>

In-line Parameter Passing Example

Ipm_add_sub#(. Ipm_width(12), .lIpm_direction(*'Add"),
- Ipm_type(*'"LPM_ADD_SUB™),
- Ipm_hint(""ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"))

Ipm_add_sub_component (
.dataa (dataa),
.datab (datab),
-result (sub_wire0)

The sequence of the parameters depends on the sequence of the GENERIC in the
VHDL component declaration.

2.2.4 Increasing Simulation Speed

By default, the ModelSim and QuestaSim software runs in a debug-optimized mode.

To run the ModelSim and QuestaSim software in speed-optimized mode, add the
following two vlog command-line switches. In this mode, module boundaries are
flattened and loops are optimized, which eliminates levels of debugging hierarchy and
may result in faster simulation. This switch is not supported in the ModelSim-Intel
FPGA Edition simulator.

vlog -fast -05

2.2.5 Simulating Transport Delays

By default, the ModelSim and QuestaSim software filter out all pulses that are shorter
than the propagation delay between primitives.

Turning on the transport delay options in the ModelSim and QuestaSim software
prevents the simulator from filtering out these pulses. Intel Arria 10 devices do not
support timing simulation.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
31

| | ®
l n tel 2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support*

Table 9.

QPS5V3 | 2017.11.06

Transport Delay Simulation Options (ModelSim and QuestaSim)

Option Description

+transport_path_delays | Use when simulation pulses are shorter than the delay in a gate-level primitive. You must

include the +pulse_e/number and +pulse_r/number options.

+transport_int_delays Use when simulation pulses are shorter than the interconnect delay between gate-level

primitives. You must include the +pulse_int_e/number and +pulse_int_r/number
options.

Note:

The +transport_path_delays and +transport_path_delays options apply

automatically during NativeLink gate-level timing simulation. For more information
about either of these options, refer to the ModelSim-Intel FPGA Edition Command

Reference installed with the ModelSim and QuestaSim software.

The following ModelSim and QuestaSim software command shows the command line
syntax to perform a gate-level timing simulation with the device family library:

vsim -t 1ps -L stratixii -sdftyp /Zil=Ffiltref_vhd.sdo work.filtref_vhd_vec_tst
\
+transport_int_delays +transport_path_delays

2.2.6 Viewing Simulation Messages

Note:

ModelSim and QuestaSim error and warning messages are tagged with a vsim or
vcom code. To determine the cause and resolution for a vsim or vcom error or
warning, use the verror command.

For example, ModelSim may return the following error:

** Error: C:/altera_trn/DUALPORT_TRY/simulation/modelsim/
DUALPORT_TRY.vho(31):
(vcom-1136) Unknown identifier "stratixiv"

In this case, type the following command:
verror 1136

The following description appears:

vcom Message # 1136:

The specified name was referenced but was not found. This indicates
that either the name specified does not exist or is not visible at
this point in the code.

If your design includes deep levels of hierarchy, and the Maintain hierarchy EDA
tools option is turned on, this may result in a large number of module instances in
post-fit or post-map netlist. This condition can exceed the ModelSim-Intel FPGA
Edition instance limitation.

To avoid exceeding any ModelSim-Intel FPGA Edition instance limit, turn off Maintain

hierarchy to reduce the number of modules instances to 1 in the post-fit or post-map
netlist. To acces this option, click Assignments [0 Settings [EDA Tool Settings U

More Settings.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

32

™ ®
2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support* l n tel)

QPS5V3 | 2017.11.06

2.2.7 Generating Power Analysis Files

To generate a timing Value Change Dump File (.vcd) for power analysis, you must
first generate a <fi | ename>_dump_all_vcd_nodes.tcl script file in the Intel
Quartus Prime software. You can then run the script from the ModelSim, QuestaSim,
or ModelSim-Intel FPGA Edition software to generate a timing .vcd for use in the Intel
Quartus Prime power analyzer.

To generate and use a .vcd for power analysis, follow these steps:

1.
2.
3.

7.

In the Intel Quartus Prime software, click Assignments [Settings.
Under EDA Tool Settings, click Simulation.

Turn on Generate Value Change Dump file script, specify the type of output
signals to include, and specify the top-level design instance name in your
testbench. For example, if your top level design name is Top, and your testbench
wrapper calls Top as instance Top_ inst, specify the top level design instance
name as Top_inst.

Click Processing [0 Start Compilation. The Compiler creates the

<fil enane>_dump_all_vcd nodes.tcl file, the ModelSim simulation

<fil enanme>_run_msim_gate_vhdl/verilog.do file (including the .vcd
and .tcl execution lines). Use the <fi | ename>_dump_all_vcd_nodes.tcl to
dump all of the signals that you expect for input back into the Power Analysis.

Elaborate and compile the design in your simulator.

Source the <fi | ename>_run_msim_gate_vhdl/verilog.do file, and then run
the simulation. The simulator opens the .vcd file that contains the dumped signal
file transition information.

Stop the simulation if your testbench does not have a break point.

2.2.8 Viewing Simulation Waveforms

ModelSim-Intel FPGA Edition, ModelSim, and QuestaSim automatically generate a
Wave Log Format File (.wlF) following simulation. You can use the .wlT to generate
a waveform view.

To view a waveform from a .wlf through ModelSim-Intel FPGA Edition, ModelSim, or
QuestaSim, perform the following steps:

1.

o u kW

Type vsim at the command line. The ModelSim/QuestaSim or ModelSim-Intel
FPGA Edition dialog box appears.

Click File O Datasets. The Datasets Browser dialog box appears.
Click Open and select your .wlf.

Click Done.

In the Object browser, select the signals that you want to observe.
Click Add O Wave, and then click Selected Signals.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
33

™ ®
l n tel) 2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support*

QPS5V3 | 2017.11.06

You must first convert the .vcd to a .wlF before you can view a waveform in
ModelSim-Intel FPGA Edition, ModelSim, or QuestaSim.

7. To convert the the .vcd to a .wlT, type the following at the command-line:

ved2wl T <exanpl e>.vcd <exanpl e>_wlf

8. After conversion, view the .wlf waveform in ModelSim or QuestaSim.

2.2.9 Simulating with ModelSim-Intel FPGA Edition Waveform Editor

You can use the ModelSim-Intel FPGA Edition waveform editor as a simple method to
create stimulus vectors for simulation. You can create this design stimulus via
interactive manipulation of waveforms from the wave window in ModelSim-Intel FPGA
Edition. With the ModelSim-Intel FPGA Edition waveform editor, you can create and
edit waveforms, drive simulation directly from created waveforms, and save created
waveforms into a stimulus file.

Related Links
ModelSim Web Page

2.3 ModelSim Simulation Setup Script Example

The Intel Quartus Prime software can generate a msim_setup.tcl simulation setup
script for IP cores in your design. The script compiles the required device library
models, compiles the design files, and elaborates the design with or without simulator
optimization. To run the script, type source msim_setup.tcl in the simulator
Transcript window.

Alternatively, if you are using the simulator at the command line, you can type the
following command:

vsim -c -do msim_setup.tcl

In this example the top-level-simulate.do custom top-level simulation script
sets the hierarchy variable TOP_LEVEL_NAME to top_testbench for the design, and
sets the variable QSYS_SIMDIR to the location of the generated simulation files.

Set hierarchy variables used in the IP-generated files

set TOP_LEVEL_NAME 'top_testbench"

set QSYS_SIMDIR "./ip_top_sim"

Source generated simulation script which defines aliases used below
source $QSYS_SIMDIR/mentor/msim_setup.tcl

dev_com alias compiles simulation libraries for device library files
dev_com

com alias compiles IP simulation or Qsys model files and/or Qsys model
files in the correct order

com

Compile top level testbench that instantiates your IP

vlog -sv ./top_testbench.sv

elab alias elaborates the top-level design and testbench

elab

Run the full simulation

run - all

In this example, the top-level simulation files are stored in the same directory as the
original IP core, so this variable is set to the IP-generated directory structure. The
QSYS_SIMDIR variable provides the relative hierarchy path for the generated IP

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
34

http://www.model.com/

] ®
2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support* l n tel
QPS5V3 | 2017.11.06

2.4 Unsupported Features

simulation files. The script calls the generated msim_setup.tcl script and uses the
alias commands from the script to compile and elaborate the IP files required for
simulation along with the top-level simulation testbench. You can specify additional
simulator elaboration command options when you run the elab command, for
example, elab +nowarnTFMPC. The last command run in the example starts the

simulation.

The Intel Quartus Prime software does not support the following ModelSim simulation

features:

e Intel Quartus Prime does not support companion licensing for ModelSim.

e The USB software guard is not supported by versions earlier than ModelSim
software version 5.8d.

e For ModelSim software versions prior to 5.5b, use the PCLS utility included with

the software to set up the license.

e Some versions of ModelSim and QuestaSim support SystemVerilog, PSL
assertions, SystemC, and more. For more information about specific feature
support, refer to Mentor Graphics literature

Related Links

ModelSim-Intel FPGA Edition Software Web Page

2.5 Document Revision History

Table 10. Document Revision History
Date Version Changes
2017.11.06 17.1.0 e Changed title to ModelSim - Intel FPGA Edition,
ModelSim, and QuestaSim Support*
e Stated no support for Intel Arria 10 timing simulation
in Simulating Transport Delays and Disabling Timing
Violations on Registers topics.
e Added Simulation Library Compiler details and
another step to Quick Start Example
2016.10.31 16.1.0 e Implemented Intel rebranding.
e Corrected load design syntax error.
2016.05.02 16.0.0 e Noted limitations of NativeLink simulation.
e Added note about avoiding ModelSim - Intel FPGA
Edition instance limitations.
2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.
2015.05.04 15.0.0 e Added mixed language simulation support in the
ModelSim - Intel FPGA Edition software.
2014.06.30 14.0.0 e Replaced MegaWizard Plug-In Manager information
with IP Catalog.
continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

35

http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html

intel.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

36

2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support*

QPS5V3 | 2017.11.06

Date Version Changes
November 2012 12.1.0 Relocated general simulation information to
Simulating Altera Designs.
June 2012 12.0.0 Removed survey link.
November 2011 11.0.1 Changed to new document template.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

https://www.altera.com/search-archives

m ®
QPS5V3 | 2017.11.06 l n tel:

3 Synopsys VCS and VCS MX Support

You can include your supported EDA simulator in the Intel Quartus Prime design flow.
This document provides guidelines for simulation of Intel Quartus Prime designs with
the Synopsys VCS or VCS MX software.

3.1 Quick Start Example (VCS with Verilog)

You can adapt the following RTL simulation example to get started quickly with VCS:

1. To specify your EDA simulator and executable path, type the following Tcl package
command in the Intel Quartus Prime tcl shell window:

set_user_option -name EDA_TOOL_ PATH_VCS <VCS executable path>
set_global _assignment -name EDA_ SIMULATION_TOOL "'VCS"

2. Compile simulation model libraries using one of the following methods:

e Run NativeLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. If you
complete this step you can ignore the remaining steps.

e To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools O Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

Use the compiled simulation model libraries during simulatation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

Modify the simlib_comp.vcs file to specify your design and testbench files.
4. Type the following to run the VCS simulator:

vcs -R -file simlib_comp.vcs

3.2 VCS and QuestaSim Guidelines

The following guidelines apply to simulation of Intel FPGA designs in the VCS or VCS
MX software:

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

| | ®
l n tel) 3 Synopsys VCS and VCS MX Support

QPS5V3 | 2017.11.06

¢ Do not specify the -v option for altera_lInsim.sv because it defines a
systemverilog package.

e Add -verilog and +verilog200lext+.v options to make sure all .v files are
compiled as verilog 2001 files, and all other files are compiled as systemverilog
files.

e Add the -1ca option for Stratix V and later families because they include IEEE-
encrypted simulation files for VCS and VCS MX.

e Add -timescale=1ps/1ps to ensure picosecond resolution.

3.2.1 Simulating Transport Delays

Table 11.

By default, the VCS and VCS MX software filter out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay options in the
VCS and VCS MX software prevents the simulator from filtering out these pulses. Intel
Arria 10 devices do not support timing simulation.

Transport Delay Simulation Options (VCS and VCS MX)

Option Description

+transport_path_delays | Use when simulation pulses are shorter than the delay in a gate-level primitive. You must

include the +pulse_e/number and +pulse_r/number options.

+transport_int_delays Use when simulation pulses are shorter than the interconnect delay between gate-level

primitives. You must include the +pulse_int_e/number and +pulse_int_r/number
options.

Note:

The +transport_path_delays and +transport_path_delays options apply
automatically during NativelLink gate-level timing simulation.

The following VCS and VCS MX software command runs a post-synthesis simulation:

vcs -R <testbench>.v <gate-level netlist>.v -v <Intel FPGA device family \
library>_v +transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0

3.2.2 Disabling Timing Violation on Registers

In certain situations, you may want to ignore timing violations on registers and disable
the “X"” propagation that occurs. For example, this technique may be helpful to
eliminate timing violations in internal synchronization registers in asynchronous clock-
domain crossing. Intel Arria 10 devices do not support timing simulation. Intel Arria
10 devices do not support timing simulation.

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of “X” at timing violation. To disable “X"” propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Intel
Quartus Prime Settings File (.gs¥).

set_instance_assignment -name X ON_VIOLATION_OPTION OFF -to \
<regi st er _nane>

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

38

n ®
3 Synopsys VCS and VCS MX Support l n tel)

QPS5V3 | 2017.11.06

3.2.3 Generating Power Analysis Files

You can generate a Verilog Value Change Dump File (.vcd) for power analysis in the
Intel Quartus Prime software, and then run the .ved from the VCS software. Use
this .ved for power analysis in the Intel Quartus Prime power analyzer.

To generate and use a .vecd for power analysis, follow these steps:
1. In the Intel Quartus Prime software, click Assignments [Settings.
2. Under EDA Tool Settings, click Simulation.

3. Turn on Generate Value Change Dump file script, specify the type of output
signals to include, and specify the top-level design instance name in your
testbench.

4. Click Processing [0 Start Compilation.

Use the following command to include the script in your testbench where the
design under test (DUT) is instantiated:
include <revision_name> dump_all_vcd nodes.v

Note: Include the script within the testbench module block. If you include the
script outside of the testbench module block, syntax errors occur during
compilation.

6. Run the simulation with the VCS command. Exit the VCS software when the
simulation is finished and the <revision_name>.vcd file is generated in the
simulation directory.

3.3 VCS Simulation Setup Script Example

Example 2.

Example 3.

The Intel Quartus Prime software can generate a simulation setup script for IP cores in
your design. The scripts contain shell commands that compile the required simulation
models in the correct order, elaborate the top-level design, and run the simulation for
100 time units by default. You can run these scripts from a Linux command shell.

The scripts for VCS and VCS MX are vcs_setup.sh (for Verilog HDL or SystemVerilog)
and vesmx_setup.sh (combined Verilog HDL and SystemVerilog with VHDL). Read
the generated .sh script to see the variables that are available for override when
sourcing the script or redefining directly if you edit the script. To set up the simulation
for a design, use the command-line to pass variable values to the shell script.

Using Command-line to Pass Simulation Variables

sh vecsmx_setup.sh\
USER_DEFINED_ELAB_OPTIONS=+rad\
USER_DEFINED_SIM_OPTIONS=+vcs+lic+wait

Example Top-Level Simulation Shell Script for VCS-MX

Run generated script to compile libraries and IP simulation files
Skip elaboration and simulation of the IP variation

sh _/ip_top_sim/synopsys/vcsmx/vcsmx_setup.sh SKIP_ELAB=1 SKIP_SIM=1
QSYS_SIMDIR=""_/ip_top_sim"

#Compile top-level testbench that instantiates IP

vlogan -sverilog ./top_testbench.sv

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
39

™ ®
l n tel 3 Synopsys VCS and VCS MX Support
QPS5V3 | 2017.11.06

#Elaborate and simulate the top-level design
vcs —lca —t ps <elaboration control options> top_testbench
simv <simulation control options>

Example 4. Example Top-Level Simulation Shell Script for VCS

Run script to compile libraries and IP simulation files

sh ./ip_top_sim/synopsys/vcs/vcs_setup.sh TOP_LEVEL_NAME="top_testbench”\

Pass VCS elaboration options to compile files and elaborate top-level
passed to the script as the TOP_LEVEL_NAME
USER_DEFINED_ELAB_OPTIONS="top_testbench.sv'"\

Pass in simulation options and run the simulation for specified amount of

time.

USER_DEFINED_SIM_OPTIONS="<simulation control options>

3.4 Document Revision History

Table 12. Document Revision History

Date Version Changes

2017.11.06 17.1.0 e Stated no support for Intel Arria 10 timing simulation
in Simulating Transport Delays and Disabling Timing
Violations on Registers topics.

e Added Simulation Library Compiler details and
another step to Quick Start Example

2016.05.02 16.0.0 e Noted limitations of NativeLink simulation.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2014.06.30 14.0.0 e Replaced MegaWizard Plug-In Manager information
with IP Catalog.

November 2012 12.1.0 e Relocated general simulation information to
Simulating Altera Designs.

June 2012 12.0.0 e Removed survey link.

November 2011 11.0.1 e Changed to new document template.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
40

https://www.altera.com/search-archives

QPS5V3 | 2017.11.06 l n tel

4 Cadence* Incisive Enterprise (IES) Support

You can include your supported EDA simulator in the Intel Quartus Primedesign flow.
This chapter provides specific guidelines for simulation of Intel Quartus Prime designs
with the Cadence Incisive Enterprise (IES) software.

4.1 Quick Start Example (NC-Verilog)

You can adapt the following RTL simulation example to get started quickly with IES:

1.
2.

Click View O TCL Console to open the TCL Console.

To specify your EDA simulator and executable path, type the following Tcl package
command in the Intel Quartus Prime tcl shell window:

set_user_option -name EDA TOOL_PATH_NCSIM <ncsim executable path>
set_global_assignment -name EDA_SIMULATION_TOOL *NC-Verilog
(Verilog)"

Compile simulation model libraries using one of the following methods:

e Run NativelLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. If you
complete this step you can ignore the remaining steps.

e To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools 0 Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

e Map Intel FPGA simulation libraries by adding the following commands to a
cds.lib file:

include ${CDS_INST_DIR}/tools/inca/files/cds.lib
DEFINE <libl> ver <libl_ver>

Then, compile Intel FPGA simulation models manually:
vlog -work <libl_ver>

Use the compiled simulation model libraries during simulatation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

Elaborate your design and testbench with IES:
ncelab <work |ibrary>._.<top-level entity nane>
Run the simulation:

ncsim <work library>._.<top-level entity nane>

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services

IsO
9001:2008

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
l n tel) 4 Cadence* Incisive Enterprise (IES) Support

QPS5V3 | 2017.11.06

4.2 Cadence Incisive Enterprise (IES) Guidelines

The following guidelines apply to simulation of Intel FPGA designs in the IES software:
¢ Do not specify the -v option for altera_lInsim.sv because it defines a
systemverilog package.

e Add -verilog and +verilog200lext+.v options to make sure all .v files are
compiled as verilog 2001 files, and all other files are compiled as systemverilog
files.

e Add the -1ca option for Stratix V and later families because they include IEEE-
encrypted simulation files for IES.

e Add -timescale=1ps/1ps to ensure picosecond resolution.

4.2.1 Using GUI or Command-Line Interfaces

Intel FPGA supports both the IES GUI and command-line simulator interfaces.

To start the IES GUI, type nclaunch at a command prompt.

Table 13. Simulation Executables
Program Function
ncvlog ncvlog compiles your Verilog HDL code and performs syntax and static semantics checks.
ncvhdl ncvhdl compiles your VHDL code and performs syntax and static semantics checks.
ncelab Elaborates the design hierarchy and determines signal connectivity.
ncsdfc Performs back-annotation for simulation with VHDL simulators.
ncsim Runs mixed-language simulation. This program is the simulation kernel that performs
event scheduling and executes the simulation code.

4.2.2 Elaborating Your Design

Note:

The simulator automatically reads the .sdo file during elaboration of the Intel Quartus
Prime-generated Verilog HDL or SystemVerilog HDL netlist file. The ncelab command
recognizes the embedded system task $sdf annotate and automatically compiles
and annotates the .sdo file by running ncsdfc automatically.

VHDL netlist files do not contain system task calls to locate your .sdf file; therefore,
you must compile the standard .sdo file manually. Locate the .sdo file in the same
directory where you run elaboration or simulation. Otherwise, the $sdf_annotate
task cannot reference the .sdo file correctly. If you are starting an elaboration or
simulation from a different directory, you can either comment out the
$sdf_annotate and annotate the .sdo file with the GUI, or add the full path of
the .sdo file.

If you use NC-Sim for post-fit VHDL functional simulation of a Stratix V design that
includes RAM, an elaboration error might occur if the component declaration
parameters are not in the same order as the architecture parameters. Use the -
namemap_mixgen option with the ncelab command to match the component
declaration parameter and architecture parameter names.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

42

] ®
4 Cadence* Incisive Enterprise (IES) Support l n tel)

QPS5V3 | 2017.11.06

4.2.3 Back-Annotating Simulation Timing Data (VHDL Only)

You can back annotate timing information in a Standard Delay Output File (.sdo) for
VHDL simulators. To back annotate the .sdo timing data at the command line, follow
these steps:

1. To compile the .sdo with the ncsdfc program, type the following command at the
command prompt. The ncsdfc program generates an <output name>.sdf.X
compiled .sdo file

ncsdfc <project nane>_vhd.sdo —output <out put nanme>

Note: If you do not specify an output name, ncsdfc uses <project name>.sdo.X

2. Specify the compiled .sdf file for the project by adding the following command to
an ASCII SDF command file for the project:

COMPILED_SDF_FILE = "'<proj ect name>.sdf.X" SCOPE = <instance path>

3. After compiling the .sdf file, type the following command to elaborate the design:

ncelab worklib.<project nane>:entity —SDF_CMD_FILE <SDF Conmand Fil e>

Example 5. Example SDF Command File

// SDF command file sdf _file

COMPILED_SDF_FILE = *lIpm_ram_dp_test_vhd.sdo.X",
SCOPE = :tb,

MTM_CONTROL = "TYPICAL",

SCALE_FACTORS = **1.0:1.0:1.0",

SCALE_TYPE = "FROM_MTM™";

4.2.4 Disabling Timing Violation on Registers

In certain situations, you may want to ignore timing violations on registers and disable
the “X"” propagation that occurs. For example, this technique may be helpful to
eliminate timing violations in internal synchronization registers in asynchronous clock-
domain crossing. Intel Arria 10 devices do not support timing simulation.

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of "X” at timing violation. To disable “X" propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Intel
Quartus Prime Settings File (.qgs¥).

set_instance_assignment -name X _ON_VIOLATION_OPTION OFF -to \
<regi st er _name>

4.2.5 Simulating Pulse Reject Delays

By default, the IES software filters out all pulses that are shorter than the propagation
delay between primitives. Setting the pulse reject delays options in the IES software
prevents the simulation tool from filtering out these pulses. Use the following options
to ensure that all signal pulses are seen in the simulation results.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
43

] ®
l n tel 4 Cadence* Incisive Enterprise (IES) Support
QPS5V3 | 2017.11.06

Table 14. Pulse Reject Delay Options

Program Function

-PULSE_R Use when simulation pulses are shorter than the delay in a gate-level primitive. The
argument is the percentage of delay for pulse reject limit for the path

-PULSE_INT_R Use when simulation pulses are shorter than the interconnect delay between gate-level
primitives. The argument is the percentage of delay for pulse reject limit for the path

4.2.6 Viewing Simulation Waveforms

IES generates a . trn file automatically following simulation. You can use the .trn for
generating the SimVision waveform view.

To view a waveform from a .trn file through SimVision, follow these steps:
1. Type simvision at the command line. The Design Browser dialog box appears.
2. Click File O Open Database and click the .trn file.

3. In the Design Browser dialog box, select the signals that you want to observe
from the Hierarchy.

4. Right-click the selected signals and click Send to Waveform Window.

You cannot view a waveform from a .vcd file in SimVision, and the .vcd file
cannot be converted to a . trn file.

4.3 IES Simulation Setup Script Example

The Intel Quartus Prime software can generate a ncsim_setup.sh simulation setup
script for IP cores in your design. The script contains shell commands that compile the
required device libraries, IP, or Platform Designer (Standard) simulation models in the
correct order. The script then elaborates the top-level design and runs the simulation
for 100 time units by default. You can run these scripts from a Linux command shell.
To set up the simulation script for a design, you can use the command-line to pass
variable values to the shell script.

Read the generated .sh script to see the variables that are available for you to
override when you source the script or that you can redefine directly in the
generated .sh script. For example, you can specify additional elaboration and
simulation options with the variables USER_DEFINED_ELAB_OPTIONS and
USER_DEFINED_SIM_OPTIONS.

Example 6. Example Top-Level Simulation Shell Script for Incisive (NCSIM)

Run script to compile libraries and IP simulation files

Skip elaboration and simulation of the IP variation

sh _/ip_top_sim/cadence/ncsim_setup.sh SKIP_ELAB=1 SKIP_SIM=1 QSYS_SIMDIR=""_/
ip_top_sim"

#Compile the top-level testbench that instantiates your IP
ncvlog -sv ./top_testbench.sv

#Elaborate and simulate the top-level design

ncelab <elaboration control options> top_testbench

ncsim <simulation control options> top_testbench

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
44

4 Cadence* Incisive Enterprise (IES) Support
QPS5V3 | 2017.11.06

4.4 Document Revision History

Table 15. Document Revision History
Date Version Changes

2017.11.06 17.1.0 e Stated no support for Intel Arria 10 timing simulation
in Simulating Transport Delays and Disabling Timing
Violations on Registers topics.

e Added Simulation Library Compiler details and

another step to Quick Start Example

2016.05.02 16.0.0 ¢ Noted limitations of NativeLink simulation.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2014.08.18 14.0.a10.0 e Corrected incorrect references to VCS and VCS MX.

2014.06.30 14.0.0 e Replaced MegaWizard Plug-In Manager information
with IP Catalog.

November 2012 12.1.0 e Relocated general simulation information to
Simulating Altera Designs.

June 2012 12.0.0 e Removed survey link.

November 2011 11.0.1 e Changed to new document template.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

45

https://www.altera.com/search-archives

QPS5V3 | 2017.11.06 l n tel

5 Aldec* Active-HDL and Riviera-PRO Support

You can include your supported EDA simulator in the Intel Quartus Prime design flow.
This chapter provides specific guidelines for simulation of Intel Quartus Prime designs
with the Aldec Active-HDL or Riviera-PRO software.

5.1 Quick Start Example (Active-HDL VHDL)

You can adapt the following RTL simulation example to get started quickly with Active-
HDL:

1.

To specify your EDA simulator and executable path, type the following Tcl package
command in the Intel Quartus Prime tcl shell window:

set _user_option -name EDA_TOOL PATH_ACTIVEHDL <Active HDL
executable path>

set_global _assignment -name EDA_ SIMULATION_TOOL "Active-HDL
(VHDL)""

Compile simulation model libraries using one of the following methods:

e Run NativelLink RTL simulation to compile required design files, simulation
models, and run your simulator. Verify results in your simulator. If you
complete this step you can ignore the remaining steps.

e To automatically compile all required simulation model libraries for your design
in your supported simulator, click Tools 0 Launch Simulation Library
Compiler. Specify options for your simulation tool, language, target device
family, and output location, and then click OK.

e Compile Intel FPGA simulation models manually:
vlib <libraryl> <altera_libraryl>

vcom -strict93 -dbg -work <libraryl> <libl_conponent/pack.vhd>
<li bl.vhd>

Use the compiled simulation model libraries during simulatation of your design.
Refer to your EDA simulator's documentation for information about running
simulation.

Open the Active-HDL simulator.
Create and open the workspace:

createdesign <wor kspace nanme> <wor kspace pat h>
opendesign -a <wor kspace nane>.adf

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services

IsO
9001:2008

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
5 Aldec* Active-HDL and Riviera-PRO Support l n tel)

QPS5V3 | 2017.11.06

5. Create the work library and compile the netlist and testbench files:

vlib work
vcom -strict93 -dbg -work work <output netlist> <testbench file>

6. Load the design:

vsim +access+r -t 1ps +transport_int_delays +transport_path_delays \
-L work -L <libl> -L <lib2> work.<testbench nodul e nane>

7. Run the simulation in the Active-HDL simulator.

5.2 Aldec Active-HDL and Riviera-PRO Guidelines

The following guidelines apply to simulating Intel FPGA designs in the Active-HDL or
Riviera-PRO software.

5.2.1 Compiling SystemVerilog Files

If your design includes multiple SystemVerilog files, you must compile the System
Verilog files together with a single alog command. If you have Verilog files and
SystemVerilog files in your design, you must first compile the Verilog files, and then
compile only the SystemVerilog files in the single alog command.

5.2.2 Simulating Transport Delays

Table 16.

By default, the Active-HDL or Riviera-PRO software filters out all pulses that are
shorter than the propagation delay between primitives. Turning on the transport
delay options in the in the Active-HDL or Riviera-PRO software prevents the simulator
from filtering out these pulses. Intel Arria 10 devices do not support timing simulation.

Transport Delay Simulation Options

Option Description

+transport_path_delays | Use when simulation pulses are shorter than the delay in a gate-level primitive. You must

include the +pulse_e/number and +pulse_r/number options.

+transport_int_delays | Use when simulation pulses are shorter than the interconnect delay between gate-level

primitives. You must include the +pulse_int_e/number and +pulse_int_r/number
options.

Note:

The +transport_path_delays and +transport_path_delays options apply
automatically during NativeLink gate-level timing simulation.

To perform a gate-level timing simulation with the device family library, type the
Active-HDL command:

vsim -t 1ps -L stratixii -sdftyp /Zil=Ffiltref _vhd.sdo \
work.filtref_vhd_vec_tst +transport_int_delays +transport_path_delays

5.2.3 Disabling Timing Violation on Registers

In certain situations, you may want to ignore timing violations on registers and disable
the “X” propagation that occurs. For example, this technique may be helpful to
eliminate timing violations in internal synchronization registers in asynchronous clock-
domain crossing. Intel Arria 10 devices do not support timing simulation.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
47

5 Aldec* Active-HDL and Riviera-PRO Support
QPS5V3 | 2017.11.06

By default, the x_on_violation_option logic option is enabled for all design
registers, resulting in an output of “X” at timing violation. To disable “X” propagation
at timing violations on a specific register, disable the x_on_violation_option logic
option for the specific register, as shown in the following example from the Intel

Quartus Prime Settings File (.qgs¥).

set_instance_assignment -name X _ON_VIOLATION_OPTION OFF -to \
<regi ster_nane>

5.3 Using Simulation Setup Scripts

The Intel Quartus Prime software generates the rivierapro_setup.tcl simulation
setup script for IP cores in your design. The use and content of the script file is similar
to the msim_setup. tcl file used by the ModelSim simulator.

Related Links

Simulating IP Cores

5.4 Document Revision History

Table 17. Document Revision History

Date Version Changes
2017.11.06 17.1.0 e Stated no support for Intel Arria 10 timing simulation
in Simulating Transport Delays and Disabling Timing
Violations on Registers topics.
e Added Simulation Library Compiler details to Quick
Start Example
2016.05.02 16.0.0 e Noted limitations of NativelLink simulation.
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
2014.06.30 14.0.0 e Replaced MegaWizard Plug-In Manager information
with IP Catalog.
November 2012 12.1.0 e Relocated general simulation information to
Simulating Altera Designs.
June 2012 12.0.0 e Removed survey link.
November 2011 11.0.1 e Changed to new document template.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

48

https://www.altera.com/documentation/jbr1437428483891.html#mwh1409958298944
https://www.altera.com/search-archives

™ ®
QPS5V3 | 2017.11.06 l n tel:

6 Design Debugging Using In-System Sources and Probes

The Signal Tap Logic Analyzer and Signal Probe allow you to read or “tap” internal
logic signals during run time as a way to debug your logic design.

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run time.

You can make the debugging cycle more efficient when you can drive any internal
signal manually within your design, which allows you to perform the following actions:

e Force the occurrence of trigger conditions set up in the Signal Tap Logic Analyzer

e Create simple test vectors to exercise your design without using external test
equipment

e Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Intel Quartus Prime software extends
the portfolio of verification tools, and allows you to easily control any internal signal
and provides you with a completely dynamic debugging environment. Coupled with
either the Signal Tap Logic Analyzer or Signal Probe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

The Virtual JTAG IP core and the In-System Memory Content Editor also give you the
capability to drive virtual inputs into your design. The Intel Quartus Prime software
offers a variety of on-chip debugging tools.

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE IP core
and an interface to control the ALTSOURCE_PROBE IP core instances during run time.
Each ALTSOURCE_PROBE IP core instance provides you with source output ports and
probe input ports, where source ports drive selected signals and probe ports sample
selected signals. When you compile your design, the ALTSOURCE_PROBE IP core sets
up a register chain to either drive or sample the selected nodes in your logic design.
During run time, the In-System Sources and Probes Editor uses a JTAG connection to
shift data to and from the ALTSOURCE_PROBE IP core instances. The figure shows a
block diagram of the components that make up the In-System Sources and Probes
Editor.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso .
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services :00}.‘:2002
egistere

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

™ ®
l n tel) 6 Design Debugging Using In-System Sources and Probes

Figure 2.

QPS5V3 | 2017.11.06

In-System Sources and Probes Editor Block Diagram

/ \ FPGA

Design Logic

© A

.
Probes Sources
\

altsource_probe
Megafunction

1

o
=]

o
(=]

tD

FPGA
JTAG . Quartus Prime
TD—> Controller [™| Frogamming B o e
k / Hardware

The ALTSOURCE_PROBE IP core hides the detailed transactions between the JTAG
controller and the registers instrumented in your design to give you a basic building
block for stimulating and probing your design. Additionally, the In-System Sources and
Probes Editor provides single-cycle samples and single-cycle writes to selected logic
nodes. You can use this feature to input simple virtual stimuli and to capture the
current value on instrumented nodes. Because the In-System Sources and Probes
Editor gives you access to logic nodes in your design, you can toggle the inputs of low-
level components during the debugging process. If used in conjunction with the Signal
Tap Logic Analyzer, you can force trigger conditions to help isolate your problem and
shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

e Creating virtual push buttons
e Creating a virtual front panel to interface with your design
e Emulating external sensor data

e Monitoring and changing run time constants on the fly

The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE IP core instances to increase the level of automation.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

50

] ®
6 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

Related Links

e System Debugging Tools
For an overview and comparison of all the tools available in the Intel Quartus
Prime software on-chip debugging tool suite

e System Debugging Tools
For an overview and comparison of all the tools available in the Intel Quartus
Prime software on-chip debugging tool suite

6.1 Hardware and Software Requirements
The following components are required to use the In-System Sources and Probes
Editor:

e Intel Quartus Prime software

or

e Intel Quartus Prime Lite Edition

e Download Cable (USB-Blaster™ download cable or ByteBlaster™ cable)

e Intel FPGA development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

e Arria® series

e Stratix® series

e Cyclone® series

e MAX® series

6.2 Design Flow Using the In-System Sources and Probes Editor

The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of
the In-System Sources and Probes IP core.

After you compile the design, you can control each instance via the In-System
Sources and Probes Editor pane or via a Tcl interface.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
51

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp

] ®
l n tel) 6 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

Figure 3. FPGA Design Flow Using the In-System Sources and Probes Editor

(reate a New Project or Openan
Existing Project

v

Configure altsource_probe
Megafunction

v

Instrument selected logic nodes
by Instantiating the
altsource_probe Megafunction
variation file into the HDL
Design

v

Compile the design <

v

Program Target Device(s)
* Debug/Modify HDL

Control Source and Probe
Instance(s)

Functionality ™\ No

Satisfied?

6.2.1 Instantiating the In-System Sources and Probes IP Core

You must instantiate the In-System Sources and Probes IP core before you can use
the In-System Sources and Probes editor. Use the IP Catalog and parameter editor to
instantiate a custom variation of the In-System Sources and Probes IP core.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
52

] ®
6 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

To configure the In-System Sources and Probes IP core, perform the following steps::
1. On the Tools menu, click Tools > IP Catalog.

2. Locate and double-click the In-System Sources and Probes IP core. The parameter
editor appears.

3. Specify a name for your custom IP variation.

Specify the desired parameters for your custom IP variation. You can specify up to
up to 512 bits for each source. Your design may include up to 128 instances of this
IP core.

5. Click Generate or Finish to generate IP core synthesis and simulation files
matching your specifications. The parameter editor generates the necessary
variation files and the instantiation template based on your specification. Use the
generated template to instantiate the In-System Sources and Probes IP core in
your design.

Note: The In-System Sources and Probes Editor does not support simulation. You
must remove the In-System Sources and Probes IP core before you create a
simulation netlist.

6.2.2 In-System Sources and Probes IP Core Parameters

Use the template to instantiate the variation file in your design.

Table 18. In-System Sources and Probes IP Port Information
Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input Source Data is written synchronously to this clock. This input is required
if you turn on Source Clock in the Advanced Options box in the
parameter editor.

source_ena No Input Clock enable signal for source_clk. This input is required if specified in
the Advanced Options box in the parameter editor.

source[] No Output Used to drive inputs to user design.

You can include up to 128 instances of the in-system sources and probes IP core in
your design, if your device has available resources. Each instance of the IP core uses a
pair of registers per signal for the width of the widest port in the IP core. Additionally,
there is some fixed overhead logic to accommodate communication between the IP
core instances and the JTAG controller. You can also specify an additional pair of
registers per source port for synchronization.

You can use the Intel Quartus Prime incremental compilation feature to reduce
compilation time. Incremental compilation allows you to organize your design into
logical partitions. During recompilation of a design, incremental compilation preserves
the compilation results and performance of unchanged partitions and reduces design
iteration time by compiling only modified design partitions.

6.3 Compiling the Design

When you compile your design that includes the In-System Sources and ProbesIP
core, the In-System Sources and Probes and SLD Hub Controller IP core are added to
your compilation hierarchy automatically. These IP cores provide communication
between the JTAG controller and your instrumented logic.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
53

™ ®
l n tel) 6 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

You can modify the number of connections to your design by editing the In-System
Sources and Probes IP core. To open the design instance you want to modify in the
parameter editor, double-click the instance in the Project Navigator. You can then
modify the connections in the HDL source file. You must recompile your design after
you make changes.

You can use the Intel Quartus Prime incremental compilation feature to reduce
compilation design into logical partitions. During recompilation of a design,
incremental compilation preserves the compilation results and performance of
unchanged partitions and reduces design iteration time by compiling only modified
design partitions.

6.4 Running the In-System Sources and Probes Editor

The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE IP core instances within your design. The editor allows you to
view all available run time controllable instances of the ALTSOURCE_PROBE IP core in
your design, provides a push-button interface to drive all your source nodes, and
provides a logging feature to store your probe and source data.

To run the In-System Sources and Probes Editor:
e On the Tools menu, click In-System Sources and Probes Editor.

6.4.1 In-System Sources and Probes Editor GUI

The In-System Sources and Probes Editor contains three panes:

¢ JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

e Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

e In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open a
Intel Quartus Prime software project. The In-System Sources and Probes Editor
retrieves all instances of the ALTSOURCE_PROBE IP core by scanning the JTAG chain
and sending a query to the device selected in the JTAG Chain Configuration pane.
You can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE IP core instances in a single device. If you have more than one
device containing IP core instances in a JTAG chain, you can launch multiple In-
System Sources and Probes Editor panes to access the IP core instances in each
device.

6.4.2 Programming Your Device With JTAG Chain Configuration

After you compile your project, you must configure your FPGA before you use the In-
System Sources and Probes Editor.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
54

™ ®
6 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

To configure a device to use with the In-System Sources and Probes Editor, perform
the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances.
(The .sof may be automatically detected).

5. Click Program Device to program the target device.

6.4.3 Instance Manager

The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design and allows you to configure how data is acquired from or written to those
instances.

The following buttons and sub-panes are provided in the Instance Manager pane:

¢ Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

e Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read
interval setting.

e Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

¢ Read Source Data—Reads the data of the sources in the selected instances.

¢ Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by clicking
Manual.

e Event Log—Controls the event log in the In-System Sources and Probes
Editor pane.

e Write Source Data—Allows you to manually or continuously write data to the
system.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running Offloading data,
Updating data, or if an Unexpected JTAG communication error occurs. This
status indicator provides information about the sources and probes instances in your
design.

6.4.4 In-System Sources and Probes Editor Pane

The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
55

™ ®
l n tel) 6 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

The data is organized according to the index number of the instance. The editor
provides an easy way to manage your signals, and allows you to rename signals or
group them into buses. All data collected from in-system source and probe nodes is
recorded in the event log and you can view the data as a timing diagram.

6.4.4.1 Reading Probe Data

You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data.

This action produces a single sample of the probe data and updates the data column
of the selected index in the In-System Sources and Probes Editor pane. You can
save the data to an event log by turning on the Save data to event log option in the
Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously
read probe data. While reading, the status of the active instance shows Unloading.
You can read continuously from multiple instances.

You can access read data with the shortcut menus in the Instance Manager pane.

To adjust the probe read interval, in the Instance Manager pane, turn on the
Manual option in the Probe read interval sub-pane, and specify the sample rate in
the text field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You
can adjust the event log window buffer size in the Maximum Size box.

6.4.4.2 Writing Data

To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer.

Modified values that are not written out to the ALTSOURCE_PROBE instances appear in
red. To update the ALTSOURCE_PROBE instance, highlight the instance in the
Instance Manager pane and click Write source data. The Write source data
function is also available via the shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications you
make to the source data buffer to also write immediately to the ALTSOURCE_PROBE
instances. To continuously update the ALTSOURCE_PROBE instances, change the
Write source data field from Manually to Continuously.

6.4.4.3 Organizing Data

The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
56

6 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

intel.

The In-System Sources and Probes Editor pane allows you to rename any signal.
To rename a signal, double-click the name of the signal and type the new name.

The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over

the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (. spf). To save changes, on the File menu, click Save. The file contains
all the modifications you made to the signal groups, as well as the current data event

log.

6.5 Tcl interface for the In-System Sources and Probes Editor

To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run

quartus_stp.

The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

Table 19.

In-System Sources and Probes Tcl Commands

Command

Argument

Description

start_insystem_source_prob
e

-device_name <device name>
-hardware_name <hardware name>

Opens a handle to a device with the specified
hardware.

Call this command before starting any
transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware name>

Returns a list of all ALTSOURCE_PROBE
instances in your design. Each record
returned is in the following format:
{<instance Index>, <source width>, <probe
width>, <instance name>}

read_probe_data

—-instance_index <instance_index>
-value_in_hex (optional)

Retrieves the current value of the probe.

A string is returned that specifies the status
of each probe, with the MSB as the left-most
bit.

read_source_data

—-instance_index <instance_index>
-value_in_hex (optional)

Retrieves the current value of the sources.

A string is returned that specifies the status
of each source, with the MSB as the left-most
bit.

write_source_data

—-instance_index <instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.

A binary string is sent to the source ports,
with the MSB as the left-most bit.

end_insystem_source_probe

None

Releases the JTAG chain.

Issue this command when all transactions are
finished.

The example shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in the figure below. The
example design contains a DCFIFO with ALTSOURCE_PROBE instances to read from

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

57

Figure 4.

6 Design Debugging Using In-System Sources and Probes
QPS5V3 | 2017.11.06

and write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE
instances. A pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in the example below, provide visibility into the contents of
the FIFO by performing single sample write and read operations and reporting the
state of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the Signal Tap Logic Analyzer.

DCFIFO Example Design Controlled by Tcl Script

altsource_probe
(Instance 0)

source_write_sel

L

S_write_req
s_data[7..0]

Write_clock

wr_req_in

ﬁ in[7..0] write_req wr_full
o datal7..0]
write_clock
d data_out
read_req 7.0] —
— read_clock rd_empty —
rd_req_in
altsource_probe
(Instance 1)
s_read_req D 0
source_read_sel
read_clock
Setup USB hardware - assumes only USB Blaster is installed and

an FPGA is the only device in the JTAG chain

set usb [lindex [get_hardware_names] O]

set device_name [lindex [get device_names -hardware_name $usb] 0]
write procedure : argument value is integer

proc write {value} {

global device_name usb

variable full

start_insystem_source_probe -device_name $device_name -hardware_name $usb
#read full flag

set full [read_probe_data -instance_index 0]

if {$full == 1} {end_insystem source_probe

return "Write Buffer Full”

##toggle select line, drive value onto port, toggle enable

##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;

##bit 9 = Source_write_sel

##int2bits is custom procedure that returns a bitstring from an integer
argument

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

58

™ ®
6 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]
##clear transaction

write_source_data -instance_index 0 -value 0O

end_insystem_source_probe

proc read {} {

global device_name usb

variable empty

start_insystem_source_probe -device_name $device_name -hardware_name $usb
##tread empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag
set empty [read_probe_data -instance_index 1]

if {[regexp {1........ } $empty]} { end_insystem source_probe

return "FIFO empty" }

toggle select line for read transaction

Source_read_sel = bit 0; s read_reg = bit 1

pulse read enable on DC FIFO

write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex

set x [read_probe_data -instance_index 1]

end_insystem_source_probe

return $x

}

Related Links

e Tcl Scripting

e Intel Quartus Prime Settings File Manual
e Command Line Scripting

e Tcl Scripting

e Intel Quartus Prime Settings File Manual

e Command Line Scripting

6.6 Design Example: Dynamic PLL Reconfiguration

The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to
provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG IP core provides an easy interface to
access the register chain counters. The ALTPLL_RECONFIG IP core provides a cache
that contains all modifiable PLL parameters. After you update all the PLL parameters in
the cache, the ALTPLL_RECONFIG IP core drives the PLL register chain to update the
PLL with the updated parameters. The figure shows a Stratix-enhanced PLL with
reconfigurable coefficients.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
59

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410470998554
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410470998554

] ®
l n tel) 6 Design Debugging Using In-System Sources and Probes

Figure 5.

Figure 6.

QPS5V3 | 2017.11.06

Stratix-Enhanced PLL with Reconfigurable Coefficients

Counters and Clock All Output Counters and
Delay Settings are (lock Delay Settings can

Programmable be Programmed Dynamically
fREF — n Bty PFD Charge Loop w | > g0 a L »
Pump Filter ‘ o
scandata —pp{ —p —
sanck —3> 1B [> ® o ob NB > LB D ® o o> M
1) 2 =m b < L
scanaclr 18 > ° e o NSB
+g3 Atqz »
> —
> 1B D> ® o oD MSB
+e3 At >
MSB
D> LB P oo

The following design example uses an ALTSOURCE_PROBE instance to update the PLL
parameters in the ALTPLL_RECONFIG IP core cache. The ALTPLL_RECONFIG IP core
connects to an enhanced PLL in a Stratix FPGA to drive the register chain containing
the PLL reconfigurable coefficients. This design example uses a Tcl/Tk script to
generate a GUI where you can enter in new m and n values for the enhanced PLL. The
Tcl script extracts the m and n values from the GUI, shifts the values out to the
ALTSOURCE_PROBE instances to update the values in the ALTPLL_RECONFIG IP core
cache, and asserts the reconfiguration signal on the ALTPLL_RECONFIG IP core. The
reconfiguration signal on the ALTPLL_RECONFIG IP core starts the register chain
transaction to update all PLL reconfigurable coefficients.

Block Diagram of Dynamic PLL Reconfiguration Design Example

50 MHz Stratix FPGA

@

f
EEENN E, _
Ll
JTAG Counter Stratix-Enhanced | G
In—Sys;e;nSt;)urces Interface S'"'Sy“emd Parameters | alt_plil_reconfig I;t'r:i::grkta PLL
and Probes P Sources an Megaunction | pLL seanmcl ¢
Td Interface Probes = » —k
L

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

60

] ®
6 Design Debugging Using In-System Sources and Probes l n tel
QPS5V3 | 2017.11.06

This design example was created using a Nios II Development Kit, Stratix Edition. The
file sourceprobe DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

e Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in the figure below.

e Interactive Reconfig.gar—The archived Intel Quartus Prime project for this
design example.

Figure 7. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources
and Probes Tcl Package

—
quartus_stp E“El@
Clk_in 50
T Prescale Counter l bty Gycles Post-Scale Clk_out
= Charge Laap uty Cycle | | Dela
[PFD B Filte vco Adjustment o
ump iy I Adjustment
N
Prescala Countar Reconfigure
M

Related Links

e On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

e On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

6.7 Document Revision History

Table 20. Document Revision History

Date Version Changes
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 Minor corrections. Changed to new document template.
July 2010 10.0.0 Minor corrections.

November 2009 9.1.0 e Removed references to obsolete devices.

e Style changes.

March 2009 9.0.0 No change to content.
November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 8.0.0 e Documented that this feature does not support simulation on page 17-5

e Updated Figure 17-8 for Interactive PLL reconfiguration manager
e Added hyperlinks to referenced documents throughout the chapter
e Minor editorial updates

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
61

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

] ®
l n tel 6 Design Debugging Using In-System Sources and Probes
QPS5V3 | 2017.11.06

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
62

https://www.altera.com/search-archives

®
QPS5V3 | 2017.11.06 l n tel

7 Timing Analysis Overview

7.1 Timing Analysis Overview

Comprehensive static timing analysis involves analysis of register-to-register, 1/0, and
asynchronous reset paths. Timing analysis with the Timing Analyzer uses data
required times, data arrival times, and clock arrival times to verify circuit performance
and detect possible timing violations.

The Timing Analyzer determines the timing relationships that must be met for the
design to correctly function, and checks arrival times against required times to verify
timing. This chapter is an overview of the concepts you need to know to analyze your
designs with the Timing Analyzer.

Related Links

The Intel Quartus PrimeTiming Analyzer on page 79
For more information about the Timing Analyzer flow and Timing Analyzer
examples.

7.2 Timing Analyzer Terminology and Concepts

Table 21. Timing Analyzer Terminology
Term Definition

nodes Most basic timing netlist unit. Used to represent ports, pins, and registers.

cells Look-up tables (LUT), registers, digital signal processing (DSP) blocks, memory
blocks, input/output elements, and so on.
Note: For Intel Stratix devices, the LUTs and registers are contained in logic

elements (LE) and modeled as cells.

pins Inputs or outputs of cells.

nets Connections between pins.

ports Top-level module inputs or outputs; for example, device pins.

clocks Abstract objects representing clock domains inside or outside of your design.

7.2.1 Timing Netlists and Timing Paths

The Timing Analyzer requires a timing netlist to perform timing analysis on any
design. After you generate a timing netlist, the Timing Analyzer uses the data to help
determine the different design elements in your design and how to analyze timing.

7.2.1.1 The Timing Netlist

A sample design for which the Timing Analyzer generates a timing netlist equivalent.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so .
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services :OOEI..tZOOg
egistere

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
l n tel) 7 Timing Analysis Overview

QPS5V3 | 2017.11.06

Figure 8. Sample Design

datal —— regl
and_inst
D reg3 —
data2 — reg2
dk —

The timing netlist for the sample design shows how different design elements are
divided into cells, pins, nets, and ports.

Figure 9. The Timing Analyzer Netlist

Cells
~ Cell '
NG Pin
datal
combout datain regl
ok regout
—»O—>
Port / and_inst
combout €93 data_out
Pi Net . -
data2 n datad datain
reg2 —»=O»-O—»—
—0 \=D—> —-O—>
\ regout
t
¢ O—» Net
Port
dk clk~clketrl
inclk0
——»O»0O0—»0O
outclk

7.2.1.2 Timing Paths

Timing paths connect two design nodes, such as the output of a register to the input
of another register.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
64

] ®
7 Timing Analysis Overview l n tel)

QPS5V3 | 2017.11.06

Figure 10.

Understanding the types of timing paths is important to timing closure and
optimization. The Timing Analyzer uses the following commonly analyzed paths:

e Edge paths—connections from ports-to-pins, from pins-to-pins, and from pins-to-
ports.

e Clock paths—connections from device ports or internally generated clock pins to
the clock pin of a register.

e Data paths—connections from a port or the data output pin of a sequential
element to a port or the data input pin of another sequential element.

e Asynchronous paths—connections from a port or asynchronous pins of another
sequential element such as an asynchronous reset or asynchronous clear.

Path Types Commonly Analyzed by the Timing Analyzer

data ——> D@ D0
Clock Path — Data Path
d — CLRN CLRN
Asynchronous Clear Path J J T
st >

In addition to identifying various paths in a design, the Timing Analyzer analyzes clock
characteristics to compute the worst-case requirement between any two registers in a
single register-to-register path. You must constrain all clocks in your design before
analyzing clock characteristics.

7.2.1.3 Data and Clock Arrival Times

Figure 11.

After the Timing Analyzer identifies the path type, it can report data and clock arrival
times at register pins.

The Timing Analyzer calculates data arrival time by adding the launch edge time to the
delay from the clock source to the clock pin of the source register, the micro clock-to-
output delay (utco) of the source register, and the delay from the source register’s
data output (Q) to the destination register’s data input (D).

The Timing Analyzer calculates data required time by adding the latch edge time to
the sum of all delays between the clock port and the clock pin of the destination
register, including any clock port buffer delays, and subtracts the micro setup time
(ptsy) of the destination register, where the ptgy is the intrinsic setup time of an
internal register in the FPGA.

Data Arrival and Data Required Times

— D@ D0

—r

—

Data Arrival Time

Data Required Time

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
65

] ®
l n tel) 7 Timing Analysis Overview

QPS5V3 | 2017.11.06

The basic calculations for data arrival and data required times including the launch and
latch edges.

Figure 12. Data Arrival and Data Required Time Equations
Data Arrival Time = Launch Edge + Source Clock Delay + ut + Register-to-Register Delay
Data Required Time Latch Edge + Destination Clock Delay — pt,,

7.2.1.4 Launch and Latch Edges

All timing relies on one or more clocks. In addition to analyzing paths, the Timing
Analyzer determines clock relationships for all register-to-register transfers in your
design.

The following figure shows the launch edge, which is the clock edge that sends data
out of a register or other sequential element, and acts as a source for the data
transfer. A latch edge is the active clock edge that captures data at the data port of a
register or other sequential element, acting as a destination for the data transfer. In
this example, the launch edge sends the data from register regl at 0 ns, and the
register reg2 captures the data when triggered by the latch edge at 10 ns. The data
arrives at the destination register before the next latch edge.

Figure 13. Setup and Hold Relationship for Launch and Latch Edges 10ns Apart
Ons 10ns 20ns

Launch Clock

Hold relationship Setup relationship
A

Latch Clock] L

In timing analysis, and with the Timing Analyzer specifically, you create clock
constraints and assign those constraints to nodes in your design. These clock
constraints provide the structure required for repeatable data relationships. The
primary relationships between clocks, in the same or different domains, are the setup
relationship and the hold relationship.

Note: If you do not constrain the clocks in your design, the Intel Quartus Prime software
analyzes in terms of a 1 GHz clock to maximize timing based Fitter effort. To ensure
realistic slack values, you must constrain all clocks in your design with real values.

7.2.2 Clock Setup Check

To perform a clock setup check, the Timing Analyzer determines a setup relationship
by analyzing each launch and latch edge for each register-to-register path.

For each latch edge at the destination register, the Timing Analyzer uses the closest
previous clock edge at the source register as the launch edge. The following figure
shows two setup relationships, setup A and setup B. For the latch edge at 10 ns, the
closest clock that acts as a launch edge is at 3 ns and is labeled setup A. For the latch
edge at 20 ns, the closest clock that acts as a launch edge is 19 ns and is labeled
setup B. TimQuest analyzes the most restrictive setup relationship, in this case setup
B; if that relationship meets the design requirement, then setup A meets it by default.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
66

] ®
7 Timing Analysis Overview l n tel)

QPS5V3 | 2017.11.06

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Setup Check

Source Clock L

Setup A Setup B

Destination Clock

Ons 8ns 16ns 24ns 32ns

The Timing Analyzer reports the result of clock setup checks as slack values. Slack is
the margin by which a timing requirement is met or not met. Positive slack indicates
the margin by which a requirement is met; negative slack indicates the margin by
which a requirement is not met.

Clock Setup Slack for Internal Register-to-Register Paths

Clock Setup Slack
Data Arrival Time
Data Required Time

Data Required Time — Data Arrival Time
Launch Edge + Clock Network Delay to Source Register + it + Register-to-Register Delay
Latch Edge + Clock Network Delay to Destination Register — ut,, — Setup Uncertainty

The Timing Analyzer performs setup checks using the maximum delay when
calculating data arrival time, and minimum delay when calculating data required time.

Clock Setup Slack from Input Port to Internal Register

Clock Setup Slack
Data Arrival Time
Data Required Time

Data Required Time — Data Arrival Time
Launch Edge + Clock Network Delay + Input Maximum Delay + Port-to-Register Delay
Latch Edge + Clock Network Delay to Destination Register — pt, — Setup Uncertainty

Clock Setup Slack from Internal Register to Output Port

Clock Setup Slack = Data Required Time — Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Output Port — Output Maximum Delay
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register +yt + Register-to-Port Delay

7.2.3 Clock Hold Check

To perform a clock hold check, the Timing Analyzer determines a hold relationship for
each possible setup relationship that exists for all source and destination register
pairs. The Timing Analyzer checks all adjacent clock edges from all setup relationships
to determine the hold relationships.

The Timing Analyzer performs two hold checks for each setup relationship. The first
hold check determines that the data launched by the current launch edge is not
captured by the previous latch edge. The second hold check determines that the data
launched by the next launch edge is not captured by the current latch edge. From the
possible hold relationships, the Timing Analyzer selects the hold relationship that is
the most restrictive. The most restrictive hold relationship is the hold relationship with
the smallest difference between the latch and launch edges and determines the
minimum allowable delay for the register-to-register path. In the following example,
the Timing Analyzer selects hold check A2 as the most restrictive hold relationship of
two setup relationships, setup A and setup B, and their respective hold checks.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
67

QPS5V3 | 2017.11.06

] ®
< l n tel) 7 Timing Analysis Overview

Figure 18. Setup and Hold Check Relationships

Source Clock) \ / L
Hold Setup A Hold Hold SetupB Hold
Check A1 Check A2 (h/eck B < (l}eck B2
Destination Clock "/ \/
Ons 8ns 16ns 24ns 32ns

Figure 19. Clock Hold Slack for Internal Register-to-Register Paths

Clock Hold Slack = Data Arrival Time — Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + it + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + pt, + Hold Uncertainty

The Timing Analyzer performs hold checks using the minimum delay when calculating
data arrival time, and maximum delay when calculating data required time.
Figure 20. Clock Hold Slack Calculation from Input Port to Internal Register

(lock Hold Slack = Data Arrival Time — Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay + Pin-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + t,

Figure 21. Clock Hold Slack Calculation from Internal Register to Output Port

Clock Hold Slack = Data Arrival Time — Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + it ; + Register-to-Pin Delay
Data Required Time = Latch Edge + Clock Network Delay — Output Minimum Delay

7.2.4 Recovery and Removal Time

Recovery time is the minimum length of time for the deassertion of an asynchronous
control signal relative to the next clock edge.

For example, signals such as clear and preset must be stable before the next
active clock edge. The recovery slack calculation is similar to the clock setup slack
calculation, but it applies to asynchronous control signals.

Figure 22. Recovery Slack Calculation if the Asynchronous Control Signal is Registered

Recovery Slack Time = Data Required Time — Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Destination Register — pt,
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + it + Register-to-Register Delay

Figure 23. Recovery Slack Calculation if the Asynchronous Control Signal is not

Registered
Recovery SlackTime = Data Required Time — Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Destination Register — pt
Data Arrival Time = Launch Edge + Clock Network Delay + Input Maximum Delay + Port-to-Register Delay

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
68

] ®
7 Timing Analysis Overview l n tel)

QPS5V3 | 2017.11.06

Note:

Figure 24.

Figure 25.

If the asynchronous reset signal is from a device I/O port, you must create an input
delay constraint for the asynchronous reset port for the Timing Analyzer to perform
recovery analysis on the path.

Removal time is the minimum length of time the deassertion of an asynchronous
control signal must be stable after the active clock edge. The Timing Analyzer removal
slack calculation is similar to the clock hold slack calculation, but it applies
asynchronous control signals.

Removal Slack Calcuation if the Asynchronous Control Signal is Registered

Removal SlackTime = Data Arrival Time — Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + pit of Source Register + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + pt,

Removal Slack Calculation if the Asynchronous Control Signal is not
Registered

Removal SlackTime = Data Arrival Time — Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay of Pin + Minimum Pin-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + ut,

If the asynchronous reset signal is from a device pin, you must assign the Input
Minimum Delay timing assignment to the asynchronous reset pin for the Timing
Analyzer to perform removal analysis on the path.

7.2.5 Multicycle Paths

Figure 26.

Multicycle paths are data paths that require a non-default setup and/or hold
relationship for proper analysis.

For example, a register may be required to capture data on every second or third
rising clock edge. An example of a multicycle path between the input registers of a
multiplier and an output register where the destination latches data on every other
clock edge.

Multicycle Path

——
— D Q
ENA X N —
— b Q | ENA
ENA
2 (ycles
—

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
69

] ®
l n tel) 7 Timing Analysis Overview

QPS5V3 | 2017.11.06

A register-to-register path used for the default setup and hold relationship, the
respective timing diagrams for the source and destination clocks, and the default
setup and hold relationships, when the source clock, src_clKk, has a period of 10 ns
and the destination clock, dst_clk, has a period of 5 ns. The default setup
relationship is 5 ns; the default hold relationship is 0 ns.

Figure 27. Register-to-Register Path and Default Setup and Hold Timing Diagram

reg reg
data_in —> D 0 D0 —>
data_out
src_ck ——
dst_ck —
setup —
‘ hold ——~
0 10 20 30

To accommodate the system requirements you can modify the default setup and hold
relationships with a multicycle timing exception.

The actual setup relationship after you apply a multicycle timing exception. The
exception has a multicycle setup assignment of two to use the second occurring latch
edge; in this example, to 10 ns from the default value of 5 ns.

Figure 28. Modified Setup Diagram

‘ new setup ——

HUUUUUL

0 20 30

o+

Related Links
The Intel Quartus Prime Timing Analyzer on page 79
For more information about creating exceptions with multicycle paths.

7.2.6 Metastability

Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains because the designer cannot guarantee that
the signal will meet setup and hold time requirements.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
70

™ ®
7 Timing Analysis Overview l n tel)

QPS5V3 | 2017.11.06

To minimize the failures due to metastability, circuit designers typically use a sequence
of registers, also known as a synchronization register chain, or synchronizer, in the
destination clock domain to resynchronize the data signals to the new clock domain.

The mean time between failures (MTBF) is an estimate of the average time between
instances of failure due to metastability.

The Timing Analyzer analyzes the potential for metastability in your design and can
calculate the MTBF for synchronization register chains. The MTBF of the entire design
is then estimated based on the synchronization chains it contains.

In addition to reporting synchronization register chains found in the design, the Intel
Quartus Prime software also protects these registers from optimizations that might
negatively impact MTBF, such as register duplication and logic retiming. The Intel
Quartus Prime software can also optimize the MTBF of your design if the MTBF is too
low.

Related Links

e Understanding Metastability in FPGAs
For more information about metastability, its effects in FPGAs, and how MTBF is
calculated.

e Managing Metastability with the Intel Quartus Prime Software
For more information about metastability analysis, reporting, and optimization
features in the Intel Quartus Prime software.

7.2.7 Common Clock Path Pessimism Removal

Figure 29.

Common clock path pessimism removal accounts for the minimum and maximum
delay variation associated with common clock paths during static timing analysis by
adding the difference between the maximum and minimum delay value of the
common clock path to the appropriate slack equation.

Minimum and maximum delay variation can occur when two different delay values are
used for the same clock path. For example, in a simple setup analysis, the maximum
clock path delay to the source register is used to determine the data arrival time. The
minimum clock path delay to the destination register is used to determine the data
required time. However, if the clock path to the source register and to the destination
register share a common clock path, both the maximum delay and the minimum delay
are used to model the common clock path during timing analysis. The use of both the
minimum delay and maximum delay results in an overly pessimistic analysis since two
different delay values, the maximum and minimum delays, cannot be used to model
the same clock path.

Typical Register to Register Path

o

B

(T2

W regl
C

(Tamn

20n7

reg2

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
71

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409959644819

™ ®
l n tel) 7 Timing Analysis Overview

Figure 30.

QPS5V3 | 2017.11.06

Segment A is the common clock path between regl and reg2. The minimum delay is
5.0 ns; the maximum delay is 5.5 ns. The difference between the maximum and
minimum delay value equals the common clock path pessimism removal value; in this
case, the common clock path pessimism is 0.5 ns. The Timing Analyzer adds the
common clock path pessimism removal value to the appropriate slack equation to
determine overall slack. Therefore, if the setup slack for the register-to-register path
in the example equals 0.7 ns without common clock path pessimism removal, the
slack would be 1.2 ns with common clock path pessimism removal.

You can also use common clock path pessimism removal to determine the minimum
pulse width of a register. A clock signal must meet a register’s minimum pulse width
requirement to be recognized by the register. A minimum high time defines the
minimum pulse width for a positive-edge triggered register. A minimum low time
defines the minimum pulse width for a negative-edge triggered register.

Clock pulses that violate the minimum pulse width of a register prevent data from
being latched at the data pin of the register. To calculate the slack of the minimum
pulse width, the Timing Analyzer subtracts the required minimum pulse width time
from the actual minimum pulse width time. The Timing Analyzer determines the actual
minimum pulse width time by the clock requirement you specified for the clock that
feeds the clock port of the register. The Timing Analyzer determines the required
minimum pulse width time by the maximum rise, minimum rise, maximum fall, and
minimum fall times.

Required Minimum Pulse Width time for the High and Low Pulse

Minimum and Minimum and
Maximum Rise Maximum
Rise Arrival Times Fall Arrival Times

High Pulse

L

=
= A
1 Lo\\lfvviz::se‘i}os
0.7 -

With common clock path pessimism, the minimum pulse width slack can be increased
by the smallest value of either the maximum rise time minus the minimum rise time,
or the maximum fall time minus the minimum fall time. In the example, the slack
value can be increased by 0.2 ns, which is the smallest value between 0.3 ns (0.8 ns -
0.5 ns) and 0.2 ns (0.9 ns - 0.7 ns).

Related Links

Timing Analyzer Page (Settings Dialog Box)
For more information, refer to the Intel Quartus Prime Help.

7.2.8 Clock-As-Data Analysis

The majority of FPGA designs contain simple connections between any two nodes
known as either a data path or a clock path.

A data path is a connection between the output of a synchronous element to the input
of another synchronous element.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

72

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_tqa_settings.htm

] ®
7 Timing Analysis Overview l n tel)

QPS5V3 | 2017.11.06

Figure 31.

Figure 32.

A clock is a connection to the clock pin of a synchronous element. However, for more
complex FPGA designs, such as designs that use source-synchronous interfaces, this
simplified view is no longer sufficient. Clock-as-data analysis is performed in circuits
with elements such as clock dividers and DDR source-synchronous outputs.

The connection between the input clock port and output clock port can be treated
either as a clock path or a data path. A design where the path from port clk_in to
port clk_out is both a clock and a data path. The clock path is from the port clk_in
to the register reg_data clock pin. The data path is from port clk_in to the port
clk_out.

Simplified Source Synchronous Output

D =

?eg_data
dk_in = — ck_out

»
=

With clock-as-data analysis, the Timing Analyzer provides a more accurate analysis of
the path based on user constraints. For the clock path analysis, any phase shift
associated with the phase-locked loop (PLL) is taken into consideration. For the data
path analysis, any phase shift associated with the PLL is taken into consideration
rather than ignored.

The clock-as-data analysis also applies to internally generated clock dividers. An
internally generated clock divider. In this figure, waveforms are for the inverter
feedback path, analyzed during timing analysis. The output of the divider register is
used to determine the launch time and the clock port of the register is used to
determine the latch time.

Clock Divider

]

Launch Clock (2T) | L

Data Arrival Time

Latch Clock (T)

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
73

QPS5V3 | 2017.11.06

] ®
< l n tel) 7 Timing Analysis Overview

7.2.9 Multicycle Clock Setup Check and Hold Check Analysis

Figure 33.

You can modify the setup and hold relationship when you apply a multicycle exception
to a register-to-register path.

Register-to-Register Path

REG1 REG2
) S m p

0gic

ki data

R R
S~ T~
T T,

K= 2 !

7.2.9.1 Multicycle Clock Setup

Figure 34.

The setup relationship is defined as the number of clock periods between the latch
edge and the launch edge. By default, the Timing Analyzer performs a single-cycle
path analysis, which results in the setup relationship being equal to one clock period
(latch edge - launch edge). Applying a multicycle setup assignment, adjusts the setup
relationship by the multicycle setup value. The adjustment value may be negative.

An end multicycle setup assignment modifies the latch edge of the destination clock by
moving the latch edge the specified number of clock periods to the right of the
determined default latch edge. The following figure shows various values of the end
multicycle setup (EMS) assignment and the resulting latch edge.

End Multicycle Setup Values
-10 0 10 20

REG1.CLK

EMS = 1 EMS=3
(default)i EMS =2 :

REG2.CLK

A start multicycle setup assignment modifies the launch edge of the source clock by
moving the launch edge the specified number of clock periods to the left of the
determined default launch edge. A start multicycle setup (SMS) assignment with
various values can result in a specific launch edge.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

74

] ®
7 Timing Analysis Overview l n tel)

QPS5V3 | 2017.11.06

Figure 35.

Start Multicycle Setup Values
0 10 20 30 40

Source Clock
] SMS=2

\
e ——

Destination Clock ‘ ‘ ‘ ‘ ‘ ‘

Figure 36.

The setup relationship reported by the Timing Analyzer for the negative setup
relationship.

Start Multicycle Setup Values Reported by the Timing Analyzer
-10 0 10 20

Source Clock

SMS =1
(default) WS =3

Destination Clock

7.2.9.2 Multicycle Clock Hold

Figure 37.

Tip:

The setup relationship is defined as the number of clock periods between the launch
edge and the latch edge.

By default, the Timing Analyzer performs a single-cycle path analysis, which results in
the hold relationship being equal to one clock period (launch edge - latch edge).When
analyzing a path, the Timing Analyzer performs two hold checks. The first hold check
determines that the data launched by the current launch edge is not captured by the
previous latch edge. The second hold check determines that the data launched by the
next launch edge is not captured by the current latch edge. The Timing Analyzer
reports only the most restrictive hold check. The Timing Analyzer calculates the hold
check by comparing launch and latch edges.

The calculation the Timing Analyzer performs to determine the hold check.
Hold Check

hold check 1= current launch edge — previous latch edge
hold check 2 = next launch edge — current latch edge

If a hold check overlaps a setup check, the hold check is ignored.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
75

] ®
l n tel) 7 Timing Analysis Overview

QPS5V3 | 2017.11.06

A start multicycle hold assignment modifies the launch edge of the destination clock
by moving the latch edge the specified humber of clock periods to the right of the
determined default launch edge. The following figure shows various values of the start
multicycle hold (SMH) assignment and the resulting launch edge.

Figure 38. Start Multicycle Hold Values

-10 0 10 20

Source Clock

SMH=0

(default) SMH=2

SMH=1 |

Destination Clock /

An end multicycle hold assignment modifies the latch edge of the destination clock by
moving the latch edge the specific ed number of clock periods to the left of the
determined default latch edge. The following figure shows various values of the end
multicycle hold (EMH) assignment and the resulting latch edge.

Figure 39. End Multicycle Hold Values

-20 -10 0 10 20
EMH=2

Source Clock

EMH=0
EMH=1 (Default)

Destination Clock ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

The hold relationship reported by the Timing Analyzer for the negative hold
relationship shown in the figure above would look like this:

Figure 40. End Multicycle Hold Values Reported by the Timing Analyzer
-10 0 10 20

Source Clock

EMH=0 @ | EMH=2
(Default)

EMH=1

Destination Clock

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
76

] ®
7 Timing Analysis Overview l n tel

QPS5V3 | 2017.11.06

7.2.10 Multicorner Analysis

Tip:

The Timing Analyzer performs multicorner timing analysis to verify your design under
a variety of operating conditions—such as voltage, process, and temperature—while
performing static timing analysis.

To change the operating conditions or speed grade of the device used for timing
analysis, use the set_operating_conditions command.

If you specify an operating condition Tcl object, the -model, speed, -temperature,
and -voltage options are optional. If you do not specify an operating condition Tcl
object, the -model option is required; the —speed, —-temperature, and -voltage
options are optional.

To obtain a list of available operating conditions for the target device, use the
get_available operating conditions -all command.

To ensure that no violations occur under various conditions during the device
operation, perform static timing analysis under all available operating conditions.

Table 22. Operating Conditions for Slow and Fast Models

Model Speed Grade Voltage Temperature

Slow Slowest speed grade in | V. minimum supply () | Maximum T; (1)
device density

Fast Fastest speed grade in Ve maximum supply (1) | Minimum T; (1)
device density

Note :

1. Refer to the DC & Switching Characteristics chapter of the applicable device Handbook for V.. and T;.
values

In your design, you can set the operating conditions for to the slow timing model, with
a voltage of 1100 mV, and temperature of 85° C with the following code:

set_operating_conditions -model slow -temperature 85 -voltage 1100
You can set the same operating conditions with a Tcl object:
set_operating_conditions 3_slow_1100mv_85c

The following block of code shows how to use the set_operating_conditions
command to generate different reports for various operating conditions.

Example 7. Script Excerpt for Analysis of Various Operating Conditions

#Specify initial operating conditions

set_operating_conditions -model slow -speed 3 -grade c -temperature 85 -
voltage 1100

#Update the timing netlist with the initial conditions
update_timing_netlist

#Perform reporting

#Change initial operating conditions. Use a temperature of OC
set_operating_conditions -model slow -speed 3 -grade c -temperature 0 -
voltage 1100

#Update the timing netlist with the new operating condition
update_timing_netlist

#Perform reporting

#Change initial operating conditions. Use a temperature of OC and a model of

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
77

®
n tel 7 Timing Analysis Overview

QPS5V3 | 2017.11.06

fast

set_operating_conditions -model fast -speed 3 -grade c -temperature 0 -
voltage 1100

#Update the timing netlist with the new operating condition
update_timing_netlist

#Perform reporting

Related Links

e set_operating_conditions

e get_available_operating_conditions
For more information about the get_available_operating_conditions
command

7.3 Document Revision History

Table 23. Document Revision History

Date Version Changes
2016.05.02 16.0.0 Corrected typo in Fig 6-14: Clock Hold Slack Calculation from Internal Register to Output Port
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
2014.12.15 14.1.0 Moved Multicycle Clock Setup Check and Hold Check Analysis section from the Timing Analyzer
chapter.
June 2014 14.0.0 Updated format
June 2012 12.0.0 Added social networking icons, minor text updates
November 2011 11.1.0 Initial release.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

78

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_set_operating_conditions.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_get_available_operating_conditions.htm
https://www.altera.com/search-archives

n ®>
QPS5V3 | 2017.11.06 l n tel

8 The Intel Quartus Prime Timing Analyzer

The Intel Quartus Prime Timing Analyzer is a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an industry-
standard constraint, analysis, and reporting methodology. Use the Timing Analyzer
GUI or command-line interface to constrain, analyze, and report results for all timing
paths in your design.

This document is organized to allow you to refer to specific subjects relating to the
Timing Analyzer and timing analysis. The sections cover the following topics:
Enhanced Timing Analysis for Intel Arria 10 Devices on page 79

Recommended Flow for First Time Users on page 80

Timing Constraints on page 84

Running the Timing Analyzer on page 133

Understanding Results on page 136

Constraining and Analyzing with Tcl Commands on page 153

Generating Timing Reports on page 157

Document Revision History on page 159

Related Links

e Timing Analysis Overview on page 63
e Timing Analyzer Resource Center

e Intel FPGA Technical Training

8.1 Enhanced Timing Analysis for Intel Arria 10 Devices

The Timing Analyzer supports new timing algorithms for the Intel Arria 10 device
family which significantly improve the speed of the analysis.

These algorithms are enabled by default for Intel Arria 10 devices, and can be enabled
for earlier families with an assignment. The new analysis engine analyzes the timing
graph a fixed number of times. Previous Timing Analyzer analysis analyzed the timing
graph as many times as there were constraints in your Synopsys Design Constraint
(SDC) file.

The new algorithms also support incremental timing analysis, which allows you to
modify a single block and re-analyze while maintaining a fully analyzed design.

You can turn on the new timing algorithms for use with Arria V, Cyclone V, and Stratix
V devices with the following QSF assignment:

set_global_assignment -name TIMEQUEST2 ON

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/software/timequest/sof-qts-timequest.html
http://www.altera.com/education/training/trn-index.jsp
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

8.2 Recommended Flow for First Time Users

The Intel Quartus Prime Timing Analyzer performs constraint validation to timing
verification as part of the compilation flow. Both the Timing Analyzer and the Fitter
use of constraints contained in a Synopsys Design Constraints (.sdc) file. The
following flow is recommended if you have not created a project and do not have a
SDC file with timing constraints for your design.

Figure 41. Design Flow with the Timing Analyzer

(reate Quartus Prime Project
and Specify Design Files

Y

Perform Analysis & Synthesis

Y

Specify Timing Requirements

Y

Compile Design and Verify Timing

8.2.1 Creating and Setting Up your Design

You must first create your project in the Intel Quartus Prime software. Include all the
necessary design files, including any existing Synopsys Design Constraints (.sdc)
files, also referred to as SDC files, that contain timing constraints for your design.
Some reference designs, or Intel FPGA or partner IP cores may already include one or
more SDC files.

All SDC files must be added to your project so that your constraints are processed
when the Intel Quartus Prime software performs Fitting and Timing Analysis. Typically
you must create an SDC file to constrain your design.

Related Links
SDC File Precedence on page 135

8.2.2 Specifying Timing Requirements

Before running timing analysis with the Timing Analyzer, you must specify timing
constraints, describe the clock frequency requirements and other characteristics,
timing exceptions, and I/O timing requirements of your design. You can use the
Timing Analyzer Wizard to enter initial constraints for your design, and then refine
timing constraints with the Timing Analyzer GUI.

Both the Timing Analyzer and the Fitter use of constraints contained in a Synopsis
Design Constraints (.sdc) file.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
80

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

The constraints in the SDC file are read in sequence. You must first make a constraint
before making any references to that constraint. For example, if a generated clock
references a base clock, the base clock constraint must be made before the generated
clock constraint.

If you are new to timing analysis with the Timing Analyzer, you can use template files
included with the Intel Quartus Prime software and the interactive dialog boxes to
create your initial SDC file. To use this method, refer to Performing an Initial Analysis
and Synthesis.

If you are familiar with timing analysis, you can also create an SDC file in you
preferred text editor. Don't forget to include the SDC file in the project when you are
finished.

Related Links

e Creating a Constraint File from Intel Quartus Prime Templates with the Intel
Quartus Prime Text Editor on page 82
For more information on using the <keyword keyref="qts-all" /> Text Editor
templates for SDC constraints.

e Identifying the Intel Quartus Prime Software Executable from the SDC File on page
156

8.2.2.1 Performing an Initial Analysis and Synthesis

Note:

Note:

Perform Analysis and Synthesis on your design so that you can find design entry
names in the Node Finder to simplify creating constraints.

The Intel Quartus Prime software populates an internal database with design element
names. You must synthesize your design in order for the Intel Quartus Prime software
to assign names to your design elements, for example, pins, nodes, hierarchies, and
timing paths.

If you have already compiled your design, you do not need need to perform the
synthesis step again, because compiling the design automatically performs
synthesis.You can either perform Analysis and Synthesis to create a post-map
database, or perform a full compilation to create a post-fit database. Creating a post-
map database is faster than a post-fit database, and is sufficient for creating initial
timing constraints.

If you are using incremental compilation, you must merge your design partitions after
performing Analysis and Synthesis to create a post-map database.

When compiling for the Intel Arria 10 device family, the following commands are
required to perform initial synthesis and enable you to use the Node Finder to find
names in your design:

quartus_map <desi gn>
quartus_fit <desi gn> --floorplan
quartus_sta <desi gn> --post_map

When compiling for other devices, you can exclude the quartus_fit <desi gn> --
Ffloorplan step:

quartus_map <desi gn>
quartus_sta <desi gn> --post_map

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
81

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

8.2.2.2 Creating a Constraint File from Intel Quartus Prime Templates with the
Intel Quartus Prime Text Editor

You can create an SDC file from constraint templates in the Intel Quartus Prime
software with the Intel Quartus Prime Text Editor, or with your preferred text editor.

1. On the File menu, click New.

2. In the New dialog box, select the Synopsys Design Constraints File type from
the Other Files group. Click OK.

3. Right-click in the blank SDC file in the Intel Quartus Prime Text Editor, then click
Insert Constraint. Choose Clock Constraint followed by Set Clock Groups
since they are the most widely used constraints.

The Intel Quartus Prime Text Editor displays a dialog box with interactive fields for
creating constraints. For example, the Create Clock dialog box shows you the
waveform for your create_clock constraint while you adjust the Period and
Rising and Falling waveform edge settings. The actual constraint is displayed in
the SDC command field. Click Insert to use the constraint in your SDC.

or

4. Click the Insert Template button on the text editor menu, or, right-click in the
blank SDC file in the Intel Quartus Prime Text Editor, then click Insert
TemplateTiming Analyzer.

a. In the Insert Template dialog box, expand the Timing Analyzer section,
then expand the SDC Commands section.

b. Expand a command category, for example, Clocks.
Select a command. The SDC constraint appears in the Preview pane.

d. Click Insert to paste the SDC constraint into the blank SDC file you created in
step 2.
This creates a generic constraint for you to edit manually, replacing variables
such as clock names, period, rising and falling edges, ports, etc.

5. Repeat as needed with other constraints, or click Close to close the Insert
Template dialog box.

You can now use any of the standard features of the Intel Quartus Prime Text Editor to
modify the SDC file, or save the SDC file to edit in a text editor. Your SDC can be
saved with the same name as the project, and generally should be stored in the
project directory.

Related Links

e Create Clocks Dialog Box

e Set Clock Groups Dialog Box
For more information on Create Clocks and Set Clock Groups, refer to the Intel
Quartus Prime Help.

8.2.3 Performing a Full Compilation

After creating initial timing constraints, compile your design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
82

http://quartushelp.altera.com/current/analyze/sta/sta_db_create_clock.htm
http://quartushelp.altera.com/current/analyze/sta/sta_db_set_clock_groups.htm

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

During a full compilation, the Fitter uses the Timing Analyzer repeatedly to perform
timing analysis with your timing constraints. By default, the Fitter can stop early if it
meets your timing requirements, instead of attempting to achieve the maximum
performance. You can modify this by changing the Fitter effort settings in the Intel
Quartus Prime software.

Related Links

e Analyzing Timing in Designs Compiled in Previous Versions on page 84
For more information about importing databases compiled in previous versions
of the software.

e Fitter Settings Page (Settings Dialog Box)
For more information about changing Fitter effort, refer to the Intel Quartus
Prime Help.

8.2.4 Verifying Timing

Figure 42.

The Timing Analyzer examines the timing paths in the design, calculates the
propagation delay along each path, checks for timing constraint violations, and reports
timing results as positive slack or negative slack. Negative slack indicates a timing
violation. If you encounter violations along timing paths, use the timing reports to
analyze your design and determine how best to optimize your design. If you modify,
remove, or add constraints, you should perform a full compilation again. This iterative
process helps resolve timing violations in your design.

There is a recommended flow for constraining and analyzing your design within the
Timing Analyzer, and each part of the flow has a corresponding Tcl command.

The Timing Analyzer Flow

Open Project
project_open

\

(reate Timing Netlist
create_timing_netlist

\
Apply Timing Constraints
read_sdc

\

Update Timing Netlist
update_timing_netlist

A

Verify Static Timing Analysis
Results
report_clock_transfers report_timing
report_min_pulse_width report_clocks
report_net_timing report_ucp
report_sdc

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
83

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_fitting.htm

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

8.2.5 Analyzing Timing in Designs Compiled in Previous Versions

Performing a full compilation can be a lengthy process, however, once your design
meets timing you can export the design database for later use. This can include
operations such as verification of subsequent timing models, or use in a later version
of the Intel Quartus Prime software.

When you re-open the project, the Intel Quartus Prime software opens the exported
database from the export directory. You can then run Timing Analyzer on the design
without having to recompile the project.

To export the database in the previous version of the Intel Quartus Prime software,
click Project 0 Export Database and select the export directory to contain the
exported database.

To import a database in a later version of the Intel Quartus Prime software, click File
0 Open and select the Intel Quartus Prime Project file (.qpT) for the project.

Once you import the database, you can perform any Timing Analyzer functions on the
design without recompiling.

8.3 Timing Constraints

Timing analysis in the Intel Quartus Prime software with the Timing Analyzer relies on
constraining your design to make it meet your timing requirements. When discussing
these constraints, they can be referred to as timing constraints, SDC constraints, or
SDC commands interchangeably.

8.3.1 Recommended Starting SDC Constraints
Almost every beginning SDC file should contain the following four commands:

create_clock on page 84

derive_pll_clocks on page 85
derive_clock_uncertainty on page 86

SDC Constraint Creation Summary on page 86
set_clock_groups on page 86

Related Links

Creating a Constraint File from Intel Quartus Prime Templates with the Intel Quartus
Prime Text Editor on page 82

8.3.1.1 create_clock

The first statements in a SDC file should be constraints for clocks, for example,
constrain the external clocks coming into the FPGA with create_clock. An example
of the basic syntax is:

create_clock -name sys clk -period 8.0 [get ports fpga clk]

This command creates a clock called sys_clk with an 8ns period and applies it to the
port called fpga_clk.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
84

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Note:

Note:

Note:

Warning:

Both Tcl files and SDC files are case-sensitive, so make sure references to pins, ports,
or nodes, such as fpga_clk match the case used in your design.

By default, the clock has a rising edge at time Ons, and a 50% duty cycle, hence a
falling edge at time 4ns. If you require a different duty cycle or to represent an offset,
use the —-waveform option, however, this is seldom necessary.

It is common to create a clock with the same name as the port it is applied to. In the
example above, this would be accomplished by:

create_clock -name fpga clk -period 8.0 [get ports fpga clk]

There are now two unique objects called fpga_clk, a port in your design and a clock
applied to that port.

In Tcl syntax, square brackets execute the command inside them, so [get_ports
fpga_clKk] executes a command that finds all ports in the design that match
fpga_clk and returns a collection of them. You can enter the command without using
the get_ports collection command, as shown in the following example. There are
benefits to using collection commands, which are described in "Collection Commands".

create_clock -name sys _clk -period 8.0 fpga clk

Repeat this process, using one create_clock command for each known clock coming
into your design. Later on you can use Report Unconstrained Paths to identify any
unconstrained clocks.

Rather than typing constraints, users can enter constraints through the GUI. After
launching Timing Analyzer, open the SDC file from Timing Analyzer or Intel Quartus
Prime, place the cursor where you want to place the new constraint, and go to Edit O
Insert Constraint, and choose the constraint.

Using the Constraints menu option in the Timing Analyzer GUI applies constraints
directly to the timing database, but makes no entry in the SDC file. An advanced user
may find reasons to do this, but if you are new to Timing Analyzer, Intel FPGA
recommends entering your constraints directly into your SDC with the Edit O Insert
Constraint command.

Related Links
Creating Base Clocks on page 90

8.3.1.2 derive_pll_clocks

After the create_clock commands add the following command into your SDC file:
derive_pll_clocks

This command automatically creates a generated clock constraint on each output of
the PLLs in your design..

When PLLs are created, you define how each PLL output is configured. Because of this,
the Timing Analyzer can automatically constrain them, with the derive_pll_clocks
command.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
85

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

This command also creates other constraints. It constrains transceiver clocks. It adds
multicycles between LVDS SERDES and user logic.

The derive_pll_clocks command prints an Info message to show each generated
clock it creates.

If you are new to the Timing Analyzer, you may decide not to use
derive_pll_clocks, and instead cut-and-paste each create_generated clock
assignment into the SDC file. There is nothing wrong with this, since the two are
identical. The problem is that when you modifiy a PLL setting, you must remember to
change its generated clock in the SDC file. Examples of this type of change include
modifying an existing output clock, adding a new PLL output, or making a change to
the PLL's hierarchy. Too many designers forget to modify the SDC file and spend time
debugging something that derive_pll_clocks would have updated automatically.

Related Links
e Creating Base Clocks on page 90
e Deriving PLL Clocks on page 96

8.3.1.3 derive_clock_uncertainty
Add the following command to your SDC file:

derive_clock_uncertainty

This command calculates clock-to-clock uncertainties within the FPGA, due to
characteristics like PLL jitter, clock tree jitter, etc. This should be in all SDC files and
the Timing Analyzer generates a warning if this command is not found in your SDC
files.

Related Links
Accounting for Clock Effect Characteristics on page 99

8.3.1.4 SDC Constraint Creation Summary

This example shows the SDC file for a sample design with two clocks.

create_clock -period 20.00 -name adc_clk [get ports adc_clk]
create_clock -period 8.00 -name sys_clk [get ports sys_clk]

derive_pll_clocks

derive_clock_uncertainty

8.3.1.5 set_clock_groups

With the constraintsdiscusssed previously, most, if not all, of the clocks in the design
are now constrained. In the Timing Analyzer, all clocks are related by default, and you
must indicate which clocks are not related. For example, if there are paths between an
8ns clock and 10ns clock, even if the clocks are completely asynchronous, the Timing
Analyzer attempts to meet a 2ns setup relationship between these clocks unless you
indicate that they are not related. The Timing Analyzer analyzes everything known,
rather than assuming that all clocks are unrelated and requiring that you relate them.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
86

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

The SDC language has a powerful constraint for setting unrelated clocks called
set_clock_groups. A template for the the typical use of the set_clock groups
command is:

set_clock_groups -asynchronous -group {<clockl>...<clockn>} ... \
—-group {<cl ocka>...<cl ockn>}

The set_clock _groups command does not actually group clocks. Since the Timing
Analyzer assumes all clocks are related by default, all clocks are effectively in one big
group. Instead, the set_clock_groups command cuts timing between clocks in
different groups.

There is no limit to the number of times you can specify a group option with —group
{<group of cl ocks>}. When entering constraints through the GUI with Edit O
Insert Constraint, the Set Clock Groups dialog box only permits two clock groups,
but this is only a limitation of that dialog box. You can always manually add more into
the SDC file.

Any clock not listed in the assignment is related to all clocks. If you forget a clock, the
Timing Analyzer acts conservatively and analyzes that clock in context with all other
domains to which it connects.

The set_clock_groups command requires either the —asynchronous or -
exclusive option. The —asynchronous flag means the clocks are both toggling, but
not in a way that can synchronously pass data. The —exclusive flag means the
clocks do not toggle at the same time, and hence are mutually exclusive. An example
of this might be a clock multiplexor that has two generated clock assignments on its
output. Since only one can toggle at a time, these clocks are —exclusive. Timing
Analyzer does not currently analyze crosstalk explicitly. Instead, the timing models
use extra guard bands to account for any potential crosstalk-induced delays. Timing
Analyzer treats the —asynchronous and -exclusive options the same.

A clock cannot be within multiple —group groupings in a single assignment, however,
you can have multiple set_clock groups assignments.

Another way to cut timing between clocks is to use set_false_path. To cut timing
between sys_clk and dsp_clk, a user might enter:

set_false_path -from [get_clocks sys clk] -to [get_clocks
dsp_clk]

set_false_path -from [get_clocks dsp_clk] -to [sys_clk]

This works fine when there are only a few clocks, but quickly grows to a huge number
of assignments that are completely unreadable. In a simple design with three PLLs
that have multiple outputs, the set_clock groups command can clearly show which
clocks are related in less than ten lines, while set_false_path may be over 50 lines
and be very non-intuitive on what is being cut.

Related Links

e Creating Generated Clocks on page 94

e Relaxing Setup with set_multicyle_path on page 111

e Accounting for a Phase Shift on page 112

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
87

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

8.3.1.5.1 Tips for Writing a set_clock_groups Constraint

Note:

Note:

Since derive_pll_clocks creates many of the clock names, you may not know all of
the clock names to use in the clock groups.

A quick way to make this constraint is to use the SDC file you have created so far, with
the three basic constraints described in previous topics. Make sure you have added it
to your project, then open the Timing Analyzer GUI.

In the Task panel of the Timing Analyzer, double-click Report Clocks. This reads
your existing SDC and applies it to your design, then reports all the clocks. From that
report, highlight all of the clock hames in the first column, and copy the names.

You have just copied all the clock hames in your design in the exact format the Timing
Analyzer recognizes. Paste them into your SDC file to make a list of all clock hames,
one per line..

Format that list into the set_clock groups command by cutting and pasting clock
names into appropriate groups. Then enter the following empty template in your SDC
file::

set_clock_groups -asynchronous -group { \
N\

-group { \

\

-group { \
\

-group { \
3

Cut and paste clocks into groups to define how they’re related, adding or removing
groups as necessary. Format to make the code readable.

This command can be difficult to read on a single line. Instead, you should make use
of the Tcl line continuation character "\". By putting a space after your last character
and then "\", the end-of-line character is escaped. (And be careful not to have any
whitespace after the escape character, or else the whitespace is read as the character
being escaped rather than the end-of-line character).

set_clock_groups -asynchronous \

-group {adc_clk \
the_adc_pll]altpll_component_autogenerated|pll|clk[0] \
the_adc_pll]altpll_component_autogenerated|pll|clk[1] \
the_adc_pll]altpll_component_autogenerated|pll|clk[2] \

3\

-group {sys_clk \
the_system_pll]altpll_component_autogenerated|pll|clk[0] \
the_system_pll]altpll_component_autogenerated|pll]clk[1] \

\

3
-group {the_system_pll]altpll_component_autogenerated|pll]clk[2] \
}

The last group has a PLL output system _pll]..|clk[2] while the input clock and
other PLL outputs are in different groups. If PLLs are used, and the input clock
frequency is not related to the frequency of the PLL's outputs, they must be treated
asynchronously. Usually most outputs of a PLL are related and hence in the same
group, but this is not a requirement, and depends on the requirements of your design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

88

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

For designs with complex clocking, writing this constraint can be an iterative process.
For example, a design with two DDR3 cores and high-speed transceivers could easily
have thirty or more clocks. In those cases, you can just add the clocks you've created.
Since clocks not in the command are still related to every clock, you are
conservatively grouping what is known. If there are still failing paths in the design
between unrelated clock domains, you can start adding in the new clock domains as
necessary. In this case, a large number of the clocks won't actually be in the
set_clock_groups command, since they are either cut in the SDC file for the IP
core (such as the SDC files generated by the DDR3 cores), or they only connect to
clock domains to which they are related.

For many designs, that is all that's necessary to constrain the core. Some common
core constraints that are not be covered in this quick start section that user's do are:

e Add multicycles between registers which can be analyzed at a slower rate than the
default analysis, in other words, increasing the time when data can be read, or
'opening the window'. For example, a 10ns clock period has a 10ns setup
relationship. If the data changes at a slower rate, or perhaps the registers toggle
at a slower rate due to a clock enable, then you should apply a multicycle that
relaxes the setup relationship (opens the the window so that valid data can pass).
This is @ multiple of the clock period, making the setup relationship 20ns, 40ns,
etc., while keeping the hold relationship at Ons. These types of multicycles are
generally applied to paths.

e The second common form of multicycle is when the user wants to advance the
cycle in which data is read, or 'shift the window'. This generally occurs when your
design performs a small phase-shift on a clock. For example, if your design has
two 10ns clocks exiting a PLL, but the second clock has a 0.5ns phase-shift, the
default setup relationship from the main clock to the phase-shifted clock is 0.5ns
and the hold relationship is -9.5ns. It is almost impossible to meet a 0.5ns setup
relationship, and most likely you intend the data to transfer in the next window.
By adding a multicycle from the main clock to the phase-shifted clock, the setup
relationship becomes 10.5ns and the hold relationship becomes 0.5ns. This
multicycle is generally applied between clocks and is something the user should
think about as soon as they do a small phase-shift on a clock. This type of
multicycle is called shifting the window.

e Add a create_generated_clock to ripple clocks. When a register's output
drives the clk port of another register, that is a ripple clock. Clocks do not
propagate through registers, so all ripple clocks must have a
create_generated_clock constraint applied to them for correct analysis.
Unconstrained ripple clocks appear in the Report Unconstrained Paths report,
so they are easily recognized. In general, ripple clocks should be avoided for many
reasons, and if possible, a clock enable should be used instead.

e Add a create_generated_clock to clock mux outputs. Without this, all clocks
propagate through the mux and are related. Timing Analyzer analyze paths
downstream from the mux where one clock input feeds the source register and the
other clock input feeds the destination, and vice-versa. Although it could be valid,
this is usually not preferred behavior. By putting create_generated_clock
constraints on the mux output, which relates them to the clocks coming into the
mux, you can correctly group these clocks with other clocks.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
89

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

8.3.2 Creating Clocks and Clock Constraints

Clocks specify timing requirements for synchronous transfers and guide the Fitter
optimization algorithms to achieve the best possible placement for your design. You
must define all clocks and any associated clock characteristics, such as uncertainty or
latency. The Timing Analyzer supports SDC commands that accommodate various
clocking schemes such as:

e Base clocks
e Virtual clocks
e Multifrequency clocks

e Generated clocks

8.3.2.1 Creating Base Clocks

Base clocks are the primary input clocks to the device. Unlike clocks that are
generated in the device (such as an on-chip PLL), base clocks are generated by off-
chip oscillators or forwarded from an external device. Define base clocks at the top of
your SDC file, because generated clocks and other constraints often reference base
clocks. The Timing Analyzer ignores any constraints that reference a clock that has not
been defined.

Use the create_clock command to create a base clock. Use other constraints, such
as those described in Accounting for Clock Effect Characteristics, to specify clock
characteristics such as uncertainty and latency.

The following examples show the most common uses of the create_clock
constraint:

create_clock Command

To specify a 100 MHz requirement on a clk_sys input clock port you would enter the
following in your SDC file:

create_clock -period 10 -name clk_sys [get_ports clk _sys]

100 MHz Shifted by 90 Degrees Clock Creation

This example creates a 10 ns clock with a 50% duty cycle that is phase shifted by
90 degrees applied to port clk_sys. This type of clock definition is most commonly
used when the FPGA receives source synchronous, double-rate data that is center-
aligned with respect to the clock.

create_clock -period 10 -waveform { 2.5 7.5 } [get_ports clk_sys]

Two Oscillators Driving the Same Clock Port

You can apply multiple clocks to the same target with the —add option. For example,
to specify that the same clock input can be driven at two different frequencies, enter
the following commands in your SDC file:

create_clock -period 10 -name clk_100 [get_ports clk_sys]
create_clock -period 5 -name clk 200 [get_ports clk_sys] -add

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

90

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Although it is not common to have more than two base clocks defined on a port, you
can define as many as are appropriate for your design, making sure you specify —add
for all clocks after the first.

Creating Multifrequency Clocks

You must create a multifrequency clock if your design has more than one clock source
feeding a single clock node in your design. The additional clock may act as a low-
power clock, with a lower frequency than the primary clock. If your design uses
multifrequency clocks, use the set_clock_groups command to define clocks that
are exclusive.

To create multifrequency clocks, use the create_clock command with the —add
option to create multiple clocks on a clock node. You can create a 10 ns clock applied
to clock port clk, and then add an additional 15 ns clock to the same clock port. The
Timing Analyzer uses both clocks when it performs timing analysis.

create_clock —period 10 —name clock_primary —waveform { 0 5 } \
[get_ports clk]
create_clock —period 15 —name clock_secondary —waveform { 0 7.5 } \
[get_ports clk] -add
Related Links
e Accounting for Clock Effect Characteristics on page 99
e create_clock

e get_ports
For more information about these commands, refer to Intel Quartus Prime
Help.

8.3.2.1.1 Automatically Detecting Clocks and Creating Default Clock Constraints

Warning:

To automatically create base clocks in your design, use the derive_clocks
command. The derive_clocks command is equivalent to using the create_clock
command for each register or port feeding the clock pin of a register. The
derive_clocks command creates clock constraints on ports or registers to ensure
every register in your design has a clock constraints, and it applies one period to all
base clocks in your design.

You can have the Timing Analyzer create a base clock with a 100 Mhz requirement for
unconstrained base clock nodes.

derive_clocks -period 10

Do not use the derive_clocks command for final timing sign-off; instead, you
should create clocks for all clock sources with the create_clock and
create_generated_clock commands. If your design has more than a single clock,
the derive_clocks command constrains all the clocks to the same specified
frequency. To achieve a thorough and realistic analysis of your design’s timing
requirements, you should make individual clock constraints for all clocks in your
design.

If you want to have some base clocks created automatically, you can use the -
create_base clocks option to derive_pll_clocks. With this option, the
derive_pll_clocks command automatically creates base clocks for each PLL,

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
91

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_clock.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_clock.htm

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

based on the input frequency information specified when the PLL was instantiated. The
base clocks are nhamed matching the port names. This feature works for simple port-
to-PLL connections. Base clocks are not automatically generated for complex PLL
connectivity, such as cascaded PLLs. You can also use the command

derive _pll_clocks -create_base clocks to create the input clocks for all PLL
inputs automatically.

Related Links

derive_clocks
For more information about this command, refer to Intel Quartus Prime Help.

8.3.2.2 Creating Virtual Clocks

Figure 43.

Example 8.

A virtual clock is a clock that does not have a real source in the design or that does
not interact directly with the design.

To create virtual clocks, use the create _clock command with no value specified for
the <targets> option.

This example defines a 100Mhz virtual clock because no target is specified.

create_clock -period 10 -name my_virt_clk

I/0 Constraints with Virtual Clocks

Virtual clocks are most commonly used in I/O constraints; they represent the clock at
the external device connected to the FPGA.

For the output circuit shown in the following figure, you should use a base clock to
constrain the circuit in the FPGA, and a virtual clock to represent the clock driving the
external device. Examples of the base clock, virtual clock, and output delay
constraints for such a circuit are shown below.

Virtual Clock Board Topology

FPGA External Device
datain
reg_a — — reg_b
dataout
system_clk virt_ck

You can create a 10 ns virtual clock named virt_clk with a 50% duty cycle where
the first rising edge occurs at 0 ns by adding the following code to your SDC file. The
virtual clock is then used as the clock source for an output delay constraint.

Virtual Clock

#create base clock for the design

create_clock -period 5 [get _ports system clk]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

92

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_derive_clocks.htm

8 The Intel Quartus Prime Timing Analyzer l n tel
QPS5V3 | 2017.11.06

#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]
set_output_delay -clock virt_clk -min 0.0 [get ports dataout]

Related Links

e set_input_delay

e set_output_delay
For more information about these commands, refer to Intel Quartus Prime
Help.

8.3.2.2.1 Example of Specifying an I/0 Interface Clock

To specify I/0 interface uncertainty, you must create a virtual clock and constrain the
input and output ports with the set_input_delay and set_output _delay
commands that reference the virtual clock.

When the set_input_delay or set_output_delay commands reference a clock
port or PLL output, the virtual clock allows the derive_clock_uncertainty

command to apply separate clock uncertainties for internal clock transfers and I/0
interface clock transfers

Create the virtual clock with the same properties as the original clock that is driving
the I/0 port.

Figure 44. 1I/0 Interface Clock Specifications

External Device FPGA
data_in
[— D Q > > D Q >
reg1 reg2
= dk_in T
1L
100 MHz

Example 9. SDC Commands to Constrain the I/0 Interface

Create the base clock for the clock port

create_clock -period 10 -name clk_in [get_ports clk_in]

Create a virtual clock with the same properties of the base clock

driving the source register

create_clock -period 10 -name virt_clk_in

Create the input delay referencing the virtual clock and not the base
clock

DO NOT use set_input_delay -clock clk_in <del ay val ue>

[get_ports data_in]

set_input_delay -clock virt_clk_in <del ay val ue> [get _ports data_in]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
93

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

8.3.2.3 I/0 Interface Uncertainty

Virtual clocks are recommended for I/O constraints because they most accurately
represent the clocking topology of the design. An additional benefit is that you can
specify different uncertainty values on clocks that interface with external I/O ports and
clocks that feed register-to-register paths inside the FPGA.

8.3.2.4 Creating Generated Clocks

Define generated clocks on any nodes in your design which modify the properties of a
clock signal, including phase, frequency, offset, and duty cycle. Generated clocks are
most commonly used on the outputs of PLLs, on register clock dividers, clock muxes,
and clocks forwarded to other devices from an FPGA output port, such as source
synchronous and memory interfaces. In the SDC file, create generated clocks after the
base clocks have been defined. Generated clocks automatically account for all clock
delays and clock latency to the generated clock target.

Use the create_generated_clock command to constrain generated clocks in your
design.

The -source option specifies the name of a node in the clock path which is used as
reference for your generated clock. The source of the generated clock must be a node
in your design netlist and not the name of a previously defined clock. You can use any
node name on the clock path between the input clock pin of the target of the
generated clock and the target node of its reference clock as the source node. A good
practice is to specify the input clock pin of the target node as the source of your new
generated clock. That way, the source of the generated clock is decoupled from the
naming and hierarchy of its clock source. If you change its clock source, you don't
have to edit the generated clock constraint.

If you have multiple base clocks feeding a node that is the source for a generated
clock, you must define multiple generated clocks. Each generated clock is associated
to one base clock using the —-master_clock option in each generated clock
statement. In some cases, generated clocks are generated with combinational logic.
Depending on how your clock-modifying logic is synthesized, the name can change
from compile to compile. If the name changes after you write the generated clock
constraint, the generated clock is ignored because its target name no longer exists in
the design. To avoid this problem, use a synthesis attribute or synthesis assignment to
keep the final combinational node of the clock-modifying logic. Then use the kept
name in your generated clock constraint. For details on keeping combinational nodes
or wires, refer to the Implement as Output of Logic Cell logic option topic in Intel
Quartus Prime Help.

When a generated clock is created on a node that ultimately feeds the data input of a
register, this creates a special case referred to as “clock-as-data”. Instances of clock-
as-data are treated differently by Timing Analyzer. For example, when clock-as-data is
used with DDR, both the rise and the fall of this clock need to be considered since it is
a clock, and Timing Analyzer reports both rise and fall. With clock-as-data, the From
Node is treated as the target of the generated clock, and the Launch Clock is treated
as the generated clock. In the figure below, the first path is from toggle_clk
(INVERTED) to clk, whereas the second path is from toggle_clk to clk. The slack in
both cases is slightly different due to the difference in rise and fall times along the
path; the ~5 ps difference can be seen in the Data Delay column. Only the path with
the lowest slack value need be considered. This would also be true if this were not a
clock-as-data case, but normally Timing Analyzer only reports the worst-case path
between the two (rise and fall). In this example, if the generated clock were not

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

94

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Figure 45.

intel.

defined on the register output, then only one path would be reported and it would be
the one with the lowest slack value. If your design targets an Intel Arria 10 device, the

enhanced timing algorithms remove all common clock pessimism on paths treated as
clock-as-data.

Example of clock-as-data

{ Setup: dk
Command Info Summary of Paths
Slack From Mode To Node Launch Clock Latch Clock Relationship Clock Skew Data Delay
1 9.186 toggle_reglg toggle_reg toggle_dk dk 10,000 -0.158 0.593
2 91N toggle_reg|lg toggle_reg toggle_dk clk 10.000 -0.158 0.533

Path #1: Setup slack is 9.166

Path Summary

Statistics I Data Path | Waveform Extra Fitter Information

Property Value
1 From Node togale_reg|q
2 ToMNode toggle_reg
3 Launch Clock toggle_dk {INVERTED)
4 Llatch Clock dk
5 Data Arrival Time 12,515
6 DataRequired Time 21.681
7 Slack 9,166

The Timing Analyzer provides the derive_pll_clocks command to automatically

generate clocks for all PLL clock outputs. The properties of the generated clocks on the
PLL outputs match the properties defined for the PLL.

Related Links

e Deriving PLL Clocks on page 96
For more information about deriving PLL clock outputs.

e Implement as Output of Logic Cell logic option

For more information on keeping combinational nodes or wires, refer to Intel
Quartus Prime Help.

e create_generate_clock
e derive_pll_clocks

e create_generated_clocks
For information about these commands, refer to Intel Quartus Prime Help.

8.3.2.4.1 Clock Divider Example

Figure 46.

A common form of generated clock is a divide-by-two register clock divider. The
following constraint creates a half-rate clock on the divide-by-two register.

Clock Divider

reg

clk_sys >

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
95

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_implement_as_lcell.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm

intel.

Figure 47.

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Clock Divider Waveform
Edges 1 2 3 4 5 6 7 8

clk_sys

dk_div_2

ime "0 2 ' 30

create_clock -period 10 -name clk_sys [get_ports clk_sys]
create_generated_clock -name clk _div_2 -divide_by 2 -source \
[get_ports clk_sys] [get_pins reg|q]

Or in order to have the clock source be the clock pin of the register you can use:

create_clock -period 10 -name clk_sys [get_ports clk_sys]
create_generated_clock -name clk _div_2 -divide_by 2 -source \
[get_pins reg|clk] [get_pins reg|ql

8.3.2.4.2 Clock Multiplexor Example

Figure 48.

Another common form of generated clock is on the output of a clock mux. One
generated clock on the output is requred for each input clock. The SDC example also
includes the set_clock_groups command to indicate that the two generated clocks
can never be active simultaneously in the design, so the Timing Analyzer does not
analyze cross-domain paths between the generated clocks on the output of the clock

mux.
dk_a mux_out
dk_b

create_clock -name clock_a -period 10 [get_ports clk_a]

create_clock -name clock_b -period 10 [get_ports clk _b]

create_generated_clock -name clock_a mux -source [get ports clk a] \
[get_pins clk_mux]mux_out]

create_generated_clock -name clock_b_mux -source [get ports clk_b] \
[get_pins clk_mux|mux_out] -add

set_clock_groups -exclusive -group clock_a_mux -group clock_b_mux

Clock Mux

8.3.2.5 Deriving PLL Clocks

Use the derive_pll_clocks command to direct the Timing Analyzer to
automatically search the timing netlist for all unconstrained PLL output clocks. The
derive_pll_clocks command detects your current PLL settings and automatically
creates generated clocks on the outputs of every PLL by calling the
create_generated_clock command.

Create Base Clock for PLL input Clock Ports

create_clock -period 10.0 -name fpga_sys clk [get ports fpga sys clk] \
derive_pll_clocks

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

96

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 49.

Example 10.

If your design contains transceivers, LVDS transmitters, or LVDS receivers, you must
use the derive_pll_clocks command. The command automatically constrains this
logic in your design and creates timing exceptions for those blocks.

Include the derive_pll_clocks command in your SDC file after any
create_clock command Each time the Timing Analyzer reads your SDC file, the
appropriate generate clock is created for each PLL output clock pin. If a clock exists on
a PLL output before running derive_pll_clocks, the pre-existing clock has
precedence, and an auto-generated clock is not created for that PLL output.

A simple PLL design with a register-to-register path.

Simple PLL Design

dataout
reg_1 reg_2 —

pll_inclk

pll_inst
=

The Timing Analyzer generates messages when you use the derive_pll_clocks
command to automatically constrain the PLL for a design similar to the previous
image.

derive_pll_clocks Command Messages

Info:

Info: Deriving PLL Clocks:

Info: create_generated_clock -source pll_inst]altpll_component|pll]inclk[0] -
divide_by 2 -name

pll_inst]altpll_component|pll|clk[0] pll_inst]altpll_component|pll|clk[0]
Info:

The input clock pin of the PLL is the node pll_inst]altpll_component|pll]
inclk[0] which is used for the —source option. The name of the output clock of the
PLL is the PLL output clock node, pll_inst]altpll_component|pll]clKk[O].

If the PLL is in clock switchover mode, multiple clocks are created for the output clock
of the PLL; one for the primary input clock (for example, inclk[0]), and one for the
secondary input clock (for example, inclk[1]). You should create exclusive clock
groups for the primary and secondary output clocks since they are not active
simultaneously.

Related Links

e Creating Clock Groups on page 97
For more information about creating exclusive clock groups.

e derive_pll_clocks

e Derive PLL Clocks
For more information about the derive_pll_clocks command.

8.3.2.6 Creating Clock Groups

The Timing Analyzer assumes all clocks are related unless constrained otherwise.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
97

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_db_derive_pll_clocks.htm

8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

To specify clocks in your design that are exclusive or asynchronous, use the
set_clock_groups command. The set_clock groups command cuts timing
between clocks in different groups, and performs the same analysis regardless of
whether you specify —exclusive or —asynchronous. A group is defined with the -
group option. The Timing Analyzer excludes the timing paths between clocks for each
of the separate groups.

The following tables show examples of various group options for the

set_clock_groups command.

-group {B D}

Table 24. set_clock_groups -group A

Dest\Source | A B C D

A Analyzed | Cut Cut Cut

B Cut Analyzed | Analyzed | Analyzed

C Cut Analyzed | Analyzed | Analyzed

D Cut Analyzed | Analyzed | Analyzed
Table 25. set_clock_groups -group {A B}

Dest\Source | A B C D

A Analyzed | Analyzed | Cut Cut

B Analyzed | Analyzed | Cut Cut

C Cut Cut Analyzed | Analyzed

D Cut Cut Analyzed | Analyzed
Table 26. set_clock_groups -group A -group B

Dest\Source | A B C D

A Analyzed | Cut Cut Cut

B Cut Analyzed | Cut Cut

C Cut Cut Analyzed | Analyzed

D Cut Cut Analyzed | Analyzed
Table 27. set_clock_groups -group {A C}

Dest\Source | A B C D

A Analyzed | Cut Analyzed | Cut

B Cut Analyzed | Cut Analyzed

C Analyzed | Cut Analyzed | Cut

D Cut Analyzed | Cut Analyzed
Table 28. set_clock_groups -group {A CD}

Dest\Source | A B C D

A Analyzed | Cut Analyzed | Analyzed

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

98

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

B Cut Analyzed | Cut Cut
C Analyzed | Cut Analyzed | Analyzed
D Analyzed | Cut Analyzed | Analyzed

Related Links

set_clock_groups
For more information about this command, refer to Intel Quartus Prime Help.

8.3.2.6.1 Exclusive Clock Groups

Figure 50.

Use the —exclusive option to declare that two clocks are mutually exclusive. You
may want to declare clocks as mutually exclusive when multiple clocks are created on
the same node. This case occurs for multiplexed clocks.

For example, an input port may be clocked by either a 25-MHz or a 50-MHz clock. To
constrain this port, create two clocks on the port, and then create clock groups to
declare that they do not coexist in the design at the same time. Declaring the clocks
as mutually exclusive eliminates clock transfers that are derived between the 25-MHz
clock and the 50-MHz clock.

Clock Mux with Synchronous Path Across the Mux

dk arC—

dk_b mux_out

create_clock -period 40 -name clk_a [get_ports {port_a}]
create_clock -add -period 20 -name clk_b [get_ports {clk_a}]
set_clock_groups -exclusive -group {clk_a} -group {clk_b}

8.3.2.6.2 Asynchronous Clock Groups

Use the —asynchronous option to create asynchronous clock groups. Asynchronous
clock groups are commonly used to break the timing relationship where data is
transfered through a FIFO between clocks running at different rates.

Related Links

set_clock_groups
For more information about this command, refer to Intel Quartus Prime Help.

8.3.2.7 Accounting for Clock Effect Characteristics

The clocks you create with the Timing Analyzer are ideal clocks that do not account for
any board effects. You can account for clock effect characteristics with clock latency
and clock uncertainty.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
99

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_derive_clocks.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_groups.htm

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

8.3.2.7.1 Clock Latency

Note:

There are two forms of clock latency, clock source latency and clock network latency.
Source latency is the propagation delay from the origin of the clock to the clock
definition point (for example, a clock port). Network latency is the propagation delay
from a clock definition point to a register’s clock pin. The total latency at a register’s
clock pin is the sum of the source and network latencies in the clock path.

To specify source latency to any clock ports in your design, use the
set_clock_latency command.

The Timing Analyzer automatically computes network latencies; therefore, you only
can characterize source latency with the set_clock latency command. You must
use the -source option.

Related Links

set_clock_latency
For more information about this command, refer to Intel Quartus Prime Help.

8.3.2.7.2 Clock Uncertainty

When clocks are created, they are ideal and have perfect edges. It is important to add
uncertainty to those perfect edges, to mimic clock-level effects like jitter. You should
include the derive_clock_uncertainty command in your SDC file so that
appropriate setup and hold uncertainties are automatically calculated and applied to
all clock transfers in your design. If you don't include the command, the Timing
Analyzer performs it anyway; it is a critical part of constraining your design correctly.

The Timing Analyzer subtracts setup uncertainty from the data required time for each
applicable path and adds the hold uncertainty to the data required time for each
applicable path. This slightly reduces the setup and hold slack on each path.

The Timing Analyzer accounts for uncertainty clock effects for three types of clock-to-
clock transfers; intraclock transfers, interclock transfers, and I/0 interface clock
transfers.

e Intraclock transfers occur when the register-to-register transfer takes place in the
device and the source and destination clocks come from the same PLL output pin
or clock port.

e Interclock transfers occur when a register-to-register transfer takes place in the
core of the device and the source and destination clocks come from a different PLL
output pin or clock port.

e I/O interface clock transfers occur when data transfers from an I/O port to the
core of the device or from the core of the device to the I/0 port.

To manually specify clock uncertainty, use the set_clock _uncertainty command.
You can specify the uncertainty separately for setup and hold. You can also specify
separate values for rising and falling clock transitions, although this is not commonly
used. You can override the value that was automatically applied by the
derive_clock_uncertainty command, or you can add to it.

The derive_clock _uncertainty command accounts for PLL clock jitter if the clock
jitter on the input to a PLL is within the input jitter specification for PLL's in the
specified device. If the input clock jitter for the PLL exceeds the specification, you

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

100

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_latency.htm

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

should add additional uncertainty to your PLL output clocks to account for excess jitter
with the set_clock uncertainty -add command. Refer to the device handbook
for your device for jitter specifications.

Another example is to use set_clock _uncertainty -add to add uncertainty to
account for peak-to-peak jitter from a board when the jitter exceeds the jitter
specification for that device. In this case you would add uncertainty to both setup and
hold equal to 1/2 the jitter value:

set_clock_uncertainty —setup —to <cl ock nane> \
-setup —add <p2p jitter/2>

set_clock_uncertainty —hold —enable_same_physical_edge —to <cl ock nane> \
—add <p2p jitter/2>

There is a complex set of precedence rules for how the Timing Analyzer applies values
from derive_clock uncertainty and set_clock_uncertainty, which depend
on the order the commands appear in your SDC files, and various options used with
the commands. The Help topics referred to below contain complete descriptions of
these rules. These precedence rules are much simpler to understand and implement if
you follow these recommendations:

e If you want to assign your own clock uncertainty values to any clock transfers, the
best practice is to put your set_clock _uncertainty exceptions after the
derive_clock_uncertainty command in your SDC file.

e When you use the —add option for set_clock_uncertainty, the value you
specify is added to the value from derive_clock uncertainty. If you don't
specify —add, the value you specify replaces the value from
derive_clock_uncertainty.

Related Links
e set_clock_uncertainty
e derive_clock_uncertainty

e remove_clock_uncertainty
For more information about these commands, refer to Intel Quartus Prime
Help.

8.3.3 Creating I/0 Requirements

The Timing Analyzer reviews setup and hold relationships for designs in which an
external source interacts with a register internal to the design. The Timing Analyzer
supports input and output external delay modeling with the set_input_delay and
set_output_delay commands. You can specify the clock and minimum and
maximum arrival times relative to the clock.

You must specify timing requirements, including internal and external timing
requirements, before you fully analyze a design. With external timing requirements
specified, the Timing Analyzer verifies the I/0 interface, or periphery of the device,
against any system specification.

8.3.3.1 Input Constraints

Input constraints allow you to specify all the external delays feeding into the device.
Specify input requirements for all input ports in your design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
101

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_uncertainty.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_clock_uncertainty.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_remove_clock_uncertainty.htm

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

You can use the set_input_delay command to specify external input delay
requirements. Use the —clock option to reference a virtual clock. Using a virtual clock
allows the Timing Analyzer to correctly derive clock uncertainties for interclock and
intraclock transfers. The virtual clock defines the launching clock for the input port.
The Timing Analyzer automatically determines the latching clock inside the device that
captures the input data, because all clocks in the device are defined.

Figure 51. Input Delay

External Device FPGA
[
7]
tco_ext
A
Oscillator
cd_ext —_— cd_altr
| L]

The calculation the Timing Analyzer performs to determine the typical input delay.

Figure 52. Input Delay Calculation

input delay, , = (cd_ext, , —cd_altr

) Hco_ext +dd
input delay, = (cd_ext, —cd_altr)+tco_ext +dd

MAX

8.3.3.2 Output Constraints

Output constraints allow you to specify all external delays from the device for all
output ports in your design.

You can use the set_output_delay command to specify external output delay
requirements. Use the —clock option to reference a virtual clock. The virtual clock
defines the latching clock for the output port. The Timing Analyzer automatically
determines the launching clock inside the device that launches the output data,
because all clocks in the device are defined. The following figure is an example of an
output delay referencing a virtual clock.

Figure 53. Output Delay

External Device

——a
tsu_ext/th_ext

The calculation the Timing Analyzer performs to determine the typical out delay.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
102

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 54. Output Delay Calculation

output deIayMAX = ddM o su_ext+ (cd_aItrMAX —cd_ext
outputdelay, =(dd, —th_ext+(cd_altr, —cd_ext

MIN)

MIN MAX))

Related Links
e set_intput_delay

e set_output_delay
For more information about these commands, refer to Intel Quartus Prime
Help.

8.3.4 Creating Delay and Skew Constraints

The Timing Analyzer supports the Synopsys Design Constraint format for constraining
timing for the ports in your design. These constraints allow the Timing Analyzer to
perform a system static timing analysis that includes not only the device internal
timing, but also any external device timing and board timing parameters.

8.3.4.1 Advanced I/0 Timing and Board Trace Model Delay

The Timing Analyzer can use advanced I/O timing and board trace model assignments
to model I/O buffer delays in your design.

If you change any advanced I/0 timing settings or board trace model assignments,
recompile your design before you analyze timing, or use the -force_dat option to
force delay annotation when you create a timing netlist.

Example 11. Forcing Delay Annotation

create_timing_netlist -force_dat

Related Links
e Using Advanced I/O Timing

e I/O Management
For more information about advanced I/0 timing.

8.3.4.2 Maximum Skew

To specify the maximum path-based skew requirements for registers and ports in the
design and report the results of maximum skew analysis, use the set_max_skew
command in conjunction with the report_max_skew command.

Use the set_max_skew constraint to perform maximum allowable skew analysis
between sets of registers or ports. In order to constrain skew across multiple paths, all
such paths must be defined within a single set_max_skew constraint.
set_max_skew timing constraint is not affected by set_max_delay,
set_min_delay, and set_multicycle_ path but it does obey set_false_ path
and set_clock_groups. If your design targets an Intel Arria 10 device, skew
constraints are not affected by set_clock_groups.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
103

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471036713

] ®
l n tel 8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Table 29. set_max_skew Options

Arguments Description
-h | -help Short help
-long_help Long help with examples and possible return values
-exclude <Tcl list> A Tcl list of parameters to exclude during skew analysis.

This list can include one or more of the following: utsu,
uth, utco, from_clock, to_clock,
clock_uncertainty, ccpp, input_delay,
output_delay, odv.

Note: Not supported for Intel Arria 10 devices.

-fall_from_clock <nanes> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to_clock <narmes> Valid destination clocks (string patterns are matched using
Tcl string matching)

-from <names>(1) Valid sources (string patterns are matched using Tcl string
matching

-from_clock <nanes> Valid source clocks (string patterns are matched using Tcl
string matching)

-get_skew_value_from_clock_period Option to interpret skew constraint as a multiple of the clock

<src_cl ock_period|dst _cl ock_peri od] period

m n_cl ock_peri od>

—-include <Tcl list> Tcl list of parameters to include during skew analysis. This
list can include one or more of the following: utsu, uth,
utco, from_clock, to_clock, clock_uncertainty,
ccpp, input_delay, output_delay, odv.

Note: Not supported for Intel Arria 10 devices.

-rise_from_clock <nanes> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to_clock <nanes> Valid destination clocks (string patterns are matched using
Tcl string matching)

-skew_value_multiplier <nultiplier> Value by which the clock period should be multiplied to
compute skew requirement.

-to <names>(1) Valid destinations (string patterns are matched using Tcl
string matching)

-to_clock <nanes> Valid destination clocks (string patterns are matched using
Tcl string matching)

<skew> Required skew

Applying maximum skew constraints between clocks applies the constraint from all
register or ports driven by the clock specified with the —from option to all registers or
ports driven by the clock specified with the -to option.

Use the —include and -exclude options to include or exclude one or more of the
following: register micro parameters (utsu, uth, utco), clock arrival times
(from_clock, to_clock), clock uncertainty (clock_uncertainty), common clock
path pessimism removal (ccpp), input and output delays (input_delay,

(1) Legal values for the -from and -to options are collections of clocks, registers, ports, pins, cells
or partitions in a design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
104

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel
QPS5V3 | 2017.11.06

Note:

output _delay) and on-die variation (odv). Max skew analysis can include data
arrival times, clock arrival times, register micro parameters, clock uncertainty, on-die
variation and ccpp removal. Among these, only ccpp removal is disabled during the
Fitter by default. When -include is used, those in the inclusion list are added to the
default analysis. Similarly, when —exclude is used, those in the exclusion list are
excluded from the default analysis. When both the —include and -exclude options
specify the same parameter, that parameter is excluded.

If your design targets an Intel Arria 10 device, —exclude and -include are not
supported.

Use -get_skew_value_from_clock_period to set the skew as a multiple of the
launching or latching clock period, or whichever of the two has a smaller period. If this
option is used, then -skew_value_multiplier must also be set, and the positional
skew option may not be set. If the set of skew paths is clocked by more than one
clock, Timing Analyzer uses the one with smallest period to compute the skew
constraint.

When this constraint is used, results of max skew analysis are displayed in the Report
Max Skew (report_max_skew) report from the Timing Analyzer. Since skew is defined
between two or more paths, no results are displayed if the —from/-from_clock and
-to/-to_clock filters satisfy less than two paths.

Related Links

e set _max_skew

e report_max_skew
For more information about these commands, refer to Intel Quartus Prime
Help.

8.3.4.3 Net Delay

Use the set_net_delay command to set the net delays and perform minimum or
maximum timing analysis across nets.

The -from and -to options can be string patterns or pin, port, register, or net
collections. When pin or net collection is used, the collection should include output
pins or nets.

Table 30. set_net_delay Options
Arguments Description
-h | -help Short help
-long_help Long help with examples and possible return values
-from <nanmes> Valid source pins, ports, registers or nets(string patterns are
matched using Tcl string matching)
-get_value_from_clock_period Option to interpret net delay constraint as a multiple of the
<src_cl ock_period]dst _cl ock_period] clock period.
m n_cl ock_peri od|max_cl ock_peri od>
-max Specifies maximum delay
-min Specifies minimum delay
continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
105

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_min_skew.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_max_skew.htm

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Arguments Description

-to <names>(2) Valid destination pins, ports, registers or nets (string
patterns are matched using Tcl string matching)

-value_multiplier <multiplier> Value by which the clock period should be multiplied to
compute net delay requirement.

<del ay> Required delay

When you use the -min option, slack is calculated by looking at the minimum delay on
the edge. If you use -max option, slack is calculated with the maximum edge delay.

Use -get_skew_ value_from_clock_period to set the net delay requirement as a
multiple of the launching or latching clock period, or whichever of the two has a
smaller or larger period. If this option is used, then -value_multiplier must also
be set, and the positional delay option may not be set. If the set of nets is clocked by
more than one clock, Timing Analyzer uses the net with smallest period to compute
the constraint for a -max constraint, and the largest period for a -min constraint. If
there are no clocks clocking the endpoints of the net (e.g. if the endpoints of the nets
are not registers or constraint ports), then the net delay constraint is ignored.

Related Links
e set_net_delay

e report_net_delay
For more information about these commands, refer to Intel Quartus Prime
Help.

8.3.4.4 Using create_timing_netlist

You can onfigure or load the timing netlist that the Timing Analyzer uses to calculate
path delay data.

Your design should have a timing netlist before running the Timing Analyzer . You can
use the Create Timing Netlist dialog box or the Create Timing Netlist command in
the Tasks pane. The command also generates Advanced I/O Timing reports if you
turned on Enable Advanced I/0 Timing in the Timing Analyzer page of the
Settings dialog box.

Note: The timing netlist created is based on the initial configuration of the design. Any
configuration changes done by the design after the device enters user mode, for
example, dynamic transceiver reconfiguration, are not reflected in the timing netlist.
This applies to all device families except transceivers on Intel Arria 10 devices with the
Multiple Reconfiguration Profiles feature.

The following diagram shows how the Timing Analyzer interprets and classifies timing
netlist data for a sample design.

(2) If the -to option is unused or if the —to filter is a wildcard ("*") character, all the output pins
and registers on timing netlist became valid destination points.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
106

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_set_net_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_net_delay.htm

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 55. How Timing Analyzer Interprets the Timing Netlist
Cell

t

Port 3 ¥

8.3.5 Creating Timing Exceptions

Timing exceptions in the Timing Analyzer provide a way to modify the default timing
analysis behavior to match the analysis required by your design. Specify timing
exceptions after clocks and input and output delay constraints because timing
exceptions can modify the default analysis.

8.3.5.1 Precedence

If the same clock or node names occur in multiple timing exceptions, the following
order of precedence applies:

1. False path
2. Minimum delays and maximum delays

3. Multicycle path

The false path timing exception has the highest precedence. Within each category,
assignments to individual nodes have precedence over assignments to clocks. For
exceptions of the same type:

e having a -from <node> has the highest priority
e followed by the -to <node>

¢ then the -thru <node>

e then -from <clock>

e and lastly, a -to <clock>

An asterisk wildcard (*) for any of these options applies the same precedence as not
specifying the option at all. For example, -from a -to * is treated identically to -
from a for as regards precedence.

Precedence example:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
107

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

1. set max _delay 1 -from x -to y
2. set_max_delay 2 -from x
3. set_max_delay 3 -to y

The first exception would have higher priority than either of the other two, since it
specifies a -from (while #3 doesn't) and sepecifies a —to (while #2 doesn't). In the
absence of the first exception, the second exception would have higher priority than
the third, since it specifies a —from, which the third does not. Finally, the remaining
order of precedence for additional exceptions is order-dependent, such that the
assignments most recently created overwrite, or partially overwrite, earlier
assignments.

set_net_delay or set_max_skew exceptions are analyzed independently of
minimum or maximum delays, or multicycle path constratints.

e The set_net_delay exception applies regardless the existance of a
set_false_path exception, or set_clock _group exception, on the same
nodes.

e The set_max_skew exception applies regardless of any set_clock_group
exception on the same nodes, but a set_false_ path exception overrides a
set_max_skew exception.

8.3.5.2 False Paths
Specifying a false path in your design removes the path from timing analysis.

Use the set_false_ path command to specify false paths in your design. You can
specify either a point-to-point or clock-to-clock path as a false path. For example, a
path you should specify as false path is a static configuration register that is written
once during power-up initialization, but does not change state again. Although signals
from static configuration registers often cross clock domains, you may not want to
make false path exceptions to a clock-to-clock path, because some data may transfer
across clock domains. However, you can selectively make false path exceptions from
the static configuration register to all endpoints.

To make false path exceptions from all registers beginning with A to all registers
beginning with B, use the following code in your SDC file.

set_false_path -from [get_pins A*] -to [get_pins B*]
The Timing Analyzer assumes all clocks are related unless you specify otherwise. Clock
groups are a more efficient way to make false path exceptions between clocks,
compared to writing multiple set_false_path exceptions between every clock
transfer you want to eliminate.
Related Links

e Creating Clock Groups on page 97
For more information about creating exclusive clock groups.

e set_false_path
For more information about this command, refer to Intel Quartus Prime Help.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
108

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_false_path.htm

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

8.3.5.3 Minimum and Maximum Delays

Note:

To specify an absolute minimum or maximum delay for a path, use the
set_min_delay command or the set_max_delay commands, respectively.
Specifying minimum and maximum delay directly overwrites existing setup and hold
relationships with the minimum and maximum values.

Use the set_max_delay and set_min_delay commands to create constraints for
asynchronous signals that do not have a specific clock relationship in your design, but
require a minimum and maximum path delay. You can create minimum and maximum
delay exceptions for port-to-port paths through the device without a register stage in
the path. If you use minimum and maximum delay exceptions to constrain the path
delay, specify both the minimum and maximum delay of the path; do not constrain
only the minimum or maximum value.

If the source or destination node is clocked, the Timing Analyzer takes into account
the clock paths, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, that delay is also included in the
minimum or maximum delay check.

If you specify a minimum or maximum delay between timing nodes, the delay applies
only to the path between the two nodes. If you specify a minimum or maximum delay
for a clock, the delay applies to all paths where the source node or destination node is
clocked by the clock.

You can create a minimum or maximum delay exception for an output port that does
not have an output delay constraint. You cannot report timing for the paths associated
with the output port; however, the Timing Analyzer reports any slack for the path in
the setup summary and hold summary reports. Because there is no clock associated
with the output port, no clock is reported for timing paths associated with the output
port.

To report timing with clock filters for output paths with minimum and maximum delay
constraints, you can set the output delay for the output port with a value of zero. You
can use an existing clock from the design or a virtual clock as the clock reference.

Related Links

e set_max_delay

e set_min_delay
For more information about these commands, refer to Intel Quartus Prime
Help.

8.3.5.4 Delay Annotation

To modify the default delay values used during timing analysis, use the
set_annotated_delay and set_timing_derate commands. You must update the
timing netlist to see the results of these commands

To specify different operating conditions in a single SDC file, rather than having
multiple SDC files that specify different operating conditions, use the
set_annotated delay -operating_conditions command.

Related Links

e set_timing_derate

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
109

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_max_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_min_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_timing_derate.htm

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

e set_annotated_delay
For more information about these commands, refer to the Intel Quartus Prime
Help.

8.3.5.5 Multicycle Paths

Table 31.

By default, the Timing Analyzerr performs a single-cycle analysis, which is the most
restrictive type of analysis. When analyzing a path, the setup launch and latch edge
times are determined by finding the closest two active edges in the respective
waveforms.

For a hold analysis, the timing analyzer analyzes the path against two timing
conditions for every possible setup relationship, not just the worst-case setup
relationship. Therefore, the hold launch and latch times may be completely unrelated
to the setup launch and latch edges. The Timing Analyzer does not report negative
setup or hold relationships. When either a negative setup or a negative hold
relationship is calculated, the Timing Analyzer moves both the launch and latch edges
such that the setup and hold relationship becomes positive.

A multicycle constraint adjusts setup or hold relationships by the specified number of
clock cycles based on the source (-start) or destination (-end) clock. An end setup
multicycle constraint of 2 extends the worst-case setup latch edge by one destination
clock period. If —start and -end values are not specified, the default constraint is -
end.

Hold multicycle constraints are based on the default hold position (the default value
is 0). An end hold multicycle constraint of 1 effectively subtracts one destination clock
period from the default hold latch edge.

When the objects are timing nodes, the multicycle constraint only applies to the path
between the two nodes. When an object is a clock, the multicycle constraint applies to
all paths where the source node (-from) or destination node (-to) is clocked by the
clock. When you adjust a setup relationship with a multicycle constraint, the hold
relationship is adjusted automatically.

You can use Timing Analyzer commands to modify either the launch or latch edge
times that the uses to determine a setup relationship or hold relationship.

Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end <val ue> | Latch edge time of the setup relationship

set_multicycle_path -setup -start<val ue> | Launch edge time of the setup relationship

set_multicycle_path -hold -end <value> Latch edge time of the hold relationship

set_multicycle_path -hold -start <val ue> | Launch edge time of the hold relationship

8.3.5.6 Common Multicycle Variations

Multicycle exceptions adjust the timing requirements for a register-to-register path,
allowing the Fitter to optimally place and route a design in a device. Multicycle
exceptions also can reduce compilation time and improve the quality of results, and
can be used to change timing requirements. Two common multicycle variations are
relaxing setup to allow a slower data transfer rate, and altering the setup to account
for a phase shift.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

110

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

8.3.5.6.1 Relaxing Setup with set_multicyle_path

Figure 56.

A common type of multicycle exception occurs when the data transfer rate is slower
than the clock cycle. Relaxing the setup relationship opens the window when data is
accepted as valid.

In this example, the source clock has a period of 10 ns, but a group of registers are
enabled by a toggling clock, so they only toggle every other cycle. Since they are fed
by a 10 ns clock, the Timing Analyzer reports a set up of 10 ns and a hold of 0 ns,
However, since the data is transferring every other cycle, the relationships should be
analyzed as if the clock were operating at 20 ns, which would result in a setup of

20 ns, while the hold remains 0 ns, in essence, extending the window of time when
the data can be recognized.

The following pair of multicycle assignments relax the setup relationship by specifying
the —setup value of N and the -hold value as N-1. You must specify the hold
relationship with a ~hold assignment to prevent a positive hold requirement.
Relaxing Setup while Maintaining Hold

set_multicycle_path -setup -from src_reg* -to dst_reg* 2

set_multicycle_path -hold -from src_reg* -to dst_reg* 1
Relaxing Setup by Multiple Cycles

0ns 10ns 20ns 30ns No Multicycles
| | | | | | | (Default Relationship)

‘y\"—‘ —» Setup=10ns
| | | | —> Hold=0ns

Setup=2
| [| [| | | Hold = 1

,—| —Pp Setup=20ns
| | | — Hold=0ns

Ons 10ns 20 ns 30ns Setup =3
| | | | | | | Hold =2

\ —
—» Setup=30ns
| | | — Hold=0ns

This pattern can be extended to create larger setup relationships in order to ease
timing closure requirements. A common use for this exception is when writing to
asynchronous RAM across an I/0 interface. The delay between address, data, and a
write enable may be several cycles. A multicycle exception to I/O ports can allow extra
time for the address and data to resolve before the enable occurs.

You can relax the setup by three cycles with the following code in your SDC file.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
111

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Three Cycle 1I/0 Interface Exception

set_multicycle_path -setup -to [get _ports {SRAM_ADD[*] SRAM_DATA[*]1} 3
set_multicycle_path -hold -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]1} 2

8.3.5.6.2 Accounting for a Phase Shift

In this example, the design contains a PLL that performs a phase-shift on a clock
whose domain exchanges data with domains that do not experience the phase shift. A
common example is when the destination clock is phase-shifted forward and the
source clock is not, the default setup relationship becomes that phase-shift, thus
shifting the window when data is accepted as valid.

For example, the following code is a circumstance where a PLL phase-shifts one output
forward by a small amount, in this case 0.2 ns.

Cross Domain Phase-Shift
create_generated_clock -source pll]inclk[0] -name pll|clk[0] pll]clK[O]

1]i
create_generated_clock -source pll]inclk[0] -name pll]clk[1] -phase 30 pll]|
clk[1]

The default setup relationship for this phase-shift is 0.2 ns, shown in Figure A,
creating a scenario where the hold relationship is negative, which makes achieving
timing closure nearly impossible.

Figure 57. Phase-Shifted Setup and Hold

-10ns 0ns 10ns 20ns No Multicycles

| | | | | | (Default Relationship)
r‘—l : —» Setup=0.2ns
| | | | | — Hold=-9.8ns

-10ns 0ns 10ns 20 ns
| | | | | | _ Setup=2
5|—| ,—| —» Setup=10.2ns
| | | — Hold=0.2ns
Adding the following constraint in your SDC allows the data to transfer to the following

edge.

set_multicycle_path -setup -from [get _clocks clk_a] -to [get_clocks clk_b] 2

The hold relationship is derived from the setup relationship, making a multicyle hold
constraint unnecessary.

Related Links

e Same Frequency Clocks with Destination Clock Offset on page 121
Refer to this topic for a more complete example.

e set_multicycle_path
For more information about this command, refer to the Intel Quartus Prime
Help.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
112

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_multicycle_path.htm

QPS5V3 | 2017.11.06

] ®
8 The Intel Quartus Prime Timing Analyzer < l n tel)

8.3.5.7 Examples of Basic Multicycle Exceptions

Each example explains how the multicycle exceptions affect the default setup and hold
analysis in the Timing Analyzer. The multicycle exceptions are applied to a simple
register-to-register circuit. Both the source and destination clocks are set to 10 ns.

8.3.5.7.1 Default Settings

By default, the Timing Analyzer performs a single-cycle analysis to determine the
setup and hold checks. Also, by default, the Timing Analyzer sets the end multicycle
setup assignment value to one and the end multicycle hold assignment value to zero.

The source and the destination timing waveform for the source register and
destination register, respectively where HC1 and HC2 are hold checks one and two and
SC is the setup check.

Figure 58. Default Timing Diagram
-10 0 10 20
: CurrentLaunch : :

REGT.CLK

_ (N (
X e) ha X

REG2.CLK 0 1 2

Current Latch

The calculation that the Timing Analyzer performs to determine the setup check.

Figure 59. Setup Check

setup check = current latch edge — closest previous launch edge
= 10ns—-0ns
= 10ns

The most restrictive setup relationship with the default single-cycle analysis, that is, a
setup relationship with an end multicycle setup assignment of one, is 10 ns.

The setup report for the default setup in the Timing Analyzer with the launch and latch
edges highlighted.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
113

] ®
l n tel 8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Figure 60. Setup Report

Path #1: Setup slack is 9.077
Path Summary | Statisics Data Path | wavefom | Path Summary | Statistics | Data Path | Wavefomn |
Data Arrival Pa Property IVaIue I

Total]Incl RF Type Fanout Element | 1|From Node stc
£[0.000 |0.000 llaunch edgetime ¢/ | | [2]ToNode dst
2]2522 |2522 R . | |clock network delay | |3 | Launch Clock clk_sic
13|]2606 0084 uTeo |1 |src 4| Latch Clock clk_dst
4]2606 0000 RR [CELL 1 |siclq 5|Datadurival Time | 3.065
52864 0258 RRIC 1 |dst~teederdatat | | |6]Data Requied Time 12142
6]2960 0038 RR CELL 1 |dst“feederdcombout | | | |7]Slack 19,077
7]2960 0000 RR IC 1 |dstld
8]30s5 0105 RR CELL 1 dst
< >
Data Required Pa

Total |t |RF [Type |Fanout |Element
[£[10.000 10000 | | |latch edge time
ST R | g
[3[12142 [0106 | wuTsu 1 |dst
] ¥

The calculation that the Timing Analyzer performs to determine the hold check. Both
hold checks are equivalent.

Figure 61. Hold Check
hold check 1

current launch edge — previous latch edge
Ons—0ns
Ons

hold check2 = nextlaunch edge — current latch edge
10ns—10ns
0ns

The most restrictive hold relationship with the default single-cycle analysis, that a hold
relationship with an end multicycle hold assignment of zero, is 0 ns.

The hold report for the default setup in the Timing Analyzer with the launch and latch
edges highlighted.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
114

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel
QPS5V3 | 2017.11.06

Figure 62. Hold Report

Path #1: Hold slack is 0.119 Path #1: Hold slack is 0.119

Path Summary | Statistics Data Path | wavefom | Path Summary | Stalistics | Data Path | Waveforn |
Data Arrival Path Propesty Valia l
Total Incr RF Type Fanout Element 1|From Node =
1{ooo0 0000 launch edge time | | | [2]ToNode |dst
3 = L L _ clock network delay || | [3]Launch Clock |elk_ste
32342 0084 uTeo 1 sic |4]Latch Clock |ck_dst
[4]2342 0000 |FF CELL |1 (srelq 5| Data Arival Time | 2771
5|2613 0277 FFIC 1 dstfeederidatal || | [B]Data Requied Time |2652
62684 0085 FF |CELL 1 dstTeedericombout | [| [7]Slack lo119
7]2684 0000 FF IC 1 ‘dstid '
8]2771 0087 FF [cELL 1 dst
< >
Total |iner [RF |Type |Fanout |Element
{0000 0000 | latch edge tine |
22513 2513 A | i " clock network delay |
[3|2652 (0133 | uTh 1 dst
< >

8.3.5.7.2 End Multicycle Setup = 2 and End Multicycle Hold = 0

In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is zero.

Multicycle Exceptions

set_multicycle_path -from [get _clocks clk_src] -to [get clocks clk dst] \
-setup -end 2

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
115

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

Note:

QPS5V3 | 2017.11.06

An end multicycle hold value is not required because the default end multicycle hold
value is zero.

In this example, the setup relationship is relaxed by a full clock period by moving the
latch edge to the next latch edge. The hold analysis is unchanged from the default
settings.

The setup timing diagram for the analysis that the Timing Analyzer performs. The
latch edge is a clock cycle later than in the default single-cycle analysis.

Figure 63. Setup Timing Diagram

-10 0 10 20
: Current : :
Launch
REG1.CLK
REG2.CLK 2
‘ Current
Latch

The calculation that the Timing Analyzer performs to determine the setup check.

Figure 64. Setup Check

setupcheck = current latch edge — closest previous launch edge
= 20ns—0ns
= 20ns

The most restrictive setup relationship with an end multicycle setup assignment of two
is 20 ns.

The setup report in the Timing Analyzer with the launch and latch edges highlighted.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

116

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Figure 65. Setup Report

Path #1: Setup slack is 5.809

Path Surmayl Statistics Data Path IWavelotmI

) a Arrival Path

Totdl |ins |RF |Type [Fanout [Element
£]0.000 0.000 launch edge time
[2]2522 T35 R _ clock network delay
3[2606 0.084 luTeo 11 st
[4]2606 0000 PP |CELL 1 stk
[5l15348 13342 [FFiC 1 dstlasdata
[€]16333 0385 P CELL |1 dst
< ' >
[a Required P

Total |ine |RF [Type [Fanout |Element
¥[20000 20000 | latch edge tine .
2[22248 2248 R | L clock network delay
3]22142 0106 luTsu |1 st
< >

intel.

Path #1: Setup slack is 5.809

Path Summary | Statistics | Data Path | Wavefom |

Property |Value |
| 1|From Node s1c
2| To Node |dst
| 3| Launch Clock clk_src
| 4 Latch Clock |clk_dst
|5 | Multicycle - Setup End 2
6| Data Arival Time 16.333
1 D ata Required Time 22142
8] Slack 5,809

Because the multicycle hold latch and launch edges are the same as the results of
hold analysis with the default settings, the multicycle hold analysis in this example is
equivalent to the single-cycle hold analysis. The hold checks are relative to the setup
check. Usually, the Timing Analyzer performs hold checks on every possible setup
check, not only on the most restrictive setup check edges.

Figure 66. Hold Timing DIagram

-10 0 10 20
: Current'Launch : :

REG1.CLK

\ 4\\
Data >< ‘ >< hm SC >< HQ : ><

\\\w \ \
REG2.CLK o

Current Latch

The calculation that the Timing Analyzer performs to determine the hold check. Both

hold checks are equivalent.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

117

intel.

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Figure 67.

hold check 1 = current launch edge — previous latch edge
0ns—10ns

—10ns

hold check 2

next launch edge — current latch edge
10ns—20ns
-10ns

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of zero is 10 ns.

The hold report for this example in the Timing Analyzer with the launch and latch
edges highlighted.
Figure 68. Hold Report

Path #1: Hold slack is 3.196 Path #1: Hold slack is 3.196

Path Summary | Statistics Data Path IWavefum| Path Summary | Statistics | Data Path | Waveform |
Data Arrival Path Propety]Value]
Total Ince RF Type Fanout Element __1_. From Node s1e
$|0.000 0.000 launch edge time 12|ToNode dst
12|12.258 2.258 R clock network delay | 3 |Launch Clock clk_stc
13]2.342 0.084 uTco 1 src | 4 |Latch Clock clk_dst
i 2342 0.000 RR CELL 1 siclq i Multicycle - Setup End |2
i 15606 13264 |RR IC 1 dstlasdata i Data Arrival Time 15.848
[6]15.848 0242 AR CELL 1 dst | 7| Data Required Time 12,652
£ > | 8Slack 319%
Data Required Path
Total Inct RF Type Fanout Element
t]i0000 10000 | latch edge time
3' 12513 25613 R clock network delay
13|12652 0139 uTh 1 dst

8.3.5.7.3 End Multicycle Setup = 2 and End Multicycle Hold = 1

In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is one.

Multicycle Exceptions

set_multicycle_path -from [get clocks clk_src] -to [get_clocks clk_dst] \
-setup -end 2

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] -hold

-end 1

In this example, the setup relationship is relaxed by two clock periods by moving the
latch edge to the left two clock periods. The hold relationship is relaxed by a full
period by moving the latch edge to the previous latch edge.

The setup timing diagram for the analysis that the Timing Analyzer performs.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

118

®
8 The Intel Quartus Prime Timing Analyzer l n tel
QPS5V3 | 2017.11.06

Figure 69.

Figure 70.

Figure 71.

Setup Timing Diagram

-10 0 10 20
5 Current 5 5
. Launch . 5
SRC.CLK
DST.CLK
g ; g Current
: : ' Latch

The calculation that the Timing Analyzer performs to determine the setup check.

Setup Check

setup check = current latch edge — closest previous launch edge
20ns—0ns

= 20ns

The most restrictive hold relationship with an end multicycle setup assignment value
of two is 20 ns.

The setup report for this example in the Timing Analyzer with the launch and latch
edges highlighted.

Setup Report

Path Summary | Statistics Data Path | wavefom | Path Summary | Statistics | Data Path | Waveforn |
Property IValue I
| Lo | 1|From Node sie
o [2]To Node dst
12]2 | | | 3| Launch Clock clk_ste
13]26068 0084 uleo 1 |4 |Latch Clock clk_dst
i 2.606 0.000 \RR CELL il i Multicycle - SetupEnd | 2
52864 0258 AR |IC [[6]Data Avival Time 3.065
6l2s50 [oo%s RR CELL 1 7|Data Requied Time 22142
| 7]2.960 0.000 RR IC 1 | 8|Slack 19.077
2 3.065 0.105 RR CELL 1
< >
Data Required Path
Total Iner RF Type Fanout Element
t]20000 20.000 latch edge time
2|22HETTIHETTR ‘ ‘ clock network delay
3|22142 |-0.106 ulsu 1 dst
< >

The timing diagram for the hold checks for this example. The hold checks are relative
to the setup check.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
119

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Figure 72. Hold Timing Diagram

-10 0 10 20
: Current : :
Launch

SRC.CLK

(v

O WX X

DST.CLK -

‘ Current

Latch

The calculation that the Timing Analyzer performs to determine the hold check. Both
hold checks are equivalent.

Figure 73. Hold Check

hold check 1 = current launch edge — previous latch edge
=0ns-0ns
=0ns

hold check2 = next launch edge — current latch edge
10ns—10ns
=0ns

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of one is 0 ns.

The hold report for this example in the Timing Analyzer with the launch and latch
edges highlighted.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
120

®
8 The Intel Quartus Prime Timing Analyzer l n tel
QPS5V3 | 2017.11.06

Figure 74.

Hold Report

Path Summary | Statistics Data Path | Waveform | Path Summaty | Statistics | Data Path | Wavefom |
Data Arrival Pa Property |Vdue I
Totdl |iner [AF [Type [Fanout |Element (7 [From Node o
£]0.000 0.000 launch edge time | | [2]ToNode |ast
12]2258 2258 R clock network delay | 3|Launch Clock clk_stc
13]12342 0084 uTco 1 src | 4] Latch Clock clk_dst
1412342 0000 FF CELL 1 srelg | 5| Multicycle - Setup End |2
152619 0277 |FF IC 1 dst~feederldataf | 6 [Multicycle - HoldEnd |1
162684 0065 FF CELL 1 dst™feederlcombout | 7| Data Arival Time 27N
i 2684 0000 FF IC 1 dstld __8_ Data Required Time 2652
181277 0087 FF CELL 1 dst 19]Slack 0119
< >
Total Incr AF Type Fanout Element
1/0.000 0.000 latch edge time
12|2513 2513 |R clock network delay
32652 (0139 uTh 1 dat
< >

8.3.5.8 Application of Multicycle Exceptions

This section shows the following examples of applications of multicycle exceptions.
Each example explains how the multicycle exceptions affect the default setup and hold
analysis in the Timing Analyzer. All of the examples are between related clock
domains. If your design contains related clocks, such as PLL clocks, and paths
between related clock domains, you can apply multicycle constraints.

8.3.5.8.1 Same Frequency Clocks with Destination Clock Offset

Figure 75.

In this example, the source and destination clocks have the same frequency, but the
destination clock is offset with a positive phase shift. Both the source and destination
clocks have a period of 10 ns. The destination clock has a positive phase shift of 2 ns
with respect to the source clock.

An example of a design with same frequency clocks and a destination clock offset.

Same Frequency Clocks with Destination Clock Offset
REG

REG2
SET inati SET
Inc— D Q @ D Q > Out

dk0 Co—

CLR (LR

dk1 =

The timing diagram for default setup check analysis that the Timing Analyzer
performs.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
121

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Figure 76. Setup Timing Diagram

-10 0 10 20
: Launch : :

REGT.CLK

REG2.CLK § Sl P

Latch

The calculation that the Timing Analyzer performs to determine the setup check.

Figure 77. Setup Check

setup check current latch edge — closest previous launch edge
2ns—-0ns

2ns

The setup relationship shown is too pessimistic and is not the setup relationship
required for typical designs. To correct the default analysis, you must use an end
multicycle setup exception of two. A multicycle exception used to correct the default
analysis in this example in your SDC file.

Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
-setup -end 2

The timing diagram for the preferred setup relationship for this example.

Figure 78. Preferred Setup Relationship

-10 0 10 2

: Launch : :
REGT.CLK

X DD X
REGLCK Sl Y

Latch

The timing diagram for default hold check analysis that the Timing Analyzer performs
with an end multicycle setup value of two.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
122

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Figure 79. Default Hold Check
-10 0 10 20
: Current ' !
Launch
REG1.CLK
] 1
>< H(1>< SC |‘-|(2\< ><
\ \;
REG2.CLK 3
Current
Latch
The calculation that the Timing Analyzer performs to determine the hold check.
Figure 80. Hold Check
hold check1 = current launch edge — previous latch edge
= 0ns—2ns
= -2ns
hold check2 = nextlaunch edge — current latch edge
= 10ns—12ns
= -2ns
In this example, the default hold analysis returns the preferred hold requirements and
no multicycle hold exceptions are required.
The associated setup and hold analysis if the phase shift is -2 ns. In this example, the
default hold analysis is correct for the negative phase shift of 2 ns, and no multicycle
exceptions are required.
Figure 81. Negative Phase Shift

-10

0 10 20
Current ! !
Launch

REGT.CLK

X

T X

REG2.CLK :

Current |
Latch

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

123

intel)

8.3.5.8.2 Destination Clock Frequency is a Multiple of the Source Clock Frequency

Figure 82.

Figure 83.

Figure 84.

In this example, the destination clock frequency value of 5 ns is an integer multiple of
the source clock frequency of 10 ns. The destination clock frequency can be an integer
multiple of the source clock frequency when a PLL is used to generate both clocks with

a phase shift applied to the destination clock.

An example of a design where the destination clock frequency is a multiple of the
source clock frequency.

Destination Clock is Multiple of Source Clock
REG1 REG2

ST s ST
Inc— 0> @ 0> o— Out

ko

dk— (LR (LR

k1

The timing diagram for default setup check analysis that the Timing Analyzer
performs.

Setup Timing Diagram
-10 0 10 20

Launch

REG1.CLK

REG2.CLK 1 2 |

Latch

The calculation that the Timing Analyzer performs to determine the setup check.

Setup Check

setupcheck = current latch edge — closest previous launch edge
5ns—-0ns
5ns

The setup relationship demonstrates that the data does not need to be captured at

edge one, but can be captured at edge two; therefore, you can relax the setup
requirement. To correct the default analysis, you must shift the latch edge by one

clock period with an end multicycle setup exception of two. The multicycle exception

assignment used to correct the default analysis in this example.

Multicycle Exceptions

set_multicycle_path -from [get _clocks clk_src] -to [get_clocks clk_dst] \
-setup -end 2

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

124

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

The timing diagram for the preferred setup relationship for this example.

Figure 85. Preferred Setup Analysis

10 0 10 2
: Launch : :
REG1.CLK
X XK X X
REG2.CLK [2 ‘

Latch

The timing diagram for default hold check analysis performed by the Timing Analyzer
with an end multicycle setup value of two.

Figure 86. Default Hold Check

-10 0 10 20
: Current : :
Launch
REGT.CLK
! 77 1
' \ SC ' :
>< 3 HC1 ngl >< ; ><
REG2.CLK ‘

Current
Latch

The calculation that the Timing Analyzer performs to determine the hold check.

Figure 87. Hold Check

hold check 1 current launch edge — previous latch edge
Ons—>5ns

= -5ns

hold check2 = nextlaunch edge — current latch edge
= 10ns—10ns
= 0ns

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and should check against the data captured by the previous latch edge at 0 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
125

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

8.3.5.8.3 Destination Clock Frequency is a Multiple of the Source Clock Frequency with an

Offset

Figure 88.

Figure 89.

Figure 90.

This example is a combination of the previous two examples. The destination clock
frequency is an integer multiple of the source clock frequency and the destination
clock has a positive phase shift. The destination clock frequency is 5 ns and the source
clock frequency is 10 ns. The destination clock also has a positive offset of 2 ns with
respect to the source clock. The destination clock frequency can be an integer multiple
of the source clock frequency with an offset when a PLL is used to generate both
clocks with a phase shift applied to the destination clock. The following example shows
a design in which the destination clock frequency is a multiple of the source clock
frequency with an offset.

Destination Clock is Multiple of Source Clock with Offset
REG1 REG2

i (GnbnatoNa SE
In— D70 W D70 > Qut
clko

dk— (LR (LR

k1

The timing diagram for the default setup check analysis the Timing Analyzer performs.

Setup Timing Diagram
-10 0 10 20

Launch

REG1.CLK

" ——
REGZ.(LK_I 1 ’ : L

Latch

The calculation that the Timing Analyzer performs to determine the setup check.

Hold Check
setup check

current latch edge — closest previous launch edge
2ns—0ns
2ns

The setup relationship in this example demonstrates that the data does not need to be
captured at edge one, but can be captured at edge two; therefore, you can relax the
setup requirement. To correct the default analysis, you must shift the latch edge by
one clock period with an end multicycle setup exception of three.

The multicycle exception code you can use to correct the default analysis in this
example.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

126

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Multicycle Exceptions

set_multicycle_path -from [get _clocks clk_src] -to [get clocks clk _dst] \
-setup -end 3

The timing diagram for the preferred setup relationship for this example.

Figure 91. Preferred Setup Analysis
-10 0 10 20
‘ Launch : :

REGT.CLK

Y X X X
REGZ.CLK_I ! : ’ L

Latch

The timing diagram for default hold check analysis the Timing Analyzer performs with
an end multicycle setup value of three.

Figure 92. Default Hold Check
-10 0 10 20

Current
Launch

REG1.CLK

REG2.CLK _I L

. Current
. latch

The calculation that the Timing Analyzer performs to determine the hold check.

Figure 93. Hold Check

hold check 1 = current launch edge — previous latch edge
Ons—5ns
= =5ns

hold check 2 next launch edge — current latch edge
10ns—10ns

= 0ns

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
127

intel)

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and should check against the data captured by the previous latch edge at 2 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

8.3.5.8.4 Source Clock Frequency is a Multiple of the Destination Clock Frequency

Figure 94.

Figure 95.

Figure 96.

In this example, the source clock frequency value of 5 ns is an integer multiple of the
destination clock frequency of 10 ns. The source clock frequency can be an integer
multiple of the destination clock frequency when a PLL is used to generate both clocks
and different multiplication and division factors are used.

An example of a design where the source clock frequency is a multiple of the
destination clock frequency.

Source Clock Frequency is Multiple of Destination Clock Frequency
REG1

REG2
NN M&n)

Int—= A > Qut
clko
dk aR R
k1

The timing diagram for default setup check analysis performed by the Timing Analyzer.

Default Setup Check Analysis
-10 0 10 20

REGT.CLK 2 1 L

REG2.CLK

Latch

The calculation that the Timing Analyzer performs to determine the setup check.

Setup Check

setup check = current latch edge — closest previous launch edge
= 10ns—-5ns
= 5ns

The setup relationship shown demonstrates that the data launched at edge one does
not need to be captured, and the data launched at edge two must be captured;
therefore, you can relax the setup requirement. To correct the default analysis, you
must shift the launch edge by one clock period with a start multicycle setup exception
of two.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

128

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

The multicycle exception code you can use to correct the default analysis in this
example.

Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk _dst] \
-setup -start 2

The timing diagram for the preferred setup relationship for this example.

Figure 97. Preferred Setup Check Analysis
-10 0 10 20
: Launch : :

REGT.CLK 2 1

N X
| \ ‘

Latch

—

REG2.CLK

The timing diagram for default hold check analysis the Timing Analyzer performs for a
start multicycle setup value of two.

Figure 98. Default Hold Check

-10 0 10 2
: Current ! :
Launch
REGT.CLK L
>< et '/ >< sc\ \ch § >< § ><
REG2.CLK

Current
Latch

The calculation that the Timing Analyzer performs to determine the hold check.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
129

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

Figure 99.

QPS5V3 | 2017.11.06

Hold Check

hold check1 = current launch edge — previous latch edge
Ons—0ns
= 0Ons

hold check 2 next launch edge — current latch edge
= 5ns—10ns

= -5ns

In this example, hold check two is too restrictive. The data is launched next by the
edge at 10 ns and should check against the data captured by the current latch edge at
10 ns, which does not occur in hold check two. To correct the default analysis, you
must use a start multicycle hold exception of one.

8.3.5.8.5 Source Clock Frequency is a Multiple of the Destination Clock Frequency with an

Offset

Figure 100.

Figure 101.

In this example, the source clock frequency is an integer multiple of the destination
clock frequency and the destination clock has a positive phase offset. The source clock
frequency is 5 ns and destination clock frequency is 10 ns. The destination clock also
has a positive offset of 2 ns with respect to the source clock. The source clock
frequency can be an integer multiple of the destination clock frequency with an offset
when a PLL is used to generate both clocks, different multiplication.

Source Clock Frequency is Multiple of Destination Clock Frequency with Offset
REG1 REG2

SET ((E{nmils SET
In— D Q W D Q —> Qut
ko

dk— (LR (LR

k1

Timing diagram for default setup check analysis the Timing Analyzer performs.
Setup Timing Diagram

-10 0 10 20
: : Launch :

REG1.CLK 3 2 1

y
X

—

REG2.CLK

—_

Latch

The calculation that the Timing Analyzer performs to determine the setup check.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

130

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 102. Setup Check

setup check = current latch edge — closest previous launch edge
= 12ns-10ns
= 2ns

The setup relationship in this example demonstrates that the data is not launched at
edge one, and the data that is launched at edge three must be captured; therefore,
you can relax the setup requirement. To correct the default analysis, you must shift
the launch edge by two clock periods with a start multicycle setup exception of three.

The multicycle exception used to correct the default analysis in this example.

Multicycle Exceptions

set_multicycle_path -from [get _clocks clk_src] -to [get clocks clk _dst] \
-setup -start 3

The timing diagram for the preferred setup relationship for this example.

Figure 103. Preferred Setup Check Analysis
-10 0 10 2
: Launch : :

REG1.CLK 3 2 1

X

—

REG2.CLK

Latch

The timing diagram for default hold check analysis the Timing Analyzer performs for a
start multicycle setup value of three.

Figure 104. Default Hold Check Analysis

-10 0 10 20
: Current : :
Launch
REGT.CLK L
1 o ?
>< HCT >< SC \ >< § ><
\ ‘ '
REG2.CLK : 1 1

‘Current
+ Latch

The calculation that the Timing Analyzer performs to determine the hold check.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
131

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Figure 105. Hold Check

hold check1 = current launch edge — previous latch edge
= Ons—2ns
= -2ns
hold check2 = nextlaunch edge — current latch edge
= 5ns—12ns
= -/ns

In this example, hold check two is too restrictive. The data is launched next by the
edge at 10 ns and should check against the data captured by the current latch edge at
12 ns, which does not occur in hold check two. To correct the default analysis, you
must use a start multicycle hold exception of one.

8.3.6 A Sample Design with SDC File

An example circuit that includes two clocks, a phase-locked loop (PLL), and other
common synchronous design elements helps demonstrate how to constrain your
design with an SDC file.

Figure 106. Timing Analyzer Constraint Example

inst myfifo
data’ Ipm_add_sub0 Y inst2

—> dataout
} — >

inst1

data2

dk1
—
clk2
> altpllo

The following SDC file contains basic constraints for the example circuit.

Example 12. Basic SDC Constraints

Create clock constraints

create_clock -name clockone -period 10.000 [get ports {clkl}]
create_clock -name clocktwo -period 10.000 [get _ports {clk2}]
Create virtual clocks for input and output delay constraints
create clock -name clockone_ext -period 10.000

create clock -name clocktwo_ext -period 10.000
derive_pll_clocks

derive clock uncertainty

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
132

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

derive_clock_uncertainty
Specify that clockone and clocktwo are unrelated by assinging
them to seperate asynchronus groups
set_clock_groups \
-asynchronous \
-group {clockone} \
—-group {clocktwo altpllO]altpll_component]auto_generated|pll1l]|clk[0]}

set input and output delays

set_input_delay -clock { clockone_ext } -max 4 [get _ports
{datal}]set_input_delay -clock { clockone_ext } -min -1 [get_ports {datal}]
set_input_delay -clock { clockone_ext } -max 4 [get ports
{data2}]set_input_delay -clock { clockone_ext } -min -1 [get_ports {data2}]
set_output_delay -clock { clocktwo_ext } -max 6 [get ports {dataout}]
set_output_delay -clock { clocktwo_ext } -min -3 [get_ports {dataout}]

The SDC file contains the following basic constraints you should include for most
designs:

Definitions of clockone and clocktwo as base clocks, and assignment of those
settings to nodes in the design.

Definitions of clockone_ext and clocktwo_ext as virtual clocks, which
represent clocks driving external devices interfacing with the FPGA.

Automated derivation of generated clocks on PLL outputs.
Derivation of clock uncertainty.

Specification of two clock groups, the first containing clockone and its related
clocks, the second containing clocktwo and its related clocks, and the third
group containing the output of the PLL. This specification overrides the default
analysis of all clocks in the design as related to each other.

Specification of input and output delays for the design.

Related Links
Asynchronous Clock Groups on page 99

For more information about asynchronous clock groups.

8.4 Running the Timing Analyzer

When you compile a design, the Timing Analyzer automatically performs multi-corner
signoff timing analysis after the Fitter has finished.

To open the Timing Analyzer GUI directly from the Intel Quartus Prime software
GUI, click Timing Analyzer on the Tools menu.

To peform or repeat multi-corner timing analysis from the Intel Quartus Prime
GUI, click Processing [0 Start 0 Start Timing Analyzer.

To perform multi-corner timing analysis from a system command prompt, type
quartus_sta <options><proj ect nane>.

To run the Timing Analyzer as a stand-alone GUI application, type the following
command at the command prompt:quartus_staw.

To run the Timing Analyzer in interactive command-shell mode, type the following
command at a system command prompt: quartus_sta -s
<opt i ons><proj ect _nane>.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
133

] ®
l n tel 8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

The following table lists the command-line options available for the quartus_sta
executable.

Table 32. Summary of Command-Line Options

Command-Line Option Description
-h | --help Provides help information on quartus_sta.
-t <script file> | Sources the <script file>.

--script=<script file>

-s | --shell Enters shell mode.

--tcl_eval <tcl command> | Evaluates the Tcl command <tc/ command>.

--do_report_timing For all clocks in the design, run the following commands:

report_timing -npaths 1 -to_clock $clock
report_timing -setup -npaths 1 -to_clock $clock
report_timing -hold -npaths 1 -to_clock $clock
report_timing -recovery -npaths 1 -to_clock $clock
report_timing -removal -npaths 1 -to_clock $clock

--force_dat Forces an update of the project database with new delay information.
--lower_priority Lowers the computing priority of the quartus_sta process.
--post_map Uses the post-map database results.

--sdc=<SDC file> Specifies the SDC file to use.

—--report_script=<script> | Specifies a custom report script to call.

--speed=<value> Specifies the device speed grade used for timing analysis.

--tg2pt Generates temporary files to convert the Timing Analyzer SDC file(s) to a PrimeTime
SDC file.

- <argument file> Specifies a file containing additional command-line arguments.

-Cc <revision name> | Specifies which revision and its associated Intel Quartus Prime Settings File (.qsT) to

--rev=<revision_name> use.

--multicorner Specifies that all slack summary reports be generated for both slow- and fast-corners.

—--multicorner[=on|off] Turns off multicorner timing analysis.

--voltage=<value_in_mv> Specifies the device voltage, in mV used for timing analysis.

--temperature= Specifies the device temperature in degrees Celsius, used for timing analysis.
<value_in_C>

--parallel Specifies the number of computer processors to use on a multiprocessor system.
[=<num_processors>]

--64bit Enables 64-bit version of the executable.

Related Links

e Constraining and Analyzing with Tcl Commands on page 153
For more information about using Tcl commands to constrain and analyze your
design

e Recommended Flow for First Time Users on page 80
For more information about steps to perform before opening the Timing
Analyzer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
134

QPS5V3 | 2017.11.06

™ ®
8 The Intel Quartus Prime Timing Analyzer < l n tel)

8.4.1 Intel Quartus Prime Settings

Note:

Within the Intel Quartus Prime software, there are a number of quick steps for setting
up your design with Timing Analyzer. You can modify the appropriate settings in
Assignments [Settings.

In the Settings dialog box, select Timing Analyzer in the Category list.

The Timing Analyzer settings page is where you specify the title and location for a
Synopsis Design Constraint (SDC) file. The SDC file is an inudstry standard format for
specifying timing constraints. If no SDC file exists, you can create one based on the
instructions in this document. The Intel Quartus Prime software provides an SDC
template you can use to create your own.

The following Timing Analyzer options should be on by default:

e Enable multicorner timing analysis—Directs the Timing Analyzer to analyze all the
timing models of your FPGA against your constraints. This is required for final
timing sign-off. Unchecked, only the slow timing model is be analyzed.

e Enable common clock path pessimism removal— Prevents timing analysis from
over-calculating the effects of On-Die Variation. This makes timing better, and
there really is no reason for this to be disabled.

e Report worst-case paths during compilation—This optional setting displays
summary of the worst paths in your timing report. This type of path analysis is
covered in more detail later in this document. While useful, this summary can
increase the size of the <pr oj ect >_.sta.rpt with all of these paths.

e Tcl script file for custom reports—This optional setting should prove useful later,
allowing you to add custom reports to create a custom analysis. For example, if
you are only working on a portion of the full FPGA, you may want additional timing
reports that cover that hierarchy.

In addition, certain values are set by default. The default duty-cycle is 50% and the
default clock frequency is 1Ghz.

8.4.2 SDC File Precedence

The Fitter and the Timing Analyzer process SDC files in the order you specify in the
Intel Quartus Prime Settings File (.qsf). You can add and remove SDC files to
process and specify the order they are processed from the Assignments menu.

Click Settings, then Timing Analyzer and add or remove SDC files, or specify a
processing order in the SDC files to include in the project box. When you create a
new SDC file for a project, you must add it to the project for it to be read during
fitting and timing analysis. If you use the Intel Quartus Prime Text Editor to create an
SDC file, the option to add it to the project is enabled by default when you save the
file. If you use any other editor to create an SDC file, you must remember to add it to
the project. If no SDC files are listed in the .qgs¥, the Intel Quartus Prime software
looks for an SDC named <current revi sion>.sdc in the project directory. When
you use IP from Intel, and some third-parties, the SDC files are often included in a
project through an intermediate file called a Intel Quartus Prime IP File (.qip).

A .qip file points to all source files and constraints for a particular IP. If SDC files for
IP blocks in your design are included through with a .qip, do not re-add them
manually. An SDC file can also be added from a Intel Quartus Prime IP File (-qip)
included in the .gsf.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
135

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Figure 107. .sdc File Order of Precedence

Yes

Is one or more .sdc file specified in

Does an .sdc named
<current revision>.sdc
exist in the project
directory?

Analyze the design e

Note: If you type the read_sdc command at the command line without any arguments, the
Timing Analyzer reads constraints embedded in HDL files, then follows the SDC file
precedence order.

The SDC file must contain only SDC commands that specify timing constraints. There
are some techniques to control which constraints are applied during different parts of
the compilation flow. Tcl commands to manipulate the timing netlist or control the
compilation must be in a separate Tcl script.

8.5 Understanding Results

Knowing how your constraints are displayed when analyzing a path is one of the most
important skills of timing analysis. This information completes your understanding of
timing analysis and lets you correlate the SDC input to the back-end analysis, and
determine how the delays in the FPGA affect timing.

8.5.1 Iterative Constraint Modification

Sometimes it is useful to change an SDC constraint and reanalyze the timing results.
This flow is particularly common when you are creating timing constraints and want to
ensure that constraints are applied appropriately during compilation and timing
analysis.

Use the following steps when you iteratvely modify constraints:

Open the Timing Analyzer

Generate the appropriate reports.

Analyze your results

Edit your SDC file and save

Double-click Reset Design

Generate the appropriate reports.

Analyze your results

® N U kN =

Repeat steps 4-7 as necessary.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
136

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Open the Timing Analyzer—It is most common to use this interactive approach in
the Timing Analyzer GUI. You can also use the command-line shell mode, but it does
not include some of the time-saving automatic features in the GUI.

Generate the appropriate reports —Use the Report All Summaries task under
Macros to generate setup, hold, recovery, and removal summaries, as well as
minimum pulse width checks, and a list of all the defined clocks. These summaries
cover all constrained paths in your design. Especially when you are modifying or
correcting constraints, you should also perform the Diagnostic task to create reports
to identify unconstrained parts of your design, or ignored constraints. Double-click any
of the report tasks to automatically run the three tasks under Netlist Setup if they
haven't already run. One of those tasks reads all SDC files.

Analyze your results—When you are modifying or correcting constraints, review the
reports to find any unexpected results. For example, a cross-domain path might
indicate that you forgot to cut a transfer by including a clock in a clock group.

Edit your SDC file and save it—Create or edit the appropriate constraints in your
SDC files. If you edit your SDC file in the Intel Quartus Prime Tex Editor, you can
benefit from tooltips showing constraint options, and dialog boxes that guide you
when creating constraints.

Reset the design—Double click Reset Design task to remove all constraints from
your design. Removing all constraints from your design prepares it to reread the SDC
files, including your changes.

Be aware that this method just performs timing analysis using new constraints, but
the fit being analyzed has not changed. The place-and-route was performed with the
old constraints, but you are analyzing with new constraints, so if something is failing
timing against these new constraints,you may need to run place-and-route again.

For example, the Fitter may concentrate on a very long path in your design, trying to
close timing. For example, you may realize that a path runs at a lower rate, and so
have added set_multicycle_ path assignments to relax the relationship (open the
window when data is valid). When you perform Timing Analyzer analysis iteratively
with these new multicycles, new paths replace the old. The new paths may have sub-
optimal placement since the Fitter was concentrating on the previous paths when it
ran, because they were more critical. The iterative method is recommend for getting
your SDC files correct, but you should perform a full compilation to see what the Intel
Quartus Prime software can do with those constraints.

Related Links
Relaxing Setup with set_multicyle_path on page 111

8.5.2 Set Operating Conditions Dialog Box

You can select different operating conditions to analyze from those used to create the
existing timing netlist.

Operating conditions consist of voltage and temperature options that are used
together. You can run timing analysis for different delay models without having to
delete the existing timing netlist. The Timing Analyzer supports multi-corner timing
analysis which you can turn on in the dialog box of the command you are performing.
A control has been added to the Timing Analyzer UI where you can select operating
conditions and analyze timing for combinations of corners.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
137

intel.

8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Select a voltage/temperature combination and double-click Report Timing under

Custom Reports in the Tasks pane.

Set Operating Conditions

@5

G Slow 850my 85C Model
71 Slow 350mV 0C Model
) Fast 850mV 35C Model

| Fast 850mV 0C KModel

Report

@a

F] Report Timing

™ Slow 850mV 85C Model

E TimeQuest Timing Anahlyzer Summary

Tazks

= Reset Design
. Set Operating Conditions...

Reports
> Slack
» Datazheet
> Device Specific
» Diagnostic
4 Custom Reports

. Report Timing...
. Report Timing Tree...

B pennrt Minimum Pulee Width

Reports that fail timing appear in red type, reports that pass appear in black type.
Reports that have not yet been run are in gold with a question mark (?). Selecting
another voltage/temperature combination creates a new report, but any reports

previously run persist.

You can use the following context menu options to generate or regenerate reports in

the Report window:

» Regenerate—Regenerate the selected report.

¢ Generate in All Corners—Generate a timing report using all corners.

e Regenerate All Out of Date—Regenerate all reports.

¢ Delete All Out of Date—Flush all the reports that have been run to clear the way

for new reports with modifications to timing.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

138

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Each operating condition generates its own set of reports which appear in their own
folders under the Reports list. Reports that have not yet been generated display a '?'
icon in gold. As each report is generated, the folder is updated with the appropriate
output.

Note: Reports for a corner not being generated persist until that particular operating
condition is modifyed and a new report is created.

8.5.3 Report Timing (Dialog Box)

Once you are comfortable with the Report All Summaries command, the next tool in
the Timing Analyzer toolbox is Report Timing.

The Timing Analyzer displays reports in the Report pane, and is similar to a table of
contents for all the reports created. Selecting any name in the Report panel displays
that report in the main viewing pane.

The main viewing pane shows the Slack for every clock domain. Positive slack is good,
saying these paths meet timing by that much. The End Point TNS stands for Total
Negative Slack, and is the sum of all slacks for each destination and can be used as a
relative assessment of how much a domain is failing.

However, this is just a summary. To get details on any domain, you can right-click that
row and select Report Timing....

The Report Timing dialog box appears, auto-filled with the Setup radio button
selected and the To Clock box filled with the selected clock. This occurs because you
were viewing the Setup Summary report, and right-clicked on that particular clock.
As such, the worst 10 paths where that is the destination clock were reported.You can
modify the settingsin various ways, such as increasing the number of paths to report,
adding a Target filter, adding a From Clock, writing the report to a text file, etc.

Note that any report_timing command can be copied from the Console at the
bottom into a user-created Tcl file, so that you can analyze specific paths again in the
future without having to negotiate the Timing Analyzer UI. This is often done as users
become more comfortable with Timing Analyzer and find themselves analyzing the
same problematic parts of their design over and over, but is not required. Many
complex designs successfully use Timing Analyzer as a diving tool, i.e. just starting
with summaries and diving down into the failing paths after each compile.

8.5.4 Report CDC Viewer Command

The Clock Domain Crossing (CDC) Viewer creates a graphical display which shows
either setup, hold, recovery, or removal analysis of all clock transfers in your design.
You open this report in the Timing Analyzer GUI by clicking Reports [Diagnostic [
Report CDC Viewer in the Timing Analyzer. This creates a folder of CDC Viewer
reports, containing one report for each analysis type.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
139

intel.

Figure 108. Setup Transfers Report

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

i L)
[Setap i ransfers @__Iq
From Clock: I
Toclock | |
To Clock
= 9
w 8
2 0 [l o
=] = = =
= 5l
E =)
g
e
Endprs!
clka cut Endpts . . 022
1 -8,013 e
1048 Rel: 1.000
Endprs: 1
clki

genClkD Cut Endpts: 1

Legend
B No transfers M Clock group
I inactive clocks @ Fails timing

B Passes timing [Cut transfer

& showFilters & ShowLegend

Tised Endprs:
51 0.104
. B0

i 1.008

Toggle Data

% Mumber of timed endpoints & Mumber of cut endpoints
& Worst-case slack ¥ Endpoint THS

¥ Tightestrelationship

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

140

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Report Panels

The reports consists of:

Filter boxes for filtering From Clock: and To Clock: values. Clicking on the From
Clock: or To Clock: opens the Name Finder dialog box.

A color coded grid which displays the clock transfer status. Status colors are
defined in the Legend.

— The clock headers list each clock with transfers in the design. If the name of
the clock is too long, the display is truncated, but the full name can be seen in
a tool tip or by resizing the clock header cell.

— Generated clocks are represented as children of the clock they are derived
from. A '+' icon next to a clock name indicates there are generated clocks
associated. Clicking on that clock header displays the generated clocks
associated with that clock.

A Legend and Toggle Data section for controlling the grid display output.

You can use the Show Filters and Show Legend controls to turn Filters and
Legend on or off.

Transfer Cell Content

Each block in the grid is referred to as a transfer cell. Each transfer cell uses color and
text to display important details of the paths involved in a transfer. The color coding
represents the following states:

Black—No transfers. There are no paths crossing between the source and
destination clock of this cell.

Green—Passes timing. All timing paths in this transfer, that have not been cut,
meet their timing requirements.

Red—Fails timing. One or more of the timing paths in the transfer do not meet
their timing requirements. If the transfer is between unrelated clocks, the paths
likely need to be synchronized by a synchronizer chain.

Blue—Clock groups. The source and destination clocks of these transfers have
been cut by means of asynchronous clock groups.

Gray—Cut transfer. All paths in this transfer have been cut by false paths. The
result of this is that these paths are not considered during timing analysis.

Orange—Inactive clocks. One of the clocks involved in the transfer has been
marked as an inactive clock (with the set_active_clocks command). Such
transfers are ignored by the Timing Analyzer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
141

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

The text in each transfer cell contains data specific to each transfer. Types of data on
display can be turned on or off with the Toggle Data boxes but you can mouse over
any cell to see the full text. These data types are:

e Number of timed endpoints between clocks— The number of timed, endpoint-
unique paths in the transfer. A path being “timed” means that it was analyzed
during timing analysis. Only paths with unique endpoints count towards this total.

e Number of cut endpoints between clocks— The number of cut endpoint-unique
paths, instead of timed ones. These paths have been cut by either a false path or
clock group assignment. Such paths are skipped during timing analysis.

e Worst-case slack between clocks— The worst-case slack among all endpoint-
unique paths in the transfer.

e Total negative slack between clocks— The sum of all negative slacks among all
endpoint-unique paths in this transfer.

o Tightest relationship between clocks— The lowest-valued setup / hold /
recovery / removal relationship between the two clocks in this transfer, depending
on the analysis mode of the report

Transfer Cell Operations

Right-click menus allow you to perform operations on transfer cells and clock headers.
When the operation is a Timing Analyzer report or SDC command, a dialog box opens
prepopulated with the contents of the transfer cell.

Transfer cell operations include:

e Copy—Copies the contents of the transfer cell to the clipboard.

e Copy (include children)—Copies the name of the chose clock header, and the
names of each of its derived clocks. This option only appears for clock headers
with generated clocks.

e Report Timing—Not available for transfer cells with no valid paths (gray or black
cells).

e Report Endpoints—Not available for transfer cells with no cut paths (gray or
black cells).

o Report False Path—Not available for transfer cells with no valid paths (black
cells).

e Report Exceptions

e Report Exceptions (with clock groups)—Only available for clock group
transfers (blue cells)

¢ Set False Path

¢ Set Multicycle Path

e Set Min Delay

e Set Max Delay

e Set Clock Uncertainty

Clock header operations include:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
142

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

e Copy—Copies the contents of the clock header to the clipboard.

e Expand/Collapse All Rows/Columns—Shows or hides all derived clocks in the
grid.

e Create Slack Histogram—Generates a slack histogram report for the selected
clock.

e Report Timing From/To Clock—Generates a timing report for the selected
clock. If the clock has not been expanded to display its derived clocks, all clocks
derived from the selected clock are included in the timing report as well. To
prevent this, expand the clock before right-clicking it.

¢ Remove Clock(s)—Removes the selected clock from the design. If the clock has
not been expanded, all clocks derived from the selected clock are also removed.

As with other Timing Analyzer reports, you may view CDC Viewer output in four
formats:

e A report panel in the Timing Analyzer
e Output in the Timing Analyzer Tcl console
e A plain-text file

e An HTML file that can be viewed in a web browser.

The Timing Analyzer report panel is the recommended format.

8.5.4.1 Report Custom CDC Viewer Command

Note:

Allows you to configure and display a customized report that creates a customized
clock domain crossing report to either a file, the Tcl console, or a report panel. This
report displays the results of setup, hold, recovery, and removal checks on clock
domain crossing transfers. You open this report in the Timing Analyzer by clicking
Reports [0 Custom Reports [0 Report Custom CDC Viewer.

You can click the Pushpin button A to keep the Report False Path, Report
Timing, and Report Endpoints dialog boxes open after you generate a report. You
can use this feature to fine tune your report settings or quickly create additional
reports. You can click Close to close the dialog box at any time.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
143

®
l n tel 8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

- Report Clock Domalin Crossing Viewer x

Clocks

From clock [

Toclock

Analysis type Transfers

" Setup » Timed transfers = Fully cut transfers
& Hold + Clock groups < Inactive clocks
& Recovery Mon-crassing ransfers
& Removal Maximurm $lack limit fis

Grid aptions

= Fold dlocks on hieranchy

Show empty transfers

Output
¥ Report panel name: |COC Viewer

Enable multi comer reports

Fille name

Fila options

L}
Console

Tel command:. | report_cdo_viewer -hierarchy -panel_name (CDC Viewer}

o Report COC Viewer Close Halp

Filter boxes for filtering From Clock: and To Clock: values. Clicking on the buttons
next to each box opens the Name Finder dialog box.

Analysis Type

The CDC Viewer can analyze any combination of Setup, Hold, Recovery, or
Removal.

Scripting Information

Keyword: report_cdc_viewer
Settings: -setup|-hold|-recovery|-removal

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
144

®
8 The Intel Quartus Prime Timing Analyzer l n tel
QPS5V3 | 2017.11.06

Transfer Filtering

By default, all transfer types are included in CDC Viewer reports:

e Timed transfers—Passing or failing

¢ Fully cut transfers— Transfers where all paths are false paths.

e Clock groups

¢ Inactive clocks

You can use these options to narrow down which kinds of transfers to show, or by

adding the desired transfer types as options: -timed, —fully_cut, —clock_groups, and -
inactive. If none are specified, all transfer types are shown.

Scripting Information

Keyword: report_cdc_viewer
Settings: -timed|-fully_cut]-clock_groups]-inactive

By default, only clocks are shown are clocks that launch or latch paths that are
launched or latched by clocks other than themselves. Turning on Non-crossing
transfers shows clocks with transfers to or from themselves.

Scripting Information

Keyword: report_cdc_viewer
Settings: -show_non_crossing

Note: In grid-formatted reports, clocks with non-crossing transfers are always shown as long
as they have transfers between other clocks too.

If you specify a value in the Maximum slack limit box, only paths with slack less
than the value are displayed. If this option is not included, paths of any slack value
are included in the report.

Scripting Information

Keyword: report_cdc_viewer
Settings: -less_than_slack

Grid Options

In grid-formatted reports, the grid can be configured to display clocks as either a flat
list or in a hierarchy where generated clocks are displayed as children of the clock they
are derived from. Turn on Fold clocks on hierarchy to enable this nested display.

Scripting Information

Keyword: report_cdc_viewer
Settings: -hierarchy

By default, clocks that launch or latch to no paths are not shown in grid-based
reports. You can show these clocks by turning on the Show empty transfers option.

Scripting Information

Keyword: report_cdc_viewer
Settings: -show_empty

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
145

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Output

Allows you to specify where you want to save the report and how much detail you
want in the report. You can select one or more of the following settings:

¢ Report panel name— Directs the Timing Analyzer to generate a report panel
with the specified name. The default report name is Report Timing.

Scripting Information

Keyword: report_cdc_viewer
Settings: -panel_name<reportname>

e Enable multi-corner reports— Allows you to enable or disable multi-corner
timing analysis. This option is on by default.

Scripting Information

Keyword: report_cdc_viewer
Settings: -multi_corner

* File name— Directs the Timing Analyzer to save the report to your local disk as a
text file with the specified file name. To save a report in HTML, end the filename
with ".html".

Scripting Information

Keyword: report_cdc_viewer
Settings: -file<filename>

e Format— Specifies that the generated report file is formatted as a list of clock
transfers rather than the default grid panel.

Scripting Information

Keyword: report_cdc_viewer
Settings: -list

e Under File options you can specify whether the Timing Analyzer overwrites an
existing file (the default setting) or appends the content to an existing file.

Scripting Information

Keyword: report_cdc_viewer
Settings: -append|-overwrite

¢ Console— Specifies whether the report appears as information messages in the
Console.

Scripting Information

Keyword: report_cdc_viewer
Settings: -stdout

8.5.5 Analyzing Results with Report Timing

Report Timing is one of the most useful analysis tools in Timing Analyzer. Many
designs require nothing but this command. In the Timing Analyzer, this command can
be accessed from the Tasks menu , from the Reports 0 Custom Reports menu, or
by right-clicking on nodes or assignments in Timing Analyzer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
146

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

You can review all of the options for Report Timing by typing report_timing -
long_help in the Timing Analyzer console.

Clocks

The From Clock and To Clock in the Clocks box are used to filter paths where the
selected clock is used as the launch or latch. The pull-down menu allows you to
choose from existing clocks (although admittedly has a "limited view" for long clock
names).

Targets

The boxes in the Targets box are targets for the From Clock and To Clocksettings,
and allow you to report paths with only particular endpoints. These are usually filled
with register names or I/0 ports, and can be wildcarded. For example, you might use
the following to only report paths within a hierarchy of interest:

report_timing -from *|egress:egress_inst|* -to *|
egress:egress_inst]* -(other options)

If the From, To, or Through boxes are empty, then the Timing Analyzer assumes you
are refering to all possible targets in the device, which can also be represented with a
wildcard (*). The From and To options cover the majority of situations. TheThrough
option is used to limit the report for paths that pass through combinatorial logic, or a
particular pin on a cell. This is seldom used, and may not be very reliable due to
combinatorial node name changes during synthesis. Clicking the browse Browse box
after each target opens the Name Finder dialog box to search for specific names.
This is especially useful to make sure the name being entered matches nodes in the
design, since the Name Finder can immediately show what matches a user's
wildcard.

Analysis type

The Analysis type options are Setup, Hold, Recovery, or Removal.
Output

The Detail level, has the following options:

The first level is called Summary, and produces a report which only displays
summary information such as:

e Slack
e From Node
e To Node

e Launch Clock
e Latch Clock
e Relationship
¢ Clock Skew
e Data Delay

The Summary report is always reported with more detailed reports, so the user would
choose this if they want less info. A good use for summary detail is when writing the
report to a text file, where Summary can be quite brief.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
147

™ ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

Note:

QPS5V3 | 2017.11.06

The next level is Path only. This report displays all the detailed information, except
the Data Path tab displays the clock tree as one line item. This is useful when you
know the clock tree is correct, details are not relevant. This is common for most paths
within the FPGA. A useful data point is to look at the Clock Skew column in the
Summary report, and if it's a small number, say less than +/-150ps, then the clock
tree is well balanced between source and destination.

If there is clock skew, you should select the Full path option.. This breaks the clock
tree out into explicit detail, showing every cell it goes through, including such things
as the input buffer, PLL, global buffer (called CLKCTRL_), and any logic. If there is
clock skew, this is where you can determine what is causing the clock skew in your
design. The Full path option is also recommended for I/O analysis, since only the
source clock or destination clock is inside the FPGA, and therefore its delay plays a
critical role in meeting timing.

The Data Path tab of a detailed report gives the delay break-downs, but there is also
useful information in the Path Summary and Statistics tabs, while the Waveform
tab is useful to help visualize the Data Path analysis. I would suggest taking a few
minutes to look at these in the user's design. The whole analysis takes some time to
get comfortable with, but hopefully is clear in what it's doing.

Enable multi corner reports allows you to enable or disable multi-corner timing
analysis. This option is on by default.

Report Timing also has the Report panel name, which displays the name used in
Timing Analyzer's Report section. There is also an optional File name switch, which
allows you to write the information to a file. If you append .htm as a suffix, the Timing
Analyzer produces the report as HTML. The File options radio buttons allow you to
choose between Overwrite and Append when saving the file.

Paths

The default value for Report number of paths is 10. Two endpoints may have a lot
of combinatorial logic between them and might have many different paths. Likewise, a
single destination may have hundreds of paths leading to it. Because of this, you
might list hundreds of paths, many of which have the same destination and might
have the same source. By turning on Pairs only you can list only one path for each
pair of source and destination. An even more powerful way to filter the report is limit
the Maximum number of paths per endpoints. You can also filter paths by entering a
value in the Maximum slack limit field.

Tcl command

Finally, at the bottom is the Tcl commandfield, which displays the Tcl syntax of what
is run in Timing Analyzer. You can edit this directly before running the Report Timing
command.

A useful addition is to addis the -false_path option to the command line string.
With this option, only false paths are listed. A false path is any path where the launch
and latch clock have been defined, but the path was cut with either a

set _fal se_pat h assignment or set _cl ock_groups_assi gnnent . Paths where
the launch or latch clock was never constrained are not considered false paths. This
option is useful to see if a false path assignment worked and what paths it covers, or

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

148

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

to look for paths between clock domains that should not exist. The Task window's
Report False Path custom report is nothing more than Report Timing with the -
false_path flag enabled.

8.5.6 Correlating Constraints to the Timing Report

A critical part of timing analysis is how timing constraints appear in the Report
Timing analysis. Most constraints only affect the launch and latch edges. Specifically,
create_clock and create_generated_clock create clocks with default
relationships. The command set_multicycle_path modifies those default
relationships, while set_max_delay and set_min_delay are low-level overrides
that explicitly tell Timing Analyzer what the launch and latch edges should be.

The following figures are from an example of the output of Report Timing on a
particular path.

Initially, the design features a clock driving the source and destination registers with a
period of 10ns. This results in a setup relationship of 10ns (launch edge = Ons, latch
edge = 10ns) and hold relationship of Ons (launch edge = Ons, latch edge = 0ns) from
the command:

create_clock -name clocktwo -period 10.000 [get_ports {clk2}]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
149

] ®
l n tel 8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Figure 109. Setup Relationship 10ns, Hold Relationship Ons

| Path #1: Setup slack is 6.429
Path Summary | Statistics | Data Path | Waveform I Extra Fitter Information |

Data Arrival Path

Total Incr RF Type Fanout Location
1| 0.000 0.000 launch edge time]
2 4 4573 4.578 clock path
1 0.000 0.000 source latency
2 0.000 0,000 1 PIMN_H13 k2 &
< I | r

| Data Required Path |

Total Incr RF Type Fanout Location
1 |__10.000 10,000 latch edge tme |=
2 4 13.875 3.87%6 dock path
1 10,000 0,000 source latency
2 10.000 0,000 1 PIN_H13 ck2
3 10,000 0,000 RR IC 1 IOIBUF_X56_Y81_M1 dk2~inputfi =
| n | 3

| Path #1: Hold slack is 0.468 |
Path Summary Statistics Data Path Waveform Extra Fitter Information

Data Arrival Path |

Total Incr RF Type Fanout Location
i1 |__0.000 0.000 launch edqe time 1!
2 4 4,397 4.397 dock path
i 0.000 0,000 source latency
2 0.000 0.000 1 PIN_M16 dki
2 n_Nnn N _ann oD L 1 TATRI IF ¥R3Q V3I5 haa Al i+ i 7
| 1 | r

| Data Required Path |

Total Incr RF Type Fanout Location
1 | o0.000 0.000 latch edge time ID
2 4 4,539 4.539 dock path
i 0.000 0,000 source latency
2 0.000 0.000 1 PIN_M16 dki
= n_onnn nonnn nn T 1 TATDI IC_WOn_ WIC KlAA Al G b i
4 1 | 3

In the next figure, using set_multicycle_ path adds multicycles to relax the setup
relationship, or open the window, making the setup relationship 20ns while the hold
relationship is still Ons:

set_multicycle_path -from clocktwo -to clocktwo -setup -end 2
set_multicycle_path -from clocktwo -to clocktwo -hold -end 1

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
150

®
8 The Intel Quartus Prime Timing Analyzer l n tel
QPS5V3 | 2017.11.06

Figure 110. Setup Relationship 20ns

| Path #1: Setup slack is 16.429 |
Path Summary I Statistics | Data Path | Waveform | Exira Fitter Information

Data Arrival Path |

Total Incr RF Type Fanout Location Gl
1 I 0.000 0.000 launch edge time I_l
2 4 4,573 4,578 dock path
1 0,000 0,000 source latency
& 0.000 0.000 1 PIN_H13 ck2 &
4| 1 | 3

Data Reqguired Path |

Total Incr RF Type Fanout Location &
1 | 20.000 20.000 latch edge time |z
2 4 23,875 3.876 dock path
1 20,000 0.000 source latency
2 20.000 0.000 1 PIN_H13 k2
5 20,000 0.000 RR Ic 1 IOIBUF_X56_Y81_N1 dk2~input]i e
q 11 | 3

In the last figure, using the set_max_delay and set_min_delay constraints lets
you explicitly override the relationships. Note that the only thing changing for these
different constraints is the Launch Edge Time and Latch Edge Times for setup and hold
analysis. Every other line item comes from delays inside the FPGA and are static for a
given fit. Whenever analyzing how your constraints affect the timing requirements,
this is the place to look.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
151

intel.

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Figure 111. Using set_max_delay and set_min_delay

Path #1: Setup slack is 11.429
| Path Summary I Statistics | Data Path | Waveform I Extra Fitter Information

Data Arrival Path

Total Incr RF Type Fanout Location il
1 | o.o00 0.000 launch edge time |
2 4 4,578 4,578 dock path
1 0.000 0.000 source |latency
2 0.000 0.000 1 PIN_H13 dk2 ik
< | n | 3
Data Required Path

Total Incr RF Type Fanout Location >
1 | 15000 15,000 latch edge time E |
2 4 18876 3.876 dock path B
i 15,000 0,000 source |atency
2 15.000 0.000 1 PIN_H13 dk2
3 15,000 0,000 RR IC 1 IDIBUF_X56_Y81 M1 dk2~input]i -
< | [T} | 3

Path #1: Hold slack is -9.574 (VIOLATED)
Statistics | DataPath | Waveform

| Path Summary Extra Fitter Information

Data Arrival Path

Total Incr RF Type Fanout Location -
1 | o.om 0.000 launch edge time |
2 4 4,137 4.137 dock path
1 0.000 0.000 source |atency
2 0.000 0.000 1 PIN_H13 dk2 -
4| m | 3
Data Required Path

Total Inca RF Type Fanout Location J=
1 | 10.000 10,000 I5tch edge time |= |
2 4 1424 4,243 dock path P
1 10,000 0,000 source latency
2 10,000 0.000 1 PIN_H13 ck2
3 10.000 0.000 RR IC 1 IOIBUF_¥55_Y31_MN1 dk2~inputli -
« | (1l | 3

For I/0, this all holds true except we must add in the -max and -min values. They are
displayed as iExt or oExt in the Type column. An example would be an output port
with a set_output_delay -max 1.0 and set_output_delay -min -0.5:

Once again, the launch and latch edge times are determined by the clock
relationships, multicycles and possibly set_max_delay or set_min_delay
constraints. The value of set_output_delay is also added in as an oExt value. For
outputs this value is part of the Data Required Path, since this is the external part of
the analysis. The setup report on the left subtracts the -max value, making the setup
relationship harder to meet, since we want the Data Arrival Path to be shorter than
the Data Required Path. The -min value is also subtracted, which is why a negative
number makes hold timing more restrictive, since we want the Data Arrival Path to
be longer than the Data Required Path.

Related Links
Relaxing Setup with set_multicyle_path on page 111

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

152

] ®
8 The Intel Quartus Prime Timing Analyzer l n tel
QPS5V3 | 2017.11.06

8.6 Constraining and Analyzing with Tcl Commands

You can use Tcl commands from the Intel Quartus Prime software Tcl Application
Programming Interface (API) to constrain, analyze, and collect information for your
design. This section focuses on executing timing analysis tasks with Tcl commands;
however, you can perform many of the same functions in the Timing Analyzer GUI.
SDC commands are Tcl commands for constraining a design. SDC extension
commands provide additional constraint methods and are specific to the Timing
Analyzer. Additional Timing Analyzer commands are available for controlling timing
analysis and reporting. These commands are contained in the following Tcl packages
available in the Intel Quartus Prime software:

e ::iquartus::sta
e :-:Iquartus::sdc
e :-:Iquartus::sdc_ext

Related Links

e ::quartus::sta
For more information about Timing Analyzer Tcl commands and a complete list
of commands, refer to Intel Quartus Prime Help.

e ::quartus::sdc
For more information about standard SDC commands and a complete list of
commands, refer to Intel Quartus Prime Help.

e ::quartus::sdc_ext

For more information about Intel FPGA extensions of SDC commands and a
complete list of commands, refer to Intel Quartus Prime Help.

8.6.1 Collection Commands

The Timing Analyzer Tcl commands often return data in an object called a collection.
In your Tcl scripts you can iterate over the values in collections to access data
contained in them. The software returns collections instead of Tcl lists because
collections are more efficient than lists for large sets of data.

The Timing Analyzer supports collection commands that provide easy access to ports,
pins, cells, or nodes in the design. Use collection commands with any constraints or Tcl
commands specified in the Timing Analyzer.

Table 33. SDC Collection Commands
Command Description of the collection returned
all_clocks All clocks in the design.
all_inputs All input ports in the design.

all_outputs All output ports in the design.

all_registers | All registers in the design.

get_cells Cells in the design. All cell names in the collection match the specified pattern. Wildcards can be used
to select multiple cells at the same time.
get_clocks Lists clocks in the design. When used as an argument to another command, such as the -from or -to

of set_multicycle_path, each node in the clock represents all nodes clocked by the clocks in the
collection. The default uses the specific node (even if it is a clock) as the target of a command.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
153

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0.htm

] ®
l n tel 8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Command Description of the collection returned

get_nets Nets in the design. All net names in the collection match the specified pattern. You can use wildcards to
select multiple nets at the same time.

get_pins Pins in the design. All pin names in the collection match the specified pattern. You can use wildcards to
select multiple pins at the same time.

get_ports Ports (design inputs and outputs) in the design.

You can also examine collections and experiment with collections using wildcards in
the Timing Analyzer by clicking Name Finder from the View menu.

8.6.1.1 Wildcard Characters

To apply constraints to many nodes in a design, use the “*” and “?” wildcard
characters. The “*” wildcard character matches any string; the “?” wildcard character
matches any single character.

If you make an assignment to node reg*, the Timing Analyzer searches for and
applies the assignment to all design nodes that match the prefix reg with any number
of following characters, such as reg, regl, reg[2], regbank, and regl2bank.

If you make an assignment to a node specified as reg?, the Timing Analyzer searches
and applies the assignment to all design nodes that match the prefix reg and any
single character following; for example, regl, rega, and reg4.

8.6.1.2 Adding and Removing Collection Items

Wildcards used with collection commands define collection items identified by the
command. For example, if a design contains registers named srcO, srcl, src2, and
dstO, the collection command [get_registers src*] identifies registers srcO,
srcl, and src2, but not register dst0. To identify register dst0O, you must use an
additional command, [get_registers dst*]. To include dstO, you could also
specify a collection command [get_registers {src* dst*}].

To modify collections, use the add_to_collection and remove_from_collection
commands. The add_to_collection command allows you to add additional items to
an existing collection.

add_to_collection Command

add_to_collection <first collection> <second collection>

Note: The add_to_collection command creates a new collection that is the union of the
two specified collections.

The remove_from_collection command allows you to remove items from an
existing collection.

remove_from_collection Command
remove_from_collection <first collection> <second collection>

You can use the following code as an example for using add_to_collection for
adding items to a collection.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
154

™ ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Adding Items to a Collection

#Setting up initial collection of registers

set regsl [get_registers a*]

#Setting up initial collection of keepers

set kprsl [get_keepers b*]

#Creating a new set of registers of $regsl and $kprsi
set regs_union [add_to_collection $kprsl $regsi]

#OR

#Creating a new set of registers of $regsl and b*
#Note that the new collection appends only registers with name b*
not all keepers

set regs_union [add_to_collection $regsl b*]

In the Intel Quartus Prime software, keepers are 1/O ports or registers. A SDC file that
includes get_keepers can only be processed as part of the Timing Analyzer flow and
is not compatible with third-party timing analysis flows.

Related Links

e add_to_collection

e remove_from_collection
For more information about theadd_to collection and
remove_from collection commands, refer to Intel Quartus Prime Help.

8.6.1.3 Getting Other Information about Collections

You can display the contents of a collection with the query_col lection command.
Use the -report_format option to return the contents in a format of one element
per line. The —-list_format option returns the contents in a Tcl list.

query_collection -report_format -all $regs_union

Use the get_collection_size command to return the size of a collection; the
number of items it contains. If your collection is in a variable named col, it is more
efficient to use set num_items [get_collection_size $col] than set
num_items [Ilength [query_collection -list format $col]]

8.6.1.4 Using the get_pins Command

The get_pins command supports options that control the matching behavior of the
wildcard character (*). Depending on the combination of options you use, you can
make the wildcard character (*) respect or ignore individual levels of hierarchy, which
are indicated by the pipe character (]). By default, the wildcard character (*) matches
only a single level of hierarchy.

These examples filter the following node and pin names to illustrate function:

e foo (a hierarchy level named foo)

e foo|dataa (an input pin in the instance foo)

e foo|datab (an input pin in the instance foo)

e foo|bar (a combinational node named bar in the foo instance)

e foo|bar|datac (an input pin to the combinational node named bar)

e foo|bar|datad (an input pin to the combinational node bar)

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
155

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_remove_from_collection.htm

intel)

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Table 34. Sample Search Strings and Search Results
Search String Search Result

get_pins *|dataa fooldataa
get_pins *|datac <enpt y>(G)
get_pins *|*]datac foo|bar|datac
get_pins foo*|* foo]dataa, foo]datab
get_pins -hierarchical *|*]datac <enpt y>®)
get_pins -hierarchical fool]* foo]dataa, foo]datab
get_pins -hierarchical *|datac foo|bar|datac
get_pins -hierarchical foo|*]datac <enpt y>®
get_pins -compatibility_mode *|datac foo|bar|datac (9
get_pins -compatibility_mode *|*]datac foo|bar|datac

The default method separates hierarchy levels of instances from nodes and pins with
the pipe character (|). A match occurs when the levels of hierarchy match, and the
string values including wildcards match the instance and/or pin names. For example,
the command get_pins <i nstance_nane>|*]datac returns all the datac pins
for registers in a given instance. However, the command get_pins *|datac returns
and empty collection because the levels of hierarchy do not match.

Use the -hierarchical matching scheme to return a collection of cells or pins in all
hierarchies of your design.

For example, the command get_pins -hierarchical *]datac returns all the
datac pins for all registers in your design. However, the command get_pins -
hierarchical *|*]datac returns an empty collection because more than one pipe
character (|) is not supported.

The -compatibility_mode option returns collections matching wildcard strings
through any number of hierarchy levels. For example, an asterisk can match a pipe
character when using —compatibility mode.

8.6.2 Identifying the Intel Quartus Prime Software Executable from the

SDC File

To identify which Intel Quartus Prime software executable is currently running you can
use the $: :TimeQuestInfo(nameofexecutable) variable from within an SDC file.
This technique is most commonly used when you want to use an overconstraint to
cause the Fitter to work harder on a particular path or set of paths in the design.

(3) The search result is <empty> because the wildcard character (*) does not match more than
one hierarchy level, indicated by a pipe character (|), by default. This command would match
any pin named datac in instances at the top level of the design.

(4) When you use -compatibility_mode, pipe characters (]) are not treated as special
characters when used with wildcards.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

156

| | ®
8 The Intel Quartus Prime Timing Analyzer l n tel)

QPS5V3 | 2017.11.06

Identifying the Intel Quartus Prime Executable

#ldentify which executable is running:

set current_exe $::TimeQuestlnfo(nameofexecutable)

if { [string equal $current_exe "quartus_fit"] } {
#Apply .sdc assignments for Fitter executable here

} else {

#Apply .sdc assignments for non-Fitter executables here

if { ! [string equal "quartus_sta" $::TimeQuestinfo(nameofexecutable)] } {
#Apply .sdc assignments for non-TimeQuest executables here
3} else {

#Apply .sdc assignments for TimeQuest executable here

Examples of different executable names are quartus_map for Analysis & Synthesis,
quartus_Tfit for Fitter, and quartus_sta for the Timing Analyzer.

8.6.3 Locating Timing Paths in Other Tools

You can locate paths and elements from the Timing Analyzer to other tools in the Intel
Quartus Prime software.

Use the Locate or Locate Path command in the Timing Analyzer GUI or the locate
command in the Tcl console in the Timing Analyzer GUI. Right-click most paths or
node names in the Timing Analyzer GUI to access the Locate or Locate Path options.

The following commands are examples of how to locate the ten paths with the worst
timing slack from Timing Analyzer to the Technology Map Veiwer and locate all
ports matching data* in the Chip Planner.

Example 13. Locating from the Timing Analyzer

Locate in the Technology Map Viewer the ten paths with the worst slack
locate [get_timing_paths -npaths 10] -tmv

locate all ports that begin with data in the Chip Planner

locate [get_ports data*] -chip

Related Links

locate
For more information on this command, refer to Intel Quartus Prime Help.

8.7 Generating Timing Reports

The Timing Analyzer provides real-time static timing analysis result reports. The
Timing Analyzer does not automatically generate most reports; you must create each
report individually in the Timing Analyzer GUI or with command-line commands. You
can customize in which report to display specific timing information, excluding fields
that are not required.

Some of the different command-line commands you can use to generate reports in the
Timing Analyzer and the equivalent reports shown in the Timing Analyzer GUI.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
157

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_locate.htm

] ®
l n tel) 8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Table 35. Timing Analyzer Reports
Command-Line Command Report
report_timing Timing report
report_exceptions Exceptions report
report_clock_transfers Clock Transfers report
report_min_pulse_width Minimum Pulse Width report
report_ucp Unconstrained Paths report

During compilation, the Intel Quartus Prime software generates timing reports on
different timing areas in the design. You can configure various options for the Timing
Analyzer reports generated during compilation.

You can also use the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS assignment
to generate a report of the worst-case timing paths for each clock domain. This report
contains worst-case timing data for setup, hold, recovery, removal, and minimum
pulse width checks.

Use the TIMEQUEST_ REPORT_NUM_WORST_CASE_TIMING_PATHS assignment to
specify the number of paths to report for each clock domain.

An example of how to use the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS
and TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignments in
the .qgsT to generate reports.

For more information about the options you can set to customize Timing Analyzer
reports, refer to the Timing Analyzer page in Intel Quartus Prime Help.

For more information about timing closure recommendations, refer to the Timing
Closure and Optimization page of the Intel Quartus Prime Handbook, Volume 2.

Generating Worst-Case Timing Reports

Enable Worst-Case Timing Report

set_global_assignment -name TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS ON

Report 10 paths per clock domain

set_global_assignment -name TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS 10

Fmax Summary Report panel

The Fmax Summary Report panel lists the maximum frequency of each clock in your
design. In some designs you may see a note indicating "Limit due to hold check.
Typically, Fmax is not limited by hold checks, because they are often same-edge
relationships, and therefore independent of clock frequency, for example, launch = 0,
latch = 0. However, if you have an inverted clock transfer, or a multicycle transfer
such as setup=2, hold=0, then the hold relationship is no longer a same-edge transfer
and changes as the clock frequency changes. The value in the Restricted Fmax
column incorporates limits due to hold time checks in the situations described
previously, as well as minimum period and pulse width checks. If hold checks limit the
Fmax more than setup checks, that is indicated in the Note: column as "Limit due to
hold check".

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

158

8 The Intel Quartus Prime Timing Analyzer

QPS5V3 | 2017.11.06

Related Links

::quartus::sta

In Intel Quartus Prime Help

Timing Analyzer Page

For more information about the options you can set to customize Timing
Analyzer reports.

Timing Closure and Optimization

In Intel Quartus Prime Standard Edition Handbook Volume 2

8.8 Document Revision History

Table 36. Document Revision History

Date

Version

Changes

2015.11.02

15.1.0

e Changed instances of Quartus II to Quartus Prime.
e Updated information on using Intel Arria 10 devices with enhanced timing algorithms.

2015.05.04

15.0.0

Added and updated

contents in support of new timing algorithms for Arria 10:

e Enhanced Timing Analysis for Arria 10

* Maximum Skew

(set_max_skew command)

¢ Net Delay (set_net_delay command)
e Create Generated Clocks (clock-as-data example)

2014.12.15

14.1.0

Major reorganization. Revised and added content to the following topic areas:
e Timing Constraints

e Create Clocks and Clock Constraints

e Creating Generated Clocks

e Creating Clock Groups

e Clock Uncertainty

e Running the Timing Analyzer

e Generating Timing Reports

e Understanding Results

e Constraining and Analyzing with Tcl Commands

August 2014

14.0a10.
0

Added command lin

e compliation requirements for Arria 10 devices.

June 2014

14.0.0

e Minor updates.
e Updated format.

November 2013

13.1.0

e Removed HardCopy device information.

June 2012

12.0.0

e Reorganized cha
e Added “Creating

pter.
a Constraint File from Intel Quartus Prime Templates with the Intel Quartus

Prime Text Editor” section on creating an SDC constraints file with the Insert Template

dialog box.

e Added “Identifying the Intel Quartus Prime Software Executable from the SDC File” section.
e Revised multicycle exceptions section.

November 2011

11.1.0

e Consolidated content from the Best Practices for the Intel Quartus Prime Timing Analyzer

chapter.
e Changed to new

document template.

May 2011

11.0.0

e Updated to improve flow. Minor editorial updates.

December 2010

10.1.0

e Changed to new

document template.

e Revised and reorganized entire chapter.
e Linked to Intel Quartus Prime Help.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
159

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_tqa_settings.htm
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471203263

intel.

8 The Intel Quartus Prime Timing Analyzer
QPS5V3 | 2017.11.06

Date Version Changes

July 2010 10.0.0 Updated to link to content on SDC commands and the Timing Analyzer GUI in Intel Quartus
Prime Help.

November 2009 9.1.0 Updated for the Intel Quartus Prime software version 9.1, including:
e Added information about commands for adding and removing items from collections
e Added information about the set_timing_derate and report_skew commands
e Added information about worst-case timing reporting
e Minor editorial updates

November 2008 8.1.0 Updated for the Intel Quartus Prime software version 8.1, including:

e Added the following sections:
“set_net_delay” on page 7-42
“Annotated Delay” on page 7-49
“report_net_delay” on page 7-66
¢ Updated the descriptions of the —append and -file <name> options in tables throughout
the chapter
e Updated entire chapter using 8%2" x 11” chapter template
e Minor editorial updates

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

160

https://www.altera.com/search-archives

QPS5V3 | 2017.11.06 l

9 Power Analysis

The Intel Quartus Prime Power Analysis tools allow you to estimate device power

consumption accurately.

As designs grow larger and process technology continues to shrink, power becomes an
increasingly important design consideration. When designing a PCB, you must
estimate the power consumption of a device accurately to develop an appropriate
power budget, and to design the power supplies, voltage regulators, heat sink, and

cooling system.

The following figure shows the Power Analysis tools ability to estimate power

consumption from early design concept through design implementation.

Figure 112. Power Analysis From Design Concept Through Design Implementation

A Early Power Estimator . Power Analyzer

Higher

Simulation
Results

Placement and
Routing
Results

Quartus Prime '
Design Profile

User Input

Lower

«—— Design Concept >< Design Implementation ——»

>

For the majority of the designs, the Power Analyzer and the EPE spreadsheet have the

following accuracy after the power models are final:

e Power Analyzer—=*20% from silicon, assuming that the Power Analyzer uses the

Value Change Dump File (.vcd) generated toggle rates.

e EPE spreadsheet— +20% from the Power Analyzer results using .vcd generated
toggle rates. 90% of EPE designs (using .vcd generated toggle rates exported

from PPPA) are within £30% silicon.

The toggle rates are derived using the Power Analyzer with a .vcd file generated from

a gate level simulation representative of the system operation.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

| | ®
l n tel] 9 Power Analysis

QPS5V3 | 2017.11.06

9.1 Types of Power Analyses

Understanding the uses of power analysis and the factors affecting power consumption
helps you to use the Power Analyzer effectively. Power analysis meets the following
significant planning requirements:

¢ Thermal planning—Thermal power is the power that dissipates as heat from the
FPGA. You must use a heatsink or fan to act as a cooling solution for your device.
The cooling solution must be sufficient to dissipate the heat that the device
generates. The computed junction temperature must fall within normal device
specifications.

e Power supply planning—Power supply is the power needed to run your device.
Power supplies must provide adequate current to support device operation.

Note: For power supply planning, use the EPE at the early stages of your design
cycle. Use the Power Analyzer reports when your design is complete to get
an estimate of your design power requirement.

The two types of analyses are closely related because much of the power supplied to
the device dissipates as heat from the device; however, in some situations, the two
types of analyses are not identical. For example, if you use terminated I/O standards,
some of the power drawn from the power supply of the device dissipates in
termination resistors rather than in the device.

Power analysis also addresses the activity of your design over time as a factor that
impacts the power consumption of the device. The static power (Pstatic) is the thermal
power dissipated on chip, independent of user clocks. Pstatic includes the leakage
power from all FPGA functional blocks, except for I/O DC bias power and transceiver
DC bias power, which are accounted for in the I/O and transceiver sections. Dynamic
power is the additional power consumption of the device due to signal activity or

toggling.

9.1.1 Differences between the EPE and the Intel Quartus Prime Power

Analyzer
The following table lists the differences between the EPE and the Intel Quartus Prime
Power Analyzer.

Table 37. Comparison of the EPE and Intel Quartus Prime Power Analyzer

Characteristic

EPE

Intel Quartus Prime Power
Analyzer

Phase in the design cycle

Any time, but it is recommended to use Intel Quartus Prime
Power Analyzer for post-fit power analysis.

Post-fit

Tool requirements

Spreadsheet program

The Intel Quartus Prime

Clock requirements
Environmental conditions
Toggle rate

software
Accuracy Medium Medium to very high
Data inputs Resource usage estimates Post-fit design

Clock requirements
Signal activity defaults
Environmental conditions

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

162

9 Power Analysis
QPS5V3 | 2017.11.06

intel)

Characteristic

EPE

Intel Quartus Prime Power
Analyzer

e Register transfer level
(RTL) simulation results
(optional)

e Post-fit simulation results
(optional)

e Signal activities per node
or entity (optional)

Data outputs

Total thermal power dissipation
Thermal static power

Thermal dynamic power

Off-chip power dissipation

Current drawn from voltage supplies

Total thermal power

Thermal static power

Thermal dynamic power

Thermal I/O power

Thermal power by design

hierarchy

e Thermal power by block
type

e Thermal power dissipation
by clock domain

e Off-chip (non-thermal)
power dissipation

e Device supply currents

The result of the Power Analyzer is only an estimation of power. Intel FPGA does not
recommend using the result as a specification. The purpose of the estimation is to
help you establish guidelines for the power budget of your design. It is important that
you verify the actual power during device operation as the information is sensitive to
the actual device design and the environmental operating conditions.

Note: The Power Analyzer does not include the transceiver power for features that can only
be enabled through dynamic reconfiguration (DFE, ADCE/AEQ, Eye Viewer). Use the
EPE to estimate the incremental power consumption by these features.

9.2 Factors Affecting Power Consumption

Understanding the following factors that affect power consumption allows you to use

the Power Analyzer and interpret its results effectively:

e Device Selection

e Environmental Conditions

e Device Resource Usage

e Signal Activities

9.2.1 Device Selection

Device families have different power characteristics. Many parameters affect the
device family power consumption, including choice of process technology, supply

voltage, electrical design, and device architecture.

(5) EPE and Power Analyzer outputs vary by device family. For more information, refer to the
device-specific Early Power Estimators (EPE) and Power Analyzer Page and Power Analyzer
Reports in the Intel Quartus Prime Help.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

163

9 Power Analysis
QPS5V3 | 2017.11.06

Power consumption also varies in a single device family. A larger device consumes
more static power than a smaller device in the same family because of its larger
transistor count. Dynamic power can also increase with device size in devices that
employ global routing architectures.

The choice of device package also affects the ability of the device to dissipate heat.
This choice can impact your required cooling solution choice to comply to junction
temperature constraints.

Process variation can affect power consumption. Process variation primarily impacts
static power because sub-threshold leakage current varies exponentially with changes
in transistor threshold voltage. Therefore, you must consult device specifications for
static power and not rely on empirical observation. Process variation has a weak effect
on dynamic power.

9.2.2 Environmental Conditions

Table 38.

Operating temperature primarily affects device static power consumption. Higher
junction temperatures result in higher static power consumption. The device thermal
power and cooling solution that you use must result in the device junction
temperature remaining within the maximum operating range for the device. The main
environmental parameters affecting junction temperature are the cooling solution and
ambient temperature.

The following table lists the environmental conditions that could affect power
consumption.

Environmental Conditions that Could Affect Power Consumption

Environmental Description
Conditions

Airflow

A measure of how quickly the device removes heated air from the vicinity of the device and
replaces it with air at ambient temperature.

You can either specify airflow as “still air” when you are not using a fan, or as the linear feet
per minute rating of the fan in the system. Higher airflow decreases thermal resistance.

Heat Sink and Thermal A heat sink allows more efficient heat transfer from the device to the surrounding area
Compound

because of its large surface area exposed to the air. The thermal compound that interfaces the
heat sink to the device also influences the rate of heat dissipation. The case-to-ambient
thermal resistance (B¢ca) parameter describes the cooling capacity of the heat sink and thermal
compound employed at a given airflow. Larger heat sinks and more effective thermal
compounds reduce B¢a.

Junction Temperature The junction temperature of a device is equal to:

Tiunction = Tambient + PThermal * 61a

in which 834 is the total thermal resistance from the device transistors to the environment,
having units of degrees Celsius per watt. The value 6,5 is equal to the sum of the junction-to-
case (package) thermal resistance (8;c), and the case-to-ambient thermal resistance (8¢ca) of
your cooling solution.

Board Thermal Model The junction-to-board thermal resistance (8;g) is the thermal resistance of the path through

the board, having units of degrees Celsius per watt. To compute junction temperature, you can
use this board thermal model along with the board temperature, the top-of-chip 8;4 and
ambient temperatures.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

164

9 Power Analysis
QPS5V3 | 2017.11.06

intel.

9.2.3 Device Resource Usage

The number and types of device resources used greatly affects power consumption.

Number, Type, and Loading of I/0 Pins—Output pins drive off-chip
components, resulting in high-load capacitance that leads to a high-dynamic
power per transition. Terminated I/O standards require external resistors that
draw constant (static) power from the output pin.

Number and Type of Hard Logic Blocks—A design with more logic elements
(LEs), multiplier elements, memory blocks, transceiver blocks or HPS system
tends to consume more power than a design with fewer circuit elements. The
operating mode of each circuit element also affects its power consumption. For
example, a DSP block performing 18 x 18 multiplications and a DSP block
performing multiply-accumulate operations consume different amounts of dynamic
power because of different amounts of charging internal capacitance on each
transition. The operating mode of a circuit element also affects static power.

Number and Type of Global Signals—Global signal networks span large
portions of the device and have high capacitance, resulting in significant dynamic
power consumption. The type of global signal is important as well. For example,
Stratix V devices support global clocks and quadrant (regional) clocks. Global
clocks cover the entire device, whereas quadrant clocks only span one-fourth of
the device. Clock networks that span smaller regions have lower capacitance and
tend to consume less power. The location of the logic array blocks (LABs) driven
by the clock network can also have an impact because the Intel Quartus Prime
software automatically disables unused branches of a clock.

9.2.4 Signal Activities

The behavior of each signal in your design is an important factor in estimating power
consumption. The following table lists the two vital behaviors of a signal, which are
toggle rate and static probability:

Table 39. Signal Behavior
Signal Behavior Description
Toggle rate e The toggle rate of a signal is the average number of times that the signal changes value per

unit of time. The units for toggle rate are transitions per second and a transition is a change
from 1 to O, or O to 1.

e Dynamic power increases linearly with the toggle rate as you charge the board trace model
more frequently for logic and routing. The Intel Quartus Prime software models full rail-to-
rail switching. For high toggle rates, especially on circuit output I/O pins, the circuit can
transition before fully charging the downstream capacitance. The result is a slightly
conservative prediction of power by the Power Analyzer.

Static probability

e The static probability of a signal is the fraction of time that the signal is logic 1 during the
period of device operation that is being analyzed. Static probability ranges from O (always at
ground) to 1 (always at logic-high).

e Static probabilities of their input signals can sometimes affect the static power that routing
and logic consume. This effect is due to state-dependent leakage and has a larger effect on
smaller process geometries. The Intel Quartus Prime software models this effect on devices
at 90 nm or smaller if it is important to the power estimate. The static power also varies with
the static probability of a logic 1 or O on the I/O pin when output I/O standards drive
termination resistors.

Note:

To get accurate results from the power analysis, the signal activities for analysis must
represent the actual operating behavior of your design. Inaccurate signal toggle rate
data is the largest source of power estimation error.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
165

n ®
‘ l n tel] 9 Power Analysis

QPS5V3 | 2017.11.06

9.3 Power Analyzer Flow

The Power Analyzer supports accurate power estimations by allowing you to specify
the important design factors affecting power consumption. The following figure shows
the high-level Power Analyzer flow.

Figure 113. Power Analyzer High-Level Flow

User Design
(Post-Fit
Operating > < Signal
Conditions HOAT TS Activities

l

Power Analysis
Report

To obtain accurate I/O power estimates, the Power Analyzer requires you to synthesize
your design and then fit your design to the target device. You must specify the

electrical standard on each I/0 cell and the board trace model on each I/O standard in
your design.

9.3.1 Operating Settings and Conditions

You can specify device power characteristics, operating voltage conditions, and

operating temperature conditions for power analysis in the Intel Quartus Prime
software.

On the Operating Settings and Conditions page of the Settings dialog box, you
can specify whether the device has typical power consumption characteristics or
maximum power consumption characteristics.

On the Voltage page of the Settings dialog box, you can view the operating voltage
conditions for each power rail in the device, and specify supply voltages for power rails
with selectable supply voltages.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

166

QPS5V3 | 2017.11.06

m ®
9 Power Analysis ‘ l n tel

Note: The Intel Quartus Prime Fitter may override some of the supply voltages settings
specified in this chapter. For example, supply voltages for some transceiver power
supplies depend on the data rate used. If the Fitter detects that voltage required is
different from the one specified in the Voltage page, it will automatically set the
correct voltage for relevant rails. The Intel Quartus Prime Power Analyzer uses
voltages selected by the Fitter if they conflict with the settings specified in the
Voltage page.

On the Temperature page of the Settings dialog box, you can specify the thermal
operating conditions of the device.

Related Links
e Operating Settings and Conditions Page (Settings Dialog Box)
e \oltage Page (Settings Dialog Box)

e Temperature Page (Settings Dialog Box)

9.3.2 Signal Activities Data Sources

The Power Analyzer provides a flexible framework for specifying signal activities. The
framework reflects the importance of using representative signal-activity data during
power analysis. Use the following sources to provide information about signal activity:

e Simulation results

e User-entered node, entity, and clock assignments

e User-entered default toggle rate assignment

e Vectorless estimation

The Power Analyzer allows you to mix and match the signal-activity data sources on a

signal-by-signal basis. The following figure shows the priority scheme applied to each
signal.

Figure 114. Signal-Activity Data Source Priority Scheme

Start

Simulation Is primary
data? input? estimation

Use node or Use simulation Use default
entity assignment data assignment

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
167

http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions.htm
http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions-voltage.htm
http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions-temperature.htm

n ®
l n tel] 9 Power Analysis

QPS5V3 | 2017.11.06

9.3.2.1 Simulation Results

Note:

The Power Analyzer directly reads the waveforms generated by a design simulation.
Static probability and toggle rate can be calculated for each signal from the simulation
waveform. Power analysis is most accurate when you use representative input stimuli
to generate simulations.

The Power Analyzer reads results generated by the following simulators:

e ModelSim

e ModelSim - Intel FPGA Edition

e QuestaSim

e Active-HDL

¢ NCSim
e VCS
e VCS MX

e Riviera-PRO

Signal activity and static probability information are derived from a Verilog Value
Change Dump File (.vcd). For more information, refer to Signal Activities on page
165.

For third-party simulators, use the EDA Tool Settings to specify the Generate
Value Change Dump (VCD) file script option in the Simulation page of the Settings
dialog box. These scripts instruct the third-party simulators to generate a .vcd that
encodes the simulated waveforms. The Intel Quartus Prime Power Analyzer reads this
file directly to derive the toggle rate and static probability data for each signal.

Third-party EDA simulators, other than those listed, can generate a .vcd that you can
use with the Power Analyzer. For those simulators, you must manually create a
simulation script to generate the appropriate .vcd.

You can use a .saf created for power analysis to optimize your design for power
during fitting by utilizing the appropriate settings in the power optimization list,
available from Assignments [0 Settings 0 Compiler Settings O Advanced
Settings (Fitter).

9.4 Using Simulation Files in Modular Design Flows

A common design practice is to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate these modules in a higher-
level entity to form a complete design. You can perform simulation on a complete
design or on each module for verification. The Power Analyzer supports modular
design flows when reading the signal activities from simulation files. The following
figure shows an example of a modular design flow.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

168

] ®
9 Power Analysis l n tel :

QPS5V3 | 2017.11.06

Figure 115. Modular Simulation Flow

Note:

Note:

| Parameter deo Column
i Input Processing Driver > |7 system.ved

I video_gizmo.vcd
[] output_driver.vcd
Memory S\gdfc% Timing > [video_input.vcd

Interface : Control

Interface
! ’

v |

When specifying a simulation file (a .vcd), the software provides support to specify
an associated design entity name, such that the Power Analyzer imports the signal
activities derived from that file for the specified design entity. The Power Analyzer also
supports the specification of multiple .vcd files for power analysis, with each having
an associated design entity name to enable the integration of partial design
simulations into a complete design power analysis. When specifying multiple .vcd
files for your design, more than one simulation file can contain signal-activity
information for the same signal.

When you apply multiple .vcd files to the same design entity, the signal activity used
in the power analysis is the equal-weight arithmetic average of each .vcd.

When you apply multiple simulation files to design entities at different levels in your
design hierarchy, the signal activity in the power analysis derives from the simulation
file that applies to the most specific design entity.

The following figure shows an example of a hierarchical design. The top-level module
of your design, called Top, consists of three 8b/10b decoders, followed by a mux. The
software then encodes the output of the mux to produce the final output of the top-
level module. An error-handling module handles any 8b/10b decoding errors. The Top
module contains the top-level entity of your design and any logic not defined as part
of another module. The design file for the top-level module might be a wrapper for the
hierarchical entities below it, or it might contain its own logic. The following usage
scenarios show common ways that you can simulate your design and import the .vcd
into the Power Analyzer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
169

QPS5V3 | 2017.11.06

n ®
‘ l n tel 9 Power Analysis

Figure 116. Example Hierarchical Design

Top |
8b10b_dec:decodel

8b10b_rxerr:err1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_encencodel

9.4.1 Complete Design Simulation

You can simulate the entire design and generate a .vcd from a third-party simulator.
The Power Analyzer can then import the .vcd (specifying the top-level design). The

resulting power analysis uses the signal activities information from the

generated .vcd, including those that apply to submodules, such as decode [1-3],
errl, muxl, and encodel.

9.4.2 Modular Design Simulation

You can independently simulate of the top-level design, and then import all the
resulting .vcd files into the Power Analyzer. For example, you can simulate the
8b10b_dec independent of the entire design and mux, 8b10b_rxerr, and
8b10b_enc. You can then import the .vcd files generated from each simulation by
specifying the appropriate instance name. For example, if the files produced by the
simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and
mux.vcd, you can use the import specifications in the following table:

Table 40. Import Specifications

File Name Entity
8b10b_dec.vcd Top|8b10b_dec:decodel
8b10b_dec.vcd Top|8b10b_dec:decode2
8b10b_dec.vcd Top|8b10b_dec:decode3
8b10b_rxerr.vcd Top|8b1l0b_rxerr:errl
8b10b_enc.vcd Top|8b10b_enc:encodel
mux . ved Top | mux:muxl

The resulting power analysis applies the simulation vectors in each file to the assigned
entity. Simulation provides signal activities for the pins and for the outputs of
functional blocks. If the inputs to an entity instance are input pins for the entire

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
170

n ®
9 Power Analysis l n tel :

QPS5V3 | 2017.11.06

design, the simulation file associated with that instance does not provide signal
activities for the inputs of that instance. For example, an input to an entity such as
mux1 has its signal activity specified at the output of one of the decode entities.

9.4.3 Multiple Simulations on the Same Entity

You can perform multiple simulations of an entire design or specific modules of a
design. For example, in the process of verifying the top-level design, you can have
three different simulation testbenches: one for normal operation, and two for corner
cases. Each of these simulations produces a separate .vcd. In this case, apply the
different .vcd file names to the same top-level entity, as shown in the following table.

Table 41. Multiple Simulation File Names and Entities
File Name Entity
normal .vcd Top
cornerl.vcd Top
corner2.vcd Top

The resulting power analysis uses an arithmetic average of the signal activities
calculated from each simulation file to obtain the final signal activities used. If a signal
err_out has a toggle rate of zero transition per second in normal .vcd, 50
transitions per second in cornerl.vcd, and 70 transitions per second in
corner2.vcd, the final toggle rate in the power analysis is 40 transitions per second.

If you do not want the Power Analyzer to read information from multiple instances and
take an arithmetic average of the signal activities, use a .vcd that includes only
signals from the instance that you care about.

9.4.4 Overlapping Simulations

You can perform a simulation on the entire design, and more exhaustive simulations
on a submodule, such as 8b10b_rxerr. The following table lists the import
specification for overlapping simulations.

Table 42. Overlapping Simulation Import Specifications
File Name Entity
full_design.vcd Top
error_cases.vcd Top|8b1l0b_rxerr:errl

In this case, the software uses signal activities from error_cases.vcd for all the
nodes in the generated .vcd and uses signal activities from ful l_design.vcd for
only those nodes that do not overlap with nodes in error_cases.vcd. In general,
the more specific hierarchy (the most bottom-level module) derives signal activities
for overlapping nodes.

9.4.5 Partial Simulations

You can perform a simulation in which the entire simulation time is not applicable to
signal-activity calculation. For example, if you run a simulation for 10,000 clock cycles
and reset the chip for the first 2,000 clock cycles. If the Power Analyzer performs the

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
171

| | ®
l n tel] 9 Power Analysis

QPS5V3 | 2017.11.06

signal-activity calculation over all 10,000 cycles, the toggle rates are only 80% of their
steady state value (because the chip is in reset for the first 20% of the simulation). In
this case, you must specify the useful parts of the .vcd for power analysis. The Limit
VCD Period option enables you to specify a start and end time when performing
signal-activity calculations.

9.4.5.1 Specifying Start and End Time when Performing Signal-Activity
Calculations using the Limit VCD Period Option

To specify a start and end time when performing signal-activity calculations using the
Limit VCD period option, follow these steps:

1. 1In the Intel Quartus Prime software, on the Assignments menu, click Settings.
2. Under the Category list, click Power Analyzer Settings.

3. Turn on the Use input file(s) to initialize toggle rates and static
probabilities during power analysis option.

Click Add.

In the File name and Entity fields, browse to the necessary files.

Under Simulation period, turn on VCD file and Limit VCD period options.
In the Start time and End time fields, specify the desired start and end time.
Click OK.

©® N o u bk

You can also use the following tcl or gsf assignment to specify .vcd files:

set_global_assignment -name POWER_INPUT_FILE_NAME "test.vcd" -section_id test.vcd
set_global_assignment -name POWER_INPUT_FILE_TYPE VCD -section_id test.vcd
set_global_assignment -name POWER_VCD_FILE_START_TIME 10 ns" -section_id test.vcd
set_global_assignment -name POWER_VCD_FILE_END_TIME "1000 ns"™ -section_id test.vcd
set_instance_assignment -name POWER_READ_INPUT_FILE test.vcd -to test_design

Related Links
e set_power._file_assignment
e Add/Edit Power Input File Dialog Box

9.4.6 Node Name Matching Considerations

Node name mismatches happen when you have .vcd applied to entities other than
the top-level entity. In a modular design flow, the gate-level simulation files created in
different Intel Quartus Prime projects might not match their node names with the
current Intel Quartus Prime project.

For example, you may have a file named 8b10b_enc.vcd, which the Intel Quartus
Prime software generates in a separate project called 8b10b_enc while simulating the
8b10b encoder. If you import the .vcd into another project called Top, you might
encounter name mismatches when applying the .vcd to the 8b10b_enc module in
the Top project. This mismatch happens because the Intel Quartus Prime software
might name all the combinational nodes in the 8b10b_enc.vcd differently than in the
Top project.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
172

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_project_ui_ver_1.0_cmd_set_power_file_assignment.htm
http://quartushelp.altera.com/current/index.htm#optimize/pwr/pwr_db_add_power_input_file.htm

m ®
9 Power Analysis l n tel :

QPS5V3 | 2017.11.06

You can avoid name mismatching with only RTL simulation data, in which register
names do not change, or with an incremental compilation flow that preserves node
names along with a gate-level simulation.

Note: To ensure accuracy, Intel FPGA recommends that you use an incremental compilation
flow to preserve the node names of your design.

9.4.7 Glitch Filtering

The Power Analyzer defines a glitch as two signal transitions so closely spaced in time
that the pulse, or glitch, occurs faster than the logic and routing circuitry can respond.
The output of a transport delay model simulator contains glitches for some signals.
The logic and routing structures of the device form a low-pass filter that filters out
glitches that are tens to hundreds of picoseconds long, depending on the device
family.

Some third-party simulators use different models than the transport delay model as
the default model. Different models cause differences in signal activity and power
estimation. The inertial delay model, which is the ModelSim default model, filters out
more glitches than the transport delay model and usually yields a lower power
estimate.

Note: Intel FPGA recommends that you use the transport simulation model when using the
Intel Quartus Prime software glitch filtering support with third-party simulators.
Simulation glitch filtering has little effect if you use the inertial simulation model.

Glitch filtering in a simulator can also filter a glitch on one logic element (LE) (or other
circuit element) output from propagating to downstream circuit elements to ensure
that the glitch does not affect simulated results. Glitch filtering prevents a glitch on
one signal from producing non-physical glitches on all downstream logic, which can
result in a signal toggle rate and a power estimate that are too high. Circuit elements
in which every input transition produces an output transition, including multipliers and
logic cells configured to implement XOR functions, are especially prone to glitches.
Therefore, circuits with such functions can have power estimates that are too high
when glitch filtering is not used.

Note: Intel FPGA recommends that you use the glitch filtering feature to obtain the most
accurate power estimates. For .vcd files, the Power Analyzer flows support two levels
of glitch filtering.

9.4.7.1 Enabling Tool Based Glitch Filtering

To enable the first level of glitch filtering in the Intel Quartus Prime software for
supported third-party simulators, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Simulation under EDA Tool Settings.
3. Select the Tool name to use for the simulation.

4. Turn on Enable glitch filtering.

9.4.7.2 Enabling Glitch Filtering During Power Analysis

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
173

n ®
l n tel] 9 Power Analysis

Note:

QPS5V3 | 2017.11.06

The second level of glitch filtering occurs while the Power Analyzer is reading the .vcd
generated by a third-party simulator. To enable the second level of glitch filtering,
follow these steps:

1. On the Assignments menu, click Settings.
2. In the Category list, select Power Analyzer Settings.
3. Under Input File(s), turn on Perform glitch filtering on VCD files.

The .vcd file reader performs filtering complementary to the filtering performed
during simulation and is often not as effective. While the .vcd file reader can remove
glitches on logic blocks, the file reader cannot determine how a given glitch affects
downstream logic and routing, and may eliminate the impact of the glitch completely.
Filtering the glitches during simulation avoids switching downstream routing and logic
automatically.

When running simulation for design verification (rather than to produce input to the
Power Analyzer), Intel recommends that you turn off the glitch filtering option to
produce the most rigorous and conservative simulation from a functionality viewpoint.
When performing simulation to produce input for the Power Analyzer, Intel FPGA
recommends that you turn on the glitch filtering to produce the most accurate power
estimates.

9.4.8 Node and Entity Assignments

Note:

You can assign toggle rates and static probabilities to individual nodes and entities in
the design. These assignments have the highest priority, overriding data from all other
signal-activity sources.

You must use the Assignment Editor or Tcl commands to create the Power Toggle
Rate and Power Static Probability assignments. You can specify the power toggle
rate as an absolute toggle rate in transitions per second using the Power Toggle
Rate assignment, or you can use the Power Toggle Rate Percentage assignment
to specify a toggle rate relative to the clock domain of the assigned node for a more
specific assignment made in terms of hierarchy level.

If you use the Power Toggle Rate Percentage assignment, and the node does not
have a clock domain, the Intel Quartus Prime software issues a warning and ignores
the assignment.

Assigning toggle rates and static probabilities to individual nodes and entities is
appropriate for signals in which you have knowledge of the signal or entity being
analyzed. For example, if you know that a 100 MHz data bus or memory output
produces data that is essentially random (uncorrelated in time), you can directly enter
a 0.5 static probability and a toggle rate of 50 million transitions per second.

The Power Analyzer treats bidirectional I/0 pins differently. The combinational input
port and the output pad for a pin share the same name. However, those ports might
not share the same signal activities. For reading signal-activity assignments, the
Power Analyzer creates a distinct name <node_name~output> when configuring the
bidirectional signal as an output and <node_name~result> when configuring the
signal as an input. For example, if a design has a bidirectional pin named MYPIN,
assignments for the combinational input use the name MYPIN~result, and the
assignments for the output pad use the name MYPIN~output.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

174

m ®
9 Power Analysis l n tel :

QPS5V3 | 2017.11.06

Note:

When you create the logic assignment in the Assignment Editor, you cannot find the
MYPIN~result and MYPIN~output node names in the Node Finder. Therefore, to
create the logic assignment, you must manually enter the two differentiating node
names to create the assignment for the input and output port of the bidirectional pin.

9.4.8.1 Timing Assighments to Clock Nodes

For clock nodes, the Power Analyzer uses timing requirements to derive the toggle
rate when neither simulation data nor user-entered signal-activity data is available.
fuax requirements specify full cycles per second, but each cycle represents a rising
transition and a falling transition. For example, a clock fyax requirement of 100 MHz
corresponds to 200 million transitions per second for the clock node.

9.4.9 Default Toggle Rate Assignment

You can specify a default toggle rate for primary inputs and other nodes in your
design. The Power Analyzer uses the default toggle rate when no other method
specifies the signal-activity data.

The Power Analyzer specifies the toggle rate in absolute terms (transitions per
second), or as a fraction of the clock rate in effect for each node. The toggle rate for a
clock derives from the timing settings for the clock. For example, if the Power Analyzer
specifies a clock with an fyax constraint of 100 MHz and a default relative toggle rate
of 20%, nodes in this clock domain transition in 20% of the clock periods, or 20
million transitions occur per second. In some cases, the Power Analyzer cannot
determine the clock domain for a node because either the Power Analyzer cannot
determine a clock domain for the node, or the clock domain is ambiguous. For
example, the Power Analyzer may not be able to determine a clock domain for a node
if the user did not specify sufficient timing assignments. In these cases, the Power
Analyzer substitutes and reports a toggle rate of zero.

9.4.10 Vectorless Estimation

For some device families, the Power Analyzer automatically derives estimates for
signal activity on nodes with no simulation or user-entered signal-activity data.
Vectorless estimation statistically estimates the signal activity of a node based on the
signal activities of nodes feeding that node, and on the actual logic function that the
node implements. Vectorless estimation cannot derive signal activities for primary
inputs. Vectorless estimation is accurate for combinational nodes, but not for
registered nodes. Therefore, the Power Analyzer requires simulation data for at least
the registered nodes and I/O nodes for accuracy.

The Power Analyzer Settings dialog box allows you to disable vectorless estimation.
When turned on, vectorless estimation takes precedence over default toggle rates.
Vectorless estimation does not override clock assignments.

To disable vectorless estimation, perform the following steps:
1. In the Intel Quartus Prime software, on the Assignments menu, click Settings.
2. In the Category list, select Power Analyzer Settings.

3. Turn off the Use vectorless estimation option.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
175

| | ®
l n tel] 9 Power Analysis

QPS5V3 | 2017.11.06

9.5 Using the Power Analyzer

For flows that use the Power Analyzer, you must first synthesize your design, and then
fit it to the target device. You must either provide timing assignments for all the clocks
in your design, or use a simulation-based flow to generate activity data. You must
specify the I/O standard on each device input and output and the board trace model
on each output in your design.

9.5.1 Common Analysis Flows

You can use the analysis flows in this section with the Power Analyzer. However,
vectorless activity estimation is only available for some device families.

9.5.1.1 Signal Activities from RTL (Functional) Simulation, Supplemented by
Vectorless Estimation

In the functional simulation flow, simulation provides toggle rates and static
probabilities for all pins and registers in your design. Vectorless estimation fills in the
values for all the combinational nodes between pins and registers, giving good results.
This flow usually provides a compilation time benefit when you use the third-party RTL
simulator.

9.5.1.1.1 RTL Simulation Limitation

RTL simulation may not provide signal activities for all registers in the post-fitting
netlist because synthesis loses some register names. For example, synthesis might
automatically transform state machines and counters, thus changing the names of
registers in those structures.

9.5.1.2 Signal Activities from Vectorless Estimation and User-Supplied Input Pin
Activities

The vectorless estimation flow provides a low level of accuracy, because vectorless
estimation for registers is not entirely accurate.

9.5.1.3 Signal Activities from User Defaults Only

The user defaults only flow provides the lowest degree of accuracy.

9.5.2 Using .vcd for Power Estimation

Use a .vcd generated by your simulation tool as the source of activity data for
accurate power estimation. The simulation .vcd includes all the routing resources and
the exact logic array resource usage. Follow the documentation for your simulation
tool to generate a .vcd during simulation. Specify the .vcd as the input to the Power
Analyzer to estimate power for your design.

9.5.2.1 Generating a .vcd

In previous versions of the Intel Quartus Prime software, you could use either the
Intel Quartus Prime simulator or an EDA simulator to perform your simulation. The
Intel Quartus Prime software no longer supports a built-in simulator, and you must use
an EDA simulator to perform simulation. Use the .vcd as the input to the Power
Analyzer to estimate power for your design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
176

9 Power Analysis

intel)

QPS5V3 | 2017.11.06

To create a .vcd for your design, follow these steps:

1.

2
3.
4

10.

On the Assignments menu, click Settings.
In the Category list, under EDA Tool Settings, click Simulation.
In the Tool name list, select your preferred EDA simulator.

In the Format for output netlist list, select Verilog HDL, or SystemVerilog
HDL, or VHDL.

Turn on Generate Value Change Dump (VCD) file script.

This option turns on the Map illegal HDL characters and Enable glitch
filtering options. The Map illegal HDL characters option ensures that all signals
have legal names and that signal toggle rates are available later in the Power
Analyzer. The Enable glitch filtering option directs the EDA Netlist Writer to
perform glitch filtering when generating VHDL Output Files, Verilog Output Files,
and the corresponding Standard Delay Format Output Files for use with other EDA
simulation tools. This option is available regardless of whether or not you want to
generate .vcd scripts.

Note: When performing simulation using ModelSim, the +nospecify option for the
vsim command disables the specify path delays and timing checks
option in ModelSim. By enabling glitch filtering on the Simulation page, the
simulation models include specified path delays. Thus, ModelSim might fail
to simulate a design if you enabled glitch filtering and specified the
+nospecify option. Intel FPGA recommends that you remove the
+nospecify option from the ModelSim vsim command to ensure accurate
simulation for power estimation.

Click Script Settings. Select the signals that you want to output to the .vcd.
With All signals selected, the generated script instructs the third-party simulator
to write all connected output signals to the .vcd. With All signals except
combinational Icell outputs selected, the generated script tells the third-party
simulator to write all connected output signals to the .vcd, except logic cell
combinational outputs.

Note: The file can become extremely large if you write all output signals to the file
because the file size depends on the number of output signals being
monitored and the number of transitions that occur.

Click OK.
In the Design instance name box, type a name for your testbench.

Compile your design with the Intel Quartus Prime software and generate the
necessary EDA netlist and script that instructs the third-party simulator to
generate a.vcd.

Perform a simulation with the third-party EDA simulation tool. Call the generated
script in the simulation tool before running the simulation. The simulation tool
generates the .vcd and places it in the project directory.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
177

intel.

9 Power Analysis
QPS5V3 | 2017.11.06

9.5.2.1.1 Generating a .vcd from ModelSim Software

To generate a .vcd with the ModelSim software, follow these steps:

1.

2.
3.
4

© N o w

10.
11.
12.

In the Intel Quartus Prime software, on the Assignments menu, click Settings.
In the Category list, under EDA Tool Settings, click Simulation.
In the Tool name list, select your preferred EDA simulator.

In the Format for output netlist list, select Verilog HDL, or SystemVerilog
HDL, or VHDL.

Turn on Generate Value Change Dump (VCD) file script.
To generate the.vcd, perform a full compilation.
In the ModelSim software, compile the files necessary for simulation.

Load your design by clicking Start Simulation on the Tools menu, or use the
vsim command.

Use the .vcd script created in 6 on page 178 using the following command:
source <design>_dump_all_vcd_nhodes.tcl

Run the simulation (for example, run 2000ns or run -all).
Quit the simulation using the quit -sim command, if required.

Exit the ModelSim software.
If you do not exit the software, the ModelSim software might end the writing
process of the .ved improperly, resulting in a corrupt .vcd.

9.6 Power Analyzer Compilation Report

The following table list the items in the Compilation Report of the Power Analyzer
section.

Section

Description

Summary

The Summary section of the report shows the estimated total thermal power consumption of your
design. This includes dynamic, static, and I/O thermal power consumption. The I/O thermal power
includes the total I/O power drawn from the Vccio and Vecpp power supplies and the power drawn
from Vccint in the I/0 subsystem including I/0 buffers and I/0 registers. The report also includes a
confidence metric that reflects the overall quality of the data sources for the signal activities. For
example, a Low power estimation confidence value reflects that you have provided insufficient
toggle rate data, or most of the signal-activity information used for power estimation is from default
or vectorless estimation settings. For more information about the input data, refer to the Power
Analyzer Confidence Metric report.

Settings

The Settings section of the report shows the Power Analyzer settings information of your design,
including the default input toggle rates, operating conditions, and other relevant setting information.

Simulation Files

The Simulation Files Read section of the report lists the simulation output file that the .vcd used for

Conditions Used

Read power estimation. This section also includes the file ID, file type, entity, VCD start time, VCD end
time, the unknown percentage, and the toggle percentage. The unknown percentage indicates the
portion of the design module unused by the simulation vectors.

Operating The Operating Conditions Used section of the report shows device characteristics, voltages,

temperature, and cooling solution, if any, during the power estimation. This section also shows the
entered junction temperature or auto-computed junction temperature during the power analysis.

Thermal Power

Dissipated by Block | power and thermal static power consumption categorized by atoms. This information provides you

The Thermal Power Dissipated by Block section of the report shows estimated thermal dynamic

with estimated power consumption for each atom in your design.

By default, this section does not contain any data, but you can turn on the report with the Write
power dissipation by block to report file option on the Power Analyzer Settings page.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

178

9 Power Analysis
QPS5V3 | 2017.11.06

intel.

Section

Description

Thermal Power
Dissipation by Block
Type (Device
Resource Type)

This Thermal Power Dissipation by Block Type (Device Resource Type) section of the report shows
the estimated thermal dynamic power and thermal static power consumption categorized by block
types. This information is further categorized by estimated dynamic and static power and provides
an average toggle rate by block type. Thermal power is the power dissipated as heat from the FPGA
device.

Thermal Power
Dissipation by
Hierarchy

This Thermal Power Dissipation by Hierarchy section of the report shows estimated thermal dynamic
power and thermal static power consumption categorized by design hierarchy. This information is
further categorized by the dynamic and static power that was used by the blocks and routing in that
hierarchy. This information is useful when locating modules with high power consumption in your
design.

Core Dynamic
Thermal Power
Dissipation by Clock
Domain

The Core Dynamic Thermal Power Dissipation by Clock Domain section of the report shows the
estimated total core dynamic power dissipation by each clock domain, which provides designs with
estimated power consumption for each clock domain in the design. If the clock frequency for a
domain is unspecified by a constraint, the clock frequency is listed as “unspecified.” For all the
combinational logic, the clock domain is listed as no clock with zero MHz.

Current Drawn from
Voltage Supplies

The Current Drawn from Voltage Supplies section of the report lists the current drawn from each
voltage supply. The Vccio and Veepp voltage supplies are further categorized by I/0 bank and by
voltage. This section also lists the minimum safe power supply size (current supply ability) for each
supply voltage. Minimum current requirement can be higher than user mode current requirement in
cases in which the supply has a specific power up current requirement that goes beyond user mode
requirement, such as the Vccpp power rail in Stratix III and Stratix IV devices, and the V¢cio power
rail in Stratix IV devices.

The I/0 thermal power dissipation on the summary page does not correlate directly to the power
drawn from the Vccio and Veepp voltage supplies listed in this report. This is because the 1/0
thermal power dissipation value also includes portions of the Vccint power, such as the I/O element
(IOE) registers, which are modeled as I/O power, but do not draw from the Vccio and Vecpp
supplies.

The reported current drawn from the I/0 Voltage Supplies (ICCIO and ICCPD) as reported in the
Power Analyzer report includes any current drawn through the I/0 into off-chip termination
resistors. This can result in ICCIO and ICCPD values that are higher than the reported I/O thermal
power, because this off-chip current dissipates as heat elsewhere and does not factor in the
calculation of device temperature. Therefore, total I/O thermal power does not equal the sum of
current drawn from each Vcio and Vecpp supply multiplied by Vecio and Veepp voltage.

For SoC devices or for Arria V SoC and Cyclone V SoC devices, there is no standalone
ICC_AUX_SHARED current drawn information. The ICC_AUX_SHARED is reported together with
ICC_AUX.

Confidence Metric
Details

The Confidence Metric is defined in terms of the total weight of signal activity data sources for both
combinational and registered signals. Each signal has two data sources allocated to it; a toggle rate
source and a static probability source.

The Confidence Metric Details section also indicates the quality of the signal toggle rate data to
compute a power estimate. The confidence metric is low if the signal toggle rate data comes from
poor predictors of real signal toggle rates in the device during an operation. Toggle rate data that
comes from simulation, user-entered assignments on specific signals or entities are reliable. Toggle
rate data from default toggle rates (for example, 12.5% of the clock period) or vectorless estimation
are relatively inaccurate. This section gives an overall confidence rating in the toggle rate data, from
low to high. This section also summarizes how many pins, registers, and combinational nodes
obtained their toggle rates from each of simulation, user entry, vectorless estimation, or default
toggle rate estimations. This detailed information helps you understand how to increase the
confidence metric, letting you determine your own confidence in the toggle rate data.

Signal Activities

The Signal Activities section lists toggle rates and static probabilities assumed by power analysis for
all signals with fan-out and pins. This section also lists the signal type (pin, registered, or
combinational) and the data source for the toggle rate and static probability. By default, this section
does not contain any data, but you can turn on the report with the Write signal activities to
report file option on the Power Analyzer Settings page.

Intel recommends that you keep the Write signal activities to report file option turned off for a
large design because of the large number of signals present. You can use the Assignment Editor to
specify that activities for individual nodes or entities are reported by assigning an on value to those
nodes for the Power Report Signal Activities assignment.

Messages

The Messages section lists the messages that the Intel Quartus Prime software generates during the
analysis.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
179

n ®
l n tel] 9 Power Analysis

QPS5V3 | 2017.11.06

9.7 Scripting Support

You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For more information about
scripting command options, refer to the Intel Quartus Prime Command-Line and Tcl
API Help browser. To run the Help browser, type the following command at the
command prompt:

quartus_sh --ghelp

Related Links
e Tcl Scripting
e API Functions for Tcl

e Intel Quartus Prime Settings File Reference Manual

9.7.1 Running the Power Analyzer from the Command-Line

The executable to run the Power Analyzer is quartus_pow. For a complete listing of
all command-line options supported by quartus_pow, type the following command at
a system command prompt:

quartus_pow --help
or-

quartus_sh --ghelp

The following lists the examples of using the quartus_pow executable. Type the
command listed in the following section at a system command prompt. These
examples assume that operations are performed on Intel Quartus Prime project called
sample.

To instruct the Power Analyzer to generate a EPE File:
quartus_pow sample --output_epe=sample.csv

To instruct the Power Analyzer to generate a EPE File without performing the
power estimate:

quartus_pow sample --output_epe=sample.csv --estimate_power=off
To instruct the Power Analyzer to use a .vcd as input (sample.vcd):
quartus_pow sample --input_vcd=sample.vcd
To instruct the Power Analyzer to use two .vcd files as input files
(samplel.vcd and sample2.vcd), perform glitch filtering on the .vcd and use a

default input I/0 toggle rate of 10,000 transitions per second:

quartus_pow sample --input_vcd=samplel.vcd --input_vcd=sample2.vcd \
--vcd_Tfilter_glitches=on --\
default_input_io_toggle_rate=10000transitions/s

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

180

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://quartushelp.altera.com/current/tafs/tafs/tcl_list_of_packages.htm
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

n ®
9 Power Analysis l n tel

QPS5V3 | 2017.11.06

Note:

To instruct the Power Analyzer to not use an input file, a default input I/0
toggle rate of 60%, no vectorless estimation, and a default toggle rate of
20% on all remaining signals:

quartus_pow sample --no_input_file --default_input_io_toggle rate=60% \
--use_vectorless_estimation=off --default_toggle_rate=20%

No command-line options are available to specify the information found on the Power
Analyzer Settings Operating Conditions page. Use the Intel Quartus Prime GUI to
specify these options.

The quartus_pow executable creates a report file, <revision name> _pow.rpt. You
can locate the report file in the main project directory. The report file contains the
same information in Power Analyzer Compilation Report on page 178.

9.8 Document Revision History

The following table lists the revision history for this chapter.

Date

Version Changes

2017.05.08

17.0.0 Removed references to PowerPlay® name. Power analysis occurs in the Intel Quartus
Prime Power Analyzer.

2015.11.02

15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15

14.1.0 e Removed Signal Activities from Full Post-Fit Netlist (Timing) Simulation and Signal
Activities from Full Post-Fit Netlist (Zero Delay) Simulation sections as these are no
longer supported.

e Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Synthesis Optimizations to Compiler Settings.

2014.08.18

14.0a10.0 | Updated "Current Drawn from Voltage Supplies" to clarify that for SoC devices or for Arria
V SoC and Cyclone V SoC devices, there is no standalone ICC_AUX_SHARED current
drawn information. The ICC_AUX_SHARED is reported together with ICC_AUX.

November 2012 12.1.0 e Updated “Types of Power Analyses” on page 8-2, and “Confidence Metric Details” on

page 8-23.
e Added “Importance of .vcd” on page 8-20, and “Avoiding Power Estimation and
Hardware Measurement Mismatch” on page 8-24

June 2012

12.0.0 e Updated “Current Drawn from Voltage Supplies” on page 8-22.
e Added “Using the HPS Power Calculator” on page 8-7.

November 2011 10.1.1 e Template update.

e Minor editorial updates.

December 2010 10.1.0 e Added links to Intel Quartus Prime Help, removed redundant material.

e Moved “Creating PowerPlay EPE Spreadsheets” to page 8-6.
e Minor edits.

July 2010

10.0.0 e Removed references to the Intel Quartus Prime Simulator.

e Updated Table 8-1 on page 8-6, Table 8-2 on page 8-13, and Table 8-3 on page 8-
14.

e Updated Figure 8-3 on page 8-9, Figure 8-4 on page 8-10, and Figure 8-5 on page
8-12.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
181

| | ®
l n tel 9 Power Analysis

QPS5V3 | 2017.11.06

Date Version Changes

November 2009 9.1.0 e Updated “Creating PowerPlay EPE Spreadsheets” on page 8-6 and “Simulation
Results” on page 8-10.

e Added “Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation” on page 8-
19 and “Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation” on page
8-21.

e Minor changes to “Generating a .vcd from ModelSim Software” on page 8-21.
e Updated Figure 11-8 on page 11-24.

March 2009 9.0.0 e This chapter was chapter 11 in version 8.1.
e Removed Figures 11-10, 11-11, 11-13, 11-14, and 11-17 from 8.1 version.

November 2008 8.1.0 e Updated for the Intel Quartus Prime software version 8.1.
e Replaced Figure 11-3.
e Replaced Figure 11-14.

May 2008 8.0.0 e Updated Figure 11-5.

e Updated “Types of Power Analyses” on page 11-5.

e Updated “Operating Conditions” on page 11-9.

e Updated “PowerPlay Power Analyzer Compilation Report” on page 11-31.
e Updated “Current Drawn from Voltage Supplies” on page 11-32.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
182

https://www.altera.com/search-archives

QPS5V3 | 2017.11.06

10 System Debugging Tools Overview

The Intel FPGA system debugging tools help you verify your FPGA designs. As your
product requirements continue to increase in complexity, the time you spend on
design verification continues to rise. This chapter provides a quick overview of the
tools available in the system debugging suite and discusses the criteria for selecting
the best tool for your design.

10.1 System Debugging Tools Portfolio

The Intel Quartus Prime software provides a portfolio of system debugging tools for
real-time verification of your design.

System debugging tools provide visibility by routing (or “tapping”) signals in your
design to debugging logic. The Compiler includes the debugging logic in your design
and generates programming files that you download into the FPGA or CPLD for
analysis.

Each tool in the system debugging portfolio uses a combination of available memory,
logic, and routing resources to assist in the debugging process. Because different
designs have different constraints and requirements, you can choose the tool that
matches the specific requirements for your design, such as the number of spare pins
available or the amount of logic or memory resources remaining in the physical
device.

10.1.1 System Debugging Tools Comparison

Table 43. Debugging Tools Portfolio

Tool

Description

Typical Usage

System Console

Provides real-time in-system debugging
capabilities. Using System Console, you can read
from and write to Memory Mapped components in
our system without a processor or additional
software.

System Console uses a Tcl interpreter to
communicate with hardware modules instantiated
in your design. You can use it with the Transceiver
Toolkit to monitor or debug your design.

System Console uses Tcl as the fundamental
infrastructure, so you can source scripts, set
variables, write procedures, and take advantage of
all the features of the Tcl scripting language.

You need to perform system-level debugging.

For example, if you have an Avalon®-MM slave
or Avalon-ST interfaces, you can debug your

design at a transaction level.

The tool supports JTAG connectivity and TCP/IP
connectivity to the FPGA you want to debug.

Transceiver
Toolkit

Allows you to test and tune transceiver link signal
quality through a combination of metrics. Auto
Sweeping of physical medium attachment (PMA)
settings allows you to quickly find an optimal
solution.

You need to debug or optimize signal integrity of
your board layout even before the actual design

to be run on the FPGA is ready.

continued...

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services

IsO
9001:2008

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.
*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

intel.

10 System Debugging Tools Overview
QPS5V3 | 2017.11.06

Tool

Description Typical Usage

Signal Tap Logic

This logic analyzer uses FPGA resources to sample | You have spare on-chip memory and you want

Analyzer test nodes and outputs the information to the Intel | functional verification of your design running in
Quartus Prime software for display and analysis. hardware.
Signal Probe This tool incrementally routes internal signals to You have spare I/0 pins and you would like to

I/0 pins while preserving results from your last
place-and-routed design.

check the operation of a small set of control pins
using either an external logic analyzer or an
oscilloscope.

Logic Analyzer
Interface (LAI)

This tool multiplexes a larger set of signals to a
smaller number of spare I/O pins. LAI allows you
to select which signals are switched onto the I/O
pins over a JTAG connection.

You have limited on-chip memory, and have a
large set of internal data buses that you would
like to verify using an external logic analyzer.
Logic analyzer vendors, such as Tektronics and
Agilent, provide integration with the tool to
improve the usability of the tool.

In-System

Sources and

This utility provides an easy way to drive and
sample logic values to and from internal nodes

You want to prototype a front panel with virtual
buttons for your FPGA design.

Probes using the JTAG interface.
In-System This tool displays and allows you to edit on-chip You would like to view and edit the contents of
Memory memory. on-chip memory that is not connected to a Nios

Content Editor

IT processor. You can also use the tool when you
do not want to have a Nios II debug core in your

system.
Virtual JTAG This megafunction allows you to communicate with | You have custom signals in your design that you
Interface the JTAG interface so that you can develop your want to be able to communicate with.

own custom applications.

10.1.2 System-Level Debugging Infrastructure

Note:

Intel FPGA on-chip debugging tools use the JTAG port to control and read-back data
from debugging logic and signals under test. When your design includes multiple
debugging blocks, all of the on-chip debugging tools share the JTAG resource.

For System Console, you explicitly insert debug IP cores into your design to enable
debugging.

During compilation, the Intel Quartus Prime software identifies the debugging blocks
that use a JTAG interface and groups them under the System-Level Debugging Hub.
This architecture allows you to instantiate multiple debugging tools in your design and
use them simultaneously. The System-Level Debugging Hub appears in the design
hierarchy of your project as sld_hub:sld_hub_inst.

10.1.3 Debugging Ecosystem

The Intel Quartus Prime software allows you to use the debugging tools in tandem to
exercise and analyze the logic under test and maximize closure. All debugging tools
enable you to read back information gathered from the design nodes connected to the
debugging logic.

Out of the set of debugging tools, the Signal Tap Logic Analyzer, the Logic Analyzer
Interface, and the Signal Probe feature are general purpose troubleshooting tools
optimized for probing signals in your register transfer level (RTL) netlist. In-System
Sources and Probes, the Virtual JTAG Interface, System Console, Transceiver Toolkit,
and In-System Memory Content Editor, allow you to read back data from breakpoints
that you define, and to input values into your design during runtime.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

184

™ ®
10 System Debugging Tools Overview l n tel)

QPS5V3 | 2017.11.06

Taken together, the set of on-chip debugging tools form a debugging ecosystem. The
set of tools can generate a stimulus to and solicit a response from the logic under test,
providing a complete solution.

Figure 117. Debugging Ecosystem at Runtime

FPGA

Virtual JTAG Interface

o Transceiver Toolkit

» System Console
In-System Sources and Probes

In-System Memory Content Editor

v

Quartus Prime Software [¢—», JTAG

Design Under Test

Signal Tap
Logic Analyzer Interface
Signal Probe

10.1.4 Tools to Analyze RTL Nodes

The Signal Tap Logic Analyzer, Signal Probe, and LAI are designed specifically for
probing and debugging RTL signals at system speed. These general-purpose analysis
tools enable you to tap and analyze any routable node from the FPGA or CPLD.

e If you have spare logic and memory resources, the Signal Tap Logic Analyzer is

useful for providing fast functional verification of your design running on actual
hardware.

Note: The Signal Tap Logic Analyzer is not supported on CPLDs, because there are
no memory resources available on these devices.

e Conversely, if logic and memory resources are tight and you require the large
sample depths associated with external logic analyzers, both the LAI and the
Signal Probe make it easy to view internal design signals using external
equipment.

10.1.4.1 Resource Usage

The most important selection criteria for these three tools are the remaining resources
on your device after implementing your design, and the number of spare pins.

Evaluate your debugging options early on in the design planning process to ensure
that you support the appropriate options in your board, your Intel Quartus Prime
project, and your design. Planning early can reduce time spent during debugging, and
eliminates last minute changes to accommodate debug methodologies.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
185

™ ®
l n tel) 10 System Debugging Tools Overview

QPS5V3 | 2017.11.06

Figure 118. Resource Usage per Debugging Tool
A (\

Logic
Logic Analyzer Interface

Signal

Probe Signal Tap

Memory

10.1.4.1.1 Overhead Logic

Any debugging tool that requires a JTAG connection requires SLD infrastructure logic
for communication with the JTAG interface and arbitration between instantiated
debugging modules. This overhead logic uses around 200 logic elements (LEs), a small
fraction of the resources available in any of the supported devices. All available
debugging modules in your design share the overhead logic. Both the Signal Tap Logic
Analyzer and the LAI use a JTAG connection.

For Signal Probe

Signal Probe requires very few on-chip resources. Because it requires no JTAG
connection, Signal Probe uses no logic or memory resources. Signal Probe uses only
routing resources to route an internal signal to a debugging test point.

For Logic Analyzer Interface

The LAI requires a small amount of logic to implement the multiplexing function
between the signals under test, in addition to the SLD infrastructure logic. Because no
data samples are stored on the chip, the LAI uses no memory resources.

For Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer requires both logic and memory resources. The number
of logic resources used depends on the number of signals tapped and the complexity
of the trigger logic. However, the amount of logic resources that the Signal Tap Logic
Analyzer uses is typically a small percentage of most designs.

A baseline configuration consisting of the SLD arbitration logic and a single node with
basic triggering logic contains approximately 300 to 400 Logic Elements (LEs). Each
additional node you add to the baseline configuration adds about 11 LEs. Compared
with logic resources, memory resources are a more important factor to consider for
your design. Memory usage can be significant and depends on how you configure your
Signal Tap Logic Analyzer instance to capture data and the sample depth that your
design requires for debugging. For the Signal Tap Logic Analyzer, there is the added
benefit of requiring no external equipment, as all of the triggering logic and storage is
on the chip.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
186

] ®
10 System Debugging Tools Overview l n tel)

QPS5V3 | 2017.11.06

10.1.4.1.2 Resource Estimation

The resource estimation feature for the Signal Tap Logic Analyzer and the LAI allows

you to quickly judge if enough on-chip resources are available before compiling the
tool with your design.

Figure 119. Resource Estimator

itance Manager. Coetwposcocoine x
Instance | Status | LEs 52| Memory: 524288 | M512/MLAB: 0/34 | MAK/MIIE: 1268260 |
Eg! aulo_signaltap 0 EETTRTTET T E52 cells 524288 bits 0 blocks Can't Fit 128 blocks

10.1.4.2 Pin Usage

10.1.4.2.1 For Signal Probe

The ratio of the number of pins used to the number of signals tapped for the Signal
Probe feature is one-to-one. Because this feature can consume free pins quickly, a
typical application for this feature is routing control signals to spare pins for
debugging.

10.1.4.2.2 For Logic Analyzer Interface

The ratio of the number of pins used to the number of signals tapped for the LAI is
many-to-one. It can map up to 256 signals to each debugging pin, depending on
available routing resources. The control of the active signals that are mapped to the
spare I/0 pins is performed via the JTAG port. The LAI is ideal for routing data buses
to a set of test pins for analysis.

10.1.4.2.3 For Signal Tap Logic Analyzer

Other than the JTAG test pins, the Signal Tap Logic Analyzer uses no additional pins.
All data is buffered using on-chip memory and communicated to the Signal Tap Logic
Analyzer GUI via the JTAG test port.

10.1.4.3 Usability Enhancements

The Signal Tap Logic Analyzer, Signal Probe, and LAI tools can be added to your
existing design with minimal effects. With the node finder, you can find signals to
route to a debugging module without making any changes to your HDL files. Signal
Probe inserts signals directly from your post-fit database. The Signal Tap Logic
Analyzer and LAI support inserting signals from both pre-synthesis and post-fit
netlists.

10.1.4.3.1 Incremental Compilation

All three tools allow you to find and configure your debugging setup quickly. In
addition, the Intel Quartus Prime incremental compilation feature and the Intel
Quartus Prime incremental routing feature allow for a fast turnaround time for your
programming file, increasing productivity and enabling fast debugging closure.

Both the LAI and Signal Tap Logic Analyzer support incremental compilation. With
incremental compilation, you can add a Signal Tap Logic Analyzer instance or an LAI
instance incrementally into your placed-and-routed design. This has the benefit of
both preserving your timing and area optimizations from your existing design, and

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
187

intel)

decreasing the overall compilation time when any changes are necessary during the
debugging process. With incremental compilation, you can save up to 70% compile
time of a full compilation.

10 System Debugging Tools Overview
QPS5V3 | 2017.11.06

10.1.4.3.2 Incremental Routing

Signal Probe uses the incremental routing feature. The incremental routing feature
runs only the Fitter stage of the compilation. This leaves your compiled design
untouched, except for the newly routed node or nodes. With Signal Probe, you can
save as much as 90% compile time of a full compilation.

10.1.4.3.3 Automation Via Scripting

As another productivity enhancement, all tools in the on-chip debugging tool set
support scripting via the quartus_stp Tcl package. For the Signal Tap Logic Analyzer
and the LAI, scripting enables user-defined automation for data collection while
debugging in the lab. The System Console includes a full Tcl interpreter for scripting.

10.1.4.3.4 Remote Debugging

You can perform remote debugging of your system with the Intel Quartus Prime
software via the System Console. This feature allows you to debug equipment
deployed in the field through an existing TCP/IP connection.

There are two Application Notes available to assist you.

e Application Note 624 describes how to set up your Nios II system to use the
System Console to perform remote debugging.

e Application Note 693 describes how to set up your Intel FPGA SoC to use the SLD
tools to perform remote debugging.

Related Links
e Application Note 624: Debugging with System Console over TCP/IP
e Application Note 693: Remote Debugging over TCP/IP for Intel FPGA SoC

10.1.5 Suggested On-Chip Debugging Tools for Common Debugging
Features

Table 44. Tools for Common Debugging Features (1)
Feature Signal Logic Analyzer Signal Tap Description
Probe Interface Logic Analyzer
(LAI)

Large Sample N/A X — An external logic analyzer used with the LAI has a

Depth bigger buffer to store more captured data than
the Signal Tap Logic Analyzer. No data is captured
or stored with Signal Probe.

Ease in X X - External equipment, such as oscilloscopes and

Debugging Timing mixed signal oscilloscopes (MSOs), can be used

Issue with either LAI or Signal Probe. When used with
the LAI, external equipment provides you with
access to timing mode, which allows you to debug
combined streams of data.

Minimal Effect on X X (2 X (2 The LAI adds minimal logic to a design, requiring

Logic Design fewer device resources. The Signal Tap Logic
Analyzer has little effect on the design, because it

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

188

http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/an/an_693.pdf

10 System Debugging Tools Overview

QPS5V3 | 2017.11.06

intel.

Equipment
Required

Feature Signal Logic Analyzer Signal Tap Description
Probe Interface Logic Analyzer
(LAI)
is set as a separate design partition. Signal Probe
incrementally routes nodes to pins, not affecting
the design at all.

Short Compile and X X (2 X (2 Signal Probe attaches incrementally routed

Recompile Time signals to previously reserved pins, requiring very
little recompilation time to make changes to
source signal selections. The Signal Tap
Logic Analyzer and the LAI can refit their own
design partitions to decrease recompilation time.

Triggering N/A N/A X The Signal Tap Logic Analyzer offers triggering

Capability capabilities that are comparable to commercial
logic analyzers.

I/0 Usage — — X No additional output pins are required with the
Signal Tap Logic Analyzer. Both the LAI and Signal
Probe require I/O pin assignments.

Acquisition Speed N/A - X The Signal Tap Logic Analyzer can acquire data at
speeds of over 200 MHz. The same acquisition
speeds are obtainable with an external logic
analyzer used with the LAI, but might be limited
by signal integrity issues.

No JTAG X - X A FPGA design with the LAI requires an active

Connection JTAG connection to a host running the Intel

Required Quartus Prime software. Signal Probe and Signal
Tap do not require a host for debugging purposes.

No External — — X The Signal Tap Logic Analyzer logic is completely

internal to the programmed FPGA device. No
extra equipment is required other than a JTAG
connection from a host running the Intel Quartus
Prime software or the stand-alone Signal Tap
Logic Analyzer software. Signal Probe and the LAI
require the use of external debugging equipment,
such as multimeters, oscilloscopes, or logic
analyzers.

Notes to Table:

1. « X indicates the recommended tools for the feature.
e — indicates that while the tool is available for that feature, that tool might not give the best results.
e N/A indicates that the feature is not applicable for the selected tool.

2. When used with incremental compilation.

10.1.6 Stimulus-Capable Tools

The In-System Memory Content Editor, In-System Sources and Probes, and Virtual
JTAG interface enable you to use the JTAG interface as a general-purpose
communication port.

Though you can use all three tools to achieve the same results, there are some
considerations that make one tool easier to use in certain applications. In-System
Sources and Probes is ideal for toggling control signals. The In-System Memory
Content Editor is useful for inputting large sets of test data. Finally, the Virtual JTAG
interface is well suited for advanced users who want to develop their own customized
JTAG solution.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

189

™ ®
l n tel) 10 System Debugging Tools Overview

QPS5V3 | 2017.11.06

System Console provides system-level debugging at a transaction level, such as with
Avalon-MM slave or Avalon-ST interfaces. You can communicate to a chip through
JTAG and TCP/IP protocols. System Console uses a Tcl interpreter to communicate
with hardware modules that you instantiated into your design.

10.1.6.1 In-System Sources and Probes

In-System Sources and Probes is an easy way to access JTAG resources to both read
and write to your design. You can start by instantiating a megafunction into your HDL
code. The megafunction contains source ports and probe ports for driving values into
and sampling values from the signals that are connected to the ports, respectively.
Transaction details of the JTAG interface are abstracted away by the megafunction.
During runtime, a GUI displays each source and probe port by instance and allows you
to read from each probe port and drive to each source port. The GUI makes this tool
ideal for toggling a set of control signals during the debugging process.

10.1.6.1.1 Push Button Functionality

A good application of In-System Sources and Probes is to use the GUI as a
replacement for the push buttons and LEDs used during the development phase of a
project. Furthermore, In-System Sources and Probes supports a set of scripting
commands for reading and writing using quartus_stp. When used with the Tk
toolkit, you can build your own graphical interfaces. This feature is ideal for building a
virtual front panel during the prototyping phase of the design.

10.1.6.2 In-System Memory Content Editor

The In-System Memory Content Editor allows you to quickly view and modify memory
content either through a GUI interface or through Tcl scripting commands. The In-
System Memory Content Editor works by turning single-port RAM blocks into dual-port
RAM blocks. One port is connected to your clock domain and data signals, and the
other port is connected to the JTAG clock and data signals for editing or viewing.

10.1.6.2.1 Generate Test Vectors

Because you can modify a large set of data easily, a useful application for the
In-System Memory Content Editor is to generate test vectors for your design. For
example, you can instantiate a free memory block, connect the output ports to the
logic under test (using the same clock as your logic under test on the system side),
and create the glue logic for the address generation and control of the memory. At
runtime, you can modify the contents of the memory using either a script or the
In-System Memory Content Editor GUI and perform a burst transaction of the data
contents in the modified RAM block synchronous to the logic being tested.

10.1.6.3 Virtual JTAG Interface Megafunction

The Virtual JTAG Interface megafunction provides the finest level of granularity for
manipulating the JTAG resource. This megafunction allows you to build your own JTAG
scan chain by exposing all of the JTAG control signals and configuring your JTAG
Instruction Registers (IRs) and JTAG Data Registers (DRs). During runtime, you
control the IR/DR chain through a Tcl API, or with System Console. This feature is
meant for users who have a thorough understanding of the JTAG interface and want
precise control over the number and type of resources used.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
190

10 System Debugging Tools Overview

intel)

QPS5V3 | 2017.11.06

10.1.6.4 System Console

System Console is a framework that you can launch from the Intel Quartus Prime
software to start services for performing various debugging tasks. System Console
provides you with Tcl scripts and a GUI to access the Platform Designer (Standard)
system integration tool to perform low-level hardware debugging of your design, as
well as identify a module by its path, and open and close a connection to a Platform
Designer (Standard) module. You can access your design at a system level for
purposes of loading, unloading, and transferring designs to multiple devices. Also,
System Console supports the Tk toolkit for building graphical interfaces.

10.1.6.4.1 Test Signal Integrity

System Console also allows you to access commands that allow you to control how
you generate test patterns, as well as verify the accuracy of data generated by test
patterns. You can use JTAG debug commands in System Console to verify the
functionality and signal integrity of your JTAG chain. You can test clock and reset
signals.

10.1.6.4.2 Board Bring-Up and Verification

You can use System Console to access programmable logic devices on your
development board, perform board bring-up, and perform verification. You can also
access software running on a Nios II or Intel FPGA SoC processor, as well as access
modules that produce or consume a stream of bytes.

10.1.6.4.3 Test Link Signal Integrity with Transceiver Toolkit

Transceiver Toolkit runs from the System Console framework, and allows you to run

automatic tests of your transceiver links for debugging and optimizing your transceiver
designs. You can use the Transceiver Toolkit GUI to set up channel links in your
transceiver devices and change parameters at runtime to measure signal integrity. For
selected devices, the Transceiver Toolkit can also run and display eye contour tests.

10.2 Document Revision History

Table 45. Document Revision History

Date

Version

Changes

2017.05.08

17.0.0

e Combined Altera JTAG Interface
and Required Arbitration Logic
topics into a new updated topic
named System-Level Debugging
Infrastructure.

2015.11.02

15.1.0

Changed instances of Quartus II to
Intel Quartus Prime.

June 2014

14.0.0

Added information that System
Console supports the Tk toolkit.

November 2013

13.1.0

Dita conversion. Added link to Remote
Debugging over TCP/IP for Altera SoC
Application Note.

June 2012

12.0.0

Maintenance release.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

191

intel.

10 System Debugging Tools Overview
QPS5V3 | 2017.11.06

Date Version Changes
November 2011 10.0.2 Maintenance release. Changed to new
document template.
December 2010 10.0.1 Maintenance release. Changed to new
document template.
July 2010 10.0.0 Initial release

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

192

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

https://www.altera.com/search-archives

.
QPS5V3 | 2017.11.06 l n tel

11 Analyzing and Debugging Designs with System
Console

11.1 Introduction to System Console

System Console provides visibility into your design and allows you to perform system-
level debug on a FPGA at run-time. System Console performs tests on debug-enabled
Platform Designer (Standard) instantiated IP cores. A variety of debug services
provide read and write access to elements in your design. You can perform the
following tasks with System Console and the tools built on top of System Console:

e Bring up boards with both finalized and partially complete designs.
e Perform remote debug with internet access.

¢ Automate run-time verification through scripting across multiple devices in your
system.

e Test serial links with point-and-click configuration tuning in the Transceiver Toolkit.
e Debug memory interfaces with the External Memory Interface Toolkit.
e Integrate your debug IP into the debug platform.

e Test the performance of your ADC and analog chain on a Intel MAX 10 device with
the ADC Toolkit.

e Perform system verification with MATLAB/Simulink.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso .
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services :00}.‘:2003
egistere

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

QPS5V3 | 2017.11.06

] ®
< l n tel) 11 Analyzing and Debugging Designs with System Console

Figure 120.

Note:

System Console Tools

(Tools) shows the applications that interact with System Console. The System Console API supports services
that access your design in operation. Some services have specific hardware requirements.

TdConsole | | ADCToolkit | | BusAnalyzer | | EMIFToolit | | ToolkitApl | | emsceiver | Tools
Debug Toolkit
i l I i I l
System Console Tcl
(Command-Line Interface) <P System Console GUI Interface

v

System Console W

| Ethernet || Processor || Master || Bytestream || Others l API
| Te/p || Nosh || TAGMaster | | JTAGUART | | issP |
Nios Il with
JTAG Debug
USB Debug Hardware
Master Requirements

Use debug links to connect the host to the target you are debugging.

Related Links

¢ Introduction to Intel Memory Solution
In External Memory Interface Handbook Volume 1

e Debugging Transceiver Links on page 274

e Application Note 693: Remote Hardware Debugging over TCP/IP for Intel SoC

e Application Note 624: Debugging with System Console over TCP/IP

e White Paper 01208: Hardware in the Loop from the MATLAB/Simulink Environment
e System Console Online Training

11.2 Debugging Flow with the System Console

To use the System Console you perform a series of steps:
Add an IP Core to your Platform Designer (Standard) system.

2. Generate your Platform Designer (Standard) system.
3. Compile your design.
4. Connect a board and program the FPGA.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

194

https://www.altera.com/documentation/hco1416493272601.html#hco1416493256137
https://www.altera.com/documentation/mwh1410816339044.html#mwh1410816322090
http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/wp/wp-01208-hardware-in-the-loop.pdf
http://www.altera.com/education/training/courses/OEMB1117

] ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

Start System Console.
Locate and open a System Console service.
Perform debug operation(s) with the service.

©® N o wuw

Close the service.

11.3 IP Cores that Interact with System Console

System Console runs on your host computer and communicates with your running
design through debug agents. Debug agents are soft-logic embedded in some IP cores
that enable debug communication with the host computer.

You instantiate debug IP cores using the Platform Designer (Standard) IP Catalog.
Some IP cores are enabled for debug by default, while you can enable debug for other
IP cores through options in the parameter editor. Some debug agents have multiple
purposes.

When you use IP cores with embedded debug in your design, you can make large
portions of the design accessible. Debug agents allow you to read and write to
memory and alter peripheral registers from the host computer.

Services associated with debug agents in the running design can open and close as
needed. System Console determines the communication protocol with the debug
agent. The communication protocol determines the best board connection to use for
command and data transmission.

The Programmable SRAM Object File (.sof) provides the System Console with
channel communication information. When System Console opens in the Intel Quartus
Prime software or Platform Designer (Standard) while your design is open, any
existing .sof is automatically found and linked to the detected running device. In a
complex system, you may need to link the design and device manually.

Related Links
WP-01170 System-Level Debugging and Monitoring of FPGA Designs

11.3.1 Services Provided through Debug Agents

By adding the appropriate debug agent to your design, System Console services can
use the associated capabilities of the debug agent.

Table 46. Common Services for System Console
Service Function Debug Agent Providing Service
master Access memory-mapped (Avalon-MM or AXI) e Nios II with debug
slaves connected to the master interface. o JTAG to Avalon Master Bridge
e USB Debug Master
slave Allows the host to access a single slave without e Nios II with debug
needing to know the location of the slave in the o JTAG to Avalon Master Bridge
host's memory map. Any slave that is acce§S|bIe « USB Debug Master
to a System Console master can provide this
service.
continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
195

http://www.altera.com/literature/wp/wp-01170-system-console.pdf

] ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

Service Function Debug Agent Providing Service

If an SRAM Object File (.soT) is loaded, then
slaves controlled by a debug master provide the
slave service.

processor e Start, stop, or step the processor. Nios II with debug
e Read and write processor registers.
JTAG UART The JTAG UART is an Avalon-MM slave device that | JTAG UART
you can use in conjunction with System Console
to send and receive byte streams.
Note: The following IP cores in the IP Catalog do not support VHDL simulation generation in

the current version of the Intel Quartus Prime software:
e JTAG Debug Link

e SLD Hub Controller System

e USB Debug Link

Related Links
e System Console Examples and Tutorials on page 261
e System Console Commands on page 199

11.4 Starting System Console

11.4.1 Starting System Console from Nios II Command Shell

1. On the Windows Start menu, click All Programs [0 Intel O Nios II EDS
<version> [Nios II<version> [0 Command Shell..

2. Type system-console.
Type —- help for System Console help.

4. Type system-console --project _dir=<project directory>to pointtoa
directory that contains .qs¥ or .sof files.

11.4.2 Starting Stand-Alone System Console

You can get the stand-alone version of System Console as part of the Intel Quartus
Prime software Programmer and Tools installer on the Altera website.

1. Navigate to the Download Center page and click the Additional Software tab.

2. On the Windows Start menu, click All Programs O Intel FPGA <version> 0
Programmer and Tools [System Console.

Related Links

Intel Download Center

11.4.3 Starting System Console from Platform Designer (Standard)

Click Tools 0 System Console.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

196

https://www.altera.com/downloads/download-center.html

™ ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

11.4.4 Starting System Console from Intel Quartus Prime

Click Tools 00 System Debugging Tools [System Console.

11.4.5 Customizing Startup

You can customize your System Console environment, as follows:
e Add commands to the system_console_rc configuration file located at:
— <$HOVE>/system_console/system_console_rc.tcl

The file in this location is the user configuration file, which only affects the owner
of the home directory.

e Specify your own design startup configuration file with the command-line
argument —-rc_script=<path_t o_scri pt >, when you launch System Console
from the Nios II command shell.

e Use the system console_rc.tcl file in combination with your custom
rc_script.tcl file. In this case, the system_console_rc.tcl file performs

System Console actions, and the rc_script.tcl file performs your debugging
actions.

On startup, System Console automatically runs the Tcl commands in these files. The
commands in the system_console_rc.tcl file run first, followed by the commands
in the rc_script.tcl file.

11.5 System Console GUI

The System Console GUI consists of a main window with multiple panes, and allows
you to interact with the design currently running on the host computer.

e System Explorer—Displays the hierarchy of the System Console virtual file
system in your design, including board connections, devices, designs, and scripts.

e Workspace—Displays available toolkits including the ADC Toolkit, Transceiver
Toolkit, Toolkits, GDB Server Control Panel, and Bus Analyzer. Click the Tools
menu to launch applications.

e Tcl Console—A window that allows you to interact with your design using Tcl
scripts, for example, sourcing scripts, writing procedures, and using System
Console API.

e Messages—Displays status, warning, and error messages related to connections
and debug actions.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
197

] ®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Figure 121. System Console GUI

r ™y
B System Console - Toolkits E@Iﬂ
File Tools Help

System Explorer || Toolkits 01X |

ADC Toolkit (Beta)

connections

The ADC Toolkit allows for the evaluation of ADC signal path performance.

ETU No associated hardware detected.

Bus Analyzer (Beta)

The Bus Analyzer provides real-time performance analysis of bus trafficin the system.

T iver Confi tion G I

The Transceiver Configuration Console provides the ability to configure transceiver register space ang

Mo assodated hardware detected.

Transceiver Toolkit

The Transceiver Toolkit is a powerful transceiver verification tool that can quickly analyze the transcei|

4 T | +
Load Desigr. .. Refresh Connections
Messages o"|| Tcl Console o
-
1, Could not register IService packet ,;, =
, A service named 'packet’ is already registered. -
— P ¥ reg Welcome to Altera's System Console &

11.5.1 System Explorer Pane

The System Explorer pane displays the virtual file system for all connected
debugging IP cores, and contains the following information:

e Devices folder—Displays information about all devices connected to the System
Console.

e Scripts folder—Stores scripts for easy execution.

¢ Connections folder—Displays information about the board connections visible to
the System Console, such as Intel FPGA Download Cable. Multiple connections are
possible.

¢ Designs folder—Displays information about Intel Quartus Prime designs
connected to the System Console. Each design represents a loaded .sof file.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

198

11 Analyzing and Debugging Designs with System Console

intel.

QPS5V3 | 2017.11.06

Figure 122,

The Devices folder contains a sub-folder for each device connected to the System
Console. Each device sub-folder contains a (link) folder, and may contain a (files)
folder. The (link) folder shows debug agents (and other hardware) that System
Console can access. The (files) folder contains information about the design files
loaded from the Intel Quartus Prime project for the device.

System Explorer Pane

The figure shows the EP4SGX230 folder under the Device folder, which contains a (link) folder. The (link)
folder contains a ITAG folder, which describes the active debug connections to this device, for example, JTAG,
USB, Ethernet, and agents connected to the EP4SGX230 device via a JTAG connection.

| System Explorer o
=N
+ |4} connections
= k. devices
=+ . EP4SGX230(, [ES) @1#USB-1#Uk-adraper (udx4_3|s4gx_pcie_instd)
= {lirk)
=03

&) (110:128 v1 =0)
) (110:130 v2 #242)
) (110:130 v2 #243)
) (110:130 v2 #224)
O (70:34 w3 20)
) (110:132 vi1 #0)
= (110:132 v1 #1)
+ o] trace_system_jtag_link.h2t
® (110:0v6 =0)
+-i] (files)
#-ICY sM(12702ZF 324|22102) [EPM2210@2 #USB-1#Uk-adraper
-] designs
+ |} design_instances
£ o) scripts

G G . S . 4 - b

e Folders with a context menu display a context menu icon. Right-click these folders
to view the context menu. For example, the Connections folder above shows a
context menu icon.

e Folders that have messages display a message icon. Mouse-over these folders to
view the messages. For example, the Scripts folder in the example has a
message icon.

e Debug agents that sense the clock and reset state of the target show an
information or error message with a clock status icon. The icon indicates whether
the clock is running (information, green), stopped (error, red), or running but in
reset (error, red). For example, the trace_system_jtag_link.h2t folder in the
figure has a running clock.

11.6 System Console Commands

The console commands enable testing. Use console commands to identify a service by
its path, and to open and close the connection. The path that identifies a service is
the first argument to most System Console commands.

To initiate a service connection, do the following:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
199

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

1. Identify a service by specifying its path with the get_service_paths command.
2. Open a connection to the service with the claim_service command.
3. Use Tcl and System Console commands to test the connected device.
4. Close a connection to the service with the close_service command
Note: For all Tcl commands, the <format> argument must come first.
Table 47. System Console Commands
Command Arguments Function
get_service_types N/A Returns a list of service types that System
Console manages. Examples of service types
include master, bytestream, processor, sid,
jtag_debug, device, and design.
get_service_paths e <service-type> Allows you to filter the services which are
e <device>—Returns returned.
services in the same
specified device. The
argument can be a device
or another service in the
device.
e <hpath>—Returns
services whose hpath
starts with the specified
prefix.
e <type>—Returns services
whose debug type
matches this value.
Particularly useful when
opening slave services.
e <type>—Returns services
on the same development
boards as the argument.
Specify a board service, or
any other service on the
same board.
claim_service e <service-type> Provides finer control of the portion of a service
e <service-path> you want to use.
e <claim-group> claim_service returns a new path which
e <claims> represents a use of that service. Each use is
independent. Calling claim_service multiple
times returns different values each time, but
each allows access to the service until closed.
close_service e <service-type> Closes the specified service type at the specified
o <service-path> path.
is_service_open e <service-type> Returns 1 if the service type provided by the
e <service-type> path is open, 0 if the service type is closed.
get_services_to_add N/A Returns a list of all services that are instantiable
with the add_service command.
add_service e <service-type> Adds a service of the specified service type with
e <instance-name> the given instance name. Run
« optional-parameters get_services_to_add to retrieve a list of
instantiable services. This command returns the
path where the service was added.
continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

intel.

Command

Arguments

Function

Run help add_service <service-type> to get
specific help about that service type, including
any parameters that might be required for that
service.

add_service gdbserver

e <Processor Service>
e <port number>

Instantiates a gdbserver.

add_service tcp

e <jnstance name>
e <ijp_addr>
e <port_number>

Allows you to connect to a TCP/IP port that
provides a debug link over ethernet. See AN693
(Remote Hardware Debugging over TCP/IP for
Intel FPGA SoC) for more information.

add_service
transceiver_channel_rx

e <data_pattern_checker>
e <path>
e <transceiver path>

e <transceiver channel
address>

e <reconfig path>

e <reconfig channel
address>

Instantiates a Transceiver Toolkit receiver
channel.

add_service
transceiver_channel_tx

e <data_pattern_generator
>

e <path>
e <transceiver path>

e <transceiver channel
address>

e <reconfig path>

e <reconfig channel
address>

Instantiates a Transceiver Toolkit transmitter
channel.

add_service
transceiver_debug_link

e <transceiver_channel_tx
path>

e <transceiver_channel_rx
path>

Instantiates a Transceiver Toolkit debug link.

get_version

N/A

Returns the current System Console version and
build nhumber.

get_claimed_services

e <claim>

For the given claim group, returns a list of
services claimed. The returned list consists of
pairs of paths and service types. Each pair is one
claimed service.

refresh_connections

N/A

Scans for available hardware and updates the
available service paths if there have been any
changes.

send_message

o <Jevel>
e <message>

Sends a message of the given level to the
message window. Available levels are info,
warning, error, and debug.

Related Links

Remote Hardware Debugging over TCP/IP for SoC Devices

11.7 Running System Console in Command-Line Mode

You can run System Console in command line mode and either work interactively or
run a Tcl script. System Console prints the output in the console window.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

201

https://www.altera.com/documentation/mwh1410816339044.html#mwh1410816322090

™ ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

e ——cli—Runs System Console in command-line mode.

e ——project _dir=<project dir>—Directs System Console to the location of
your hardware project. Also works in GUI mode.

e —-script=<your scri pt>.tcl—Directs System Console to run your Tcl script.

e ——help— Lists all available commands. Typing -—help <command name>

provides the syntax and arguments of the command.

System Console provides command completion if you type the beginning letters of a
command and then press the Tab key.

11.8 System Console Services

Intel's System Console services provide access to hardware modules instantiated in
your FPGA. Services vary in the type of debug access they provide.

11.8.1 Locating Available Services

Example 14.

System Console uses a virtual file system to organize the available services, which is
similar to the /dev location on Linux systems. Board connection, device type, and
IP names are all part of a service path. Instances of services are referred to by their
unique service path in the file system. To retrieve service paths for a particular
service, use the command get_service_paths <service-type>.

Locating a Service Path

#We are interested in master services.
set service_type "master"

#Get all the paths as a list.
set master_service_paths [get_service_paths $service_type]

#We are interested in the first service in the list.
set master_index 0O

#The path of the first master.
set master_path [lindex $master_service_paths $master_index]

#0r condense the above statements into one statement:
set master_path [lindex [get_service_paths master] 0]

System Console commands require service paths to identify the service instance you
want to access. The paths for different components can change between runs of
System Console and between versions. Use the get_service_paths command to
obtain service paths.

The string values of service paths change with different releases of the tool. Use the
marker_node_info command to get information from the path.

System Console automatically discovers most services at startup. System Console
automatically scans for all JTAG and USB-based service instances and retrieves their
service paths. System Console does not automatically discover some services, such as
TCP/IP. Use add_service to inform System Console about those services.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

202

] ®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

Example 15. Marker_node_info

Use the marker_node_info command to get information about the discovered
services.

set slave_path [get_service_paths -type altera_avalon_uart.slave slave]
array set uart_info [marker_node_info $slave_path]
echo $uart_info(full_hpath)

11.8.2 Opening and Closing Services

After you have a service path to a particular service instance, you can access the
service for use.

The claim_service command directs System Console to start using a particular
service instance, and with no additional arguments, claims a service instance for
exclusive use.

Example 16. Opening a Service

set service_type "master"
set claim_path [claim_service $service_type $master_path mylib];#Claims
service.

You can pass additional arguments to the claim_service command to direct System
Console to start accessing a particular portion of a service instance. For example, if
you use the master service to access memory, then use claim_service to only
access the address space between 0x0 and 0x1000. System Console then allows
other users to access other memory ranges, and denies access to the claimed memory
range. The claim_service command returns a newly created service path that you
can use to access your claimed resources.

You can access a service after you open it. When you finish accessing a service
instance, use the close_service command to direct System Console to make this
resource available to other users.

Example 17. Closing a Service

close_service master $claim_path; #Closes the service.

11.8.3 SLD Service

The SLD Service shifts values into the instruction and data registers of SLD nodes and
captures the previous value. When interacting with a SLD node, start by acquiring
exclusive access to the node on an opened service.

Example 18. SLD Service

set timeout_in_ms 1000
set lock_failed [sld_lock $sld_service_path $timeout_in_ms]

This code attempts to lock the selected SLD node. If it is already locked, sld_lock
waits for the specified timeout. Confirm the procedure returns non-zero before
proceeding. Set the instruction register and capture the previous one:

iT {$lock_failed} {
return
3

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
203

®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

set instr 7
set delay_us 1000
set capture [sld_access_ir $sld_service_path $instr $delay_us]

The 1000 microsecond delay guarantees that the following SLD command executes
least 1000 microseconds later. Data register access works the same way.

set data_bit_length 32

set delay_us 1000

set data_bytes [list OxEF OxBE OxAD OxDE]

set capture [sld_access_dr $sld_service_path $data_bit_length $delay us \
$data_bytes]

Shift count is specified in bits, but the data content is specified as a list of bytes. The

capture return value is also a list of bytes. Always unlock the SLD node once finished
with the SLD service.

sld_unlock $sld_service_path

Related Links
Virtual JTAG IP Core User Guide

11.8.3.1 SLD Commands

Table 48. SLD Commands

Command Arguments Function

sld_access_ir | <claim-path> Shifts the instruction value into the instruction register of the specified
<ir-value> node. Returns the previous value of the instruction.
<delay> (in ps) If the <delay> parameter is non-zero, then the JTAG clock is paused for

this length of time after the access.

sld_access_dr | <service-path> Shifts the byte values into the data register of the SLD node up to the size
<size_in_bits> in bits specified.
<delay-in-ys>, If the <delay> parameter is non-zero, then the JTAG clock is paused for at

least this length of time after the access.

<list_of_byte values> ;)
Returns the previous contents of the data register.

sld_lock <service-path> Locks the SLD chain to guarantee exclusive access.
<timeout-in-milliseconds> | Returns 0 if successful. If the SLD chain is already locked by another user,
tries for <timeout>ms before throwing a Tcl error. You can use the catch
command if you want to handle the error.

sld_unlock <service-path> Unlocks the SLD chain.

11.8.4 In-System Sources and Probes Service

The In-System Sources and Probes (ISSP) service provides scriptable access to the
altsource_probe IP core in a similar manner to using the In-System Sources and
Probes Editor in the Intel Quartus Prime software.

Example 19. ISSP Service

Before you use the ISSP service, ensure your design works in the In-System
Sources and Probes Editor. In System Console, open the service for an ISSP
instance.

set issp_index O
set issp [lindex [get_service_paths issp] 0]
set claimed_issp [claim_service issp $issp mylib]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
204

https://www.altera.com/documentation/bhc1411109490717.html#bhc1411109292871

11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

View information about this particular ISSP instance.

array set instance_info [issp_get instance_info $claimed_issp]
set source_width $instance_info(source_width)
set probe_width $instance_info(probe_width)

The Intel Quartus Prime software reads probe data as a single bitstring of length equal
to the probe width.

set all_probe_data [issp_read_probe_data $claimed_issp]

As an example, you can define the following procedure to extract an individual probe
line's data.

proc get _probe_line_data {all_probe_data index} {

set line_data [expr { ($all_probe data >> $index) & 1 }]
return $line_data

set initial_all_probe_data [issp_read_probe_data $claim_issp]

set initial_line 0 [get probe_line_data $initial_all_probe_data 0]
set initial_line_5 [get_probe_line _data $initial_all_probe_data 5]
...

set final_all_probe_data [issp_read_probe_data $claimed_issp]
set final_line_0 [get_probe_ line_data $final_all_probe_data 0]

Similarly, the Intel Quartus Prime software writes source data as a single bitstring of
length equal to the source width.

set source_data OXDEADBEEF
issp_write_source_data $claimed_issp $source_data

The currently set source data can also be retrieved.

set current_source_data [issp_read_source_data $claimed_issp]

As an example, you can invert the data for a 32-bit wide source by doing the
following:

set current_source_data [issp_read_source_data $claimed_issp]
set inverted_source_data [expr { $current_source_data ~ OxFFFFFFFF }]
issp_write_source_data $claimed_issp $inverted_source_data

11.8.4.1 In-System Sources and Probes Commands

Note: The valid values for ISSP claims include read_only, normal, and exclusive.
Table 49. In-System Sources and Probes Commands
Command Arguments Function

issp_get_instance_info | <service-path> | Returns a list of the configurations of the In-System Sources and Probes
instance, including:

instance_index
instance_name
source_width

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
205

| | ®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Command Arguments Function

probe_width

issp_read_probe_data <service-path> | Retrieves the current value of the probe input. A hex string is returned
representing the probe port value.

issp_read_source_data | <service-path> | Retrieves the current value of the source output port. A hex string is
returned representing the source port value.

issp_write_source_data | <service-path> | Sets values for the source output port. The value can be either a hex
<source-value> | string or a decimal value supported by the System Console Tcl
interpreter.

11.8.5 Monitor Service

The monitor service builds on top of the master service to allow reads of Avalon-MM
slaves at a regular interval. The service is fully software-based. The monitor service
requires no extra soft-logic. This service streamlines the logic to do interval reads, and
it offers better performance than exercising the master service manually for the reads.

Example 20. Monitor Service

Start by determining a master and a memory address range that you are interested in
polling continuously.

set master_index 0
set master [lindex [get_service_paths master] $master_index]
set address 0x2000

set bytes_to_read 100
set read_interval_ms 100

You can use the first master to read 100 bytes starting at address 0x2000 every 100
milliseconds. Open the monitor service:

set monitor [lindex [get_service_paths monitor] 0]
set claimed_monitor [claim_service monitor $monitor mylib]

Notice that the master service was not opened. The monitor service opens the master
service automatically. Register the previously-defined address range and time interval
with the monitor service:

monitor_add_range $claimed_monitor $master $address $bytes to_read
monitor_set_interval $claimed_monitor $read_interval_ms

You can add more ranges. You must define the result at each interval:

global monitor_data buffer
set monitor_data_buffer [list]
proc store_data {monitor master address bytes to_read} {
global monitor_data buffer
set data [monitor_read_data $claimed_monitor $master $address
$bytes_to_read]
lappend monitor_data_buffer $data

The code example above, gathers the data and appends it with a global variable.
monitor_read_data returns the range of data polled from the running design as a
list. In this example, data will be a 100-element list. This list is then appended as a
single element in the monitor_data buffer global list. If this procedure takes

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
206

| | ®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

longer than the interval period, the monitor service may have to skip the next one or
more calls to the procedure. In this case, monitor_read_data will return the latest
data polled. Register this callback with the opened monitor service:

set callback [list store_data $claimed_monitor $master $address
$bytes_to_read]
monitor_set_callback $claimed_monitor $callback

Use the callback variable to call when the monitor finishes an interval. Start
monitoring:

monitor_set_enabled $claimed_monitor 1
Immediately, the monitor reads the specified ranges from the device and invokes the

callback at the specified interval. Check the contents of monitor_data_buffer to
verify this. To turn off the monitor, use 0 instead of 1 in the above command.

11.8.5.1 Monitor Commands

You can use the Monitor commands to read many Avalon-MM slave memory locations
at a regular interval.

Under normal load, the monitor service reads the data after each interval and then
calls the callback. If the value you read is timing sensitive, you can use the
monitor_get read_interval command to read the exact time between the
intervals at which the data was read.

Under heavy load, or with a callback that takes a long time to execute, the monitor
service skips some callbacks. If the registers you read do not have side effects (for
example, they read the total number of events since reset), skipping callbacks has no
effect on your code. The monitor_read_data command and
monitor_get_read_interval command are adequate for this scenario.

If the registers you read have side effects (for example, they return the number of
events since the last read), you must have access to the data that was read, but for
which the callback was skipped. The monitor_read_all_data and
monitor_get all_read_intervals commands provide access to this data.

Table 50. Main Monitoring Commands
Command Arguments Function
monitor_add_range <service-path> Adds a contiguous memory address into the monitored memory list.
<target-path> <service path> is the value returned when you opened the service.
<address> <target-path> argument is the name of a master service to read. The
<size> address is within the address space of this service. <target-path> is
returned from [lindex [get_service_paths master] n] where n
is the number of the master service.
<address> and <size> are relative to the master service.
monitor_set_callback | <service-path> Defines a Tcl expression in a single string that will be evaluated after all
<Tcl-expression> | the memories monitored by this service are read. Typically, this
expression should be specified as a Tcl procedure call with necessary
argument passed in.
continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
207

intel.

11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

Command

Arguments

Function

monitor_set_interval

<interval>

<service-path>

Specifies the frequency of the polling action by specifying the interval
between two memory reads. The actual polling frequency varies
depending on the system activity. The monitor service will try to keep it
as close to this specification as possible.

monitor_get_interval

<service-path>

Returns the current interval set which specifies the frequency of the
polling action.

monitor_set_enabled

<enable(1)/
disable(0)>

<service-path>

Enables and disables monitoring. Memory read starts after this is
enabled, and Tcl callback is evaluated after data is read.

Table 51.

Monitor Callback Commands

Command

Arguments

Function

monitor_add_range

<service-path>
<target-path>
<address> <size>

Adds contiguous memory addresses into the monitored
memory list.

The <target-path> argument is the name of a master
service to read. The address is within the address space
of this service.

monitor_set_callback

<service-path>
<Tcl-expression>

Defines a Tcl expression in a single string that will be
evaluated after all the memories monitored by this
service are read. Typically, this expression should be
specified as a Tcl procedure call with necessary
argument passed in.

monitor_read_data

<service-path>
<target-path>
<address> <size>

Returns a list of 8-bit values read from the most recent
values read from device. The memory range specified
must be the same as the monitored memory range as
defined by monitor_add_range.

monitor_read_all_data

<service-path>
<target-path>
<address> <size>

Returns a list of 8-bit values read from all recent values
read from device since last Tcl callback. The memory
range specified must be within the monitored memory
range as defined by monitor_add_range.

monitor_get_read_interval

<service-path>
<target-path>
<address> <size>

Returns the number of milliseconds between last two
data reads returned by monitor_read_data.

monitor_get_all_read_intervals

<service-path>
<target-path>
<address> <size>

Returns a list of intervals in milliseconds between two
reads within the data returned by
monitor_read_all_data.

monitor_get_missing_event_count

<service-path>

Returns the number of callback events missed during
the evaluation of last Tcl callback expression.

11.8.6 Device Service
The device service supports device-level actions.
Example 21. Programming

You can use the device service with Tcl scripting to perform device programming.

set device_index 0 ; #Device index for target

set device [lindex [get_service_paths device] $device_index]

set sof _path [file join project path output files project name.sof]
device_download_sof $device $sof_path

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
208

| | ®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

To program, all you need are the device service path and the file system path to

a .sof. Ensure that no other service (e.g. master service) is open on the target
device or else the command fails. Afterwards, you may do the following to check that
the design linked to the device is the same one programmed:

device_get_design $device

11.8.6.1 Device Commands

The device commands provide access to programmable logic devices on your board.
Before you use these commands, identify the path to the programmable logic device
on your board using the get_service_paths.

Table 52. Device Commands
Command Arguments Function
device_download_sof <service_path> | Loads the specified .sof to the device specified by the path.

<sof-file-path>

device_get_connections <service_path> | Returns all connections which go to the device at the specified path.

device_get_design <device_path> | Returns the design this device is currently linked to.

11.8.7 Design Service

Example 22.

Example 23.

You can use design service commands to work with Intel Quartus Prime design
information.

Load

When you open System Console from the Intel Quartus Prime software or Platform
Designer (Standard), the current project's debug information is sourced automatically
if the .sof has been built. In other situations, you can load manually.

set sof _path [file join project_dir output files project_nane.sof]
set design [design_load $sof path]

System Console is now aware that this particular .sof has been loaded.
Linking

Once a .sof is loaded, System Console automatically links design information to the
connected device. The resultant link persists and you can choose to unlink or reuse
the link on an equivalent device with the same .sof.

You can perform manual linking.
set device_index 0; # Device index for our target

set device [lindex [get_service_paths device] $device_index]
design_link $design $device

Manually linking fails if the target device does not match the design service.

Linking fails even if the .sof programmed to the target is not the same as the
design .sof.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
209

intel.

11.8.7.1 Design Service Commands

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Design service commands load and work with your design at a system level.

Table 53. Design Service Commands
Command Arguments Function
design_load <quartus- Loads a model of a Intel Quartus Prime design into System

project-path>,
<sof-file-path>,
or <gpf-file-
path>

Console. Returns the design path.

For example, if your Intel Quartus Prime Project File (.qpT) is in
c:/projects/loopback, type the following command:
design_load {c:\projects\loopback\}

design_link

<design-path>
<device-service-
path>

Links a Intel Quartus Prime logical design with a physical device.

For example, you can link a Intel Quartus Prime design called
2c35_quartus_design to a 2c35 device. After you create this
link, System Console creates the appropriate correspondences
between the logical and physical submodules of the Intel Quartus
Prime project.

design_extract_debug_Tfiles

<design-path>
<zip-file-name>

Extracts debug files from a .sof to a zip file which can be
emailed to Intel FPGA Support for analysis.

You can specify a design path of {} to unlink a device and to
disable auto linking for that device.

design_get_warnings

<design-path>

Gets the list of warnings for this design. If the design loads
correctly, then an empty list returns.

11.8.8 Bytestream Service

The bytestream service provides access to modules that produce or consume a stream
of bytes. Use the bytestream service to communicate directly to the IP core that
provides bytestream interfaces, such as the Altera JTAG UART or the Avalon-ST JTAG

interface.

Example 24. Bytestream Service

The following code finds the bytestream service for your interface and opens it.

set bytestream_index 0O
set bytestream [lindex [get_service_paths bytestream] $bytestream_index]
set claimed_bytestream [claim_service bytestream $bytestream mylib]

To specify the outgoing data as a list of bytes and send it through the opened service:

set payload [list 1 2 3 45 6 7 8]
bytestream_send $claimed_bytestream $payload

Incoming data also comes as a list of bytes.

set incoming_data [list]
while {[llength $incoming_data] ==0} {
set incoming_data [bytestream_receive $claimed_bytestream 8]

}

Close the service when done.

close_service bytestream $claimed_bytestream

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

210

11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

11.8.8.1 Bytestream Commands

Table 54. Bytestream Commands

Command

Arguments

Function

bytestream_send

<service-path>
<values>

Sends the list of bytes to the specified bytestream service. Values argument is

the list of bytes to send.

bytestream_receive

<service-path>
<length>

Returns a list of bytes currently available in the specified services receive
queue, up to the specified limit. Length argument is the maximum number of

bytes to receive.

11.8.9 JTAG Debug Service

The JTAG Debug service allows you to check the state of clocks and resets within your

design.

The following is a JTAG Debug design flow example.
1. To identify available JTAG Debug paths:

get_service_paths jtag debug

2. To select a JTAG Debug path:

set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]

3. To claim a JTAG Debug service path:

set claim_jtag_path [claim_service jtag_debug$jtag_debug_path mylib]

4. Running the JTAG Debug service:

Jtag_debug_reset_system $claim_jtag_path
Jtag_debug_loop $claim_jtag_path [list 1 2 3 4 5]

11.8.9.1 JTAG Debug Commands

JTAG Debug commands help debug the JTAG Chain connected to a device.

Table 55. JTAG Debug Commands

Command

Argument Function

Jjtag_debug_loop

<service-path>
<list_of_byte_values>

are delineated by spaces.

Loops the specified list of bytes through a loopback of tdi and
tdo of a system-level debug (SLD) node. Returns the list of byte
values in the order that they were received. Blocks until all bytes
are received. Byte values have the Ox (hexadecimal) prefix and

Jjtag_debug_sample_clock

<service-path>

several times to guarantee that it is toggling.

Returns the value of the clock signal of the system clock that
drives the module's system interface. The clock value is sampled
asynchronously; consequently, you may need to sample the clock

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

211

] ®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Command Argument Function

jtag_debug_sample_reset | <service-path> Returns the value of the reset_n signal of the Avalon-ST JTAG
Interface core. If reset_n is low (asserted), the value is 0 and if
reset_n is high (deasserted), the value is 1.

jJjtag_debug_sense_clock | <service-path> Returns the result of a sticky bit that monitors for system clock
activity. If the clock has toggled since the last execution of this
command, the bit is 1. Returns true if the bit has ever toggled
and otherwise returns false. The sticky bit is reset to 0 on read.

jtag_debug_reset_system | <service-path> Issues a reset request to the specified service. Connectivity
within your device determines which part of the system is reset.

11.9 Working with Toolkits

The Toolkit API allows you to create custom tools to visualize and interact with your
design debug data. The Toolkit API provides graphical widgets in the form of buttons
and text fields, which can leverage user input to interact with debug logic. You can use
Toolkit API with the Intel Quartus Prime software versions 14.1 and later. The Toolkit
API is the successor to the Dashboard service.

Toolkits you create with the Toolkit API require the following files:
e XML file that describes the toolkit (. toolkit file).
e Tcl file that implements the toolkit GUI.

11.9.1 Convert your Dashboard Scripts to Toolkit API

Convert your Dashboard scripts to work with the Toolkit API by following these steps:
1. Create a .toolkit file.
2. Modify your dashboard script:
a. Remove the add_service dashboard <nane of servi ce>command.
b. Change dashboard_<command> to toolkit_<command>.
c. Change open_service to claim_service
For example:

open_service slave $path
master_read_memory $path address count

becomes

set c [claim_service slave $path lib {}]
master_read_memory $c address count

11.9.2 Creating a Toolkit Description File

A toolkit description file (-toolkit) is a XML file which provides the registration data
for a toolkit.

Include the following attributes in your toolkit description file:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
212

®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

Table 56. Attributes in Toolkit Description File

Attribute name Purpose
name Internal toolkit file name.
displayName Toolkit display name to appear in the GUI.
addMenultem Whether the System Console Tools 0 Toolkits menu displays the toolkit.

Table 57. Toolkit child elements

Attribute name Purpose
description Description of the purpose of the toolkit.
file Path to .tcl file containing the toolkit implementation.
icon Path to icon to display as the toolkit launcher button in System Console

Note: The .png 64x64 format is preferred. If the icon does not take up the whole
space, ensure that the background is transparent.

requirement If the toolkit works with a particular type of hardware, this attribute specifies the
debug type name of the hardware. This attribute enables automatic discovery of the
toolkit.

The syntax of a toolkit's debug type name is:

¢ Name of the hw.tcl component.

e dot.

¢ Name of the interface within that component which the toolkit uses.
For example: <hw.tcl name>.<interface name>.

Example 25. .toolkit Description File
<?xml version="1.0" encoding=""UTF-8"?>
<toolkit name="toolkit_example' displayName="Toolkit Example™
addMenultem=""true">

<file> toolkit_example.tcl </file>
</toolkit>

Related Links
Matching Toolkits with IP Cores on page 214

11.9.3 Registering a Toolkit

Use the toolkit_register command in the System Console to make your toolkit
available. Remember to specify the path to the .toolkit file. Registering a toolkit
does not create an instance of the toolkit GUI.

toolkit_register <tool kit_file>

11.9.4 Launching a Toolkit

With the System Console, you can launch pre-registered toolkits in a number of ways:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
213

™ ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

e C(Click Tools O Toolkits.

e Use the Toolkits tab. Each toolkit has a description, a detected hardware list, and
a launch button.

e Use following command:

toolkit_open <.toolkit_fil e_name>
You can launch a toolkit in the context of a hardware resource associated with a toolkit
type. If you use the command:
toolkit_open <toolkit_name> <context>
the toolkit Tcl can retrieve the context by typing

set context [toolkit_get context]

Related Links
toolkit_get_context on page 225

11.9.5 Matching Toolkits with IP Cores

You can match your toolkit with any IP core:

e When searching for IP, the toolkit looks for debug markers and matches IP cores
to the toolkit requirements. In the toolkit file, use the requirement attribute to
specify a debug type, as follows:

<requirement><type>debug.type-name</type></requirement

e Create debug assignments in the hw.tcl for an IP core. hw.tcl files are
available when you load the design in System Console.

e System Console discovers debug markers from identifiers in the hardware and
associates with IP, without direct knowledge of the design.

11.9.6 Toolkit API

The Toolkit API service enables you to construct GUIs for visualizing and interacting
with debug data. The Toolkit API is a graphical pane for the layout of your graphical
widgets, which include buttons and text fields. Widgets pull data from other System
Console services. Similarly, widgets use services to leverage user input to act on
debug logic in your design.

Properties

Widget properties can push and pull information to the user interface. Widgets have
properties specific to their type. For example, when you click a button, the button
property onClick performs an action. A label widget does not have the same
property, because the widget does not perform an action on click operation. However,
both the button and label widgets have the text property to display text strings.

Layout

The Toolkit API service creates a widget hierarchy where the toolkit is at the top-level.
The service implements group-type widgets that contain child widgets. Layout
properties dictate layout actions that a parent performs on its children. For example,

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
214

] ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

the expandableX property when set as True, expands the widget horizontally to
encompass all of the available space. The visible property when set as True allows
a widget to display in the GUI.

User Input

Some widgets allow user interaction. For example, the textField widget is a text
box that allows user entries. Access the contents of the box with the text property. A
Tcl script can either get or set the contents of the textField widget with the text
property.

Callbacks

Some widgets perform user-specified actions, referred to as callbacks. The
textField widget has the onChange property, which is called when text contents
change. The button widget has the onClick property, which is called when you click
a button. Callbacks update widgets or interact with services based on the contents of
a text field, or the state of any other widget.

11.9.6.1 Customizing Toolkit API Widgets

Use the toolkit_set property command to interact with the widgets that you
instantiate. The toolkit_set property command is most useful when you change
part of the execution of a callback.

11.9.6.2 Toolkit API Script Examples

Example 26.

Example 27.

Making the Toolkit Visible in System Console

Use the toolkit_set_property command to modify the visible property of the
root toolkit. Use the word sel T if a property is applied to the entire toolkit. In other
cases, refer to the root toolkit using all.

toolkit_set_property self visible true

Adding Widgets
Use the toolkit _add command to add widgets.
toolkit_add my_ button button all
The following commands add a label widget my_label to the root toolkit. In the GUI,
the label appears as Widget Label.
set name "my_label"
set content "Widget Label™

toolkit_add $name label all
toolkit_set_property $name text $content

In the GUI, the displayed text changes to the new value. Add one more label:

toolkit_add my_label_2 label all
toolkit_set_property my_label_2 text "Another label"

The new label appears to the right of the first label.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
215

™ ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

To place the new label under the first, use the following command:

toolkit_set_property self itemsPerRow 1

Example 28. Gathering Input
To incorporate user input into your Toolkit API,
1. Create a text field using the following commands:
set name "my_text field"
set widget_type "textField"
set parent "all”
toolkit_add $name $widget_type $parent

2. The widget size is very small. To make the widget fill the horizontal space, use the
following command:

toolkit_set property my text field expandableX true

3. Now, the text field is fully visible. You can type text into the field, on clicking. To
retrieve the contents of the field, use the following command:

set content [toolkit_get property my text field text]
puts $content

This command prints the contents into the console.
Example 29. Updating Widgets Upon User Events

When you use callbacks, the Toolkit API can also perform actions without interactive

typing:
1. Start by defining a procedure that updates the first label with the text field
contents:

proc update_my label _with_my_ text field{
set content [toolkit_get_property my_text field text]
toolkit_set_property my_ label text $content

¥

2. Run the update _my label with_my text field command in the Tcl Console.
The first label now matches the text field contents.

3. Use the update_my label _with_my text field command whenever the text
field changes:

toolkit_set property my_text_field onChange
update_my_label_with_my_text field

The Toolkit executes the onChange property each time the text field changes. The
execution of this property changes the first field to match what you type.

Example 30. Buttons

Use buttons to trigger actions.
1. To create a button that changes the second label:

proc append_to_my label 2 {suffix} {
set old_text [toolkit_get_property my label_2 text]
set new_text "${old_text}${suffix}"
toolkit_set property my label 2 text $new_text
¥

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
216

] ®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

set text_to_append ', and more"

toolkit_add my_button button all

toolkit_set property my button onClick
[append_to_my label 2 $text to_append]

2. Click the button to append some text to the second label.
Example 31. Groups

The property itemsPerRow dictates the laying out of widgets in a group. For more
complicated layouts where the number of widgets per row is different, use nested
groups. To add a new group with more widgets per row:

toolkit_add my_inner_group group all

toolkit_set property my_ inner_group itemsPerRow 2
toolkit_add inner_button_1 button my_inner_group
toolkit_add inner_button_2 button my_inner_group

These commands create a row with a group of two buttons. To make the nested group
more seamless, remove the border with the group name using the following
commands:

toolkit_set_property my_inner_group title "

You can set the title property to any other string to ensure the display of the border
and title text.

Example 32. Tabs

Use tabs to manage widget visibility:

toolkit_add my_tabs tabbedGroup all

toolkit_set_property my_ tabs expandableX true

toolkit_add my tab_1 group my_tabs

toolkit_add my_tab_2 group my_tabs

toolkit_add tabbed_label_1 label my tab 1

toolkit_add tabbed_label_2 label my_tab 2
toolkit_set_property tabbed label_1 text "in the first tab"
toolkit_set_property tabbed label_2 text "in the second tab"

These commands add a set of two tabs, each with a group containing a label. Clicking
on the tabs changes the displayed group/label.

11.9.6.3 Toolkit API GUI Example

Perform the following steps to register and launch a toolkit containing an interactive
GUI window.

1. Write a toolkit description file. For a working example, refer to Creating a Toolkit
Description File.

Generate a .tcl file using the text on Toolkit API GUI Example .tcl File.
Open the System Console.

Register your toolkit in the Tcl Console pane. Don't forget to include the relative
path to your file's location.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
217

| |
te 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Figure 123. Registering Your Toolkit

@ O system Console - Toolkits = - ©6 ®
File Tools Help
System Explorer) (Tookis X |
=0 ADC Toolkit Beta) |
[connections
) designs No associated hardware detected,
o (] design.instances
& scripts
Bus Analyzer Beta)
Launch n
Load Ds
Messages o | [Tel Console. o
(@ Finished initialization * To sample the SOPC system clock as well as system reset signal [+]
4 Coulel not register [Senvice packet * To shift arbitrary instruction register and data register values to
4, A senvice named 'packet’ is already registered instantiated system Tevel debug (SLD) nodes
@ Finished discovering JTAG connections
@ Finished discovering USB connections In addition, the directory <QuartusII Dir>/sopc_builder/systen_console/scripts
@ Executing startup script /tools/acds/17.0/226 linux64 jquartus/sopc_builder/system_console/script. tﬂ"tmiy‘@ fﬂ(% t‘mg nrnvvd: zvsiewznenus ‘ut;naes an
Efx tootkit_register toolkit_exanpe. toolki] . Register toolkit here
Figure 124. Toolkits Tab After Toolkit Example Registration
@ O System Console - Toolkits. = 00 ®
File ols Help.
Ei'B ADC Toolkit Geta)
[designs No associated hardware detected.
&[] dlesign_instances
£ seripts
| [Froonat Exampre
H T Link to launch instancc
& B
The Transceiver Toolkit is a powerful transceiver verification tool that can quickly analyze the transceiver signal quality and performance.
Load Design. Refrash Connections
Messages o' || Tcl Console o
@ Finished initialization 1instantiated system level debug (SLD) nodes =
. Asenvice named ‘packet is already registered. In addition, the directory <QuartusII Dir>/sopc_builder/systen_console/scripts
(© Finished discovering JTAG connections access the functionality prowided. You can include those macros in your
@ Finished discovering USE connections scripts by issuing Tcl source commands.
@ Executing startup script /swip. 17.072 X
@ Stopped debug senvice: com altera systemconsole internal core SystemExecutor % toolkit_register toolkit_exaple. toolkit
8

5. Click the Launch link.
A new tab appears, containing the widgets you specified in the TCL file.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
218

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Figure 125. Toolkit Example GUI

B O System Console - Toolkit Example 0
File Tools Help

System Explorer. Toolkits | Toolkit Example 0 0 X
]

Toolk Example

LED State.

Toggle | ®LEDO

TumoN | eLen 1

[LBenenon |

Recelve Data
This s atest

................. Generated GUI

% TooTKIT_register toolkiT_exanple.ToolkiT

%

Ko

When you insert text in the Send Data field and click Launch, the text appears in

the Receive Data field.

Related Links
Creating a Toolkit Description File on page 212

11.9.6.3.1 Toolkit API GUI Example .tcl File

The following Toolkit API .tcl file creates a GUI window that provides debug interaction

with your design.

namespace eval Test {

variable ledvValue 0
variable dashboardActive 0O
variable Switch_off 1

proc toggle { position } {
set ::Test::ledvalue ${position}
: :Test: :updateDashboard
¥

proc sendText {} {

set sendText [toolkit_get property sendTextText text]

toolkit_set_property receiveTextText text $sendText

3
proc dashBoard {} {

iT { ${::Test::dashboardActive} == 1 } {

return -code ok "dashboard already active"

set ::Test::dashboardActive 1
#

top group widget
#

toolkit_add topGroup group self

toolkit_set_property topGroup expandableX false
toolkit_set_property topGroup expandableY false
toolkit_set property topGroup itemsPerRow 1

toolkit_set_property topGroup title "

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

219

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

#

leds group widget

#

toolkit_add ledsGroup group topGroup

toolkit_set _property ledsGroup expandableX false
toolkit_set property ledsGroup expandableY false
toolkit_set property ledsGroup itemsPerRow 2
toolkit_set_property ledsGroup title "LED State"

#

leds widgets
#
toolkit_add
toolkit_set property
toolkit_set property
toolkit_set property
toolkit_set_property
toolkit_set property

ledOButton button ledsGroup

ledOButton enabled true

ledOButton expandableX false
ledOButton expandableY false
ledOButton text "Toggle"

ledOButton onClick {::Test::toggle 1}

toolkit_add
toolkit_set property
toolkit_set property
toolkit_set_property
toolkit_set property

1edOLED led ledsGroup

l1edOLED expandableX false
l1edOLED expandableY false
ledOLED text "LED 0"
1edOLED color '‘green_off"

toolkit_add
toolkit_set property
toolkit_set property
toolkit_set_property
toolkit_set property
toolkit_set property

led1Button button ledsGroup

led1Button enabled true

led1Button expandableX false
led1Button expandableY false
led1Button text "Turn ON"

led1Button onClick {::Test::toggle 2}

toolkit_add
toolkit_set property
toolkit_set property
toolkit_set property
toolkit_set property

led1LED led ledsGroup

led1LED expandableX false
led1LED expandableY false
led1LED text "LED 1"
led1LED color "green_off"

#

sendText widgets

#

toolkit_add sendTextGroup group topGroup

toolkit_set _property sendTextGroup expandableX false
toolkit_set property sendTextGroup expandableY false
toolkit_set property sendTextGroup itemsPerRow 1
toolkit_set_property sendTextGroup title "Send Data"

toolkit_add sendTextText text sendTextGroup
toolkit_set _property sendTextText expandableX false

toolkit_set property
toolkit_set property
toolkit_set property
toolkit_set property
toolkit_set property
toolkit_set property

sendTextText
sendTextText
sendTextText
sendTextText
sendTextText
sendTextText

toolkit_add sendTextButton button
sendTextButton enabled true
sendTextButton expandableX false
sendTextButton expandableY false
sendTextButton text "Send Now"

toolkit_set_property
toolkit_set property
toolkit_set property
toolkit_set_property
toolkit_set property

#

receiveText widgets

#
toolkit_add

sendTextButton

expandableY false
preferredWidth 200
preferredHeight 100
editable true
htmlCapable false
text "

sendTextGroup

receiveTextGroup group topGroup

onClick {::Test::sendText}

toolkit_set property
toolkit_set property
toolkit_set_property

receiveTextGroup expandableX false
receiveTextGroup expandableY false
receiveTextGroup itemsPerRow 1

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
220

11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

}

toolkit_set property

toolkit_add
toolkit_set property
toolkit_set_property
toolkit_set property
toolkit_set property
toolkit_set_property
toolkit_set property
toolkit_set property

return -code ok

proc updateDashboard {} {

}

receiveTextGroup title "Receive Data"

receiveTextText
receiveTextText
receiveTextText
receiveTextText
receiveTextText
receiveTextText
receiveTextText

receiveTextText text receiveTextGroup

expandableX false
expandableY false
preferredWidth 200
preferredHeight 100
editable false
htmlCapable false
text "

ifT { ${::Test::dashboardActive} > 0 } {

toolkit_set property

ledsGroup title "LED State"

iT { [expr ${::Test::ledvValue} & 0x01 & \
${::Test::Switch_off}] }

toolkit_set property

set ::Test

} else {

toolkit_set property

set ::Test

:Switch_off O

:Switch_off 1

L {
1edOLED color *‘green"

1edOLED color ‘'‘green_off"

%f { [expr ${::Test::ledvalue} & 0x02] } {

toolkit_set_property

} else {
}

toolkit_set property

}

::Test: :dashBoard

11.9.6.4 Toolkit API Commands

led1LED color *‘green"

led1LED color ‘'‘green_off"

Toolkit API commands run in the context of a unique toolkit instance.

toolkit_register on page 222

toolkit_open on page 223

get_quartus_ini on page 224

toolkit_get_context on page 225

toolkit_get_types on page 226

toolkit_get_properties on page 227

toolkit_add on page 228

toolkit_get_property on page 229

toolkit_set_property on page 230

toolkit_remove on page 231

toolkit_get_widget_dimensions on page 232

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

221

] ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

11.9.6.4.1 toolkit_register

Description
Point to the XML file that describes the plugin (.toolKit file) .

Usage
toolkit_register <toolkit_file>

Returns
No return value.

Arguments
<toolkit_file> Path to the toolkit definition file.

Example

toolkit_register /path/to/toolkit_example.toolkit

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
222

] ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

11.9.6.4.2 toolkit_open

Description
Opens an instance of a toolkit in System Console.

Usage
toolkit_open <toolkit_id> [<context>]

Returns
No return value.

Arguments

<toolkit_id> Name of the toolkit type to open.

<context> An optional context, such as a service path for a hardware resource that
is associated with the toolkit that opens.

Example

toolkit_open my toolkit_id

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
223

] ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

11.9.6.4.3 get_quartus_.ini

Description
Returns the value of an Ini setting from the Intel Quartus Prime software . ini file.

Usage
get_quartus_ini <ini> <type>

Returns
Value of Ini setting.

Arguments

<ini> Name of the Intel Quartus Prime software . ini setting.

<type> (Optional) Type of . ini setting. The known types are string and
enabled. If the type is enabled, the value of the . ini setting returns 1, or
0 if not enabled.

Example

set my_ini_enabled [get_quartus_ini my_ini enabled]

set my_ini_raw_value [get_quartus_ini my_ini]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
224

] ®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

11.9.6.4.4 toolkit_get_context

Description

Returns the context that was specified when the toolkit was opened. If no context was
specified, returns an empty string.

Usage
toolkit_get context

Returns
Context.

Arguments
No arguments.

Example

set context [toolkit_get context]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
225

] ®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.4.5 toolkit_get_types

Description
Returns a list of widget types.

Usage
toolkit_get types

Returns
List of widget types.

Arguments
No arguments.

Example

set widget_names [toolkit_get_types]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
226

] ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

11.9.6.4.6 toolkit_get_properties

Description
Returns a list of toolkit properties for a type of widget.

Usage
toolkit_get properties <widgetType>

Returns
List of toolkit properties.

Arguments
<widgetType> Type of widget.

Example

set widget_properties [toolkit_get_properties xyChart]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
227

] ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

11.9.6.4.7 toolkit_add

Description
Adds a widget to the current toolkit.

Usage
toolkit _add <id> <type><groupid>

Returns
No return value.

Arguments

<id> A unique ID for the widget being added.
<type> The type of widget that is being added.

<groupid> The ID for the parent group that will contain the new widget. Use self
for the toolkit base group.

Example

toolkit_add my_button button parentGroup

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
228

] ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

11.9.6.4.8 toolkit_get_property

Description
Returns the property value for a specific widget.

Usage
toolkit _get property <id> <propertyName>

Returns
The property value.

Arguments
<id> A unique ID for the widget being queried.

<propertyName> The name of the widget property.

Example

set enabled [toolkit _get property my button enabled]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
229

] ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

11.9.6.4.9 toolkit_set_property

Description
Sets the property value for a specific widget.

Usage
toolkit_set property <id><propertyName> <value>

Returns
No return value.

Arguments
<id> A unique ID for the widget being modified.
<propertyName> The name of the widget property being set.

<value> The new value for the widget property.

Example

toolkit_set property my button enabled O

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
230

®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

11.9.6.4.10 toolkit_remove

Description
Removes a widget from the specified toolkit.

Usage
toolkit_remove <id>

Returns
No return value.

Arguments

<id> A unique ID for the widget being removed.

Example

toolkit_remove my_ button

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
231

] ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

11.9.6.4.11 toolkit_get_widget_dimensions

Description
Returns the width and height of the specified widget.

Usage
toolkit_get widget _dimensions <id>

Returns
Width and height of specified widget.

Arguments
<id> A unique ID for the widget being added.

Example

set dimensions [toolkit_get_widget_dimensions my_button]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
232

] ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

11.9.6.5 Toolkit API Properties
The following are the Toolkit API widget properties:

Widget Types and Properties on page 234
barChart Properties on page 235

button Properties on page 236

checkBox Properties on page 237
comboBox Properties on page 238

dial Properties on page 239
fileChooserButton Properties on page 240
group Properties on page 241

label Properties on page 242

led Properties on page 243

lineChart Properties on page 244

list Properties on page 245

pieChart Properties on page 246

table Properties on page 247

text Properties on page 248

textField Properties on page 249
timeChart Properties on page 250
xyChart Properties on page 251

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
233

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

intel.

11.9.6.5.1 Widget Types and Properties

Table 58. Toolkit API Widget Types and Properties

Name Description

enabled Enables or disables the widget.

expandable Controls whether the widget is expandable.

expandableX Allows the widget to resize horizontally if there is space
available in the cell where it resides.

expandableY Allows the widget to resize vertically if there is space
available in the cell where it resides.

foregroundColor Sets the foreground color.

maxHeight If the widget's expandableY is set, this is the maximum
height in pixels that the widget can take.

minHeight If the widget's expandableY is set, this is the minimum
height in pixels that the widget can take.

maxWidth If the widget's expandableX is set, this is the maximum
width in pixels that the widget can take.

minWidth If the widget's expandableX is set, this is the minimum
width in pixels that the widget can take.

preferredHeight The height of the widget if expandableY is not set.

preferredWidth The width of the widget if expandableX is not set.

toolTip Implements a mouse-over tooltip.

visible Displays the widget.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

234

®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

11.9.6.5.2 barChart Properties

Table 59. Toolkit API barChart Properties

Name Description
title Chart title.
labelX X-axis label text.
label X-axis label text.
range Y-axis value range. By default, it is auto range. Specifiy the

range using a Tcl list, for example:

[list lower_numerical_value
upper_numerical_value].

itemvalue Specify the value using a Tcl list, for example:
[list bar_category_str numerical_value].

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
235

] ®
l n tEI 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.3 button Properties

Table 60. Toolkit API button Properties

Name Description

onClick Specifies the Tcl command to run every time you click the
button. Usually the command is a proc.

text The text on the button.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
236

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.4 checkBox Properties

Table 61. Toolkit API checkBox Properties

Name Description
checked Specifies the state of the checkbox.
onClick Specifies the Tcl command to run every time you click the
checkbox. The command is usually a proc.
text The text on the checkbox.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

237

intel.

11.9.6.5.5 comboBox Properties

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Table 62. Toolkit API comboBox Properties
Name Description
onChange A Tcl callback to run when the value of the combo box
changes.
options A list of items to display in the combo box.
selectedltem The selected item in the combo box.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

238

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.6 dial Properties

Table 63. Toolkit API dial Properties

Name Description
max The maximum value that the dial can show.
min The minimum value that the dial can show.
ticksize The space between the different tick marks of the dial.
title The title of the dial.
value The value that the dial's needle marks. It must be between
min and max.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
239

intel.

11.9.6.5.7 fileChooserButton Properties

11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

Table 64. Toolkit API fileChooserButton Properties
Name Description

text The text on the button.

onChoose A Tcl command that runs every time you click the button.
The command is usually a proc.

title The title of the dialog box.

chooserButtonText The text of the dialog box approval button. Default value is
Open.

filter The file filter, based on extension. The filter supports only
one extension. By default, the filter allows all file names.
Specify the filter using the syntax [list
filter_description file_extension], for example:
[list "Text Document (.txt)" "txt"].

mode Specifies what kind of files or directories you can select. The
default is Files_only. Possible options are files_only
and directories_only.

multiSelectionEnabled Controls whether you can select multiple files. Default value
is false.

paths This property is read-only. Returns a list of file paths
selected in the file chooser dialog box. The property is most
useful when you use it within the onClick script, or inside
a procedure that updates the result after the dialog box
closes.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

240

®
11 Analyzing and Debugging Designs with System Console l n tel

QPS5V3 | 2017.11.06

11.9.6.5.8 group Properties

Table 65. Toolkit API group Properties

Name

Description

itemsPerRow

The number of widgets the group can position in one row,
from left to right, before moving to the next row.

title

The title of the group. Groups with a title can have a border
around them, and setting an empty title removes the
border.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
241

intel.

11.9.6.5.9 label Properties

Table 66.

Toolkit API label Properties

11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

Name

Description

text

The text to show in the label.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

242

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.10 led Properties

Table 67. Toolkit API led Properties

Name Description
color The color of the LED. The options are: red_off, red,
yellow_off, yellow, green_off, green, blue_off,
blue, and black.
text

The text to show next to the LED.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

243

] ®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.11 lineChart Properties

Table 68. Toolkit API lineChart Properties

Name Description
title Chart title.
labelX X-axis label text.
labelY Y-axis label text.
range Y-axis value range. By default, it is auto range. Specify the

range using a Tcl list, for example:

[list lower_numerical_value
upper_numerical_value].

itemvalue Item value. Specifiy the value using a Tcl list, for example:
[1ist bar_category_str numerical_value].

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
244

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.12 list Properties

Table 69. Toolkit API list Properties

Name Description
selected Index of the selected item in the combo box.
options List of options to display.
onChange A Tcl callback to run when the selected item in the list

changes.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

245

] ®
l n tEI 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.13 pieChart Properties

Table 70. Toolkit API pieChart Properties

Name Description
title Chart title.
itemvValue Item value. Specified using a Tcl list, for example:
[list bar_category_str numerical_value].

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
246

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.14 table Properties

Table 71. Toolkit API table Properties

Name Description
columnCount The number of columns (Mandatory) (O, by default).
rowCount The number of rows (Mandatory) (O, by default).

headerReorderingAl lowed

Controls whether you can drag the columns (false, by
default).

headerResizingAl lowed

Controls whether you can resize all column widths. (false,

by default).

Note: You can resize each column individually with the
columnWidthResizable property.

rowSorterEnabled Controls whether you can sort the cell values in a column
(fFalse, by default).
showGrid Controls whether to draw both horizontal and vertical lines

(true, by default).

showHorizontalLines

Controls whether to draw horizontal line (true, by default).

rowlndex

Current row index. Zero-based. This value affects some
properties below (0, by default).

columnindex

Current column index. Zero-based. This value affects all
column specific properties below (0, by default).

cellText Specifies the text inside the cell given by the current
rowlndex and columnindex (Empty, by default).

selectedRows Control or retrieve row selection.

columnHeader The text in the column header.

columnHeaders A list of names to define the columns for the table.

columnHorizontalAlignment

The cell text alignment in the specified column. Supported
types are leading (default), left, center, right,
trailing.

columnRowSorterType The type of sorting method. This is applicable only if
rowSorterEnabled is true. Each column has its own
sorting type. Possible types are string (default), int, and
float.

columnWidth The number of pixels in the column width.

columnWidthResizable

Controls whether the column width is resizable by you
(false, by default).

contents

The contents of the table as a list. For a table with columns
A, B, and C, the format of the list is {A1 B1 C1 A2 B2
C2 ...}

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

247

] ®
l n tEI 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.15 text Properties

Table 72. Toolkit API text Properties

Name Description
editable Controls whether the text box is editable.
htmlCapable Controls whether the text box can format HTML.
text The text to show in the text box.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
248

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.16 textField Properties

Table 73. Toolkit API textField Properties

Name Description
editable Controls whether the text box is editable.
onChange A Tcl callback to run when you change the content of the
text box.
text The text in the text box.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

249

] ®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.17 timeChart Properties

Table 74. Toolkit API timeChart Properties

Name Description

labelX The label for the X-axis.

labelY The label for the Y-axis.

latest The latest value in the series.

maximumltemCount The number of sample points to display in the historic
record.

title The title of the chart.

range Sets the range for the chart. The range has the form {low,
high}. The low/high values are doubles.

showLegend Spec;]fies whether a legend for the series is shown in the
graph.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
250

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

11.9.6.5.18 xyChart Properties

Table 75. Toolkit API xyChart Properties

Name

Properties

title

Chart title.

labelX

X-Axis label text.

labelY

Y-Axis label text.

range

Sets the range for the chart. The range is of the form
{low, high}. The low/high values are doubles.

maximumltemCount

Specifies the maximum number of data values to keep in a
data series. This setting only affects new data in the chart.
If you add more data values than the maximumltemCount,
only the last maximumltemCount number of entries are
kept.

series

Adds a series of data to the chart. The first value in the
spec is the identifier for the series. If the same identifier is
set twice, the Toolkit API selects the most recent series. If
the identifier does not contain series data, that series is
removed from the chart. Specify the series in a Tcl list:
{identifier, x-1 y-1, x-2 y-2}.

showLegend

Sets whether a legend for the series appears in the graph.

11.10 ADC Toolkit

The ADC Toolkit is designed to work with Intel MAX 10 devices and helps you
understand the performance of the analog signal chain as seen by the on-board ADC
hardware. The GUI displays the performance of the ADC using industry standard
metrics. You can export the collected data to a .csv file and process this raw data
yourself. The ADC Toolkit is built on the System Console framework and can only be
operated using the GUI. There is no Tcl support for the tool.

Prerequisites for Using the ADC Toolkit

e Altera Modular ADC IP core

— External Reference Voltage if you select External in the Altera Modular

ADC IP parameters
e Reference signal

The ADC Toolkit needs a sine wave signal to be fed to the analog inputs. You need the
capability to precisely set the level and frequency of the reference signal. A high-
precision sine wave is needed for accurate test results; however, there are useful
things that can be read in Scope mode with any input signal.

To achieve the best testing results, the reference signal should have less distortions
than the device ADC is able to resolve. If this is not the case, then you will be adding
distortions from the source into the resulting ADC distortion measurements. The
limiting factor is based on hardware precision.

Note: When applying a sine wave, the ADC should sample at 2x the fundamental sine wave
frequency. There should be a low-pass filter, 3dB point set to the fundamental

frequency.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

251

] ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

Configuring the Altera Modular ADC IP Core

The Altera Modular ADC IP core needs to be included in your design. You can
instantiate this IP core from the IP Catalog. When you configure this IP core in the
Parameter Editor, you need to enable the Debug Path option located under Core

Configuration.

There are two limitations in the Intel Quartus Prime software v14.1 for the Altera
Modular ADC IP core. The ADC Toolkit does not support the ADC control core only
option under Core Configuration. You must select a core variant that uses the
standard sequencer in order for the Altera Modular ADC IP core to work with ADC
Toolkit. Also, if an Avalon Master is not connected to the sequencer, you must

manually start the sequencer before the ADC Toolkit will work.

Figure 126. Altera Modular ADC Core

Altera Modular ADC core -
altera_modular_adec DEtaI\S

General
F

Core Configuration

Core Yariant: Standard sequencer with Avalon-MM sample storage |v|

Debug Path: Enabled |+

[F Clocks

ADC Input Clock: 10 Mhz |+

[* Reference Voltage

Reference Yoltage Source [Earal | w

External Reference Yoltage: |2 5 W

Channels | Sequencer

CH10 | CH11 | cH12 | cH1Z | CH14 [CH15 | CH16 | TsD
CH1 I CH2 [CH3

CHO

[

[CH4

[~ Channel 0

[Use Channel O {Dedicated analog input gin - ARNAIM)

Starting the ADC Toolkit

You can launch the ADC Toolkit from System Console. Before starting the ADC toolkit,
you need to verify that your board is programmed. You can then load your .sof by
clicking File O Load Design. If System Console was started with an active project,

your design is auto-loaded when you start System Console.

There are two methods to start the ADC Toolkit. Both methods require you to have a
Intel MAX 10 device connected, programmed with a project, and linked to this project.
However, the Launch command only shows up if these requirements are met. You can
always start the ADC Toolkit from the Tools menu, but if the above requirements are

not met, no connection will be made.
e Click Tools 0 ADC Toolkit

e Alternatively, click Launch from the Toolkits tab. The path for the device is

displayed above the Launch button.

Note: Only one ADC Toolkit enabled device can be connected at a time.

Upon starting the ADC Toolkit, an identifier path on the ADC Toolkit tab shows you

which ADC on the device is being used for this instance of the ADC Toolkit.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
252

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Figure 127. Launching ADC Toolkit

M System Conscle - Toolkits '

File Tools Help
System Explorer o

Tookits 0 X | ADC Toolkit (Beta) 0|

5 connections ADC Toolkit (Beta)

) AL
| devices "a_i Toaolkit for testing ADC signal path performance
| designs

X 10
| design_instances adc_syst N -

R e = —
a soipts UsB-Blasterll on localhost [USB-1]
10MOBDA(. |ES)|10MOBD(CIF) @1

_instfadc_system_avmm_modular_adc_(

ADC Toolkit Flow

The ADC Toolkit GUI consists of four panels: Frequency Selection, Scope, Signal

Quality, and Linearity.

1. Use the Frequency Selection panel to calculate the required sine wave frequency
for proper signal quality testing. The ADC Toolkit will give you the nearest ideal
frequency based on your desired reference signal frequency.

2. Use the Scope panel to tune your signal generator or inspect input signal
characteristics.

3. Use the Signal Quality panel to test the performance of your ADC using industry
standard metrics.

4,

differential and integral non-linearity results.

Figure 128. ADC Toolkit GUI

@ System Console - ADC Toolkit (Beta) 0

Use the Linearity panel to test the linearity performance of your ADC and display

Frequency Selection | scope | Signal Quaiity | Linearity |
. designs

File Tools Help

System Explorer o ADC Toolkit (Beta) 0 O X ‘
/ B Cornectons ADC: Jdevices/10MOBDA(. [ES) | 1MOBD(C |F) @1#USB-1/(ink) TTAG/sldfabric.node_1/phy_1/master_0.master/modular_adc_0.sequencer_csr
\ . devices

EB-E-E-5-E0E

. design_instances

5o scrpts Choose Desired Source Signal Frequency Nearest Required Sine Wave Frequency
ADC Channel: 4 = Signal Quality Test
Sample Size (bits): 4036
Use Frequency (hz): Enter Desired Freq
i Sample Freguency (he): |500000.00
Desired Frequency (hz): |1000 LEcaryUesE

Related Links
o
e Intel MAX 10 FPGA Device Overview
e Intel MAX 10 FPGA Device Datasheet

Calaulate Use Frequency (hz): Enter Desired Freq

Using the ADC Toolkit in Intel MAX 10 Devices online training

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

253

http://wl.altera.com/education/training/courses/OMAXADC103
http://www.altera.com/literature/hb/max-10/m10_overview.pdf
http://www.altera.com/literature/hb/max-10/m10_datasheet.pdf

®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

e Intel MAX 10 FPGA Design Guidelines
e Intel MAX 10 Analog to Digital Converter User Guide

e Additional information about sampling frequency
Nyquist sampling theorem and how it relates to the nominal sampling interval
required to avoid aliasing.

11.10.1 ADC Toolkit Terms

Table 76. ADC Toolkit Terms

Term Description
SNR The ratio of the output signal voltage level to the output
noise level.
THD The ratio of the sum of powers of the harmonic frequency

components to the power of the fundamental/original
frequency component.

SFDR Characterizes the ratio between the fundamental signal and
the highest spurious in the spectrum.

SINAD The ratio of the RMS value of the signal amplitude to the
RMS value of all other spectral components, including
harmonics, but excluding DC.

ENOB The number of bits with which the ADC behaves.

DNL The maximum and minimum difference in the step width
between actual transfer function and the perfect transfer
function

INL The maximum vertical difference between the actual and

the ideal curve. It indicates the amount of deviation of the
actual curve from the ideal transfer curve.

11.10.2 Setting the Frequency of the Reference Signal

You use the Frequency Selection panel to compute the required reference signal
frequency to run the ADC performance tests. The sine wave frequency is critical and
affects the validity of your test results.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
254

http://www.altera.com/literature/hb/max-10/m10_guidelines.pdf
http://www.altera.com/literature/hb/max-10/ug_m10_adc.pdf
http://redwood.berkeley.edu/bruno/npb261/aliasing.pdf

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Figure 129. Frequency Selection Panel

Frequency Selection | Scope | Signal Quality | Linearity |

Choose Desired Source Signal Frequency

ADC Channelk: :I:I -
Sample Size (bits): 4096
Sample Freguency (hz): 500000, 00

Desired Frequency (hz): |10000

To set the frequency of the reference signal:

1. On ADC Channel, select the ADC channel that you plan to test.
The tool populates the Sample Size and Sample Frequency fields.

Signal Quality Test
IUse Freguency (hz):
Linearity Test

IIse Frequency (hz):

Mearest Required Sine Wave Freguency

10009, 765625

10012, 209415

2. Enter the Desired Frequency. This is your desired frequency for testing. You
need to complete this procedure to calculate the frequency that you set your
signal generator to, which will differ depending on the type of test you want to do

with the ADC Toolkit.
3. Click Calculate.

e The closest frequency for valid testing near your desired frequency displays

under both Signal Quality Test and Linearity Test.

e The nearest required sine wave frequencies are different for the signal quality

test and linearity test.

4. Set your signal generator to the precise frequency given by the tool based on the

type of test you want to run.

11.10.3 Tuning the Signal Generator

You use the Scope panel to tune your signal generator in order to achieve the best

possible performance from the ADC.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

255

intel)

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Figure 130. Scope Mode Panel

Scope | signal Quality | Linearity

Osdlloscope | Raw Data

Setup Signal Information

R Tt = - Voltage P toP: 2.5000 v
Max Voltage: 2.5000 v

srEiTe 2048 Min Voltage: 0.0000 v

Sample Frequency: | 1000000 CodeSpan: 4085

MaxCode: 4095

Min Code: 0

Frequency: 14647.47hz

Ref voltage: 2.5

Stop

Osciloscape

Volts
il

100 200 300 400 500 00 70D 8O0 900 4,000 1,100 1,200 1,300 1,400 1,500 1600 1,700 1,800 1,900 2,000 2,100
Sample #

To tune your signal generator:

1.
2.

On ADC Channel, select the ADC channel that you plan to test.

Enter your reference Sample Frequency (unless the tool can extract this value
from your IP).

Enter your Ref Voltage (unless the tool can extract this value from your IP).

Click Run.
The tool will repeatedly capture a buffer worth of data and display the data as a
waveform and display additional information under Signal Information.

Tune your signal generator to use the maximum dynamic range of the ADC
without clipping. Avoid hitting 0 or 4095 because your signal will likely be clipping.
Look at the displayed sine wave under Oscilloscope to see that the top and
bottom peaks are evenly balanced to ensure you have selected the optimum
value.

e For Intel MAX 10 devices, you want to get as close to Min Code = 0 and Max
Code = 4095 without actually hitting those values.

e The frequency should be set precisely to the value needed for testing such
that coherent sampling is observed in the test window. Before moving
forward, follow the suggested value for signal quality testing or linearity
testing, which is displayed next to the actual frequency that is detected.

* From the Raw Data tab, you can export your data as a .csv file.

Related Links

Additional information about coherent sampling vs window sampling

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

256

https://www.maximintegrated.com/en/design/techdocs/app-notes/index.mvp

] ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

11.10.4 Running a Signal Quality Test

Figure 131.

The available performance metrics in signal quality test mode are the following: signal
to noise ratio (SNR), total harmonic distortion (THD), spurious free dynamic range
(SFDR), signal to noise and distortion ratio (SINAD), effective number of bits (ENOB),
and a frequency response graph.The frequency response graph shows the signal,
noise floor, and any spurs or harmonics.

The signal quality parameters are measurements relative to the carrier signal and not
the full scale of the ADC.

Before running a signal quality test, ensure that you have set up the frequency of the
reference signal using Scope mode.

Signal Quality Panel

Setup Quality Results

ADC Channel: o - SNR: 7L40db
Sample Size: 2048 THD: -91.89db
Sample Frequency: | 1000000 SFDR: 79.91db
FFT Window: none - SINAD: 71.36db

Run ENOB: 11.56

{Frequency Resporse!| Raw Data

Frequency Response

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000
Frequency Hz

— Signal + Noise

To run a signal quality test:
1. On ADC Channel, select the ADC channel that you plan to test.
2. Click Run.

From the Raw Data tab, you can export your data as a -csv file.
For signal quality tests, the signal must be coherently sampled. Based on the sampling
rate and number of samples to test, specific input frequencies are required for
coherent sampling.The sample frequency for each channel is calculated based on the
ADC sequencer configuration.
Related Links

Additional information about dynamic parameters such as SNR, THD, etc

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
257

http://www.cse.psu.edu/~chip/course/analog/lecture/SFDR1.pdf

™ ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

11.10.5 Running a Linearity Test

The linearity test determines the linearity of the step sizes of each ADC code. It uses a
histogram testing method which requires sinusoidal inputs which are easier to source
from signal generators and DACs than other test methods.

When using Linearity test mode, your reference signal must meet specific
requirements.

e The signal source covers the full code range of the ADC. Results improve if the
time spent at code end is equivalent, by tuning the reference signal in Scope
mode.

e You have to make sure if using code ends that you are not clipping the signal.
Look at the signal in Scope mode to see that it does not look flat at the top or
bottom. It may be desirable to back away from code ends and test a smaller range
within the desired operating range of the ADC input signal.

e Choosing a frequency that is not an integer multiple of the sample rate and buffer
size helps to ensure all code bins are filled relatively evenly to the probability
density function of a sine wave. If an integer multiple is selected, some bins may
be skipped entirely while others are over populated. This makes the tests results
invalid. Use the frequency calculator feature to determine a good signal frequency
near your desired frequency.

To run a linearity test:

1. On ADC Channel, select the ADC channel that you plan to test.

2. Enter the test sample size in Burst Size. Larger samples increase the confidence
in the test results.

3. Click Run.

e You can stop the test at anytime, as well as click Run again to continue
adding to the aggregate data. To start fresh, click Reset after you stop a test.
Anytime you change the input signal or channel, you should click Reset so
your results are correct for a particular input.

e There are three graphical views of the data: Histogram view, DNL view, and
INL view.

* From the Raw Data tab, you can export your data as a .csv file.

11.10.6 ADC Toolkit Data Views

Histogram View

The Histogram view shows how often each code appears. The graph updates every
few seconds as it collects data. You can use the Histogram view to quickly check if
your test signal is set up appropriately.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

258

] ®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

Figure 132. Example of Pure Sine Wave Histogram

The figure below shows the shape of a pure sine wave signal. Your reference signal should look similar.

Scope | Signal Quality | Linsarity

Setup Results
ADC Channel: 0 - Progress: 200 of 1000
Burst Size: 2048 Total Samples: 411548
Number of Bursts: |1000 DNL: +0.28/-0.39sb
i Stop | Reset INL: +0.47/-0.48 Isb

Histogram | DML | TNL | Raw Data

ADC Code Histogram

4,250
4,000
3,750
3,500
3,250
3,000
2,750
2,500
2,250
2,000

Bin Count

1,750
1,500
1,250

1,000

750
500
250

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 3,250 3,500 3,750 4,000 4,250
Code

— ADC code distribution

If your reference signal is not a relatively smooth line, but has jagged edges with
some bins having a value of 0, and adjacent bins with a much higher value, then the
test signal frequency is not adequate. Use Scope mode to help choose a good
frequency for linearity testing.

Figure 133. Examples of (Left) Poor Frequency Choice vs (Right) Good Frequency Choice

ADC Code Histogram | ADC Code Histogram

1,300 5,000

1,200

4,500
1,100
G 4,000
900 3,500
= o0 + 3,000
S 5
3 700 3
3
2 < 2,500
500 =
s00 2,000
400 1,500
300
1,000
200
500
100
0 . 0
0 10 2 3 40 S0 & 70 80 %0 100 0 10 20 30 40 50 6 70 8 9 100 110 120 |
Code ! Code
— ADC code distribudon| | |— ADC code distribution| |
L N —— R —— a

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
259

] ®
l n tel 11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Differential Non-linearity View

Figure 134. Example of Good Differential Non-linearity

The DNL view shows the currently collected data. Ideally, you want your data to look like a straight line
through the 0 on the x-axis. When there are not enough samples of data, the line appears rough. The line
improves as more data is collected and averaged.

Each point in the graph represents how many LSB values a particular code differs from the ideal step size of 1
LSB. The Results box shows the highest positive and negative DNL values.

Scope | Signal Quality | Linearity

Setup Results

apcchannel: [0 =] Progress: 210 of 1000

Burst Size: 2048 Total Samples: 432128

MNumber of Bursts: | 1000 DNL: +0.50/-0.36 Isb
“Stop Reset INL: 40.48/-0.48 Ish

Differential Non-Linearity

DhL
o
=

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 3,250 3,500 3,750 4,000 4,250
Code

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
260

] ®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

Figure 135.

Integral Non-linearity View

Example of Good Integral Non-linearity

The INL view shows currently collected data. Ideally, with a perfect ADC and enough samples, the graph
appears as a straight line through 0 on the x-axis.

Each point in the graph represents how many LSB values a particular code differs from its expected point in the
voltage slope. The Results box shows the highest positive and negative INL values.

Scope | Signal Quality | Linearity

Setup Results
ADC Channel: L =) Progress: 150 of 1000
Burst Size: 2048 Total Samples: 309243
Number of Bursts: | 1000 DNL: +0.39/-0.38 Isb
""" Stop. Reset N +0.45/-0.45 Ish

Histogram | DNL | INL | Raw Data

Integral Nor-Linearity
2,00

1.75
1.50
1.25
1.00
0.75
0.50
0.25 i it
0.00

INL

-0.25
-0.50
-0.75
-1.00
-1.25
-1.50
-1.75

-2.00

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 3,250 3,500 3,750 4,000 4,250
Code

11.11 System Console Examples and Tutorials

Note:

Intel provides examples for performing board bring-up, creating a simple dashboard,
and programming a Nios II processor. The System_Console.zip file contains design
files for the board bring-up example. The Nios II Ethernet Standard .zip files contain
the design files for the Nios II processor example.

The instructions for these examples assume that you are familiar with the Intel
Quartus Prime software, Tcl commands, and Platform Designer (Standard).
Related Links

On-Chip Debugging Design Examples Website
Contains the design files for the example designs that you can download.

11.11.1 Board Bring-Up with System Console Tutorial

You can perform low-level hardware debugging of Platform Designer (Standard)
systems with System Console. You can debug systems that include IP cores
instantiated in your Platform Designer (Standard) system or perform initial bring-up of

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
261

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

™ ®
l n tel) 11 Analyzing and Debugging Designs with System Console

QPS5V3 | 2017.11.06

your PCB. This board bring-up tutorial uses a Nios II Embedded Evaluation Kit (NEEK)
board and USB cable. If you have a different development kit, you need to change the
device and pin assignments to match your board and then recompile the design.
Setting Up the Board Bring-Up Design Example on page 262

Verifying Clock and Reset Signals on page 263

Verifying Memory and Other Peripheral Interfaces on page 263

A W N R

Platform Designer (Standard) Modules for Board Bring-up Example on page 268

Related Links
Introduction to System Console on page 193

11.11.1.1 Setting Up the Board Bring-Up Design Example

To load the design example into the Intel Quartus Prime software and program your
device, perform the following steps:
1. Unzip the System_Console.zip file to your local hard drive.

2. 1In the Intel Quartus Prime software, click File 0 Open Project and select
Systemconsole_design_example.qpf.

3. Change the device and pin assignments (LED, clock, and reset pins) in the
Systemconsole_design_example.qsT file to match your board.

4. Click Processing 0 Start Compilation
To program your device, follow these steps:
a. Click Tools O Programmer.
b. Click Hardware Setup.
c. Click the Hardware Settings tab.
d. Under Currently selected hardware, click USB-Blaster, and click Close.
Note: If you do not see the USB-Blaster option, then your device was not

detected. Verify that the USB-Blaster driver is installed, your board is
powered on, and the USB cable is intact.

This design example uses a USB-Blaster cable. If you do not have a USB-
Blaster cable and you are using a different cable type, then select your cable
from the Currently selected hardware options.

e. Click Auto Detect, and then select your device.
Double-click your device under File.

g. Browse to your project folder and click
Systemconsole_design_example.sof in the subdirectory output_files.

h. Turn on the Program/Configure option.
i. Click Start.
j. Close the Programmer.
6. Click Tools > System Debugging Tools > System Console.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
262

®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

Related Links
System_Console.zip file
Contains the design files for this tutorial.

11.11.1.2 Verifying Clock and Reset Signals
You can use the System Explorer pane to verify clock and reset signals.

Open the appropriate node and check for either a green clock icon or a red clock icon.
You can use JTAG Debug command to verify clock and reset signals.

Related Links
e System Explorer Pane on page 198
e JTAG Debug Commands on page 211

11.11.1.3 Verifying Memory and Other Peripheral Interfaces

The Avalon-MM service accesses memory-mapped slaves via a suitable Avalon-MM
master, which can be controlled by the host. You can use Tcl commands to read and
write to memory with a master service.

11.11.1.3.1 Locating and Opening the Master Service

#Select the master service type and check for available service paths.
set service_paths [get_service_paths master]

#Set the master service path.
set master_service_path [lindex $service_paths 0]

#0pen the master service.
set claim_path [claim_service master $master_service_path mylib]

11.11.1.3.2 Avalon-MM Slaves

The Address Map tab shows the address range for every Platform Designer
(Standard) component. The Avalon-MM master communicates with slaves using these
addresses.

The register maps for all Intel FPGA components are in their respective Data Sheets.

Figure 136. Address Map

RS - s © p\System_Console\Debuggi us'inilsvwmr . design le.gsys j o8] B

File Edt System View Tools Help |

Component Liorary | System Contents | Address Hap | Clock Seftings | Project Settings | instance Parameters | System Inspector | HDL Example. | Generation|

®

JTAG_Master. master Checksum_Accelerator_1 Master
LED_Pi0 s1 |onaoaa_oooa - oxoooo_soos | |
Onchip_memory 51 |on0000_saso - ox0ooo_sofe |ox0000_oosa - ox0000_ooge |
Checksum_Accelerator_1 Slave |oxo000_soza - ox0o00_ooag | |

Project
[New Component.
-Custom_Component

Related Links
Data Sheets Website

Avalon-MM Commands

You can read or write the Avalon-MM interfaces using the master read and write
commands. You can also use the master commands on slave services. If you are
working on a slave service, the address field can be a register. (6)

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
263

http://www.altera.com/support/examples/download/System_Console.zip
http://www.altera.com/literature/lit-ds.jsp

Table 77.

intel.

11 Analyzing and Debugging Designs with System Console

Avalon-MM Commands

QPS5V3 | 2017.11.06

Command

Arguments

Function

master_write_memory

<service-path>
<address>
<list_of_byte_values>

Writes the specified list of byte values to the
specified service path and address.

master_write_8

<service-path>
<address>
<list_of_byte values>

Writes the specified list of byte values to the
specified service path and address, using 8-bit
accesses.

master_write_16

<service-path>
<address>
<list_of_16_bit_words>

Writes the specified list of 16-bit values to the
specified service path and address, using 16-bit
accesses.

master_write_from_file

<service-path>
<file-name>
<address>

Writes the entire contents of the file to the specified
service path and address. The file is treated as a
binary file containing a stream of bytes.

master_write_32

<service-path>
<address>
<list_of_32_bit_words>

Writes the specified list of 32-bit values to the
specified service path and address, using 32-bit
accesses.

master_read_memory

[-format <format>]
<service-path>
<address>
<size_in_bytes>

Returns a list of read values in bytes. Memory read
starts at the specified base address.

Note: The [-format <format>] is an optional
argument. Specifying this argument makes
this command accept data as 16 or 32-bit,
instead as bytes. For example:

master_read_memory -format 16
<service_path> <addr> <count>

master_read_8

<service-path>
<address>
<size_in_bytes>

Returns a list of <size> bytes. Read from memory
starts at the specified base address, using 8-bit
accesses.

master_read_16

<service-path>
<address>
<size_in_multiples_of_16_bits>

Returns a list of <size> 16-bit values. Read from
memory starts at the specified base address, using
16-bit accesses.

master_read_32

<service-path>
<address>
<size_in_multiples_of_32_bits>

Returns a list of <size> 32-bit values. Read from
memory starts at the specified base address, using
32-bit accesses.

master_read_to_file

<service-path>
<file-name>
<address>
<count>

Reads the number of bytes specified by <count>
from the memory address specified and creates (or
overwrites) a file containing the values read. The file
is written as a binary file.

master_get_register_names

<service-path>

When a register map is defined, returns a list of
register names in the slave.

Note:

Using the 8, 16, or 32 versions of the master_read or master_write commands is

less efficient than using the master_write_memory or master_read_memory

commands.

(6) Transfers performed in 16- and 32-bit sizes are packed in little-endian format.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
264

| | ®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

11.11.1.3.3 Testing the PIO component

In this example design, the PIO connects to the LEDs of the board. Test if this
component is operating properly and the LEDs are connected, by driving the outputs
with the Avalon-MM master.

Table 78. Register Map for the PIO Core
Offset Register Name R/W Fields
(n-1) . 2 1 0
0 data | read access R Data value currently on PIO inputs.
write access w New value to drive on PIO outputs.

1 direction R/W Individual direction control for each I/0 port. A value of 0 sets the direction
to input; 1 sets the direction to output.

2 interruptmask R/W IRQ enable/disable for each input port. Setting a bit to 1 enables interrupts
for the corresponding port.

3 edgecapture R/W Edge detection for each input port.

#Write the driver output values for the Parallel 1/0 component.
set offset 0x0; #Register address offset.

set value 0x7; #Only set bits 0, 1, and 2.

master_write_8 $claim_path $offset $value

#Read back the register value.

set offset 0x0

set count Ox1

master_read_8 $claim_path $offset $count

master_write_8 $claim_path O0x0 0x2; #Only set bit 1.

master_write_8 $claim_path 0x0 Oxe; #Only set bits 1, 2, 3.

master_write_8 $claim_path 0x0 0x7; #Only set bits 0, 1, 2.

#0bserve the LEDs turn on and off as you execute these Tcl commands.

#The LED is on if the register value is zero and off if the register value is
one.

#LED O, LED 1, and LED 2 connect to the PIO.
#LED 3 connects to the interrupt signal of the CheckSum Accelerator.

11.11.1.3.4 Testing On-chip Memory

Test the memory with a recursive function that writes to incrementing memory
addresses.

#Load the design example utility procedures for writing to memory.
source set_memory_values.tcl

#Write to the on-chip memory.

set base_address 0x80

set write_length 0x80

set value Ox5a5a5a5a

Ffill_memory $claim_path $base_address $write_length $value

#Verify the memory was written correctly.

#This utility proc returns O if the memory range is not uniform with this
value.

verify_memory $claim_path $base_address $write_length $value

#Check that the memory is re-initialized when reset.
#Trigger reset then observe verify_memory returns O.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
265

set jtag debug_path [lindex [get_service_paths jtag debug] 0]

set claim_jtag_debug_path [claim_service jtag_debug $jtag_debug_path mylib]
Jtag_debug_reset_system $claim_jtag_debug_path; #Reset the connected on-chip
memory

#peripheral .

close_service jtag_debug $claim_jtag_debug_path

verify_memory $claim_path $base address $write_length $value

#The on-chip memory component was parameterized to re-initialized to O on
reset.

#Check the actual value.

master_read_8 $claim_path 0x0 Ox1

11.11.1.3.5 Testing the Checksum Accelerator

The Checksum Accelerator calculates the checksum of a data buffer in memory. It
calculates the value for a specified memory buffer, sets the DONE bit in the status
register, and asserts the interrupt signal. You should only read the result from the
controller when both the DONE bit and the interrupt signal are asserted. The host
should assert the interrupt enable control bit in order to check the interrupt signal.

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Table 79. Register Map for Checksum Component
Offset Hexadecimal Register Access Bits (32 bits)
(Bytes) value (after
adding offset) 31-9 | 8 | 7-5 | 4 | 3 | 2 1 /]
0 0x20 Status Read/Write BUSY DONE
to clear
4 0x24 Address Read/Write | Read Address
12 0x2C Length Read/Write | Length in bytes
24 0x38 Control Read/Write Fixed Interrup | GO INV Clear
Read t Enable
Address
Bit
28 0x3C Result Read Checksum result (upper 16 bits are zero)
1. #Pass the base address of the memory buffer Checksum Accelerator.

set base_address 0x20

set offset 4

set address_reg [expr {$base_address + $offset}]

set memory_address 0x80

master_write_32 $claim_path $address_reg $memory_address

#Pass the memory buffer to the Checksum Accelerator.
set length_reg [expr {$base_address + 12}]

set length 0x20

master_write_32 $claim_path $length_reg $length

#Write clear to status and control registers.
#Status register:

set status_reg $base_address

master_write_32 $claim_path $status_reg Ox0
#Control register:

set clear 0Ox1

set control_reg [expr {$base_address + 24}]
master_write_32 $claim_path $control_reg $clear

#Write GO to the control register.
set go Ox8
master_write_32 $claim_path $control_reg $go

#Cross check if the checksum DONE bit is set.
master_read_32 $claim_path $status_reg Ox1

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

266

] ®
11 Analyzing and Debugging Designs with System Console l n tel

QPS5V3 | 2017.11.06

#1s the DONE bit set?

#1T yes, check the result and you are finished with the board bring-up
design example.

set result_reg [expr {$base_address + 28}]

master_read_16 $claim_path $result_reg Ox1

If the result is zero and the JTAG chain works properly, the clock and reset signals
work properly, and the memory works properly, then the problem is the Checksum
Accelerator component.

#Confirm if the DONE bit in the status register (bit 0)
#and interrupt signal are asserted.

#Status register:

master_read_32 $claim_path $status_reg Ox1

#Check DONE bit should return a one.

#Enable interrupt and go:

set interrupt_and_go 0x18
master_write_32 $claim_path $control_reg $interrupt_and_go

Check the control enable to see the interrupt signal. LED 3 (MSB) should be off.
This indicates the interrupt signal is asserted.

You have narrowed down the problem to the data path. View the RTL to check the
data path.

Open the Checksum_transform.v file from your project folder.

e <unzip dir>/System_Console/ip/checksum_accelerator/
checksum_accelerator.v

Notice that the data_out signal is grounded in Figure 137 on page 267
(uncommented line 87 and comment line 88). Fix the problem.

Save the file and regenerate the Platform Designer (Standard) system.
Re-compile the design and reprogram your device.

Redo the above steps, starting with Verifying Memory and Other Peripheral
Interfaces on page 263 or run the Tcl script included with this design example.

source set_memory_and_run_checksum.tcl

Figure 137. Checksum.v File

83 £ir

15:0]) : (first_folded_sum[16] + first_folded sum[15:0]):

%0 endmodule

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
267

QPS5V3 | 2017.11.06

] ®
< l n tel) 11 Analyzing and Debugging Designs with System Console

11.11.1.4 Platform Designer (Standard) Modules for Board Bring-up Example

Figure 138. Platform Designer (Standard) Modules for Board Bring-up Example

JTAG Avalon-MM
(Master)

!

System Interconnect Fabric

ﬁb LED (0)
On-Chip Memory Checksum PIO LED /
(Slave) Accelerator (Slave) —*“ﬁ LED (1)
(Slave)
% LED (2)
: 3¢ LED (3)
Interrupt signal v

The Platform Designer (Standard) design for this example includes the following
modules:

e JTAG to Avalon Master Bridge—Provides System Console host access to the
memory-mapped IP in the design via the JTAG interface.

e On-chip memory—Simplest type of memory for use in an FPGA-based embedded
system. The memory is implemented on the FPGA; consequently, external
connections on the circuit board are not necessary.

e Parallel I/O (PIO) module—Provides a memory-mapped interface for sampling and
driving general I/O ports.

e Checksum Accelerator—Calculates the checksum of a data buffer in memory. The
Checksum Accelerator consists of the following:

— Checksum Calculator (checksum_transform.v)
— Read Master (slave.v)

— Checksum Controller (latency aware_read _master.v)

11.11.1.4.1 Checksum Accelerator Functionality

The base address of the memory buffer and data length passes to the Checksum
Controller from a memory-mapped master. The Read Master continuously reads data
from memory and passes the data to the Checksum Calculator. When the checksum
calculations finish, the Checksum Calculator issues a valid signal along with the
checksum result to the Checksum Controller. The Checksum Controller sets the DONE
bit in the status register and also asserts the interrupt signal. You should only read the
result from the Checksum Controller when the DONE bit and interrupt signal are
asserted.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
268

™ ®
11 Analyzing and Debugging Designs with System Console l n tel)

QPS5V3 | 2017.11.06

11.11.2 Nios II Processor Example

This example programs the Nios II processor on your board to run the count binary
software example included in the Nios II installation. This is a simple program that
uses an 8-bit variable to repeatedly count from 0x00 to OxFF. The output of this
variable is displayed on the LEDs on your board. After programming the Nios II
processor, you use System Console processor commands to start and stop the
processor.

To run this example, perform the following steps:

1.

vk W

Download the Nios II Ethernet Standard Design Example for your board from the
Altera website.

Create a folder to extract the design. For this example, use C:\Count_binary.
Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.
In a Nios II command shell, change to the directory of your new project.
Program your board. In a Nios II command shell, type the following:

nios2-configure-sof niosii_ethernet_standard_<board_version>._sof

Using Nios II Software Build Tools for Eclipse, create a new Nios II Application and
BSP from Template using the Count Binary template and targeting the Nios II
Ethernet Standard Design Example.

To build the executable and linkable format (ELF) file (.elF) for this application,
right-click the Count Binary project and select Build Project.

Download the -elf file to your board by right-clicking Count Binary project and
selecting Run As, Nios II Hardware.

e The LEDs on your board provide a new light show.
Type the following:
system-console; #Start System Console.

#Set the processor service path to the Nios Il processor.
set niosii_proc [lindex [get_service_paths processor] 0]

set claimed_proc [claim_service processor $niosii_proc mylib]; #Open the
service.

processor_stop $claimed_proc; #Stop the processor.
#The LEDs on your board freeze.

processor_run $claimed_proc; #Start the processor.
#The LEDs on your board resume their previous activity.

processor_stop $claimed_proc; #Stop the processor.

close_service processor $claimed_proc; #Close the service.

e The processor_step, processor_set_register, and
processor_get_register commands provide additional control over the
Nios II processor.

Related Links

Nios II Ethernet Standard Design Example
Nios II Gen2 Software Developer's Handbook

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
269

http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2gen2.pdf

intel.

11.11.2.1 Processor Commands

Table 80. Processor Commands

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Command (7)

Arguments

Function

processor_download_elf

<service-path>
<elf-file-path>

Downloads the given Executable and Linking Format File
(.elf) to memory using the master service associated with the
processor. Sets the processor's program counter to the .elf
entry point.

processor_in_debug_mode

<service-path>

Returns a non-zero value if the processor is in debug mode.

processor_reset

<service-path>

Resets the processor and places it in debug mode.

processor_run

<service-path>

Puts the processor into run mode.

processor_stop

<service-path>

Puts the processor into debug mode.

processor_step

<service-path>

Executes one assembly instruction.

processor_get_register_names

<service-path>

Returns a list with the names of all of the processor's accessible
registers.

processor_get_register

<service-path>
<register_name>

Returns the value of the specified register.

processor_set_register

<service-path>
<register_name>
<value>

Sets the value of the specified register.

Related Links

Nios II Processor Example on page 269

11.12 On-Board Intel FPGA Download Cable II Support

System Console supports an On-Board Intel FPGA Download Cable II circuit via the
USB Debug Master IP component. This IP core supports the master service.

Not all Stratix V boards support the On-Board Intel FPGA Download Cable II. For
example, the transceiver signal integrity board does not support the On-Board Intel
FPGA Download Cable II.

11.13 About Using MATLAB and Simulink in a System Verification

Flow

You can test system development in System Console using MATLAB and Simulink, and
set up a system verification flow using the Intel FPGA Hardware in the Loop (HIL)
tools. In this approach, you deploy the design hardware to run in real time, and
simulate your system's surrounding components in a software environment. The HIL
approach allows you to use the flexibility of software tools with the real-world
accuracy and speed of hardware. You can gradually introduce more hardware
components to your system verification testbench. This technique gives you more

(7) If your system includes a Nios II/f core with a data cache, it may complicate the debugging
process. If you suspect the Nios II/f core writes to memory from the data cache at
nondeterministic intervals; thereby, overwriting data written by the System Console, you can
disable the cache of the Nios II/f core while debugging.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

270

QPS5V3 | 2017.11.06

] ®
11 Analyzing and Debugging Designs with System Console < l n tel)

Note:

Figure 139.

control over the integration process as you tune and validate your system. When your
full system is integrated, the HIL approach allows you to provide stimuli via software
to test your system under a variety of scenarios.

Advantages of HIL Approach

e Avoid long computational delays for algorithms with high processing rates

e API helps to control, debug, visualize, and verify FPGA designs all within the
MATLAB environment

e FPGA results are read back by the MATLAB software for further analysis and
display

Required Tools and Components

e MATLAB software

e DSP Builder for Intel FPGAs software

e Intel Quartus Prime software

e Intel FPGA

The DSP Builder for Intel FPGAs installation bundle includes the System Console
MATLAB API.

Hardware in the Loop Host-Target Setup

(...)

MATLABAPL &

Supported MATLAB API Commands

You can perform your work from the MATLAB environment and leverage the capability
of System Console to read and write to masters and slaves. By using the supported
MATLAB API commands, you do not have to launch the System Console software. The
supported commands are the following:

e SystemConsole.refreshMasters;

e M = SystemConsole.openMaster(l);

e M.write (type, byte address, data);

e M.read (type, byte address, number of words);
e M._close

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
271

intel.

11 Analyzing and Debugging Designs with System Console
QPS5V3 | 2017.11.06

Example 33. MATLAB API Script Example

SystemConsole.refreshMasters; %lInvestigate available targets
M = SystemConsole.openMaster(l); %Creates connection with FPGA target
%%%%%%%% User Application %%%%%%%%%%%%

M:W;ite('uintSZ',Write_address,data); %Send data to FPGA target

data = M.read(“uint32®,read_address,size); %Read data from FPGA target

T e T e
M.close; %Terminates connection to FPGA target

High-Level Flow

1.

® N o v A

Install the DSP Builder for Intel FPGAs software so you have the necessary
libraries to enable this flow

Build your design using Simulink and the DSP Builder for Intel FPGAs libraries
(DSP Builder for Intel FPGAs helps to convert the Simulink design to HDL)

Include Avalon-MM components in your design (DSP Builder for Intel FPGAs can
port non-Avalon-MM components)

Include Signals and Control blocks in your design

Use boundary blocks to separate synthesizable and non-synthesizable logic
Integrate your DSP system in Platform Designer (Standard)

Program your Intel FPGA

Use the supported MATLAB API commands to interact with your Intel FPGA

Related Links

Hardware in the Loop from the MATLAB Simulink Environment white paper

11.14 Deprecated Commands

The table lists commands that have been deprecated. These commands are currently
supported, but are targeted for removal from System Console.

Note: All dashboard_<nane> commands are deprecated and replaced with
toolkit_<nane> commands for Intel Quartus Prime software15.1, and later.

Table 81. Deprecated Commands

Command

Arguments Function

open_service

<service_type> | Opens the specified service type at the specified path.

<service_path> | Calls to open_service may be replaced with calls to claim_service providing that
the return value from claim_service is stored and used to access and close the
service.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

272

http://www.altera.com/literature/wp/wp-01208-hardware-in-the-loop.pdf

®
11 Analyzing and Debugging Designs with System Console l n tel
QPS5V3 | 2017.11.06

11.15 Document Revision History

Table 82. Document Revision History

Date Version Changes

2017.05.08 17.0.0 e Created topic Convert your Dashboard Scripts to Toolkit API.

e Removed Registering the Service Example from Toolkit API Script Examples, and
added corresponding code snippet to Registering a Toolkit.

e Moved .toolkit Description File Example under Creating a Toolkit Description File.

e Renamed Toolkit API GUI Example .toolkit File to .toolkit Description File
Example.

e Updated examples on Toolkit API to reflect current supported syntax.

2015.11.02 15.1.0 e Edits to Toolkit API content and command format.

e Added Toolkit API design example.

e Added graphic to Introduction to System Console.

e Deprecated Dashboard.

e Changed instances of Quartus II to Intel Quartus Prime.

October 2015 15.1.0 e Added content for Toolkit API

— Required .toolkit and Tcl files

— Registering and launching the toolkit

— Toolkit discovery and matching toolkits to IP
— Toolkit API commands table

May 2015 15.0.0 Added information about how to download and start System Console stand-alone.

December 2014 14.1.0 e Added overview and procedures for using ADC Toolkit on MAX 10 devices.

e Added overview for using MATLAB/Simulink Environment with System Console for
system verification.

June 2014 14.0.0 Updated design examples for the following: board bring-up, dashboard service, Nios
II processor, design service, device service, monitor service, bytestream service, SLD
service, and ISSP service.

November 2013 13.1.0 Re-organization of sections. Added high-level information with block diagram,
workflow, SLD overview, use cases, and example Tcl scripts.

June 2013 13.0.0 Updated Tcl command tables. Added board bring-up design example. Removed SOPC
Builder content.

November 2012 12.1.0 Re-organization of content.

August 2012 12.0.1 Moved Transceiver Toolkit commands to Transceiver Toolkit chapter.

June 2012 12.0.0 Maintenance release. This chapter adds new System Console features.

November 2011 11.1.0 Maintenance release. This chapter adds new System Console features.

May 2011 11.0.0 Maintenance release. This chapter adds new System Console features.

December 2010 10.1.0 Maintenance release. This chapter adds new commands and references for Qsys.

July 2010 10.0.0 Initial release. Previously released as the System Console User Guide, which is being

obsoleted. This new chapter adds new commands.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
273

https://www.altera.com/search-archives

QPS5V3 | 2017.11.06 l n tel

12 Debugging Transceiver Links

Note:

The Transceiver Toolkit helps you optimize high-speed serial links in your board design
by providing real-time control, monitoring, and debugging of the transceiver links
running on your board.

The Transceiver Toolkit allows you to:

e Control the transmitter or receiver channels to optimize transceiver settings and
hardware features.

e Test bit-error rate (BER) while running multiple links at the target data rate.

e Run auto sweep tests to identify the best physical media attachment (PMA)
settings for each link.

e For Stratix V devices, view the receiver horizontal and vertical eye margin during
testing.

e Test multiple devices across multiple boards simultaneously.

The Transceiver Toolkit runs from the System Console framework.

To launch the toolkit, click Tools 0 System Debugging Tools [Transceiver
Toolkit. Alternatively, you can run Tcl scripts from the command-line:

system-console --script=<nane of script>

For an online demonstration using the Transceiver Toolkit to run a high-speed link test
with one of the design examples, refer to the Transceiver Toolkit Online Demo on the
Altera website.

Related Links

¢ On-Chip Debugging Design Examples

e Transceiver Toolkit Online Demo

e Transceiver Toolkit for Intel Arria 10 Devices (OTCVRKITA10)
26 Minutes Online Course

e Transceiver Toolkit for 28-nm Devices (OTCVR1100)
39 Minutes Online Course

12.1 Channel Manager

The Channel Manager is the graphical component of the Transceiver Toolkit. The
Channel Manager allows you to configure and control transceiver channels and links,
and adjust programmable analog settings to improve the signal integrity of the link.
The Channel Manager is in the Workspace area of the System Console.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/customertraining/webex/Transceiver_Toolkit/player.html
https://www.altera.com/support/training/course/otcvrkita10.html
https://www.altera.com/support/training/course/otcvr1100.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

®
12 Debugging Transceiver Links l n tel

QPS5V3 | 2017.11.06

The Channel Manager consists of three tabs:
¢ Transmitter Channels
¢ Receiver Channels

e Transceiver Links

Figure 140. Transceiver Links Tab of the Channel Manager

Transmitter Channels | Receiver Chamnels | Transceiver Links |

S e, (L) [s [
Link Alias . Status BER Testpattem Loopbackmode Vop Pre-emphasis DC gain Equaizaton DFE EyeQ
prREs7 [Serial loopbock |48 2200 foff off
PrEST [Serialloopback |48 120 loff off
PRES7 |Serial loopback |48 12/0 off [Off
PRES7 Serial loopback |48 111 off of
PRBS15 Serial loopback |48 1/0/2 off off
FRES1S Serial loopback__|48 100 joff off
PRES1S Serialloopback__ |48 17/1 joff off
PRES1S Serial loopback |48 10/2
PRES1S C 53 1/-1/0
48
8
PRES23 C 3
PRES31 (Serial loopback |48
E PRES31 [Serial loopback |48
L14E-12 PRES3L [Serial loopback |48
&l
“
z |
E |8
" 48
Copy
Paste
Test Pattern »
ker Mode *
(= veep | [LikEyeQ | [LinkAutoSweepaiyeq |
' Loopback Mode '
1 Start 4 Start Transceiver Link i _Tcl Console . L . o
Stop 5 5 * To shift arbitrary instruction register and data register values to *
tions [y | tart Auto Sweep instantiated system level debug (SLD) nodes
14.0acds\qua St Eye)
bewangleystel Import Settings... Start Auto Sweep & EyeQ In addi the directory <QuartusII Dir>/sepc_builder/syste: ole_macros

contains Tcl files that provide miscellansous utilities and examples of how to

158-0 to gx_iin| Export Settings...
ey access the functicnality provided. You can include those macros in your

Channel Manager Functions

The Channel Manager simplifies actions such as:

e Copying and pasting settings—Copy, paste, import, and export PMA settings to
and from channels.

e Importing and exporting settings— To export PMA settings to a text file, select a
row in the Channel Manager. To apply the PMA settings from a text file, select one
or more rows in the Channel Manager. The PMA settings in the text file apply to a
single channel. When you import the PMA settings from a text file, you are
duplicating one set of PMA settings for all the channels you select.

e Starting and stopping tests—The Channel Manager allows you to start and stop
tests by right-clicking the channels. You can select two or more rows in the
Channel Manager to start or stop test for multiple channels.

Related Links

e System Explorer Pane on page 198

e System Console GUI on page 197

e User Interface Settings Reference on page 300

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
275

QPS5V3 | 2017.11.06

] ®
< l n tel) 12 Debugging Transceiver Links

12.1.1 Channel Display Modes

The three channel display modes are:

e Current (default)—shows the current values from the device. Blue text indicates
that the settings are live.

e Min/Max—shows the minimum and maximum values to be used in the auto
sweep.

e Best—shows the best tested values from the last completed auto sweep run.
Note: The Transmitter Channels tab only shows the Current display mode. The

Transceiver Toolkit requires both a transmitter channel and a receiver channel to
perform Auto sweep tests.

12.2 Transceiver Debugging Flow Walkthrough

These steps describe the high-level process of debugging transceivers in your design.
Configuring your System with Debugging Components on page 276.
Programming the Design into an Intel FPGA on page 287.

Loading the Design in the Transceiver Toolkit on page 288.

Linking Hardware Resources on page 288.

Verifying Hardware Connections on page 292.

Identifying Transceiver Channels on page 292.

NoukwDNe

Running Link Tests on page 293 or Controlling PMA Analog Settings on page 297.

12.3 Configuring your System with Debugging Components

The configuration of the debugging system varies by device family.

12.3.1 Adapting an Intel FPGA Design Example

Design examples allow you to quickly test the functionality of the receiver and
transmitter channels in your design. You can modify and customize the design
examples to match your intended transceiver design and signal integrity development
board.

1. Download a design example from the On-Chip Debugging Design Examples page
of the Intel FPGA website.

2. Open the Intel Quartus Prime and click Project 0 Restore Archived Project to
restore the design example project archive.

3. Compare the development board and device specified in the readme . txt file with
your board and device:

Option Description

Same development board and same Directly program the device with the programming file included in
device the example.

Same board, different device Choose the appropriate device and recompile the design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
276

QPS5V3 | 2017.11.06

™ ®
12 Debugging Transceiver Links < l n tel)

Option Description
Different board Edit the necessary pin assignments and recompile the design
example.

To recompile the design, you must make your modifications to the system
configuration in Platform Designer (Standard), regenerate in Platform Designer
(Standard), and recompile the design in the Intel Quartus Prime software to
generate a new programming file.

Once you recompile your design, you can:

Change the transceiver settings in the design examples and observe the effects on
transceiver link performance

Isolate and verify the high-speed serial links without debugging other logic in your
design.

Refer to the readme . txt of each design example for more information.

12.3.1.1 Modifying Stratix V Desigh Examples

You can adapt Intel FPGA desigh examples to experiment with configurations that
match your own design. For example, you can change data rate, number of lanes,
PCS-PMA width, FPGA-fabric interface width, or input reference clock frequency. To
modify the design examples, change the IP core parameters and regenerate the
system in Platform Designer (Standard). Next, update the top-level design file, and
re-assign device I/O pins as necessary.

To modify a Stratix V design example PHY block to match your design, follow these

steps:

1. Determine the number of channels your design requires.

2. Open the <project name>.qpT for the design example in the Intel Quartus Prime
software.
Click Tools 0O Platform Designer (Standard).
On the System Contents tab, right-click the PHY block and click Edit. Specify
options for the PHY block to match your design requirement for number of lanes,
data rate, PCS-PMA width, FPGA-fabric interface width, and input reference clock
frequency.

5. Specify a multiple of the FPGA-fabric interface data width for Avalon Data
Symbol Size. The available values are 8 or 10. Click Finish.
Delete any timing adapter from the design. The timing adaptors are not required.
From the IP Catalog, add one Data Pattern Generator and Data Pattern
Checker for each transmitter and receiver lane.

8. Right-click Data Pattern Generator and click Edit. Specify a value for
ST_DATA_W that matches the FPGA-fabric interface width.

9. Right-click Data Pattern Checker and click Edit. Specify a value for
ST_DATA_W that matches the FPGA-fabric interface width.

10. From the IP Catalog, add a Transceiver Reconfiguration Controller.

11. Right-click Transceiver Reconfiguration Controller and click Edit. Specify 2*

number of lanes for the number of reconfigurations interfaces. Click finish.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
277

intel.

12.

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

Create connections for the data pattern generator and data pattern checker
components. Right-click the net name in the System Contents tab and specify
the following connections.

From To
Block Name Net Name Block Name Net Name
clk_100 clk data_pattern_generator csr_clk
clk_100 clk_reset data_pattern_generator csr_clk_reset
master_0 master data_pattern_generator csr_slave

xcvr_*_phy_0

tx_clk _outO

data_pattern_generator

pattern_out_clk

xcvr_* _phy_ 0

tx_parallel_data0

data_pattern_generator

pattern_out

clk_100 clk data_pattern_checker csr_clk
clk_100 clk_reset data_pattern_checker csr_clk_reset
master_0O master data_pattern_checker csr_slave

xcvr_*_phy_0

rx_clk_outO data_pattern_checker pattern_in_clk

xcvr_*_phy_ 0

rx_parallel_data0 data_pattern_checker pattern_in

13.
14.
15.
16.

17.

18.

19.

Click System [0 Assign Base Addresses.
Connect the reset port of timing adapters to clk_reset of clk _100.
To implement the changes to the system, click Generate 0 Generate HDL.

If you modify the number of lanes in the PHY, you must update the top-level file
accordingly. The following example shows Verilog HDL code for a two-channel
design that declares input and output ports in the top-level design. The example
design includes the low latency PHY IP core. If you modify the PHY parameters,
you must modify the top-level design with the correct port names. Platform
Designer (Standard) displays an example of the PHY, click Generate 0 HDL
Example.

module low_latency 10g_1ch DUT (
input wire GXB_RXL11,
input wire GXB_RXL12,
output wire GXB_TXL11,
output wire GXB_TX12
):

-xcvr_low_latency phy 0 tx_serial_data_export
GXB_TXL12}),
-xcvr_low_latency_phy 0_rx_serial_data_export
GXB_TXL12}),

({GXB_TXL11,
({GXB_RXL11,

From the Intel Quartus Prime software, click Assignments 0O Pin Planner and
update pin assignments to match your board.

Edit the design’s Synopsys Design Constraints (.sdc) to reflect the reference
clock change. Ignore the reset warning messages.

Click Start O Start Compilation to recompile the design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

278

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

intel.

12.3.1.1.1 Generating reconfig_clk from an Internal PLL

You can use an internal PLL to generate the reconfig_clk, by changing the Platform
Designer (Standard) connections to delay offset cancellation until the generated clock

is stable.

If there is no free running clock within the required frequency range of the

reconfiguration clock, add a PLL to the top-level of the design example. The
frequency range varies depending on the device family. Refer to the device family
data sheet for your device.

e When using an internal PLL, hold off offset cancellation until the generated clock is
stable. You do this by connecting the pll_locked signal of the internal PLL to
the .clk_clk_in_reset_n port of the Platform Designer (Standard) system,
instead of the system_reset signal.

Implement the filter logic, inverter, and synchronization to the reconfig_clk

outside of the Platform Designer (Standard) system with your own logic.

You can find the support solution in the Intel FPGA Knowledge Base. The solution
applies to only Arria V, Cyclone V, Stratix IV GX/GT, and Stratix V devices.

12.3.2 Stratix V Debug System Configuration

For Stratix V designs, the Transceiver Toolkit configuration requires instantiation of the
JTAG to Avalon Bridge and Reconfiguration Controller IP cores. Click Tools O IP
Catalog to parameterize, generate, and instantiate the following debugging
components for Stratix V designs.

Table 83. Stratix V / 28nm Transceiver Toolkit IP Core Configuration
Component Debugging Parameterization Notes Connect To
Functions
Transceiver Native Supports all If Enable 10G PCS is enabled, 10G PCS Avalon-ST Data

PHY

debugging functions

protocol mode must be set to basic on the
10G PCS tab.

Pattern Checker
Avalon-ST Data
Pattern Generator
JTAG to Avalon
Master Bridge

Reconfiguration
controller

Custom PHY

Test all possible
transceiver parallel
data widths

Set lanes, group size, serialization factor, data
rate, and input clock frequency to match your
application.

Turn on Avalon data interfaces.
Disable 8B/10B.

Set Word alignment mode to manual.
Disable rate match FIFO.

Disable byte ordering block.

Avalon-ST Data
Pattern Checker
Avalon-ST Data
Pattern Generator
JTAG to Avalon
Master Bridge
Reconfiguration
controller

Low Latency PHY

Test at more than
8.5 Gbps in GT
devices or use of
PMA direct mode
(such as when using
six channels in one
quad)

Set Phase compensation FIFO mode to
EMBEDDED above certain data rates and set
to NONE for PMA direct mode.

Turn on Avalon data interfaces.

Set serial loopback mode to enable serial
loopback controls in the toolkit.

Avalon-ST Data
Pattern Checker
Avalon-ST Data
Pattern Generator
JTAG to Avalon
Master Bridge
Reconfiguration
controller

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

279

http://www.altera.com/support/kdb/solutions/rd12172009_309.html

intel.

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

Component

Debugging
Functions

Parameterization Notes

Connect To

Intel-Avalon Data
Pattern Generator

Generates standard
data test patterns at
Avalon-ST source
ports

e Select PRBS7, PRBS15, PRBS23, PRBS31,
high frequency, or low frequency patterns.

e Turn on Enable Bypass interface for
connection to design logic.

PHY input port

JTAG to Avalon
Master Bridge

Your design logic

Intel-Avalon Data
Pattern Checker

Validates incoming
data stream against
test patterns
accepted on Avalon
streaming sink ports

Specify a value for ST_DATA_W that matches the
FPGA-fabric interface width.

PHY output port

JTAG to Avalon
Master Bridge

Reconfiguration
Controller

Supports PMA control
and other transceiver
settings

e Connect the reconfiguration controller to

e Connect reconfig_from_xcvr to
reconfig_to_xcvr.

e Enable Analog controls.

e Turn on Enable Eye Viewerblock to enable
signal eye analysis (Stratix V only)

e Turn on Enable Bit Error Rate Block for BER
testing

e Turn on Enable decision feedback equalizer
(DFE) block for link optimization

e Enable DFE block

PHY input port

JTAG to Avalon
Master Bridge

JTAG to Avalon Master
Bridge

Accepts encoded
streams of bytes
with transaction data
and initiates Avalon-
MM transactions

N/A

PHY input port
Avalon-ST Data
Pattern Checker
Avalon-ST Data
Pattern Generator
Reconfiguration
Controller

12.3.2.1 Bit Error Rate Test Configuration (Stratix V)

Use the following configuration to perform bit rate error testing in Stratix V designs.

Figure 141. Bit Error Rate Test Configuration (Stratix V)

JTAG-to-Avalon

Master Bridge

Custom PHY
IP Core

or

Your Design Logic

Low-Latency
PHY IP Core

Avalon-ST Data
Pattern Generator

| Avalon-ST Data
Pattern Checker

XCVR Reconfig
Controller

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

®
12 Debugging Transceiver Links l n tel

QPS5V3 | 2017.11.06

Table 84. System Connections: Bit Error Rate Tests

From To

Your Design Logic

Data Pattern Generator bypass port

Data Pattern Generator

PHY input port

JTAG to Avalon Master Bridge

Intel FPGA Avalon Data Pattern Generator

JTAG to Avalon Master Bridge

Intel FPGA Avalon Data Pattern Checker

JTAG to Avalon Master Bridge

PHY input port

Data Pattern Checker

PHY output port

Transceiver Reconfiguration Controller PHY input port

Related Links
Running BER Tests on page 294

12.3.2.2 PRBS Signal Eye Test Configuration (Stratix V)

Use the following configuration to perform PRBS signal eye testing in Stratix V
designs.

Figure 142. PRBS Signal Eye Test Configuration (Stratix V)

JTAG-to-Avalon
Master Bridge SR CUTIEOC"JJZHY
— Reconfiguration or
Controller Low-Latency
s PHY IP Core
; . Avalon-ST Data
VETTCEAa | Pattern Generator
|| Avalon-ST Data

Pattern Checker

Table 85. System Connections: PRBS Signal Eye Tests (Stratix V)

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Intel Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Intel Avalon Data Pattern Checker

Data Pattern Checker PHY output port

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
281

] ®
l n tel) 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

From To
JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller
JTAG to Avalon Master Bridge PHY input port
Transceiver Reconfiguration Controller PHY input port

Related Links
Running PRBS Signal Eye Tests (Stratix V only) on page 295

12.3.2.2.1 Enabling Serial Bit Comparator Mode (Stratix V)

Table 86.

Serial bit comparator mode allows you to run Eye Viewer diagnostic features with
any PRBS patterns or user-design data, without disrupting the data path. For Stratix V
devices, you must enable Serial bit comparator mode.

To enable this mode for Stratix V devices, you must enable the following debugging
component options when configuring the debugging system:

Component Settings for Serial Bit Comparator Mode

Debugging Component Setting for Serial Bit Mode(8)

Transceiver Reconfiguration Controller | Turn on Enable Eye Viewer block and Enable Bit Error Rate Block

Data Pattern Generator(®) Turn on Enable Bypass interface

Serial bit comparator mode is less accurate than Data pattern checker mode for
single bit error checking. Do not use Serial bit comparator mode if you require an
exact error rate. Use the Serial bit comparator mode for checking a large window of
error. The toolkit does not read the bit error counter in real-time because it reads
through the memory-mapped interface. Serial bit comparator mode has the following
hardware limitations for Stratix V devices:

¢ Toolkit uses serial bit checker only on a single channel per reconfiguration
controller at a time.

e When the serial bit checker is running on channel n, you can change only the Vgp,
pre-emphasis, DC gain, and Eye Viewer settings on that channel. Changing or
enabling DFE or CTLE can cause corruption of the serial bit checker results.

e When the serial bit checker is running on a channel, you cannot change settings
on any other channel on the same reconfiguration controller.

e When the serial bit checker is running on a channel, you cannot open any other
channel in the Transceiver Toolkit.

e When the serial bit checker is running on a channel, you cannot copy PMA settings
from any channel on the same reconfiguration controller.

12.3.2.3 Custom Traffic Signal Eye Test Configuration (Stratix V)

Use the following configuration to perform custom traffic signal eye testing in Stratix V
designs.

(8) Settings in Table 86 on page 282 are supported in Stratix V devices only.

(9) Limited support for Data Pattern Generator or data pattern in Serial Bit Mode.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

282

] ®
12 Debugging Transceiver Links l n tEI)

QPS5V3 | 2017.11.06

Figure 143. System Configuration: Custom Traffic Signal Eye Tests (Stratix V)

JTAG-to-Avalon
; Custom PHY
Master Bridge | YCVR 1P Core
Reconfiguration or
Controller Low-Latency
PHY IP Core
Your Design Logic
(Custom Traffic)

Table 87. System Connections: Custom Traffic Signal Eye Tests (Stratix V)

From To
Your design logic with custom traffic PHY input port
JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller
JTAG to Avalon Master Bridge PHY input port
Transceiver Reconfiguration Controller PHY input port

Related Links
Running Custom Traffic Tests (Stratix V only) on page 296

12.3.2.4 Link Optimization Test Configuration (Stratix V)

Use the following configuration for link optimization tests in Stratix V devices.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
283

] ®
l n tel 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

Figure 144. System Configuration: Link Optimization Tests (Stratix V)

JTAG-to-Avalon
i Custom PHY
Master Bridge YOVR P Core
— Reconfiguration or
Controller Low-Latency
PHY IP Core

Avalon-ST Data
Pattern Generator

Your Design Logic

|| Avalon-ST Data

Pattern Checker

From To
Your Design Logic Data Pattern Generator bypass port
Data Pattern Generator PHY input port
JTAG to Avalon Master Bridge Altera Avalon Data Pattern Generator
JTAG to Avalon Master Bridge Altera Avalon Data Pattern Checker
Data Pattern Checker PHY output port
JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller
JTAG to Avalon Master Bridge PHY input port
Transceiver Reconfiguration Controller PHY input port

Related Links
Running the Auto Sweep Test on page 297

12.3.2.5 PMA Analog Setting Control Configuration (Stratix V)

Use the following configuration to control PMA Analog settings in Stratix V designs.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
284

QPS5V3 | 2017.11.06

] ®
12 Debugging Transceiver Links < l n tel)

Figure 145. System Configuration: PMA Analog Setting Control (Stratix V)

JTAG-to-Avalon
: Custom PHY
Master Bridge I— YCVR P Core
Reconfiguration or
Controller Low-Latency
PHY IP Core

Table 88. System Connections: PMA Analog Setting Control (Stratix V)

From To
JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller
JTAG to Avalon Master Bridge PHY input port
Transceiver Reconfiguration Controller | PHY input port

Related Links
Controlling PMA Analog Settings on page 297

12.3.3 Instantiating and Parameterizing Intel Arria 10 Debug IP cores

To debug Intel Arria 10 designs with the Transceiver Toolkit, you must enable
debugging settings in Transceiver Intel FPGA IP cores. You can either activate these
settings when you first instantiate these components, or modify your instance after
preliminary compilation.

The IP cores that you modify are:

e Transceiver Native PHY

e Transceiver ATX PLL

e CMUPLL

o fPLL

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
285

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

intel.

The parameters that you enable in the debug IP cores are:

Table 89. IP Cores and Debug Settings
For more information about these parameters, refer to Debug Settings for Transceiver IP Cores.

IP Core Enable Enable Altera Enable Enable control |[Enable PRBS
dynamic Debug Master capability and status Soft
reconfiguratio |[Endpoint registers registers accumulators
n

Transceiver Native PHY Yes Yes Yes Yes Yes
Transceiver ATX PLL Yes Yes
CMU PLL Yes Yes
fPLL Yes Yes

For each transceiver IP core:

1. In the IP Components tab of the Project Navigator, right-click the IP instance,
and click Edit in Parameter Editor.

2. Turn on debug settings as they appear in the IP Cores and Debug Settings table
above.

Figure 146. Intel Arria 10 Transceiver Native PHY IP Core in the Parameter Editor

Arria 10 / Cyclone 10 Transceiver Native PHY
altera_xcvr_native_alo Details

~ Datapath Options

Transceiver configuration rules:

Basic/Custom (Standard PCS)

basic -

TR Duplex |-‘

PMA configuration rules

Transceiver moce:

Mumber of data channels: 1

Data rate: [1250 Mbps
[l Enable datapath and interface reconfiguration

[_] Enable simplified data interface

[] Disconnect analog resets

[T3 PMA ‘ R PMA | Standard PCS | Dymamic Reconfiguration Generation Options

i [v] Enable chynamic reconfiguration

[]share reconfiguration interface

{ V] Enabole Altera Debug Master Endpoint

[]Separate reconfig_waltreciuest fram the status of AYMM arbitration with PresICE
\' Optional Reconfiguration Logic
Enable capability registers

Set user-defined IP identifier: \o

Enable control and status registers :

[w] Enalble PRES soft accurulatars

| e P =Ty

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
286

] ®
12 Debugging Transceiver Links l n tel

QPS5V3 | 2017.11.06

Figure 147. Intel Arria 10 Transceiver ATX PLL Core in the Parameter Editor

Arria 10 / Cyclone 10 Transceiver ATX PLL

altera_xcwr_atx_pll.alo Details

| PLL Master Clock Ceneration Block eram\c Feconfiguration f Ceneration Options Advanced Parameters

il Enamle dynamic reconfiguration §

[]Enahle Altera Debug Master Endpoint

[]Separate reconfio_waitrequest from the status of AYMM arbitration with PresICE

ogic

Set user-defined IF identifier |0

:[¥] Enable control and status registers :
~ Configuration Files
Configuration file prefix: [altera_xcwr_atx_pli_al0
|| Generate Systermyerllog package file

[] Generate C header file
(] Generate MIF (Memory Initialize File)
~ Configuration Profiles
[] Enable multiple reconfiguration profiles
] i

| »

3. Click Generate HDL.
After enabling parameters for all IPs in the design, recompile your project.
12.3.3.1 Debug Settings for Transceiver IP Cores

The table describes the settings that you turn on when preparing your transceiver for
debug:

Table 90. Intel FPGA IP Settings for Transceiver Debug

Setting Description

Enable Dynamic Reconfiguration Allows you to change the behavior of the transceiver channels and PLLs without
powering down the device

Enable Altera Debug Master Allows you to access the transceiver and PLL registers through System Console.

Endpoint When you recompile your design, Intel Quartus Prime software inserts the ADME,
debug fabric, and embedded logic during synthesis.

Enable capability registers Capability registers provide high level information about the configuration of the
transceiver channel

Enable control and status Enables soft registers to read status signals and write control signals on the PHY

registers interface through the embedded debug.

Enable PRBS Soft Accumulators Enables soft logic for performing PRBS bit and error accumulation when you use

the hard PRBS generator and checker.

For more information about dynamic reconfiguration parameters on Intel Arria 10
devices, refer to the Intel Arria 10 Transceiver PHY User Guide.

Related Links

Dynamic Reconfiguration Parameters
In Intel Arria 10 Transceiver PHY User Guide

12.4 Programming the Design into an Intel FPGA

After you include debug components in the design, compile, and generate
programming files, you can program the design in the Intel FPGA.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
287

https://www.altera.com/documentation/nik1398707230472.html#nik1398706818885

QPS5V3 | 2017.11.06

] ®
< l n tel) 12 Debugging Transceiver Links

Related Links
Programming Intel FPGA Devices on page 444

12.5 Loading the Design in the Transceiver Toolkit

If the FPGA is already programmed with the project when loading, the Transceiver
Toolkit automatically links the design to the target hardware in the toolkit. The toolkit
automatically discovers links between transmitter and receiver of the same channel.

Before loading the device, ensure that you connect the hardware. The device and JTAG
connections appear in the Device and Connections folders of the System Explorer
pane.

To load the design into the Transceiver Toolkit:
1. 1In the System Console, click File O Load Design.
2. Select the .sof programming file for the transceiver design.

After loading the project, the designs and design instances folders in the System
Explorer pane display information about the design, such as the design name and the
blocks in the design that can communicate to the System Console.

Related Links

System Explorer Pane on page 198

12.6 Linking Hardware Resources

Linking the hardware resources maps the project you load to the target FPGA. If you
load multiple design projects for multiple FPGAs, then linking indicates which of the
projects is in each of the FPGAs. The toolkit automatically discovers hardware and
designs you connect. You can also manually link a design to connected hardware
resources in the System Explorer.

If you are using more than one Intel FPGA board, you can set up a test with multiple
devices linked to the same design. This setup is useful if you want to perform a link
test between a transmitter and receiver on two separate devices. You can also load
multiple Intel Quartus Prime projects and link between different systems. You can
perform tests on separate and unrelated systems in a single Intel Quartus Prime
instance.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

288

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

Figure 148. One Channel Loopback Mode for Stratix V (28nm)

Top-Level Design (FPGA)

Transceiver Toolkit
host computer

XCVR
JTAG-to-Avalon ¢ .
. 1 Reconfiguration [——
Master Bridge
Controller

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core
or
Low-Latency
PHY IP Core

Loopback
on board

Figure 149. One Channel Loopback Mode for Intel Arria 10devices

Transceiver Toolkit
Host Computer

Top-Level Design (FPGA)

Transceiver Native PHY IP

q Hard PRBS Generator
Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

289

™} ®
l n tel 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

Figure 150. Four Channel Loopback Mode for Stratix V / 28nm

XCVR
Reconfiguration
Controller

Transceiver Toolkit JTAG-to-Avalon
host computer Master Bridge

Custom PHY
IP Core
or
Low-Latency
PHY IP Core

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
290

] ®
12 Debugging Transceiver Links l n tel)

QPS5V3 | 2017.11.06

Figure 151. Four Channel Loopback Mode for Intel Arria 10devices

Top-Level Design (FPGA)

Transceiver Native PHY IP
. p| [AlteraDebug Master
Host Computer l Endpoint (gADME)
Hard PRBS Generator
Hard PRBS Checker
ard PRBS Generator
Hard PRBS Checker

Hard PRBS Generator

Hard PRBS Checker

Hard PRBS Generator

Hard PRBS Checker

Transceiver Toolkit

!

II

12.6.1 Linking One Design to One Device

To link one design to one device by one Intel FPGA Download Cable:

1. Load the design for your Intel Quartus Prime project.

2. If the design is not auto-linked, link each device to an appropriate design.
3. Create the link between channels on the device to test.

12.6.2 Linking Two Designs to Two Devices

To link two designs to two separate devices on the same board, connected by one
Intel FPGA Download Cable download cable:

Load the design for all the Intel Quartus Prime project files you need.

2. If the design does not auto-link, link each device to an appropriate design
3. Open the project for the second device.
4. Link the second device on the JTAG chain to the second design (unless the design

auto-links).
5. Create a link between the channels on the devices you want to test.

12.6.3 Linking One Designh on Two Devices

To link the same design on two separate devices, follow these steps:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
291

| | ®
l n tel) 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

In the Transceiver Toolkit, open the .sof you are using on both devices.
Link the first device to this design instance.
Link the second device to the design.

A W N =

Create a link between the channels on the devices you want to test.

12.6.4 Linking Designs and Devices on Separate Boards

To link two designs to two separate devices on separate boards that connect to
separate Intel FPGA Download Cables:

Load the design for all the Intel Quartus Prime project files you need.

2. If the design does not auto-link, link each device to an appropriate design.
3. Create the link between channels on the device to test.
4. Link the device connected to the second Intel FPGA Download Cable to the second

design.
5. Create a link between the channels on the devices you want to test.

12.7 Verifying Hardware Connections

Note:

Verifying hardware connections before you perform link tests saves time in the work
flow. Use the toolkit to send data patterns and receive them correctly.

After you load the design and link the hardware:

1. Verify that the channels connect correctly and loop back properly on the hardware.
Verify that the RX is locked to Data.

Start the generator on the Transmitter Channel.

Start the checker on the Receiver Channel.

ua A W N

Verify you have Lock to Data, and the Bit Error Rate between the two is very low
or zero.

After you verify communication between transmitter and receiver, you can create a
link between the two transceivers and perform Auto Sweep and Eye Viewer tests with
this pair.

The Transceiver Toolkit can perform Eye Viewer tests only on Stratix V devices.

12.8 Identifying Transceiver Channels

Verify if the Transceiver Toolkit detects your channels correctly. The toolkit identifies a
channel automatically whenever a receiver and transmitter share a transceiver
channel.

The Transceiver Toolkit automatically displays transmitter and receiver channels that it
recognizes on the Transmitter Channels and Receiver Channels tabs of the
Channel Manager. You can also manually identify the transmitter and receiver in a
transceiver channel, and create a link between the two for testing.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

292

12 Debugging Transceiver Links

intel)

QPS5V3 | 2017.11.06

12.8.1 Controlling Transceiver Channels

To adjust or monitor transmitter or receiver settings while the channels are running:
e In the Transmitter Channels tab, click Control Transmitter Channel
e In the Receiver Channels tab, click Control Receiver Channel.

e In the Transceiver Links tab, click Control Receiver Channel.

For example, you can transmit a data pattern across the transceiver link, and then
report the signal quality of the data you receive.

12.8.2 Creating Links

The toolkit automatically creates links when a receiver and transmitter share a
transceiver channel. You can also manually create and delete links between
transmitter and receiver channels. You create links in the Setup dialog box.
Setup Dialog Box

Click Setup from the Channel Manager to open the Setup dialog box.

Table 91. Setup Dialog Box Menu
Command Name Description Enabled
Edit Transmitter Alias Starts the inline edit of the alias of the selected row. Only enabled if one row
is selected.
Edit Receiver Alias Starts the inline edit of the alias of the selected row. Only enabled if one row
is selected.
Edit Transceiver Link Alias Starts the inline edit of the alias of the selected row. Only enabled if one row
is selected.
Copy Copies the text of the selected rows to the clipboard. The Enabled if one or more
text copied depends on the column clicked on. The text rows are selected.
copied to the clipboard is newline delimited.

12.8.3 Manually Creating a Transceiver Link

Creating a link designates which Transmitter and Receiver channels connect physically.

To create a transceiver link with the Channel Manager:

Click Setup.

Select the generator and checker you want to control.
Select the transmitter and receiver pair you want to control.
Click Create Transceiver Link.

Click Close

AN A

The toolkit names the link automatically, but you can rename it using a link alias and
give the link a shorter, more meaningful name.

12.9 Running Link Tests

Once you identify the transceiver channels for debugging, you can run link tests. Use
the Transceiver Links tab to control link tests.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
293

| | ®
l n tel) 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

When you run link tests, channel color highlights indicate the test status:

Table 92. Channel Color Highlights

Color Transmitter Channel Receiver Channel
Red Channel is closed or generator clock is not Channel is closed or checker clock is not running.
running.
Green Generator is sending a pattern. Checker is checking and data pattern is locked.
Neutral (same color Channel is open, generator clock is running, Channel is open, checker clock is running, and
as background) and generator is not sending a pattern. checker is not checking.
Yellow N/A Checker is checking and data pattern is not
locked.

12.9.1 Running BER Tests

BER tests help you assess signal integrity. Follow these steps to run BER tests across a
transceiver link:

In the Channel Manager, click Control Transceiver Link.

2. Specify a PRBS Test pattern

3. If your device supports setting a Checker mode, set to Data pattern checker.

4. Try different values of Reconfiguration, Generator, or Checker settings, if
available.

5. Click Start to run the pattern with your settings.

6. If your device supports error injection, you can click Inject Error to inject error
bits.

7. You can also Reset the counter, or Stop the test.

Note: Intel Arria 10 devices do not support Inject Error if you use the hard PRBS
Pattern Generator and Checker in the system configuration.

Related Links
Bit Error Rate Test Configuration (Stratix V) on page 280

12.9.2 Signal Eye Margin Testing (Stratix V only)

Stratix V includes Eye Viewer circuitry, that allows visualization of the horizontal and
vertical eye margin at the receiver. For supported devices, use signal eye tests to tune
the PMA settings of your transceiver. This results in the best eye margin and BER at
high data rates. The toolkit disables signal eye testing for unsupported devices.

The Eye Viewer graph can display a bathtub curve, eye diagram representing eye
margin, or heat map display. The run list displays the statistics of each Eye Viewer
test. When PMA settings are suitable, the bathtub curve is wide, with sharp slopes
near the edges. The curve is up to 30 units wide. If the bathtub is narrow, then the
signal quality is poor. The wider the bathtub curve, the wider the eye. The smaller the
bathtub curve, the smaller the eye. The eye contour shows the estimated horizontal
and vertical eye opening at the receiver.

You can right-click any of the test runs in the list, and then click Apply Settings to
Device to quickly apply that PMA setting to your device. You can also click Export,
Import, or Create Report.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
294

] ®
12 Debugging Transceiver Links l n tel)

QPS5V3 | 2017.11.06

Figure 152. Eye Viewer Settings and Status Showing Results of Two Test Runs

* EyeQ status

o
2

"
S e R "
.
g
i —_ T e T A
B
o
s - o=

Figure 153. Heat Map Display and Bathtub Curve Through Eye

Wisthbzunes

12.9.2.1 Running PRBS Signal Eye Tests (Stratix V only)

Run PRBS signal eye tests to visualize the estimated horizontal and vertical eye
opening at the receiver. After programming the FPGA with your debugging design,

loading the design in the toolkit, and linking hardware, follow these steps to run PRBS
signal eye tests:

1. Click Setup.
a. Select the generator and checker you want to control.
b. Select the transmitter and receiver pair you want to control.
c. Click Create Transceiver Link and click Close.

2. Click Link Eye Viewer, and select Eye Viewer as the Test mode. The Eye
Viewer mode displays test results as a bathtub curve, heat map, or eye contour
representing bit error and phase offset data.

3. Specify the PRBS Test pattern and the Checker mode. Use Serial bit

comparator checker mode only for checking a large window of error with custom
traffic.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
295

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

The checker mode option is only available after you turn on Enable Eye Viewer
block and Enable Bit Error Rate Block in the Reconfiguration Controller
component. (Stratix V designs only)

Specify Run length and Eye Viewer settings to control the test coverage and
type of Eye Viewer results displayed, respectively.

Click Start to run the pattern with your settings. Eye Viewer uses the current
channel settings to start a phase sweep of the channel. The phase sweep runs 32
iterations. As the run progresses, view the status under Eye Viewer status. Use
this diagram to compare PMA settings for the same channel and to choose the
best combination of PMA settings for a particular channel.

When the run completes, the chart displays the characteristics of each run. Click
Stop to halt the test, change the PMA settings, and re-start the test. Click Create
Report to export data to a table format for further viewing.

Related Links

PRBS Signal Eye Test Configuration (Stratix V) on page 281
AN 678: High-Speed Link Tuning Using Signal Conditioning Circuitry

12.9.3 Running Custom Traffic Tests (Stratix V only)

After programming the FPGA with your debugging design, loading the design in the
toolkit, and linking hardware, follow these steps to run custom traffic tests:

u ~h W N

10.

In the Channel Manager, click Setup.

Select the associated reconfiguration controller.
Click Create Transceiver Link and click Close.
Click the Receiver Eye Viewer tab.

Select Eye Viewer as the Test mode. The Eye Viewer mode displays test
results as a bathtub curve, heat map, or eye contour representing bit error and
phase offset data.

Specify the PRBS Test pattern.
For Checker mode, select Serial bit comparator.

The checker mode option is only available after you turn on Enable Eye Viewer
block and Enable Bit Error Rate Block for the Reconfiguration Controller
component.

Specify Run length and Eye Viewer settings to control the test coverage and
type of Eye Viewer results displayed, respectively.

Click Start to run the pattern with your settings. Eye Viewer uses the current
channel settings to start a phase sweep of the channel. The phase sweep runs 32
iterations. As the run progresses, view the status under Eye Viewer status.

When the run completes, the chart displays the characteristics of each run. Click
Stop to halt the test, change the PMA settings, and re-start the test. Click Create
Report to export data to a table format for further viewing.

Related Links
Custom Traffic Signal Eye Test Configuration (Stratix V) on page 282

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

296

http://www.altera.com/literature/an/an678.pdf

| | ®
12 Debugging Transceiver Links l n tel)

QPS5V3 | 2017.11.06

12.9.4 Link Optimization Tests

The Transceiver Toolkit auto sweep test automatically sweeps PMA ranges to help you
find the best transceiver settings. The toolkit allows you to store a history of the test
runs, and keep a record of the best PMA settings. Use the best settings that the toolkit
determined in your final design to improve signal integrity.

12.9.4.1 Running the Auto Sweep Test

to run link optimization tests:

1.
2.

In the Transceiver Links tab, select the channel you want to control.

Click Link Auto Sweep.
The Advanced tab appears with Auto sweep as Test mode.

Specify the PRBS Test pattern.

Specify Run length experiment with the Transmitter settings, and Receiver
settings to control the test coverage and PMA settings, respectively.

Click Start to run all combinations of tests meeting the PMA parameter limits.
When the run completes the chart is displayed and the characteristics of each run
are listed in the run list.

You can click Stop to halt the test, change the PMA settings, and re-start the test.
Click Create Report to export data to a table format for further viewing.

If you want to determine the best tap settings using decision feedback
equalization (DFE):

a. Set the DFE mode to Off.

b. Use Auto Sweep to find optimal PMA settings.
c. If BER = 0, use the best PMA settings achieved.
d

If BER > 0, use this PMA setting, and set the minimum and maximum values
obtained from Auto Sweep to match this setting. Set the maximum DFE range
to limits for each of the three DFE settings.

e. Run Create Report to view the results and determine which DFE setting has
the best BER. Use these settings in conjunction with the PMA settings for the
best results.

Related Links

Link Optimization Test Configuration (Stratix V) on page 283
Instantiating and Parameterizing Intel Arria 10 Debug IP cores on page 285

12.9.4.2 TODO task

For the Altera Offline Compiler (AOC) to target a specific board package, you have to
set the environment variable AOCL_BOARD_PACKAGE ROOT to point to the directory
where you set up the board installation environment.

To set up the board environment, perform the following tasks:

12.10 Controlling PMA Analog Settings

The Transceiver Toolkit allows you to directly control PMA analog settings while the link
is running. To control PMA analog settings, follow these steps:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
297

®
l n tel 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

1. In the Channel Manager, click Setup, and specify the following:

a. In the Transmitter Channels tab, define a transmitter without a generator,
and click Create Transmitter Channel.

b. In the Receiver Channels tab, define a receiver without a generator, and
click Create Receiver Channel.

c. In the Transceiver Links tab, select the transmitter and receivers you want
to control, and click Create Transceiver Link.

d. Click Close.

2. Click Control Receiver Channel, Control Transmitter Channel, or Control
Transceiver Link to directly control the PMA settings while running.

Figure 154. Controlling Transmitter Channel

Basic

Testpatiern: |[pPRES1S

Generator mode: [Harcd PRES + || [
L 1

~ Transmitter channel |
Transceher
Channel address: 3
Diata rate: 1062500 Mops
PLL refclk frequency: 0.00 MHz
TH/CMU PLL stahes: A
Reconfiguration
Channel addrass; 3
Vo control: (31 v.

Fre-emphasis 1st post-tap: |4 =

4

Pre-emphasis pre-tap:

Pre-emphasis 2nd post-tap:

L¥X]
e |

4

Pre-emphasis 2nd pre-tap:
Generator

Preamble weord: e
Mumber of preamble beats:

| Use preamble upor start

fart [[Shtop | EnjectEmer

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
298

12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

Figure 155. Controlling Receiver Channel

Testpattern: [pRBS15
Chedier mode: !'r.iard PRES

Transcelver
Channel address:
Data rate:
PLL refidk frequency:

[Engble word algrer

R COR locked to ref dock:
FX CDR. locked to data:

Reconfiguration
Channel address:

DC gain:
Equalization mode:
Equalization control:
VEAD

DFE mode:

DFE 1stpost-tap:
CFE 2nd post-tap:
DFE rd post-tap:

[#] DFE 4th post-tap:

DFE 5th post-tap:
DFE sth post-tap:
DOFE 7th post-tap:

|| OFE 8th post-tap:

DFE 9th post-tap:
DFE 10th post-tap:

OFE 1ith post-tap:
Checker

Mumber of bits tested:

Mumber of error bits:
Bit error rate (BER):

Start

11

10625.00 Mbgos

0,00 MHz

A

Locked

11

2 |
Man >
3)
& =
Manual -
.

1

5 -
s =
3 v
2 -
[=
o =
5 —
o =
o -]
- =
] =3
5.5128E11

]

1.4512E-11

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
299

intel.

Figure 156. Controlling Transceiver Link

' Basic | Advanced |

12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

Test pattern:

PRES15

Generatorjchecker mode: [Hard PRES

Loopbadk mode:

ff

Transceiver
Channel address:
Datarate:
PLL refck frequency:
THACMU PLL status:
Reconfiguration
Channel address:

WV, CORErol:

oD
Pre-emphasis 1st post-tap:

Pre-emphasis pre-tap:

Pre-emphasis 2nd post-tap:

Pre-emphasis 2nd pre-tap:
Generator

Preamble word:

Mumber of preamble beats:

Use preamble upon start

+ | [Refresh

w Transmitter channel: () TX_phy_80000_address_1_12

12

10625.00 Mbps
0.00 MHz

YA

12
[31 v

e

Transceiver
Channel address:
Data rate:
PLL refclk frequency:
Enable word aligner

RX COR locked to ref clock:

RX COR locked to data:
Reconfiguration

Channel address:

DC gain:
Equalization mode:
Equalization contral;
VGA:

DFE mode:

DFE 1st post-tap:
DFE 2nd post-tap:
DFE 3rd post-tap:

./ DFE 4th post-tap:
DFE 5th post-tap:
DFE 6th post-tap:
DFE 7th post-tap:

DFE 8th post-tap:
DFE Sth post-tap:
DFE 10th post-tap:
DFE 11th post-tap:
Checker
Number of bits tested:

Number of error bits:
Bit error rate (BER):

| Stop [Inject Error | Reset

12
10625.00 Mbos
0.00 MHz

2.8382F11
0
0

Receiver channel | () RX_phy_80000_sddress 112

Related Links

e Instantiating and Parameterizing Intel Arria 10 Debug IP cores on page 285

e PMA Analog Setting Control Configuration (Stratix V) on page 284

e User Interface Settings Reference on page 300

12.11 User Interface Settings Reference

Note:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

300

The Transceiver Toolkit user interface allows you to specify these settings:

All the settings appear in the Transceiver Link control pane.

12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

intel.

Table 93. Transceiver Toolkit Control Pane Settings
Setting Description Control Pane
Alias Name you choose for the channel. Transmitter pane

Receiver pane

Auto Sweep status

Reports the current and best tested bits, errors, bit error rate, and
case count for the current Auto Sweep test.

Receiver pane

Bit error rate (BER)

Specifies errors divided by bits tested since the last reset of the
checker.

Receiver pane

Channel address

Logical address number of the transceiver channel.

Transmitter pane
Receiver pane

Data rate

Data rate of the channel that appears in the project file, or data rate
the frequency detector measures.

To use the frequency detector, turn on Enable Frequency Counter
in the Data Pattern Checker IP core or Data Pattern Generator IP
core, regenerate the IP cores, and recompile the design.

The measured data rate depends on the Avalon management clock
frequency that appears in the project file.

If you make changes to your settings and want to sample the data
rate again, click the Refresh button next to the Data rate

Transmitter pane
Receiver pane

DC gain

Circuitry that provides an equal boost to the incoming signal across
the frequency spectrum.

Receiver pane

DFE mode

Decision feedback equalization (DFE) for improving signal quality.
e Values 1-5 (Stratix V devices)
e Values 1-11 (Intel Arria 10 devices)

In Intel Arria 10 devices, DFE modes are Off, Manual and
Adaptation Enabled. DFE in Adaptation Enabled mode
automatically tries to find the best tap values.

In Stratix V devices DFE modes are Off, Manual, One-time
adaptive mode and Adaptation Enabled. Adaptation Enabled mode
DFE automatically tries to find the best tap values.

Receiver pane

Enable word aligner
(Stratix V only)

Forces the transceiver channel to align to the word you specify.

Receiver pane

Equalization control

Boosts the high-frequency gain of the incoming signal, thereby
compensating for the low-pass filter effects of the physical medium.
When you use this option with DFE, use DFE in Manual or
Adaptation Enabled mode.

In Stratix V devices, auto sweep supports AEQ one-time adaptation.

Receiver pane

Equalization mode

For Intel Arria 10 devices, you can set Equalization Mode to
Manual or Triggered.

In Stratix V devices, Adaptive equalization (AEQ) automatically
evaluates and selects the best combination of equalizer settings and
turns off Equalization Control. The one-time selection determines
the best setting and stops searching. You can use AEQ for multiple,
independently controlled receiver channels.

Receiver pane

Error rate limit

Turns on or off error rate limits. Start checking after specifies the
number of bits the toolkit waits before looking at the bit error rate
(BER) for the next two checks.

Bit error rate achieves below sets upper bit error rate limits. If the
error rate is better than the set error rate, the test ends.

Bit error rate exceeds sets lower bit error rate limits. If the error
rate is worse than the set error rate, the test ends.

Receiver pane

Generator/Checker
mode

Specifies Data pattern checker or Serial bit comparator for BER
tests.

Receiver pane

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

301

intel.

12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

Setting

Description

Control Pane

If you enable Serial bit comparator the Data Pattern Generator

sends the PRBS pattern, but the serial bit comparator checks the

pattern.

In Bypass mode, clicking Start begins counting on the Serial bit

comparator.

For BER testing:

e Intel Arria 10 devices support the Data Pattern Checker and the
Hard PRBS.

e Stratix V devices support the Data Pattern Checker and the Serial
Bit Checker.

Horizontal phase step
interval (Stratix V only)

Specifies the number of horizontal steps to increment when
performing a sweep. Increasing the value increases the speed of the
test but at a lower resolution. This option only applies to eye contour.

Transmitter pane
Receiver pane

Increase test range

For the selected set of controls, increases the span of tests by one
unit down for the minimum, and one unit up for the maximum.

You can span either PMA Analog controls (non-DFE controls), or the
DFE controls. You can quickly set up a test to check if any PMA setting
combinations near your current best yields better results.

To use, right-click the Advanced panel

Receiver pane

Inject Error (Stratix V
only feature)

Flips one bit to the output of the data pattern generator to introduce
an artificial error.

Transmitter pane

Maximum tested bits

Sets the maximum number of bits tested for each test iteration.

Receiver pane

Number of bits tested

Specifies the number of bits tested since the last reset of the checker.

Receiver pane

Number of error bits

Specifies the number of error bits encountered since the last reset of
the checker.

Receiver pane

Number of preamble
beats

(Stratix V only feature) Number of clock cycles to which the preamble
word is sent before the test pattern begins.

Transmitter pane

PLL refclk freq

Channel reference clock frequency that appears in the project file, or
reference clock frequency calculated from the measured data rate.

Transmitter pane
Receiver pane

Populate with

Right-click the Advanced panel to load current values on the device
as a starting point, or initially load the best settings auto sweep
determines. The Intel Quartus Prime software automatically applies
the values you specify in the drop-down lists for the Transmitter
settings and Receiver settings.

Receiver pane

Preamble word

Word to send out if you use the preamble mode (only if you use soft
PRBS Data Pattern Generator and Checker).

Transmitter pane

Pre-emphasis

This programmable module boosts high frequencies in the transmit
data for each transmit buffer signal. This action counteracts possible
attenuation in the transmission media.

(Stratix V only) Using pre-emphasis can maximize the data eye
opening at the far-end receiver.

Transmitter pane

Receiver channel

Specifies the name of the selected receiver channel.

Receiver pane

Refresh Button

After loading the .pof, loads fresh settings from the registers after
running dynamic reconfiguration.

Transmitter pane
Receiver pane

Reset

Resets the current test.

Receiver pane

Rules Based
Configuration (RBC)
validity checking

Displays in red any invalid combination of settings for each list under
Transmitter settings and Receiver settings, based on previous
settings.

Receiver pane

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

intel.

Setting Description Control Pane
When you enable this option, the settings appear in red to indicate
the current combination is invalid. This action avoids manually testing
invalid settings that you cannot compile for your design, and prevents
setting the device into an invalid mode for extended periods of time
and potentially damaging the circuits.
Run length Sets coverage parameters for test runs. Transmitter pane

Receiver pane

RX CDR PLL status(10)

Shows the receiver in lock-to-reference (LTR) mode. When in auto-
mode, if data cannot be locked, this signal alternates in LTD mode if
the CDR is locked to data.

Receiver pane

RX CDR data status

Shows the receiver in lock-to-data (LTD) mode. When in auto-mode,
if data cannot be locked, the signal stays high when locked to data
and never switches.

Receiver pane

Serial loopback enabled

Inserts a serial loopback before the buffers, allowing you to form a
link on a transmitter and receiver pair on the same physical channel
of the device.

Transmitter pane
Receiver pane

Start Starts the pattern generator or checker on the channel to verify Transmitter pane
incoming data. Receiver pane
Stop Stops generating patterns and testing the channel. Transmitter pane

Receiver pane

Target bit error rate
(Stratix V only)

Finds the contour edge of the bit error rate that you select. This
option only applies to eye contour mode.

Transmitter pane
Receiver pane

Test mode

Allows you to specify the test mode.

Intel Arria 10 devices support Auto Sweep test mode only.
Stratix V devices support:

e Auto Sweep test mode

e Eye Viewer test mode

e Auto Sweep and Eye Viewer test mode

Receiver pane

Test pattern

Test pattern sent by the transmitter channel. Intel Arria 10 devices
support PRBS9, PRBS15, PRBS23, and PRBS31).

Stratix V devices support PRBS7, PRBS15, PRBS23, PRBS31,
LowFrequency, HighFrequency, and Bypass mode. The Data
Pattern Checker self-aligns both high and low frequency patterns. Use
Bypass mode to send user-design data.

Transmitter pane
Receiver pane

Time limit

Specifies the time limit unit and value to have a maximum bounds
time limit for each test iteration

Receiver

Transmitter channel

Specifies the name of the selected transmitter channel.

Transmitter pane

TX/CMU PLL status

Provides status of whether the transmitter channel PLL is locked to
the reference clock.

Transmitter pane

Use preamble upon
start

If turned on, sends the preamble word before the test pattern. If
turned off, starts sending the test pattern immediately.

Transmitter pane

Vertical phase step

interval (Stratix V only)

Specify the number of vertical steps to increment when performing a
sweep. Increasing the value increases the speed of the test but at a
lower resolution. This option only applies to the eye contour.

Transmitter pane
Receiver pane

Vop control

Programmable transmitter differential output voltage.

Transmitter pane

(10) For Stratix V devices, the Phase Frequency Detector (PFD) is inactive in LTD mode. The

rx_is_lockedtoref status signal turns on and off randomly, and is not significant in LTD

mode.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

303

] ®
l n tel) 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

Related Links
Channel Manager on page 274

12.12 Troubleshooting Common Errors

Missing high-speed link pin connections

e Check if the pin connections to identify high-speed links (tx_p/n and rx_p/n) are
missing. When porting an older design to the latest version of the Intel Quartus
Prime software, make sure that these connections exist after porting.

Reset Issues:

¢ Ensure that the reset input to the Transceiver Native PHY, Transceiver Reset
Controller, and ATX PLL IP cores is not held active (1"b1). The Transceiver Toolkit
highlights in red all the Transceiver Native PHY channels that you are setting up.

Unconnected reconfig_cl k

e You must connect and drive the reconfig_clk input to the Transceiver Native
PHY and ATX PLL IP cores. Otherwise, the toolkit does not display the transceiver
link channel.

12.13 Scripting API Reference

The Intel Quartus Prime software provides an API to access Transceiver Toolkit
functions using Tcl commands, and script tasks such as linking device resources and
identifying high-speed serial links.

To save your project setup in a Tcl script for use in subsequent testing sessions:
1. Set up and define links that describe the entire physical system
2. Click Save Tcl Script to save the setup for future use.

You can also build a custom test routine script.
To run the scripts, double-click the script name in the System Explorer scripts folder.

To view a list of the available Tcl command descriptions from the Tcl Console window,
including example usage:

1. 1In the Tcl console, type help help. The Console displays all Transceiver Toolkit
Tcl commands.

2. Type help <command name>. The Console displays the command description.

12.13.1 Transceiver Toolkit Commands

The following tables list the available Transceiver Toolkit scripting commands.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
304

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

Table 94.

Transceiver Toolkit channel_rx Commands

intel.

Command

Arguments

Function

transceiver_channel_rx_get_data

<service-path>

Returns a list of the current
checker data. The results are in
the order of number of bits,
number of errors, and bit error
rate.

transceiver_channel_rx_get _dcgain

<service-path>

Gets the DC gain value on the
receiver channel.

transceiver_channel_rx_get_dfe_tap_value

<service-path> <tap
position>

Gets the current tap value of the
channel you specify at the tap
position you specify.

transceiver_channel_rx_get_eqctrl

<service-path>

Gets the equalization control
value on the receiver channel.

transceiver_channel_rx_get_pattern

<service-path>

Returns the current data checker
pattern by name.

transceiver_channel_rx_has_dfe

<service-path>

Reports whether the channel you
specify has the DFE feature
available.

transceiver_channel_rx_has_eye_viewer

<service-path>

(Stratix V only) Reports whether
the Eye Viewer feature is
available for the channel you
specify.

transceiver_channel_rx_is_checking

<service-path>

Returns non-zero if the checker is
running.

transceiver_channel_rx_is_dfe_enabled

<service-path>

Reports whether the DFE feature
is enabled on the channel you
specify.

transceiver_channel_rx_is_locked

<service-path>

Returns non-zero if the checker is
locked onto the incoming data.

transceiver_channel_rx_reset_counters

<service-path>

Resets the bit and error counters
inside the checker.

transceiver_channel_rx_reset

<service-path>

Resets the channel you specify.

transceiver_channel_rx_set_dcgain

<service-path> <value>

Sets the DC gain value on the
receiver channel.

transceiver_channel_rx_set _dfe_enabled

<service-path> <disable(0)/
enable(1)>

Enables or disables the DFE
feature on the channel you
specify.

transceiver_channel_rx_set_dfe_tap_value

<service-path> <tap
position> <tap value>

Sets the current tap value of the
channel you specify at the tap
position you specify to the value
you specify.

transceiver_channel_rx_set_dfe_adaptive

<service-path> <adaptive-
mode>

Sets DFE adaptation mode of the
channel you specify.

Value Description
0 off
1 adaptive
2 one-time adaptive

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

305

intel.

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

Command

Arguments

Function

transceiver_channel_rx_set_eqctrl

<service-path>

<value>

Sets the equalization control
value on the receiver channel.

transceiver_channel_rx_start_checking

<service-path>

Starts the checker.

transceiver_channel_rx_stop_checking

<service-path>

Stops the checker.

transceiver_channel_rx_get_eye_viewer_ph
ase_step

<service-path>

(Stratix V only) Gets the current
phase step of the channel you
specify.

transceiver_channel_rx_set_pattern

<service-path>
name>

<pattern-

Sets the expected pattern to the
one specified by the pattern
name.

transceiver_channel_rx_is_eye_viewer_ena
bled

<service-path>

(Stratix V only) Reports whether
the Eye Viewer feature is enabled
on the channel you specify.

transceiver_channel_rx_set_eye_viewer_en
abled

<service-path>
enable(1)>

<disable(0)/

(Stratix V only) Enables or
disables the Eye Viewer feature
on the channel you specify.

transceiver_channel_rx_set_eye_viewer_ph
ase_step

<service-path>

<phase step>

(Stratix V only) Sets the phase
step of the channel you specify.

transceiver_channel_rx_set _word_aligner_
enabled

<service-path>
enable(1)>

<disable(0)/

Enables or disables the word
aligner of the channel you
specify.

transceiver_channel_rx_is_word_aligner_e
nabled

<service-path>
enable(1)>

<disable(0)/

Reports whether the word aligner
feature is enabled on the channel
you specify.

transceiver_channel_rx_is_locked

<service-path>

Returns non-zero if the checker is
locked onto the incoming signal.

transceiver_channel_rx_is_rx_locked_to_d
ata

<service-path>

Returns 1 if transceiver is in lock
to data (LTD) mode. Otherwise O.

transceiver_channel _rx_is_rx_locked_to r
ef

<service-path>

Returns 1 if transceiver is in lock
to reference (LTR) mode.
Otherwise 0.

transceiver_channel_rx_has_eye viewer_1d

<service-path>

(Stratix V only) Detects whether
the eye viewer in <service-path>
supports 1D-Eye Viewer mode.

transceiver_channel_rx_set_ldeye_mode

<service-path>
enable(1)>

<disable(0)/

(Stratix V only) Enables or
disables 1D-Eye Viewer mode.

transceiver_channel_rx_get_ldeye_mode

<service-path>

(Stratix V only) Returns whether
1D-Eye Viewer mode is on or off.

Table 95.

Transceiver Toolkit channel_tx Commands

Command

Arguments

Function

transceiver_channel_tx_disable_preamble

<service-path>

Disables the preamble mode at
the beginning of generation.

transceiver_channel_tx_enable_preamble

<service-path>

Enables the preamble mode at
the beginning of generation.

transceiver_channel_tx_get _number_of_pre
amble_beats

<service-path>

Returns the number of beats to
send out the preamble word.

transceiver_channel_tx_get_pattern

<service-path>

Returns the pattern.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

306

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

intel.

Command

Arguments

Function

transceiver_channel_tx_get _preamble_word

<service-path>

Returns the preamble word.

transceiver_channel_tx_get_preemphOt

<service-path>

Gets the pre-emphasis first pre-
tap value on the transmitter
channel.

transceiver_channel_tx_get_preemphlt

<service-path>

Gets the pre-emphasis first post-
tap value on the transmitter
channel.

transceiver_channel_tx_get_preemph2t

<service-path>

Gets the pre-emphasis second
post-tap value on the transmitter
channel.

transceiver_channel_tx_get_preemph3t

<service-path>

Gets the pre-emphasis second
pre-tap value on the transmitter
channel.

transceiver_channel_tx_get_vodctrl

<service-path>

Gets the Vpp control value on the
transmitter channel.

transceiver_channel_tx_inject_error

<service-path>

Injects a 1-bit error into the
generator's output.

transceiver_channel_tx_is_generating

<service-path>

Returns non-zero if the generator
is running.

transceiver_channel_tx_is_preamble_enabl
ed

<service-path>

Returns non-zero if preamble
mode is enabled.

transceiver_channel_tx_set _number_of _pre
amble_beats

<service-path>

<number-of-

preamble-beats>

Sets the number of beats to send
out the preamble word.

transceiver_channel_tx_set_pattern <service-path> <pattern- Sets the output pattern to the
name> one specified by the pattern
name.
transceiver_channel_tx_set_preamble_word | <service-path> <preamble- Sets the preamble word to be
word> sent out.
transceiver_channel_tx_set_preemphOt <service-path> <value> Sets the pre-emphasis first pre-
tap value on the transmitter
channel.
transceiver_channel_tx_set_preemphlt <service-path> <value> Sets the pre-emphasis first post-
tap value on the transmitter
channel.
transceiver_channel_tx_set_preemph2t <service-path> <value> Sets the pre-emphasis second
post-tap value on the transmitter
channel.
transceiver_channel_tx_set_preemph3t <service-path> <value> Sets the pre-emphasis second
pre-tap value on the transmitter
channel.
transceiver_channel_tx_set_vodctrl <service-path> <vodctr/ Sets the Vgp control value on the

value>

transmitter channel.

transceiver_channel_tx_start_generation

<service-path>

Starts the generator.

transceiver_channel_tx_stop_generation

<service-path>

Stops the generator.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

307

] ®
l n tel 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

Table 96. Transceiver Toolkit Transceiver Toolkit debug_link Commands

Command Arguments Function
transceiver_debug_link_get_pattern <service-path> Gets the pattern the link uses to
run the test.
transceiver_debug_link_is_running <service-path> Returns non-zero if the test is
running on the link.
transceiver_debug_link_set_pattern <service-path> <data Sets the pattern the link uses to
pattern> run the test.
transceiver_debug_link_start_running <service-path> Starts running a test with the

currently selected test pattern.

transceiver_debug_link_stop_running <service-path> Stops running the test.

Table 97. Transceiver Toolkit reconfig_analog Commands

Command Arguments Function
transceiver_reconfig_analog_get_logic | <service-path> Gets the transceiver logic channel
al_channel_address address currently set.
transceiver_reconfig_analog_get _rx_dc | <service-path> Gets the DC gain value on the
gain receiver channel specified by the

current logic channel address.
transceiver_reconfig_analog_get_rx_eq | <service-path> Gets the equalization control value
ctrl on the receiver channel specified by

the current logic channel address.

transceiver_reconfig_analog_get_tx_pr | <service-path> Gets the pre-emphasis first pre-tap
eemphOt value on the transmitter channel
specified by the current logic
channel address.

transceiver_reconfig_analog_get_tx_pr | <service-path> Gets the pre-emphasis first post-
eemphlt tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_get _tx_pr | <service-path> Gets the pre-emphasis second
eemph2t post-tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_get_tx_vo | <service-path> Gets the Vpp control value on the
dctrl transmitter channel specified by the
current logic channel address.

transceiver_reconfig_analog_set_logic | <service-path> <logic channel Sets the transceiver logic channel

al_channel_address address> address.
transceiver_reconfig_analog_set_rx_dc | <service-path> <dc_gain Sets the DC gain value on the
gain value> receiver channel specified by the

current logic channel address

transceiver_reconfig_analog_set_rx_eq | <service-path> <eqctrl value> Sets the equalization control value
ctrl on the receiver channel specified by
the current logic channel address.

transceiver_reconfig_analog_set tx_pr | <service-path> <value> Sets the pre-emphasis first pre-tap
eemphOt value on the transmitter channel
specified by the current logic
channel address.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
308

] ®
12 Debugging Transceiver Links l n tel

QPS5V3 | 2017.11.06

Command Arguments Function
transceiver_reconfig_analog_set_tx_pr | <service-path> < value> Sets the pre-emphasis first post-
eemphlt tap value on the transmitter

channel specified by the current
logic channel address.

transceiver_reconfig_analog_set_tx_pr | <service-path> <value> Sets the pre-emphasis second post-
eemph2t tap value on the transmitter
channel specified by the current
logic channel address.

transceiver_reconfig_analog_set_tx_vo | <service-path> <vodctrl value> | Sets the Vop control value on the
dectrl transmitter channel specified by the
current logic channel address.

Table 98. Transceiver Toolkit Decision Feedback Equalization (DFE) Commands

Command Arguments Function

alt_xcvr_reconfig_dfe_get_logical_channe | <service-path> Gets the logic channel address
1_address that other
alt_xcvr_reconfig_dfe
commands use to apply.

alt_xcvr_reconfig_dfe_is_enabled <service-path> Reports whether the DFE feature
is enabled on the previously
channel you specify.

alt_xcvr_reconfig_dfe_set_enabled <service-path> <disable(0)/ Enables or disables the DFE
enable(1)> feature on the previously channel
you specify.
alt_xcvr_reconfig_dfe_set_logical_channe | <service-path> <logic (Stratix V only) Sets the logic
1_address channel address> channel address that other

alt_xcvr_reconfig_eye vie
wer commands use.

alt_xcvr_reconfig_dfe_set_tap_value <service-path> <tap Sets the tap value at the
position> <tap value> previously channel you specify at
specified tap position and value.

Table 99. Transceiver Toolkit Eye Monitor Commands (Stratix V only)

Command Arguments Function
alt_xcvr_custom_is_word_aligner_enabled <service-path> <disable(0)/ Reports whether the word aligner
enable(1)> feature is enabled on the

previously channel you specify.

alt_xcvr_custom_set_word_aligner_enabled | <service-path> <disable(0)/ Enables or disables the word

enable(1)> aligner of the previously channel
you specify.
alt_xcvr_custom_is_rx_locked_to_data <service-path> Returns whether the receiver CDR

is locked to data.

alt_xcvr_custom_is_rx_locked_to_ref <service-path> Returns whether the receiver CDR
PLL is locked to the reference
clock.

alt_xcvr_custom_is_serial_loopback_enabl <service-path> Returns whether the serial

ed loopback mode of the previously

channel you specify is enabled.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
309

intel.

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

Command

Arguments

Function

alt_xcvr_custom_set_serial_loopback_enab
led

<service-path> <disable(0)/
enable(1)>

Enables or disables the serial
loopback mode of the previously
channel you specify.

alt_xcvr_custom_is_tx_pll_locked

<service-path>

Returns whether the transmitter
PLL is locked to the reference
clock.

alt_xcvr_reconfig_eye_viewer_get_logical
_channel_address

<service-path>

Gets the logic channel address on
which other
alt_reconfig_eye viewer
commands use.

alt_xcvr_reconfig_eye viewer_get_phase_s
tep

<service-path>

Gets the current phase step of
the previously channel you
specify.

alt_xcvr_reconfig_eye viewer_is_enabled

<service-path>

Reports whether the Eye Viewer
feature is enabled on the
previously channel you specify.

alt_xcvr_reconfig_eye_viewer_set_enabled

<service-path> <disable(0)/
enable(1)>

Enables or disables the Eye
Viewer feature on the previously
channel you specify.

Setting a value of 2 enables both
Eye Viewer and the Serial Bit
Comparator.

alt_xcvr_reconfig_eye viewer_set_logical
_channel_address

<service-path> <logic
channel address>

Sets the logic channel address
that other
alt_reconfig_eye_viewer
commands use.

alt_xcvr_reconfig_eye_viewer_set_phase_s
tep

<service-path> <phase step>

Sets the phase step of the
previously channel you specify.

alt_xcvr_reconfig_eye viewer_has_ber_che
cker

<service-path>

Detects whether the eye viewer
pointed to by <service-path>
supports the Serial Bit
Comparator.

alt_xcvr_reconfig_eye_viewer_ber_checker
_is_enabled

<service-path>

Detects whether the Serial Bit
Comparator is enabled.

alt_xcvr_reconfig_eye viewer_ber_checker
_start

<service-path>

Starts the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_stop

<service-path>

Stops the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_reset_counters

<service-path>

Resets the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_viewer_ber_checker
_is_running

<service-path>

Reports whether the Serial Bit
Comparator counters are
currently running or not.

alt_xcvr_reconfig_eye_viewer_ber_checker
_get_data

<service-path>

Gets the current total bit, error
bit, and exception counts for the
Serial Bit Comparator.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

310

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

intel.

Command

Arguments Function

alt_xcvr_reconfig_eye_viewer_has_ldeye

<service-path> Detects whether the eye viewer
pointed to by <service-path>

supports 1D-Eye Viewer mode.

ode

alt_xcvr_reconfig_eye viewer_set_ldeye m

<service-path> <disable(0)/
enable(1)

Enables or disables 1D-Eye
Viewer mode.

ode

alt_xcvr_reconfig_eye viewer_get_ldeye_m

Gets the enable or disabled state
of 1D-Eye Viewer mode.

<service-path>

Table 100.

Channel Type Commands

Command

Arguments

Function

get_channel_type

<service-path> <logical-
channel-num>

Reports the detected type (GX/GT) of channel </ogical-channel-num
> for the reconfiguration block located at <service-path>.

set_channel_type

<service-path> <logical-
channel-num> <channel-

Overrides the detected channel type of channel </ogical-channel-
num> for the reconfiguration block located at <service-path> to the

type> type specified (0:GX, 1:GT).
Table 101. Loopback Commands
Command Arguments Function

loopback_get

<service-path>

Returns the value of a setting or result on the loopback channel. Available results
include:

e Status—running or stopped.

e Bytes—number of bytes sent through the loopback channel.

e Errors—number of errors reported by the loopback channel.

e Seconds—number of seconds since the loopback channel was started.

loopback_set

<service-path>

Sets the value of a setting controlling the loopback channel. Some settings are only
supported by particular channel types. Available settings include:

e Timer—number of seconds for the test run.
e Size—size of the test data.
¢ Mode—mode of the test.

loopback_start

<service-path>

Starts sending data through the loopback channel.

loopback_stop

<service-path>

Stops sending data through the loopback channel.

12.13.2 Data Pattern Generator Commands

You can use Data Pattern Generator commands to control data patterns for debugging
transceiver channels. You must instantiate the Data Pattern Generator component to
support these commands.

Table 102.

Soft Data Pattern Generator Commands

Command

Arguments Function

data_pattern_generator_start

<service-path> Starts the data pattern generator.

data_pattern_gen

erator_stop

<service-path> Stops the data pattern generator.

data_pattern_generator_is_generating

<service-path> Returns non-zero if the generator is

running.

data_pattern_generator_inject_error

<service-path> Injects a 1-bit error into the

generator output.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
311

intel.

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

Command

Arguments

Function

data_pattern_generator_set_pattern

<service-path>
<pattern-name>

Sets the output pattern specified by
the <pattern-name>. In all, 6
patterns are available, 4 are pseudo-
random binary sequences (PRBS), 1 is
high frequency and 1 is low
frequency.

The PRBS7, PRBS15, PRBS23,
PRBS31, HF (outputs high frequency,
constant pattern of alternating Os and
1s), and LF (outputs low frequency,
constant pattern of 10b’1111100000
for 10-bit symbols and 8b’11110000
for 8-bit symbols) pattern names are
defined.

PRBS files are clear text and you can
modify the PRBS files.

data_pattern_generator_get_pattern

<service-path>

Returns currently selected output
pattern.

data_pattern_generator_get_available_patterns | <service-path>

Returns a list of available data
patterns by name.

data_pattern_generator_enable_preamble

<service-path>

Enables the preamble mode at the
beginning of generation.

data_pattern_generator_disable_preamble

<service-path>

Disables the preamble mode at the
beginning of generation.

data_pattern_generator_is_preamble_enabled

<service-path>

Returns a non-zero value if preamble
mode is enabled.

data_pattern_generator_set_preamble_word

<preamble-word>

Sets the preamble word (could be 32-
bit or 40-bit).

data_pattern_generator_get_preamble_word

<service-path>

Gets the preamble word.

data_pattern_generator_set_preamble_beats

<service-
path><number-of-
preamble- beats>

Sets the number of beats to send out
in the preamble word.

data_pattern_generator_get_preamble_beats

<service-path>

Returns the currently set number of
beats to send out in the preamble
word.

data_pattern_generator_fcnter_start

<service-
path><max-cycles>

Sets the max cycle count and starts
the frequency counter.

data_pattern_generator_check_status

<service-path>

Queries the data pattern generator
for current status. Returns a bitmap
indicating the status, with bits defined
as follows: [0]-enabled, [1]-bypass
enabled, [2]-avalon, [3]-sink ready,
[4]-source valid, and [5]-frequency
counter enabled.

data_pattern_generator_fcnter_report

<service-
path><force-stop>

Reports the current measured clock
ratio, stopping the counting first
depending on <force-stop>.

Table 103. Hard Data Pattern Generator Commands

Command Arguments Function
hard_prbs_generator_start <service-path> Starts the specified generator.
hard_prbs_generator_stop <service-path> Stops the specified generator.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

312

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

intel.

Command

Arguments

Function

hard_prbs_generator_is_generating

<service-path>

Checks the generation status. Returns 1
if generating, O otherwise.

hard_prbs_generator_set_pattern

<service-path>
<pattern>

Sets the pattern of the specified hard
PRBS generator to parameter pattern.

hard_prbs_generator_get_pattern

<service-path>

Returns the current pattern for a given
hard PRBS generator.

hard_prbs_generator_get_available_patterns

<service-path>

Returns the available patterns for a given
hard PRBS generator.

12.13.3 Data Pattern Checker Commands

You can use Data Pattern Checker commands to verify your generated data patterns.
You must instantiate the Data Pattern Checker component to support these

commands.

Table 104.

Soft Data Pattern Checker Commands

Command

Arguments

Function

data_pattern_checker_start

<service-path>

Starts the data pattern checker.

data_pattern_checker_stop

<service-path>

Stops the data pattern checker.

data_pattern_checker_is_checking

<service-path>

Returns a non-zero value if the checker
is running.

data_pattern_checker_is_locked

<service-path>

Returns non-zero if the checker is
locked onto the incoming data.

data_pattern_checker_set_pattern

<service-path>
<pattern-name>

Sets the expected pattern to the one
specified by the <pattern-name>.

data_pattern_checker_get_pattern

<service-path>

Returns the currently selected expected
pattern by name.

data_pattern_checker_get_available_patterns

<service-path>

Returns a list of available data patterns
by name.

data_pattern_checker_get_data

<service-path>

Returns a list of the current checker
data. The results are in the following
order: number of bits, number of errors,
and bit error rate.

data_pattern_checker_reset_counters

<service-path>

Resets the bit and error counters inside
the checker.

data_pattern_checker_fcnter_start

<service-

path><max-cycles>

Sets the max cycle count and starts the
frequency counter.

data_pattern_checker_check_status

<service-path>
<service-path>

Queries the data pattern checker for
current status. Returns a bitmap
indicating status, with bits defined as
follows: [0]-enabled, [1]-locked, [2]-
bypass enabled, [3]-avalon, [4]-sink
ready, [5]-source valid, and [6]-
frequency counter enabled.

data_pattern_checker_fcnter_report

<service-

path><force-stop>

Reports the current measured clock
ratio, stopping the counting first
depending on <force-stop>.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

313

intel.

12 Debugging Transceiver Links
QPS5V3 | 2017.11.06

Table 105. Hard Data Pattern Checker Commands
Command Arguments Function
hard_prbs_checker_start <service-path> Starts the specified hard PRBS checker.
hard_prbs_checker_stop <service-path> Stops the specified hard PRBS checker.
hard_prbs_checker_is_checking <service-path> Checks the running status of the specified

hard PRBS checker. Returns a non-zero value
if the checker is running.

hard_prbs_checker_set_pattern <service-path> Sets the pattern of the specified hard PRBS
<pattern> checker to parameter <pattern>.
hard_prbs_checker_get_pattern <service-path> Returns the current pattern for a given hard

PRBS checker.

hard_prbs_checker_get_available_patterns | <service-path> Returns the available patterns for a given

hard PRBS checker.

hard_prbs_checker_get_data

<service-path> Returns the current bit and error count data
from the specified hard PRBS checker.

hard_prbs_checker_reset_counters <service-path> Resets the bit and error counts of the

specified hard PRBS checker.

12.14 Document Revision History

Table 106. Document Revision History
Date Version Changes
2017.11.06 17.1.0 e Renamed EyeQ to Eye Viewer.
e Updated topic "Transceiver Debugging Flow" and renamed to "Transceiver Debugging
Flow Walkthrough".
e Updated instructions for instantiating and parameterizing Debug IP cores.
— Removed figure: "Altera Debug Master Endpoint Block Diagram".
e Added step on programming designs as a part of the debugging flow.
e Updated information about debugging transceiver links.
2016.10.31 16.1.0 e Removed EyeQ support for Intel Arria 10.
e Renamed "Continuous Adaptation" to "Adaptation Enabled".
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
e Added description of new Refresh button.
e Added description of VGA dialog box.
e Added two tables in Transceiver Toolkit Commands section.
— Hard Data Pattern Generator Commands
— Hard Data Pattern Checker Commands
e Separated Arria 10 and Stratix V system configuration steps.
continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

314

] ®
12 Debugging Transceiver Links l n tel

QPS5V3 | 2017.11.06

Date Version Changes

May 2015 15.0.0 e Added section about Implementation Differences Between Stratix V and Arria 10.

e Added section about Recommended Flow for Arria 10 Transceiver Toolkit Design with
the Intel Quartus Prime Software.

e Added section about Transceiver Toolkit Troubleshooting

e Updated the following sections with information about using the Transceiver Toolkit
with Arria 10 devices:

— Serial Bit Comparator Mode
— Arria 10 Support and Limitations
— Configuring BER Tests
— Configuring PRBS Signal Eye Tests
— Adapting Altera Design Examples
— Modifying Design Examples
— Configuring Custom Traffic Signal Eye Tests
— Configuring Link Optimization Tests
— Configuring PMA Analog Setting Control
— Running BER Tests
— Toolkit GUI Setting Reference
e Reworked Table: Transceiver Toolkit IP Core Configuration

e Replaced Figure: EyeQ Settings and Status Showing Results of Two Test Runs with
Figure: EyeQ Settings and Status Showing Results of Three Test Runs.

e Added Figure: Arria 10 Altera Debug Master Endpoint Block Diagram.
e Added Figure: BER Test Configuration (Arrial0/ Gen 10/ 20nm) Block Diagram.
e Added Figure: PRBS Signal Test Configuration (Arria 10/ 20nm) Block Diagram.

e Added Figure: Custom Traffic Signal Eye Test Configuration (Arria 10/ Gen 10/ 20nm)
Block Diagram.

e Added Figure: PMA Analog Setting Control Configuration (Arria 10/ Gen 10/ 20nm)
Block Diagram.

e Added Figure: One Channel Loopback Mode (Arria 10/ 20nm) Block Diagram.

e Added Figure: Four Channel Loopback Mode (Arria 10/ Gen 10/ 20nm) Block Diagram.
Software Version 15.0 Limitations

e Transceiver Toolkit supports EyeQ for Arria 10 designs.

e Supports optional hard acceleration for EyeQ. This allows for much faster EyeQ data
collection. Enable this in the Arria 10 Transceiver Native PHY IP core under the
Dynamic Configuration tab. Turn on Enable ODI acceleration logic.

December, 2014 | 14.1.0 e Added section about Arria 10 support and limitations.

June, 2014 14.0.0 e Updated GUI changes for Channel Manager with popup menus, IP Catalog, Intel
Quartus Prime, and Qsys.

e Added ADME and JTAG debug link info for Arria 10.

e Added instructions to run Tcl script from command line.

e Added heat map display option.

e Added procedure to use internal PLL to generate reconfig_clk.
e Added note stating RX CDR PLL status can toggle in LTD mode.

November, 2013 13.1.0 e Reorganization and conversion to DITA.

May, 2013 13.0.0 e Added Conduit Mode Support, Serial Bit Comparator, Required Files and Tcl command
tables.

November, 2012 | 12.1.0 e Minor editorial updates. Added Tcl help information and removed Tcl command tables.
Added 28-Gbps Transceiver support section.

August, 2012 12.0.1 e General reorganization and revised steps in modifying Altera example designs.

June, 2012 12.0.0 e Maintenance release for update of Transceiver Toolkit features.

November, 2011 | 11.1.0 e Maintenance release for update of Transceiver Toolkit features.

May, 2011 11.0.0 e Added new Tcl scenario.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
315

] ®
l n tel 12 Debugging Transceiver Links

QPS5V3 | 2017.11.06

Date Version Changes
December, 2010 10.1.0 e Changed to new document template. Added new 10.1 release features.
August, 2010 10.0.1 e Corrected links.
July 2010 10.0.0 e [Initial release.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
316

https://www.altera.com/search-archives

m ®
QPS5V3 | 2017.11.06 l n tel:

13 Quick Design Debugging Using Signal Probe

The Signal Probe incremental routing feature helps reduce the hardware verification
process and time-to-market for system-on-a-programmable-chip (SOPC) designs.
Easy access to internal device signals is important in the design or debugging process.
The Signal Probe feature makes design verification more efficient by routing internal
signals to I/0 pins quickly without affecting the design. When you start with a fully
routed design, you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

The Signal Probe feature supports the Arria series, Cyclone series, MAX II, and Stratix
series device families.

Related Links

System Debugging Tools Overview on page 183

13.1 Design Flow Using Signal Probe

The Signal Probe feature allows you to reserve available pins and route internal signals
to those reserved pins, while preserving the behavior of your design. Signal Probe is
an effective debugging tool that provides visibility into your FPGA.

You can reserve pins for Signal Probe and assign I/O standards after a full compilation.
Each Signal Probe-source to Signal Probe-pin connection is implemented as an
engineering change order (ECO) that is applied to your netlist after a full compilation.

To route the internal signals to the device’s reserved pins for Signal Probe, perform
the following tasks:

Perform a full compilation.

Reserve Signal Probe Pins.

Assign Signal Probe sources.

Add registers between pipeline paths and Signal Probe pins.

Perform a Signal Probe compilation.

o vk wN

Analyze the results of a Signal Probe compilation.

13.1.1 Perform a Full Compilation

You must complete a full compilation to generate an internal netlist containing a list of
internal nodes to probe.

To perform a full compilation, on the Processing menu, click Start Compilation.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
l n tel) 13 Quick Design Debugging Using Signal Probe

QPS5V3 | 2017.11.06

13.1.2 Reserve Signal Probe Pins

Signal Probe pins can only be reserved after a full compilation. You can also probe any
unused I/O0s of the device. Assigning sources is a simple process after reserving Signal
Probe pins. The sources for Signal Probe pins are the internal nodes and registers in
the post-compilation netlist that you want to probe.

Note: Although you can reserve Signal Probe pins using many features within the Intel
Quartus Prime software, including the Pin Planner and the Tcl interface, you should
use the Signal Probe Pins dialog box to create and edit your Signal Probe pins.

13.1.3 Assign Signal Probe Sources

A Signal Probe source can be any combinational node, register, or pin in your post-
compilation netlist. To find a Signal Probe source, in the Node Finder, use the Signal
Probe filter to remove all sources that cannot be probed. You might not be able to find
a particular internal node because the node can be optimized away during synthesis,
or the node cannot be routed to the Signal Probe pin. For example, you cannot probe
nodes and registers within Gigabit transceivers in Stratix IV devices because there are
no physical routes available to the pins.

Note: To probe virtual I/0O pins generated in low-level partitions in an incremental
compilation flow, select the source of the logic that feeds the virtual pin as your Signal
Probe source pin.

Because Signal Probe pins are implemented and routed as ECOs, turning the Signal
Probe enable option on or off is the same as selecting Apply Selected Change or
Restore Selected Change in the Change Manager window. If the Change Manager
window is not visible at the bottom of your screen, on the View menu, point to Utility
Windows and click Change Manager.

Related Links

e Engineering Change Management with the Chip Planner
In Intel Quartus Prime Standard Edition Handbook Volume 2

e Signal Probe Pins Dialog Box

e Add Signal Probe Pins Dialog Box
In Intel Quartus Prime Help

13.1.4 Add Registers Between Pipeline Paths and Signal Probe Pins

You can specify the number of registers placed between a Signal Probe source and a
Signal Probe pin. The registers synchronize data to a clock and control the latency of
the Signal Probe outputs. The Signal Probe feature automatically inserts the number
of registers specified into the Signal Probe path.

The figure shows a single register between the Signal Probe source Reg_b_1 and
Signal Probe Signal Probe_ Output_ 2 output pin added to synchronize the data
between the two Signal Probe output pins.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
318

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471341583
http://quartushelp.altera.com/current/index.htm#program/sipro/comp_db_pin_assignments.htm
http://quartushelp.altera.com/current/index.htm#program/sipro/sipro_db_add_sipro_pin.htm

] ®
13 Quick Design Debugging Using Signal Probe l n tel
QPS5V3 | 2017.11.06

Note:

When you add a register to a Signal Probe pin, the Signal Probe compilation attempts
to place the register to best meet timing requirements. You can place Signal Probe
registers either near the Signal Probe source to meet fyax requirements, or near the
I/O to meet tco requirements.

Figure 157. Synchronizing Signal Probe Outputs with a Signal Probe Register

Reg_a_1 Reg_a_2
jid DFF

Reg_b_1 Reg_b_2
DFF DFF

Logic D Q D Q Logic

0 6

L[> SignalProbe_Output_1

b o 1> SignalProbe_Output_2

SignalProbe
Pipeline
Register

In addition to clock input for pipeline registers, you can also specify a reset signal pin
for pipeline registers. To specify a reset pin for pipeline registers, use the Tcl command
make_sp.

Related Links

Add Signal Probe Pins Dialog Box online help
Information about how to pipeline an existing Signal Probe connection

13.1.5 Perform a Signal Probe Compilation

Perform a Signal Probe compilation to route your Signal Probe pins. A Signal Probe
compilation saves and checks all netlist changes without recompiling the other parts of
the design. A Signal Probe compilation takes a fraction of the time of a full compilation
to finish. The design’s current placement and routing are preserved.

To perform a Signal Probe compilation, on the Processing menu, point to Start and
click Start Signal Probe Compilation.

13.1.6 Analyze the Results of a Signal Probe Compilation

After a Signal Probe compilation, the results are available in the compilation report
file. Each Signal Probe pin is displayed in the Signal Probe Fitting Result page in
the Fitter section of the Compilation Report. To view the status of each Signal Probe
pin in the Signal Probe Pins dialog box, on the Tools menu, click Signal Probe Pins.

The status of each Signal Probe pin appears in the Change Manager window . If the
Change Manager window is not visible at the bottom of your GUI, from the View
menu, point to Utility Windows and click Change Manager.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
319

http://quartushelp.altera.com/current/index.htm#program/sipro/sipro_db_add_sipro_pin.htm

intel)

13 Quick Design Debugging Using Signal Probe
QPS5V3 | 2017.11.06

Figure 158. Change Manager Window with Signal Probe Pins

Change Manager 3]
Index | Node Name 7 | Change Type | 0ld Value | Target Value Current Value Disk Value
1 signalprobe_1 SignalProbe Disconnected | [filtreflstate_m:inst1filter.idle [filtreflstate_rm:inst1 [fiter.idle [fitreflstate_m:instfiter.idle
2 signalprobe_2 SignalProbe Disconnected | [filtreflstate_m:inst1[filter.tap1 [filtreflstate_m:inst1 [filer.tap1 [fltrefistate_m:inst1 [fiter.tap1
3 signalprobe_3 SignalProbe Disconnected | [filtrefistate_n:inst1 [filter.tap2 [filtreflstate_rm:inst1 [filker.tap2 [fltreflstate_rm:inst1 [filter.tap2
4 signalprobe_4 SignalProbe Disconnected | [filtreflstate_m:inst1[filter.tap3 [filtreflstate_m:inst1[filter.tap3 [filreflstate_m:inst1[filter.tap3
5 signalprobe_5 SignalProbe Disconnected | [filtreflstate_m:inst1[filter.tap4 [filtreflstate_rm:inst1 [filker.tapd lfltreflstate_rm:inst1 [filter.tapd

~

>

2 =l

Showing All Changes

To view the timing results of each successfully routed Signal Probe pin, on the
Processing menu, point to Start and click Start Timing Analysis.

Related Links

Engineering Change Management with the Chip Planner documentation

13.1.7 What a Signal Probe Compilation Does
After a full compilation, you can start a Signal Probe compilation either manually or
automatically. A Signal Probe compilation performs the following functions:
¢ Validates Signal Probe pins
e Validates your specified Signal Probe sources
e Adds registers into Signal Probe paths, if applicable
e Attempts to route from Signal Probe sources through registers to Signal Probe
pins

To run the Signal Probe compilation immediately after a full compilation, on the Tools
menu, click Signal Probe Pins. In the Signal Probe Pins dialog box, click Start
Check & Save All Netlist Changes.

To run a Signal Probe compilation manually after a full compilation, on the Processing
menu, point to Start and click Start Signal Probe Compilation.
Note: You must run the Fitter before a Signal Probe compilation. The Fitter generates a list
of all internal nodes that can serve as Signal Probe sources.

Turn the Signal Probe enable option on or off in the Signal Probe Pins dialog box
to enable or disable each Signal Probe pin.

13.1.8 Understanding the Results of a Signhal Probe Compilation

After a Signal Probe compilation, the results appear in two sections of the compilation
report file. The fitting results and status of each Signal Probe pin appears in the
Signal Probe Fitting Result screen in the Fitter section of the Compilation Report.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
320

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471341583

®
13 Quick Design Debugging Using Signal Probe l n tel
QPS5V3 | 2017.11.06

Table 107. Status Values

Status Description
Routed Connected and routed successfully
Not Routed Not enabled

Failed to Route Failed routing during last Signal Probe compilation

Need to Compile | Assignment changed since last Signal Probe compilation

Figure 159. Signal Probe Fitting Results Page in the Compilation Report Window

& compilation Report - Fittes SignalPro... |
[&F 3 Compiation Report Fitter SignalProbe Fitting Results
B Legal Notice Clock |10
&R Fow Summary Taist Souce |Localion |gesiiters | Name |Standard
& Fow Settngs Signal_probe_5 d0] __|PIN_D4_ [0 33VLVITL
EHll Fiow Non-Default Global Settings
& Fiow Elapsed Tme
&E FowLog
+ @) Analysis & Synthesis
+ @1 Partition Merge
- & Fitter
&) summary
G settngs
&hipr Pn-Out File
+ &) Resource Section
&l Device Options
+ &) Advanced Fitter Data

The Signal Probe source to output delays screen in the Timing Analysis section of
the Compilation Report displays the timing results of each successfully routed Signal
Probe pin.

Figure 160. Signal Probe Source to Output Delays Page in the Compilation Report Window

5 Compilation Report £|IEHZ|
B 5:5Prove sovrce to output Delays
=-&HE Timing Analyzer Source |Fin
@% SURnrnary

5B Settings
BB Clock Settings Surmary

|2

>

Enable | Status

|prabel | On |Fouted |5.135 ns

120 |probe? On | Routed 4833 ns|
- 4] Fin 622 robe3|On | Rowed 4475
ock Setup: 'd
—EF Clock Hold: 'clk! B!
-9 ER Clock Hold: 'clkex2!
@% tsu
%% tea
--¢HER SignalProbe Source to Output Delays
@% th
gé) Messages

EEE

W

) T >

Note: After a Signal Probe compilation, the processing screen of the Messages window also
provides the results for each Signal Probe pin and displays slack information for each
successfully routed Signal Probe pin.

13.1.8.1 Analyzing Signal Probe Routing Failures

A Signal Probe compilation can fail for any of the following reasons:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
321

™ ®
l n tel) 13 Quick Design Debugging Using Signal Probe

QPS5V3 | 2017.11.06

¢ Route unavailable—the Signal Probe compilation failed to find a route from the
Signal Probe source to the Signal Probe pin because of routing congestion.

e Invalid or nonexistent Signal Probe source—you entered a Signal Probe
source that does not exist or is invalid.

e Unusable output pin—the output pin selected is found to be unusable.

Routing failures can occur if the Signal Probe pin’s I/O standard conflicts with other
I/0 standards in the same I/O bank.

If routing congestion prevents a successful Signal Probe compilation, you can allow
the compiler to modify routing to the specified Signal Probe source. On the Tools
menu, click Signal Probe Pins and turn on Modify latest fitting results during
Signal Probe compilation. This setting allows the Fitter to modify existing routing
channels used by your design.

Note: Turning on Modify latest fitting results during Signal Probe compilation can
change the performance of your design.

13.2 Scripting Support

You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Intel Quartus Prime command-line and
Tcl API Help browser. To run the Help browser, type the following command at the
command prompt:

quartus_sh --ghelp

Note: The Tcl commands in this section are part of the : :quartus::chip_planner Intel
Quartus Prime Tcl API. Source or include the ::quartus: :chip_planner Tcl
package in your scripts to make these commands available.

Related Links
e Tcl Scripting documentation

e Intel Quartus Prime Settings File Reference Manual
Information about all settings and constraints in the Intel Quartus Prime
software

e Command-Line Scripting documentation
13.2.1 Making a Signal Probe Pin
To make a Signal Probe pin, type the following command:

make_sp [-h | -help] [-long_help] [-clk <cl k>] [-io_std <io_std>] \
-loc <l oc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-Src_name <source nane>

13.2.2 Deleting a Signal Probe Pin

To delete a Signal Probe pin, type the following Tcl command:

delete_sp [-h | -help] [-long_help] -pin_name <pi n name>

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
322

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410470998554

] ®
13 Quick Design Debugging Using Signal Probe l n tel)

QPS5V3 | 2017.11.06

13.2.3 Enabling a Signal Probe Pin

To enable a Signal Probe pin, type the following Tcl command:

enable_sp [-h | -help] [-long_help] -pin_name <pin nane>

13.2.4 Disabling a Signal Probe Pin
To disable a Signal Probe pin, type the following Tcl command:

disable_sp [-h | -help] [-long_help] -pin_name <pi n nane>

13.2.5 Performing a Signal Probe Compilation
To perform a Signal Probe compilation, type the following command:

quartus_sh --flow signalprobe <project nanme>

13.2.5.1 Script Example

The example shows a script that creates a Signal Probe pin called spl and connects
the spl pin to source node regl in a project that was already compiled.

Creating a Signal Probe Pin Called sp1

package require ::quartus::chip_planner
project_open project

read_netlist

make_sp -pin_name spl -src_name regl
check_netlist_and_save

project_close

13.2.6 Reserving Signal Probe Pins

To reserve a Signal Probe pin, add the commands shown in the example to the Intel
Quartus Prime Settings File (-qsT) for your project.

Reserving a Signal Probe Pin

set_location_assignment <l ocation> -to <Si gnal Probe pin name>
set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <Si gnal Probe pin nane>

Valid locations are pin location names, such as Pin_AS.

13.2.6.1 Common Problems When Reserving a Signal Probe Pin

If you cannot reserve a Signal Probe pin in the Intel Quartus Prime software, it is likely
that one of the following is true:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
323

n tel) 13 Quick Design Debugging Using Signal Probe

QPS5V3 | 2017.11.06

e You have selected multiple pins.

e A compilation is running in the background. Wait until the compilation is complete
before reserving the pin.

e You have the Intel Quartus Prime Lite Edition software, in which the Signal Probe
feature is not enabled by default.

e You have not set the pin reserve type to As Signal Probe Output. To reserve a
pin, on the Assignments menu, in the Assign Pins dialog box, select As Signal
Probe Output.

e The pin is reserved from a previous compilation. During a compilation, the Intel
Quartus Prime software reserves each pin on the targeted device. If you end the
Intel Quartus Prime process during a compilation, for example, with the Windows
Task Manager End Process command or the UNIX Ki Il command, perform a
full recompilation before reserving pins as Signal Probe outputs.

e The pin does not support the Signal Probe feature. Select another pin.
e The current device family does not support the Signal Probe feature.

13.2.7 Adding Signal Probe Sources

To assign the node name to a Signal Probe pin, type the following Tcl command:
set_instance_assignment -name SIGNALPROBE_SOURCE <node nanme> \
-to <signal probe pin name>
The next command turns on Signal Probe routing. To turn off individual Signal Probe
pins, specify OFF instead of ON with the following command:
set_instance_assignment -name SIGNALPROBE_ENABLE ON \
-to <Signal Probe pin nanme>
Related Links
e Signal Probe Pins Dialog Box online help

e Add Signal Probe Pins Dialog Box online help
Information about how to pipeline an existing Signal Probe connection

13.2.8 Assigning I/0 Standards

To assign an I/0 standard to a pin, type the following Tcl command:

set_instance_assignment -name 10_STANDARD <I/ O standard> -to <Si gnal Probe
pi n nanme>

Related Links
I/0O Standards online help

13.2.9 Adding Registers for Pipelining

To add registers for pipelining, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_CLOCK <cl ock name> \
-to <Signal Probe pin nane>

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

http://quartushelp.altera.com/current/index.htm#program/sipro/comp_db_pin_assignments.htm
http://quartushelp.altera.com/current/index.htm#program/sipro/sipro_db_add_sipro_pin.htm
http://quartushelp.altera.com/current/index.htm#reference/glossary/def_iostandard.htm

] ®
13 Quick Design Debugging Using Signal Probe l n tel)

QPS5V3 | 2017.11.06

set_instance_assignment -name SIGNALPROBE_NUM_REGISTERS <nunber of registers>
\

-to <Signal Probe pin nane>

13.2.10 Running Signal Probe Immediately After a Full Compilation

To run Signal Probe immediately after a full compilation, type the following Tcl
command:

set_global_assignment -name SIGNALPROBE_DURING_NORMAL_COMPILATION ON

13.2.11 Running Signal Probe Manually

To run Signal Probe as part of a scripted flow using Tcl, use the following in your
script:

execute_flow -signalprobe

To perform a Signal Probe compilation interactively at a command prompt, type the
following command:

quartus_sh_fit --flow signalprobe <project nanme>

13.2.12 Enabling or Disabling All Signal Probe Routing

Use the Tcl command in the example to turn on or turn off Signal Probe routing. When
using this command, to turn Signal Probe routing on, specify ON. To turn Signal Probe
routing off, specify OFF.

Turning Signal Probe On or Off with Tcl Commands

set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {
set signalprobe_pin_name [lindex $asgn 2]
set_instance_assignment -name SIGNALPROBE_ENABLE \
-to $signalprobe_pin_name <ON OFF> }

13.2.13 Allowing Signal Probe to Modify Fitting Results

To turn on Modify latest fitting results, type the following Tcl command:

set_global_assignment -name SIGNALPROBE_ALLOW_OVERUSE ON

13.3 Document Revision History

Table 108. Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

June 2014 14.0.0 Dita conversion.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
325

] ®
l n tel 13 Quick Design Debugging Using Signal Probe
QPS5V3 | 2017.11.06

Date Version Changes

May 2013 13.0.0 Changed sequence of flow to clarify that you need to perform
a full compilation before reserving Signal Probe pins. Affected
sections are “Debugging Using the Signal Probe Feature” on
page 12-1 and “Reserving Signal Probe Pins” on page 12-2.
Moved “Performing a Full Compilation” on page 12-2 before
“Reserving Signal Probe Pins” on page 12-2.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.
July 2010 10.0.0 e Revised for new UI.

e Removed section Signal Probe ECO flows

e Removed support for Signal Probe pin preservation when
recompiling with incremental compilation turned on.

e Removed outdated FAQ section.

e Added links to Intel Quartus Prime Help for procedural
content.

November 2009 9.1.0 e Removed all references and procedures for APEX devices.
e Style changes.

March 2009 9.0.0 e Removed the “Generate the Programming File” section
e Removed unnecessary screenshots
e Minor editorial updates

November 2008 8.1.0 e Modified description for preserving Signal Probe
connections when using Incremental Compilation

e Added plausible scenarios where Signal Probe connections
are not reserved in the design

May 2008 8.0.0 e Added “Arria GX” to the list of supported devices

e Removed the “On-Chip Debugging Tool Comparison” and
replaced with a reference to the Section V Overview on
page 13-1

e Added hyperlinks to referenced documents throughout the
chapter

e Minor editorial updates

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
326

https://www.altera.com/search-archives

.
QPS5V3 | 2017.11.06 l n tel

14 Desigh Debugging with the Signhal Tap Logic Analyzer

14.1 About the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer is a next-generation, system-level debugging tool that
captures and displays real-time signal behavior in an FPGA design. You can examine
the behavior of internal signals without using extra I/O pins, while the design is
running at full speed on an FPGA.

The Signal Tap Logic Analyzer is scalable, easy to use, and available as a stand-alone
package or with a software subscription.

The Signal Tap Logic Analyzer supports these features:

e Debug an FPGA design by probing the state of internal signals without the need of
external equipment.

e Define custom trigger-condition logic for greater accuracy and improved ability to
isolate problems.

e Capture the state of internal nodes or I/O pins in the design without the need of
design file changes.

e Store all captured signal data in device memory until you are ready to read and
analyze it.

The Signal Tap Logic Analyzer supports the highest number of channels, largest
sample depth, and fastest clock speeds of any logic analyzer in the programmable
logic market.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

™ ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Figure 161. Signal Tap Logic Analyzer Block Diagram

FPGA Device
Design Logic
g
|
0 1) 3 Signal Tap
Instances
A A A A
YVYVY Intel FPGA .
JAG | o) _ | Quartus Prime
0 1 2 3 Hp € » Programming |« > Soft
Hardware oftware
Buffers (Device Memory)

Note to figure:

1. This diagram assumes that you compiled the Signal Tap Logic Analyzer with the
design as a separate design partition using the Intel Quartus Prime incremental
compilation feature. If you do not use incremental compilation, the Compiler
integrates the Signal Tap logic with the design.

This chapter is intended for any designer who wants to debug an FPGA design during
normal device operation without the need for external lab equipment. Because the
Signal Tap Logic Analyzer is similar to traditional external logic analyzers, familiarity
with external logic analyzer operations is helpful, but not necessary. To take
advantage of faster compile times when making changes to the Signal Tap Logic
Analyzer, knowledge of the Intel Quartus Prime incremental compilation feature is
helpful.

14.1.1 Hardware and Software Requirements
You need the following hardware and software to perform logic analysis with the
Signal Tap Logic Analyzer:
e Signal Tap Logic Analyzer software
e Download/upload cable
¢ Intel development kit or your design board with JTAG connection to device under
test
You can use the Signal Tap Logic Analyzer that is included with the following software:
e Intel Quartus Prime design software
e Intel Quartus Prime Lite Edition

Alternatively, use the Signal Tap Logic Analyzer standalone software and standalone
Programmer software.

Note: The Intel Quartus Prime Lite Edition software does not support incremental
compilation integration with the Signal Tap Logic Analyzer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
328

Table 109.

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

intel.

The memory blocks of the device store captured data. The memory blocks transfer the
data to the Intel Quartus Prime software waveform display over a JTAG
communication cable, such as or Intel FPGA Download Cable.

Signal Tap Logic Analyzer Features and Benefits

Feature

Benefit

Quick access toolbar

Provides single-click operation of commonly-used menu items. You
can hover over the icons to see tool tips.

Multiple logic analyzers in a single device

Allows you to capture data from multiple clock domains in a design at
the same time.

Multiple logic analyzers in multiple devices in a
single JTAG chain

Allows you to capture data simultaneously from multiple devices in a
JTAG chain.

Nios II plug-in support

Allows you to specify nodes, triggers, and signal mnemonics for IP,
such as the Nios II processor.

Up to 10 basic, comparison, or advanced trigger
conditions for each analyzer instance

Allows you to send complex data capture commands to the logic
analyzer, providing greater accuracy and problem isolation.

Power-up trigger

Captures signal data for triggers that occur after device programming,
but before manually starting the logic analyzer.

Custom trigger HDL object

You can code your own trigger in Verilog HDL or VHDL and tap specific
instances of modules located anywhere in the hierarchy of your
design, without needing to manually route all the necessary
connections. This simplifies the process of tapping nodes spread out
across your design.

State-based triggering flow

Enables you to organize your triggering conditions to precisely define
what your logic analyzer captures.

Incremental compilation

Allows you to modify the signals and triggers that the Signal Tap Logic
Analyzer monitors without performing a full compilation, saving time.

Incremental route with rapid recompile

Allows you to manually allocate trigger input, data input, storage
qualifier input, and node count, and perform a full compilation to
include the Signal Tap Logic Analyzer in your design. Then, you can
selectively connect, disconnect, and swap to different nodes in your
design. Use Rapid Recompile to perform incremental routing and gain
a 2-4x speedup over the initial full compilation.

Flexible buffer acquisition modes

The buffer acquisition control allows you to precisely control the data
that is written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard
data samples that are not relevant to the debugging of your design.

MATLAB integration with included MEX function

Collects the data the Signal Tap Logic Analyzer captures into a
MATLAB integer matrix.

Up to 2,048 channels per logic analyzer instance

Samples many signals and wide bus structures.

Up to 128K samples per instance

Captures a large sample set for each channel.

Fast clock frequencies

Synchronous sampling of data nodes using the same clock tree driving
the logic under test.

Resource usage estimator

Provides an estimate of logic and memory device resources that the
Signal Tap Logic Analyzer configurations use.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
329

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Feature Benefit
No additional cost Intel Quartus Prime subscription and the Intel Quartus Prime Lite
Edition include the Signal Tap Logic Analyzer.
Compatibility with other on-chip debugging You can use the Signal Tap Logic Analyzer in tandem with any JTAG-
utilities based on-chip debugging tool, such as an In-System Memory Content

editor, allowing you to change signal values in real-time while you are
running an analysis with the Signal Tap Logic Analyzer.

Floating-Point Display Format To enable, click Edit O Bus Display Format U Floating-point
Supports:

e Single-precision floating-point format IEEE754 Single (32-bit).

e Double-precision floating-point format IEEE754 Double (64-bit).

Related Links
System Debugging Tools Overview on page 183

14.1.2 Open Standalone Signal Tap Logic Analyzer GUI

To open a new Signal Tap through the command-line, type:

quartus_stpw <stp_fil e.stp>

14.1.3 Backward Compatibility with Previous Versions of Intel Quartus
Prime Software

When you open an .stp file created in a previous version of Intel Quartus Prime
software in a newer version of the software, the .stp file cannot be opened in a
previous version of the Intel Quartus Prime software.

If you have a Intel Quartus Prime project file from a previous version of the software,
you may have to update the .stp configuration file to recompile the project. You can
update the configuration file by opening the Signal Tap Logic Analyzer. If you need to
update your configuration, a prompt appears asking if you want to update the .stp to
match the current version of the Intel Quartus Prime software.

14.2 Signal Tap Logic Analyzer Task Flow Overview

To use the Signal Tap Logic Analyzer to debug your design, you perform a number of
tasks to add, configure, and run the logic analyzer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
330

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 162. Signal Tap Logic Analyzer Task Flow

Create New Project or
Open Existing Project

Add Signal Tap Logic
Analyzer to Design Instance

Configure
Signal Tap Logic Analyzer

Define Triggers

v

Compile Design

v

Program Target
Device or Devices

v

Run Signal Tap
Logic Analyzer

Recompilation
Necessary?

Adjust Options,
Triggers, or Both

Continue Debuggi
View, Analyze, and gntine Bebugging

Use Captured Data

Functionality
Satisfied or Bug
Fixed?

14.2.1 Add the Signal Tap Logic Analyzer to Your Design

Create an .stp or create a parameterized HDL instance representation of the logic
analyzer using the IP Catalog and parameter editor. If you want to monitor multiple
clock domains simultaneously, add additional instances of the logic analyzer to your
design, limited only by the available resources in your device.

14.2.2 Configure the Signal Tap Logic Analyzer

After you add the Signal Tap Logic Analyzer to your design, configure the logic
analyzer to monitor the signals you want.

You can add signals manually or use a plug-in, such as the Nios II processor plug-in,
to add entire sets of associated signals for a particular IP.

Specify settings for the data capture buffer, such as its size, the method in which the
Signal Tap Logic Analyzer captures and stores the data. If your device supports
memory type selection, you can specify the memory type to use for the buffer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
331

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Related Links
Configuring the Signal Tap Logic Analyzer on page 333

14.2.3 Define Trigger Conditions

To capture and store specific signal data, set up triggers that tell the logic analyzer
under what conditions to stop capturing data. The Signal Tap Logic Analyzer captures
data continuously while the logic analyzer is running.

The Signal Tap Logic Analyzer allows you to define trigger conditions that range from
very simple, such as the rising edge of a single signal, to very complex, involving
groups of signals, extra logic, and multiple conditions. Power-Up Triggers allow you to
capture data from trigger events occurring immediately after the device enters user-
mode after configuration.

Related Links

Defining Triggers on page 352

14.2.4 Compile the Design

Once you configure the .stp file and define trigger conditions, compile your project
including the logic analyzer in your design.

Note: Because you may need to change monitored signal nodes or adjust trigger settings
frequently during debugging, Intel FPGA recommends that you use the incremental
compilation feature built into the Signal Tap Logic Analyzer, along with Intel Quartus
Prime incremental compilation, to reduce recompile times. You can also use
Incremental Route with Rapid Recompile to reduce recompile times.

Related Links

Compiling the Design on page 376

14.2.5 Program the Target Device or Devices

When you debug a design with the Signal Tap Logic Analyzer, you can program a
target device directly from the .stp without using the Intel Quartus Prime
Programmer. You can also program multiple devices with different designs and
simultaneously debug them.

Related Links

e Program the Target Device or Devices on page 381

e Manage Multiple Signal Tap Files and Configurations on page 350

14.2.6 Run the Signal Tap Logic Analyzer

In normal device operation, you control the logic analyzer through the JTAG
connection, specifying when to start looking for trigger conditions to begin capturing
data. With Runtime or Power-Up Triggers, read and transfer the captured data from
the on-chip buffer to the .stp for analysis.

Related Links
Running the Signal Tap Logic Analyzer on page 382

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
332

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

14.2.7 View, Analyze, and Use Captured

intel)

Data

The data you capture and read into the _stp file is available for analysis and
debugging. You can save the data for later analysis, or convert the data to other
formats for sharing and further study.

To simplify reading and interpreting the signal data you capture, set up mnemonic
tables, either manually or with a plug-in.

To speed up debugging, use the Locate feature in the Signal Tap node list to
find the locations of problem nodes in other tools in the Intel Quartus Prime
software.

Related Links

View, Analyze, and Use Captured Data on page 386

14.3 Configuring the Signal Tap Logic Analyzer

You can configure instances of the Signal Tap Logic Analyzer in the Signal
Configuration pane of the Signal Tap Logic Analyzer window. Some settings are
similar to those found on traditional external logic analyzers. Other settings are unique
to the Signal Tap Logic Analyzer.

Figure 163. Signal Tap Logic Analyzer Signal Configuration Pane

%5 () Signal Tap Logic Analyzer - /home/msandova/171/signaltap/stp_basic - stp_basic - [case715_multiple_advanced_triggers.stpl* <@: @) &) &)

Flle Edit View Project Processing Tools Window Help []

m|dncC
Instance Manager: [~ | [£ |
st

L)
w | | [Ready to acqurre

x | JTAG Chain Configuration: | JTAG ready x

MemOryUs | ardware: |UsB-Blasterllonvm?-sj-soch ¢ || sewp. |

Device: | @1: 10as066H(1[2]2€5]3] 3¢ $ || Scan chain |

ardge Index: :
<< sor Manager: [| [9 | put_es/sto_basicsof | - |

Attached SOF f auto_signaltap_0

| signal configuration:

condtion3_| 1 cloc [dlock

s

Signal Configuration Pane

= A“ Data

| sample depth < | RAM type:

| Nodes Allocated: ® Aut

| Pipeline Factor:

|l
} JData @ setup | 7 Advanced Trigger1 | T Advanced Trigger2 | ¥ State-Based Trigger Flow |

o)

Hierarchy Display:

¥ > stp_basic

[auto_signaltap_0 |

You can adjust fewer settings with run-time trigger conditions than with power-up
trigger conditions.

14.3.1 Assigning an Acquisition Clock

To control how the Signal Tap Logic Analyzer acquires data you must assign a clock
signal. The logic analyzer samples data on every positive (rising) edge of the
acquisition clock. The logic analyzer does not support sampling on the negative
(falling) edge of the acquisition clock.

You can use any signal in your design as the acquisition clock. However, for best
results in data acquisition, use a global, non-gated clock that is synchronous to the
signals under test. Using a gated clock as your acquisition clock can result in
unexpected data that does not accurately reflect the behavior of your design. The Intel

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
333

™ ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

Caution:

QPS5V3 | 2017.11.06

Quartus Prime static timing analysis tools show the maximum acquisition clock
frequency at which you can run your design. To find the maximum frequency of the
logic analyzer clock, refer to the Timing Analysis section of the Compilation Report.

Be careful when using a recovered clock from a transceiver as an acquisition clock for
the Signal Tap Logic Analyzer. A recovered clock can cause incorrect or unexpected
behavior, particularly when the transceiver recovered clock is the acquisition clock with
the power-up trigger feature.

If you do not assign an acquisition clock in the Signal Tap Logic Analyzer Editor, Intel
Quartus Prime software automatically creates a clock pin called
auto_stp_external_clk. You must make a pin assignment to this pin, and make
sure that a clock signal in your design drives the acquisition clock.

Related Links

e Adding Signals with a Plug-In on page 337

e Managing Device I/0O Pins
In Intel Quartus Prime Standard Edition Handbook Volume 2

14.3.2 Adding Signals to the Signal Tap File

Note:

Add the signals that you want to monitor to the .stp node list. You can also select
signals to define triggers. You can assign the following two signal types:

e Pre-synthesis—These signals exist after design elaboration, but before any
synthesis optimizations are done. This set of signals must reflect your Register
Transfer Level (RTL) signals.

o Post-fitting—These signals exist after physical synthesis optimizations and place-
and-route.

If you are not using incremental compilation, add only pre-synthesis signals to

the _stp. Using pre-synthesis helps when you want to add a new node after you
change a design. After you perform Analysis and Elaboration, the source file changes
appear in the Node Finder.

Intel Quartus Prime software does not limit the number of signals available for
monitoring in the Signal Tap window waveform display. However, the nhumber of
channels available is directly proportional to the number of logic elements (LEs) or
adaptive logic modules (ALMs) in the device. Therefore, there is a physical restriction
on the number of channels that are available for monitoring. Signals shown in blue
text are post-fit node names. Signals shown in black text are pre-synthesis node
names.

After successful Analysis and Elaboration, invalid signals appear in red. Unless you are
certain that these signals are valid, remove them from the .stp file for correct
operation. The Signal Tap Status Indicator also indicates if an invalid node name exists
in the .stp file.

You can tap signals if a routing resource (row or column interconnects) exists to route
the connection to the Signal Tap instance. For example, you cannot tap signals that
exist in the I/0 element (IOE), because there are no direct routing resources from the
signal in an IOE to a core logic element. For input pins, you can tap the signal that is
driving a logic array block (LAB) from an IOE, or, for output pins, you can tap the
signal from the LAB that is driving an IOE.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

334

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471036713

QPS5V3 | 2017.11.06

] ®
14 Design Debugging with the Signal Tap Logic Analyzer < l n tel)

Related Links

e Faster Compilations with Intel Quartus Prime Incremental Compilation on page
376

e Setup Tab (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

14.3.2.1 About Adding Pre-Synthesis Signals

When you add pre-synthesis signals, make all connections to the Signal Tap Logic
Analyzer before synthesis. The Compiler allocates logic and routing resources to make
the connection as if you changed your design files. For signals driving to and from
IOEs, pre-synthesis signal names coincide with the pin's signal nhames.

14.3.2.2 About Adding Post-Fit Signals

Note:

In the case of post-fit signals, connections that you make to the Signal Tap Logic
Analyzer are the signal names from the actual atoms in your post-fit netlist. You can
only make a connection if the signals are part of the existing post-fit netlist, and
existing routing resources are available from the signal of interest to the Signal Tap
Logic Analyzer.

In the case of post-fit output signals, tap the COMBOUT or REGOUT signal that drives
the IOE block. For post-fit input signals, signals driving into the core logic coincide
with the pin's signal name.

Because NOT-gate push back applies to any register that you tap, the signal from the
atom may be inverted. You can check this by locating the signal in either the Resource
Property Editor or the Technology Map Viewer. You can also use the Technology Map
viewer and the Resource Property Editor to find post-fit node names.

Related Links

Design Flow with the Netlist Viewers
In Intel Quartus Prime Standard Edition Handbook Volume 1

14.3.2.2.1 Assigning Data Signals Using the Technology Map Viewer

You can use the Technology Map Viewer to add post-fit signal names easily. To do so,
launch the Technology Map Viewer (post-fitting) after compilation. When you find the
desired node, copy the node to either the active .stp for your design or a new .stp.

To launch the Technology Map Viewer, click Tools 0 Netlist Viewers [0 Technology
Map Viewer (Post-Fitting) in the Intel Quartus Prime window.

14.3.2.3 Preserving Signals

The Intel Quartus Prime software optimizes the RTL signals during synthesis and
place-and-route. RTL signal names may not appear in the post-fit netlist after
optimizations. For example, the compilation process can add tildes (~) to nets that
fan-out from a node, making it difficult to decipher which signal nets they actually
represent.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
335

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_setup.htm
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409960091007

™ ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

Note:

QPS5V3 | 2017.11.06

The Intel Quartus Prime software provides synthesis attributes that prevent the
Compiler to perform any optimization on the specified signals, allowing them to persist
into the post-fit netlist:

e Kkeep—Prevents removal of combinational signals during optimization.

* preserve—Prevents removal of registers during optimization.

However, using preserving attributes can increase device resource utilization or
decrease timing performance.

These processing results can cause problems when you use the incremental
compilation flow with the Signal Tap Logic Analyzer. Because you can only add post-
fitting signals to the Signal Tap Logic Analyzer in partitions of type post-fit, RTL
signals that you want to monitor may not be available, preventing their use. To avoid
this issue, use synthesis attributes to preserve signals during synthesis and place-and-
route.

If you are debugging an IP core, such as the Nios II CPU or other encrypted IP, you
might need to preserve nodes from the core to keep available for debugging with the
Signal Tap Logic Analyzer. Preserving nodes is often necessary when you use a plug-in
to add a group of signals for a particular IP.

If you use incremental compilation flow with the Signal Tap Logic Analyzer, pre-
synthesis nodes may not be connected to the Signal Tap Logic Analyzer if the affected
partition is of the post-fit type. Signal Tap issues a critical warning for all pre-synthesis
node names that it does not find in the post-fit netlist.

14.3.2.4 Node List Signal Use Options

When you add a signal to the node list, you can select options that specify how the
logic analyzer uses the signal.

To prevent a signal from triggering the analysis, disable the signal's Trigger Enable
option in the .stp file. This option is useful when you only want to see the signal's
captured data.

You can turn off the ability to view data for a signal by disabling the Data Enable
column in the .stp file. This option is useful when you want to trigger on a signal, but
have no interest in viewing that signal's data.

Related Links

Defining Triggers on page 352

14.3.2.4.1 Disabling and Enabling a Signal Tap Instance

Disable and enable Signal Tap instances in the Instance Manager pane. Physically
adding or removing instances requires recompilation after disabling and enabling a
Signal Tap instance.

14.3.2.5 Untappable Signals

Not all the post-fitting signals in your design are available in the Signal Tap : post-
fitting filter in the Node Finder dialog box.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

336

QPS5V3 | 2017.11.06

™ ®
14 Design Debugging with the Signal Tap Logic Analyzer < l n tel)

You cannot tap any of the following signal types:

e Post-fit output pins—You cannot tap a post-fit output pin directly. To make an
output signal visible, tap the register or buffer that drives the output pin. This
includes pins defined as bidirectional.

e Signals that are part of a carry chain—You cannot tap the carry out (coutO or
coutl) signal of a logic element. Due to architectural restrictions, the carry out
signal can only feed the carry in of another LE.

e JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS)
signals.

e ALTGXB IP core—You cannot directly tap any ports of an ALTGXB instantiation.

e LVDS—You cannot tap the data output from a serializer/deserializer (SERDES)
block.

e DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a DDR/DDRII
design.

14.3.3 Adding Signals with a Plug-In

Instead of adding individual or grouped signals through the Node Finder, you can use
a plug-in to add groups of relevant signals of a particular type of IP. Besides easy
signal addition, plug-ins provide features such as pre-designed mnemonic tables,
useful for trigger creation and data viewing, as well as the ability to disassemble code
in captured data. The Signal Tap Logic Analyzer comes with one plug-in for the Nios II
processor.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and
two tables in the Data tab:

e Nios II Instruction (Setup tab)—Capture all the required signals for triggering
on a selected instruction address.

¢ Nios II Instance Address (Data tab)—Display address of executed instructions
in hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elT) file.

¢ Nios II Disassembly (Data tab)—Display disassembled code from the
corresponding address.

To add signals to the .stp file using a plug-in, perform the following steps after
running Analysis and Elaboration on your design:

1. To ensure that all the required signals are available, in the Intel Quartus Prime
software, click Assignments [Settings 0 Compiler Settings 0 Advanced
Settings (Synthesis). Turn on Create debugging nodes for IP cores.

All the signals included in the plug-in are added to the node list.

2. Right-click the node list. On the Add Nodes with Plug-In submenu, select the
plug-in you want to use, such as the included plug-in named Nios II.
The Select Hierarchy Level dialog box appears showing the IP hierarchy of your
design. If the IP for the selected plug-in does not exist in your design, a message
informs you that you cannot use the selected plug-in.

3. Select the IP that contains the signals you want to monitor with the plug-in, and
click OK.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
337

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

— If all the signals in the plug-in are available, a dialog box might appear,
depending on the plug-in, where you can specify options for the plug-in.

4. With the Nios II plug-in, you can optionally select an .el¥ containing program
symbols from your Nios II Integrated Development Environment (IDE) software
design. Specify options for the selected plug-in, and click OK.

Related Links
e Defining Triggers on page 352
e View, Analyze, and Use Captured Data on page 333

14.3.4 Adding Finite State Machine State Encoding Registers

Finding the signals to debug finite state machines (FSM) can be challenging. Finding
nodes from the post-fit netlist may be impossible, since the Compiler may change or
optimize away FSM encoding signals. To find and map FSM signal values to the state
names that you specified in your HDL, you must perform an additional step.

The Signal Tap Logic Analyzer can detect FSMs in your compiled design. The
configuration automatically tracks the FSM state signals as well as state encoding
through the compilation process.

To add all the FSM state signals to your logic analyzer with a single command Shortcut
menu commands allow you .

For each FSM added to your Signal Tap configuration, the FSM debugging feature adds
a mnemonic table to map the signal values to the state enumeration that you provided
in your source code. The mnemonic tables enable you to visualize state machine
transitions in the waveform viewer. The FSM debugging feature supports adding FSM
signals from both the pre-synthesis and post-fit netlists.

Figure 164. Decoded FSM Mnemonics

The waveform viewer with decoded signal values from a state machine added with the FSM debugging feature.

TypeAIias| Hame L—?‘?I_”'3”._”D.”_”8”,,,,15,,,.,,,24.......3?.......40......'
= - state 1 =1 ¥ =2

Related Links

State Machine HDL Guidelines
In Intel Quartus Prime Standard Edition Handbook Volume 1

14.3.4.1 Modify and Restore Mnemonic Tables for State Machines

Edit any mnemonic table using the Mnemonic Table Setup dialog box. When you
add FSM state signals via the FSM debugging feature, the Signal Tap Logic Analyzer
GUI creates a mnemonic table using the format <StateSignalName>_table, where
StateSignalName is the name of the state signals that you have declared in your
RTL.

If you want to restore a mnemonic table that was modified, right-click anywhere in the
node list window and select Recreate State Machine Mnemonics. By default,
restoring a mnemonic table overwrites the existing mnemonic table that you modified.
To restore a FSM mnemonic table to a new record, turn off Overwrite existing
mnemonic table in the Recreate State Machine Mnemonics dialog box.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
338

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409959610054

QPS5V3 | 2017.11.06

] ®
14 Design Debugging with the Signal Tap Logic Analyzer < l n tel)

Note: If you have added or deleted a signal from the FSM state signal group from within the
setup tab, delete the modified register group and add the FSM signals back again.
Related Links
Creating Mnemonics for Bit Patterns on page 389

14.3.4.2 Additional Considerations for State Machines in Signal Tap

e The Signal Tap configuration GUI recognizes state machines from your design only
if you use Intel Quartus Prime Integrated Synthesis. Conversely, the state machine
debugging feature is not able to track the FSM signals or state encoding if you use
other EDA synthesis tools.

e If you add post-fit FSM signals, the Signal Tap Logic Analyzer FSM debug feature
may not track all optimization changes that are a part of the compilation process.

o If the following two specific optimizations are enabled, the Signal Tap FSM debug
feature may not list mnemonic tables for state machines in the design:

— If you enabled the Physical Synthesis optimization, state registers may be
resource balanced (register retiming) to improve fyax. The FSM debug feature
does not list post-fit FSM state registers if register retiming occurs.

— The FSM debugging feature does not list state signals that the Compiler
packed into RAM and DSP blocks during synthesis or Fitter optimizations.

e You can still use the FSM debugging feature to add pre-synthesis state signals.

Related Links

Enabling Physical Synthesis Optimization
In Intel Quartus Prime Standard Edition Handbook Volume 1

14.3.5 Specify the Sample Depth

The Sample depth setting specifies the number of samples the Signal Tap Logic
Analyzer captures and stores, for each signal in the captured data buffer. To specify
the sample depth, select the desired number in the Sample Depth drop-down menu.
The sample depth ranges from 0 to 128K.

If device memory resources are limited, you may not be able to successfully compile
your design with the sample buffer size you have selected. Try reducing the sample
depth to reduce resource usage.

Related Links
Signal Configuration Pane (View Menu) (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

14.3.6 Capture Data to a Specific RAM Type

You have the option to select the RAM type where the Signal Tap Logic Analyzer stores
acquisition data. Once you allocate the Signal Tap Logic Analyzer buffer to a particular
RAM block, the entire RAM block becomes a dedicated resource for the logic analyzer.

RAM selection allows you to preserve a specific memory block for your design, and
allocate another portion of memory for Signal Tap Logic Analyzer data acquisition.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
339

https://www.altera.com/documentation/mwh1409960181641.html#led1441830179619
http://http://quartushelp.altera.com/current/#mapIdTopics/mwh1465494383050.htm

™ ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

For example, if your design has an application that requires a large block of memory
resources, such as a large instruction or data cache, you can use MLAB, M512, or M4k
blocks for data acquisition and leave M9k blocks for the rest of your design.

To specify the RAM type to use for the Signal Tap Logic Analyzer buffer, go to the
Signal Configuration pane in the Signal Tap window, and select one Ram type
from the drop-down menu.

Use this feature only when the acquired data is smaller than the available memory of
the RAM type that you selected. The amount of data appears in the Signal Tap
resource estimator.

Related Links

Signal Configuration Pane (View Menu) (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

14.3.7 Select the Buffer Acquisition Mode

Figure 165.

When you specify how the logic analyzer organizes the captured data buffer, you can
potentially reduce the amount of memory that Signal Tap requires for data acquisition.

There are two types of acquisition buffer within the Signal Tap Logic Analyzer—a non-
segmented (or circular) buffer and a segmented buffer.

¢ With a non-segmented buffer, the Signal Tap Logic Analyzer treats entire memory
space as a single FIFO, continuously filling the buffer until the logic analyzer
reaches a defined set of trigger conditions.

e With a segmented buffer, the memory space is split into separate buffers. Each
buffer acts as a separate FIFO with its own set of trigger conditions, and behaves
as a non-segmented buffer. Only a single buffer is active during an acquisition.
The Signal Tap Logic Analyzer advances to the next segment after the trigger
condition or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space.

Buffer Type Comparison in the Signal Tap Logic Analyzer

The figure illustrates the differences between the two buffer types.

Post-Trigger Center Trigger Pre-Trigger
Newly
Captured Oldest Data
Removed

Data
(a) Circular Buffer - n n n n - n

All Segment Segment Segment
Trigger Level Trigger Level Trigger Level Trigger Level

Spnhnsnn

Segment 1 Segment 2 Segment 3 Segment 4

(b) Segmented Buffer ‘ 1 ‘ 1 ‘ ‘ 0 ‘ 1 1 ‘ 0 ‘ ‘ 0 ‘ 1 1 ‘ 1

Both non-segmented and segmented buffers can use a preset trigger position (Pre-
Trigger, Center Trigger, Post-Trigger). Alternatively, you can define a custom trigger
position using the State-Based Triggering tab. Refer to Specify Trigger Position for
more details.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

340

http://http://quartushelp.altera.com/current/#mapIdTopics/mwh1465494383050.htm

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Notes to figure:

Related Links
e Specify Trigger Position on page 372
e Using the Storage Qualifier Feature on page 343

14.3.7.1 Non-Segmented Buffer
The non-segmented buffer is the default buffer type in the Signal Tap Logic Analyzer.

At runtime, the logic analyzer stores data in the buffer until the buffer fills up. From
that point on, new data overwrites the oldest data, until a specific trigger event
occurs. The amount of data the buffer captures after the trigger event depends on the
Trigger position setting:

e To capture most data before the trigger occurs, select Post trigger position from
the list

e To capture most data after the trigger, select Pre trigger position.

e To center the trigger position in the data, select Center trigger position.

Alternatively, use the custom State-based triggering flow to define a custom trigger
position within the capture buffer.

Related Links
Specify Trigger Position on page 372

14.3.7.2 Segmented Buffer

In a segmented buffer, the acquisition memory is split into segments of even size, and
you define a set of trigger conditions for each segment. Each segment acts as a non-
segmented buffer. A segmented buffer allows you to debug systems that contain
relatively infrequent recurring events.

If you want to have separate trigger conditions for each of the segmented buffers, you
must use the state-based trigger flow. The figure shows an example of a segmented
buffer system.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
341

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Figure 166. System that Generates Recurring Events

In this design, you want to ensure that the correct data is written to the SRAM controller by monitoring the
RDATA port whenever the address H*OFOFOFOF is sent into the RADDR port.

Stratix Device
¢ Reference Design Top-Level File SRAM Interface Signals
WADDR{17..0] = ‘ gﬂ;g} -
RADDR[17..0] s < -
WDATAS..0] —- Pipeline .| D[17.0] > QR
ROATAS..0] ~pmmme] COISIEIS | BWsn[1.0] _ SRAM
- ! (Optional) QDR SRAM " RPsn >
CMD[T..0] et Controller ‘ WS >
. o } Lr
e o K_F_oUT ¢
o | K FBIN |

With the buffer acquisition feature. you can monitor multiple read transactions from
the SRAM device without running the Signal Tap Logic Analyzer again, because you
split the memory to capture the same event multiple times, without wasting allocated
memory. The buffer captures as many cycles as the number of segments you define
under the Data settings in the Signal Configuration pane.

To enable and configure buffer acquisition, select Segmented in the Signal Tap Logic
Analyzer Editor and determine the number of segments to use. In the example in the
figure, selecting sixty-four 64-sample segments allows you to capture 64 read cycles.

14.3.8 Specify the Pipeline Factor

The Pipeline factor setting indicates the number of pipeline registers that you can
add to boost the fyax of the Signal Tap Logic Analyzer. You can specify the pipeline
factor in the Signal Configuration pane. The pipeline factor ranges from 0 to 5, with
a default value of 0.

You can also set the pipeline factor when you instantiate the Signal Tap Logic Analyzer
component from your Platform Designer (Standard) system:

1. Double-click Signal Tap Logic Analyzer component in the IP Catalog.

2. Specify the Pipeline Factor, along with other parameter values.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

342

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 167. Specifying the Pipeline Factor from Platform Designer (Standard)

2 () signal Tap Logic Analyzer - abc_signaltap_li_logic_analyzer 0 <@s}-iccf0167> PO
“ Signal Tap Logic Analyzer

" altera_signatap_i_logic_analyzer Documentation

[Block Diagram | [F Segmented Acquisition Bf
[Show signals [JSegmented

Nurmber of Segmens: B

abe_signaltap_ii_logic_analyzer_0 Samples per Segment

ap [SEoTigE QUATEF
Starage Qualifier: [continuous [+

[Trigger

Trigger Input Port Wicith [1..4096]; [1

Tnager Contons) T

lining addled to potentially incraase Friax

[T

Parameterization Messages 1
T Fi¥eeeys

L [T>

e totder [orabe] o encty name:eoc-sinarap - iogc anavear o

Note: Setting the pipeline factor does not guarantee an increase in fyax, as the pipeline
registers may not be in the critical paths.

14.3.9 Using the Storage Qualifier Feature

The Storage Qualifier feature allows you to filter out individual samples not relevant to
debugging the design.

The Signal Tap Logic Analyzer offers a snapshot in time of the data stored in the
acquisition buffers. By default, the Signal Tap Logic Analyzer writes into acquisition
memory with data samples on every clock cycle. With a non-segmented buffer, there
is one data window that represents a comprehensive snapshot of the data stream.
Conversely, segmented buffers use several smaller sampling windows spread out over
more time, with each sampling window representing a contiguous data set.

With analysis using acquisition buffers you can capture most functional errors in a
chosen signal set, provided adequate trigger conditions and a generous sample depth
for the acquisition. However, each data window can have a considerable amount of
unnecessary data; for example, long periods of idle signals between data bursts. The
default behavior in the Signal Tap Logic Analyzer doesn't discard the redundant sample
bits.

The Storage Qualifier feature allows you to establish a condition that acts as a write
enable to the buffer during each clock cycle of data acquisition, thus allowing a more
efficient use of acquisition memory over a longer period of analysis.

Because you can create a discontinuity between any two samples in the buffer, the
Storage Qualifier feature is equivalent to creating a custom segmented buffer in which
the number and size of segment boundaries are adjustable.

Note: You can only use the Storage Qualifier feature with a non-segmented buffer. The IP
Catalog flow only supports the Input Port mode for the Storage Qualifier feature.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
343

] ®
l n tel 14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Figure 168. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer
Non-segmented Buffer (1)

Trigger

Time elapsed for data transaction
mnmmm 1 >

Acquisition Buffer

Segmented Buffer (2)

Trigger Trigger Trigger

Time elapsed for data transaction
>

\ 4 y
fo[1[1 1o} fol1]o o} >

Acaquisition Buffer

Non-segmented Buffer with Storage Qualifier (3)

Trigger

Time elapsed for data transaction

oJo[1T1[0 o[iF—>

{t

Bl
g

Acquisition Buffer

Notes to figure:
1. Non-segmented buffers capture a fixed sample window of contiguous data.

2. Segmented buffers divide the buffer into fixed sized segments, with each segment
having an equal sample depth.

3. Storage Qualifier allows you to define a custom sampling window for each
segment you create with a qualifying condition, thus potentially allowing a larger
time scale of coverage.

There are six storage qualifier types available under the Storage Qualifier feature:

e Continuous (default) Turns the Storage Qualifier off.

e Input port

¢ Transitional

¢ Conditional

e Start/Stop

e State-based

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
344

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 169. Storage Qualifier Settings

Signal Configuration: *®
; ; e

Storage qualifier:
Type: & Input port] |
Input port: auto_srp_external_smrage_qualifier] |

Nodes Allocated: @ Auto Manual: | I|

¥ Record data discontinuities

Disable storage qualifier

=
4 [T

Upon the start of an acquisition, the Signal Tap Logic Analyzer examines each clock
cycle and writes the data into the buffer based upon the storage qualifier type and
condition. Acquisition stops when a defined set of trigger conditions occur.

The Signal Tap Logic Analyzer evaluates trigger conditions independently of storage
qualifier conditions.

Related Links
Define Trigger Conditions on page 332

14.3.9.1 Input Port Mode

When using the Input port mode, the Signal Tap Logic Analyzer takes any signal from
your design as an input. During acquisition, if the signal is high on the clock edge, the
Signal Tap Logic Analyzer stores the data in the buffer. If the signal is low on the clock
edge, the Logic Analyzer ignores the data sample. If you don't specify an internal
node, the Logic Analyzer creates and connects a pin to this input port.

If you are creating a Signal Tap Logic Analyzer instance through an .stp file, specify
the storage qualifier signal using the input port field located on the Setup tab. You
must specify this port for your project to compile.

If you use the parameter editor, the storage qualification input port, if specified,
appears in the generated instantiation template. You can then connect this port to a
signal in your RTL.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
345

] ®
l n tel 14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Figure 170. Comparing Continuous and Input Port Capture Mode in Data Acquisition of a
Recurring Data Pattern

e Continuous Mode:

Node
Type| ANes Weme: e
o - data_out 05 X0Ah Y(08h X0Ch Y0Dh Y{0En XOFh X100 X11h X1
o |[Storsge Quaktier | data_oul(7]

e Input Port Storage Qualifier:

click to insert time bar

Node
Type Alias | Hame
> | @ data_out
> |Storage Qualifier | data_out(7]

(1) Markers display samples when the logic analyzer paused a write into acquisition memory. These markers are enabled with the option “Record data discontinuities.”

14.3.9.2 Transitional Mode

In Transitional mode, the Logic Analyzer monitors changes in a set of signals, and
writes new data in the acquisition buffer only when it detects a change. You select the
signals for monitoring using the check boxes in the Storage Qualifier column.

Figure 171. Transitional Storage Qualifier Setup

trigger: 2017/04/1115:21:05 #1 Lock mode: | 1. Allow all changes. B signal Configuration x
Node Data Enable| Trigger Enable | Storage Trigger Conaitions| r
Tyoe|Allas T 7 0 5 Transitional {1 v|BasicOR = Clock: [I[0]mod_1|clk E
dlaltsyncram 1 |address_reg_al0] < 0 =
dlaltsyncram |address_reg_a[1] F v v kil
flolmod_1|CRC[3lmycre|ifsr_go] i cd] /A -] Sample depth: [128 ¢ | RAM type: | Auto]
(0] mod_1|CRC[3]mycre|ifsr_a[1] [v v v B
[0} mod_1|CRE[3)mycr|lfsr_g[2] E v m ["| segmented: |2 64 sample segment :
101 mod_1|CRE[3)mycre|lfsr_a[3] < < v =
I[0] mod_1|CRE(3).mycre|fsr_a[4] < v ¥ = Nodes Allocated: @ Auto Manual I |;|
I[o}mod_1|CRC[3]mycre|lfsr_ql5] < v 53 B —_——
(0l mod_1|CRE[3]mycre|ifsr_q() E [E i [m Pipeline Factor. |1 <
0l mod_1|CRC[3]mycrelifsr_al7]|) O Storage qualifier:
= mod_1|CRE[3Lmycre|ifsr_c(0]-0| ! I F—
> mod_1|CRE[3]mycre|lfsr_c[0]~4) v v ¥ Type: \ X Transitional * \ -
| [E1»)
7 Data | & Setup

Select signals to monitor

Figure 172. Comparing Continuous and Transitional Capture Mode in Data Acquisition of a
Recurring Data Pattern

e Continuous:

Node
Type Alias Hame 1.l 12 1; I.l 1‘5 'F 1l7 |‘ﬂ |‘9
o | @ data_out DLE

e Transitional mode:
click to insert time bar

Hode o1 2
Type| Aies Home 27 ¢ 1 7 3 ¢ s e 7 & g A 1z i3 a3 d5 dp a7 i 13 @ 2
=) - data_out Y

Redundant idle samples discarded

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
346

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

14.3.9.3 Conditional Mode

Figure 173.

intel.

In Conditional mode, the Signal Tap Logic Analyzer determines whether to store a
sample by evaluating a combinational function of predefined signals within the node
list. The Signal Tap Logic Analyzer writes into the buffer during the clock cycles in

which the condition you specify evaluates TRUE.

You can select either Basic AND, Basic OR, Comparison, or Advanced storage
qualifier conditions. A Basic AND or Basic OR condition matches each signal to one

of the following:
e Don’t Care

e Low

e High

e Falling Edge
e Rising Edge
e Either Edge

If you specify a Basic AND storage qualifier condition for more than one signal, the

Signal Tap Logic Analyzer evaluates the logical AND of the conditions.

You can specify any other combinational or relational operators with the enabled signal

set for storage qualification through advanced storage conditions.

You can define storage qualification conditions similar to the manner in which you

define trigger conditions.

Conditional Storage Qualifier Setup
The figure details the conditional storage qualifier setup in the .stp file.

Storage Enable

... Storage condition
trigger 2017/04/11 15:21.05 #1 Lock mode: | 1 Allow all changé, 2] signal Configuration:
Node Data Enable| Trigger Enable | Storage Enablefstorage Quatifie] Trigger Conditions| =
Type[alias Name (0 0 0 Basic AND % |11¥| Basic OR_% | Pipslini Factor, |1 ¢
dlaltsyncram1[address_reg_a[0] v = Storage qualifier
| .djaltsyncram1|address reg a[1]| v | [& =]
I[0l.mod_1|CRC[3].mycrc|lfsr_q[0] v v v = [=] Type: | S Conditional s \
(0] mod_1|CRE[3] myere|lfsr_g[1] E2 v < o & ' .
1[0} mod_1|CRC[3)mycre|lfsr_ql2] Fl v) ED] IRALERETE {
L :g :Z:fl ICRC[Z)mycre|ifsr_al3] v & i Ea = Nodes Allocated: @ Auto Manual: | =
s _1|CRC[3).mycre|lfsr_q[4] & < v T E L
i i[Ol mod_1|CRC[3]mycrc|lfsr_q[s] o v v X = < Record data discontinuities
iy I[0].mod_1|CRC[3.mycre|lfsr_al6] v Y thaees E7TTTT TOTTY - TYTTT PR | i i
» 101 mod_1|CRCE3] mycre|Ifsr_al7] v H H ge qualifier
o ..mod_1|CRC[3]mycre|lfsr_c[0]-0 v O
= mod_1|CRC[3]mycre|tfsr_c[0]-4, v rpeee L b = Trigger 4|
gl ||

|| Fpata | & setup

Ifthe signal is not enabled for storage,

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

347

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Figure 174. Comparing Continuous and Conditional Capture Mode in Data Acquisition of a

Recurring Data Pattern

The data pattern is the same in both cases.
¢ Continuous sampling capture mode:

click to insert time bar

Node 0
Type Alias | Name 5 % 10 11 1‘2 13 14 15 15 17 13 1? 20 21 22 23 24
w - data_out{0..5] (0 {oFh 20h X(2En) 02h X(03h) 05h X(08h X(67h)
& | Storage Qualifier 1 | data_out[] I e——
&> | Storage Qualifier 2 |data_out(7) 1 T 1 —

(1) Storage Qualifier condition is set up to evaluate data_out[6] AND data_out[7].

e Conditional sampling capture mode:

MNode g f f
Type Alias | Home: § 1 1 12

[%] 5 data_ou(0. 5] DD, BER Y 071)08 08 Y 0AR Y0

o | Storage Guaifier 1 | data_out(6] T

&b | Storage Guaifier 2 | dota_out(7) T

Related Links

e Basic Trigger Conditions on page 352

e Comparison Trigger Conditions on page 353
e Advanced Trigger Conditions on page 355

14.3.9.4 Start/Stop Mode

Note:

The Start/Stop mode uses two sets of conditions, one to start data capture and one to
stop data capture. If the start condition evaluates to TRUE, Signal Tap Logic Analyzer
stores the buffer data every clock cycle until the stop condition evaluates to TRUE,
which then pauses the data capture. The Logic Analyzer ignores additional start
signals received after the data capture starts. If both start and stop evaluate to TRUE
at the same time, the Logic Analyzer captures a single cycle.

You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition.

Figure 175. Start/Stop Mode Storage Qualifier Setup

Start condition Stqp Condition
s, .‘
|| igger 2017/04011 15:21:05 #1 [Lock mode: [Allow all changes Y| ,° Signal Configuration =
Node Data Enable frigger Enab|Storage Enable *e, Storage Qualifier o* Trigger Conditions| E
Type]Alins Name 4 s) Start [BasiCAND 2 [stop [Basic AND % |1 vIBasicOR % Pipeline Factor: |1 =
-55[1]-DUPLICATE ¥ ¥ Cd = it} = Storage qualifier:
55[3]~DUPLICATE &l v v 9 = =
55[71-DUPLICATE 7 7 v X% « [Type | s start/stop
-5[10]~DUPLICATE| v 5 e ———————————
-.5[13]~DUPLICATE & v) o " m Input port: | 3|
Nodes Allocated: @ Auto Manual: |4
¥ Record data discentinuities
Disable storage qualifier
Trigger -
" EnL | [r]
Data 3% Setup K

Storage Qualifier Enabled signals

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

348

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 176. Comparing Continuous and Start/Stop Acquisition Modes for a Recurring Data
Pattern

e Continuous Mode:

Node
Type Alias Name
[+ & data_out{0.5]
o STOP data_ous]
o START data_oul[7] = —

e Start/Stop Storage Qualifier:

Hode ‘D 1 3 q
Alias | Name] 1 i 1 1z 13 14 15
4 data_out{0. 5] (&R {00h X(0Eh ¥ 01h Y02h Y03) 0ah X 7h) D8h J 05h }(0AR ¥ 0D ¥ OER ¥.01h) 02h X 03h X 04n X, 05h
STOP data_out[B] |—| I | |—‘ ’—‘
START data_out(7] |—ﬁ ’ﬁ

g

ele|e

14.3.9.5 State-Based

The State-based storage qualification mode is part of the State-based triggering flow.
The state based triggering flow evaluates a conditional language to define how the
Signal Tap Logic Analyzer writes data into the buffer. With the State-based trigger
flow, you have command over boolean and relational operators to guide the execution
flow for the target acquisition buffer.

When you enable the storage qualifier feature for the State-based flow, two additional
commands become available: start_store and stop_store. These commands are
similar to the Start/Stop capture conditions. Upon the start of acquisition, the Signal
Tap Logic Analyzer doesn't write data into the buffer until a start_store action is
performed. The stop_store command pauses the acquisition. If both start_store
and stop_store actions occur within the same clock cycle, the Logic Analyzer stores
a single sample into the acquisition buffer.

Related Links
State-Based Triggering on page 363

14.3.9.6 Showing Data Discontinuities

When you turn on Record data discontinuities, the Signal Tap Logic Analyzer marks
the samples during which the acquisition paused from a storage qualifier. This marker
is displayed in the waveform viewer after acquisition completes.

14.3.9.7 Disable Storage Qualifier

You can quickly turn off the storage qualifier with the Disable Storage Qualifier
option, and perform a continuous capture. This option is run-time reconfigurable.
Changing storage qualifier mode from the Type field requires a recompilation of the
project.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
349

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Related Links
Runtime Reconfigurable Options on page 383

14.3.10 Manage Multiple Signal Tap Files and Configurations

Note:

You can debug different blocks in your design by grouping related monitoring signals.
Likewise, you can use a group of signals to define multiple trigger conditions. Each
combination of signals, capture settings, and trigger conditions determines a debug
configuration, and one configuration can have zero or more associated data logs.

Signal Tap Logic Analyzer allows you to save debug configurations in more than
one .stp file. Alternatively, you can embed multiple configurations within the
same .Stp file, and use the Data Log as a managing tool.

Each .stp file is associated with a programming (.so¥) file. To function correctly, the
settings in the .stp file you use at runtime must match Signal Tap settings in

the .sof file you use to program the device.

Related Links

Ensure Setting Compatibility Between .stp and .sof Files on page 382

14.3.10.1 Data Log Pane

The Data Log pane displays all Signal Tap configurations and data capture results
stored within a single .stp file.

e To save the current configuration or capture in the Data Log—and .stp file, click

Edit O Save to Data Log. Alternatively, click the Save to Data Log icon B at
the top of the Data Log pane.

e To generate a log entry after every data capture, click Edit 0 Enable Data Log.
Alternatively, check the box at the top of the Data Log pane.

The Data Log displays its contents in a tree hierarchy. The active items display a
different icon.

Table 110. Data Log Items
Item Icon Contains one or Comments
more
Unselected Selected
Instance » Signal Set
pi N iy
Signal Set B = Trigger The Signal Set changes whenever you add a new
= signal to Signal Tap. After a change in the Signal
Set, you need to recompile.
Trigger n E Capture Log A trigger changes when you change any trigger
L condition. These changes do not require
recompilation.
Capture Log ﬂ

The name on each entry displays the wall-clock time when Signal Tap Logic Analyzer

triggered, and the time elapsed from start acquisition to trigger activation. You can
rename entries so they make sense to you.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

350

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

To switch between configurations, double-click an entry in the Data Log. As a result,
the Setup tab updates to display the active signal list and trigger conditions.

Example 34. Simple Data Log

On this example, the Data Log displays one instance with three signal set
configurations.

¥| Data Log:l 3 | x

I.%] signal_set 2017/05/19 18:36:23 #0
. B[l trigger: 2017/05/23 18:44:32 #0
f L [F] log: 2017/05/23 18:47:05 #0
El E» signal_set 2017/05/23 18:50:55 #0
B i trigger: 2017/05/23 18:50:55 #1
! L4 log: 2017/05/23 18:51:05 #0
i ‘{4 log: 2017/05/23 18:51:05 #1
= B signal_set: 2017/05/31 12:51:31 #0

LYy trigger: 2017/05/31 12:51:31 #1

14.3.10.2 SOF Manager

Figure 177.

The SOF Manager is in the JTAG Chain Configuration pane.

With the SOF Manager you can embed multiple SOFs into one .stp file. This action
lets you move the .stp file to a different location, either on the same computer or
across a network, without including the associated .sof separately. To embed a new

SOF in the .stp file, click the Attach SOF File icon I .

SOF Manager
JTAG Chain Configuration _ x

Hardware: 2 || setup. |

Device:

Bridge Index: tect &

[E| SOF Manager: | 4. [@ utput_files/top sof Lj Attach SOF File lcon

Attached SOF | auto_signaltap auto_signaltap_1
top.sof

As you switch between configurations in the Data Log, you can extract the SOF that is
compatible with that configuration.

To download the new SOF to the FPGA, click the Program Device icon o in the SOF
Manager, after ensuring that the configuration of your .stp matches the design
programmed into the target device.

Related Links
Data Log Pane on page 350

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
351

QPS5V3 | 2017.11.06

™ ®
< l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

14.4 Defining Triggers

You specify various types of trigger conditions using the Signal Tap Logic Analyzer on
the Signal Configuration pane. When you start the Signal Tap Logic Analyzer, it
samples activity continuously from the monitored signals. The Signal Tap Logic
Analyzer “triggers”—that is, the logic analyzer stops and displays the data—when a
condition or set of conditions that you specified have been reached.

14.4.1 Basic Trigger Conditions

If you select the Basic AND or Basic OR trigger type, you must specify the trigger
pattern for each signal you added in the .stp. To specify the trigger pattern, right-
click the Trigger Conditions column and click the desired pattern. Set the trigger
pattern to any of the following conditions:

e Don’t Care

e Low

e High

e Falling Edge
¢ Rising Edge
¢ Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals in the .stp
file that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

When you add signals through plug-ins, you can create basic triggers using predefined
mnemonic table entries. For example, with the Nios II plug-in, if you specify an .elf
file from your Nios II IDE design, you can type the name of a function from your Nios
II code. The logic analyzer triggers when the Nios II instruction address matches the
address of the code function name that you specify.

Data capture stops and the Logic Analyzer stores the data in the buffer when the
logical AND of all the signals for a given trigger condition evaluates to TRUE.

Related Links
View, Analyze, and Use Captured Data on page 386

14.4.1.1 Using the Basic OR Trigger Condition with Nested Groups

When you specify a set of signals as a nested group (group of groups) with the Basic
OR trigger type, Signal Tap Logic Analyzer generates an advanced trigger condition.
This condition sorts signals within groups to minimize the need to recompile your
design. As long as the parent-child relationships of nodes are kept constant, the
advanced trigger condition does not change. You can modify the sibling relationships
of nodes and not need to recompile your design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
352

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

The evaluation precedence of a nested trigger condition starts at the bottom-level with
the leaf-groups. The Logic Analyzer uses the resulting logic value to compute the
parent group’s logic value. If you manually set the value of a group, the logic value of
the group's members doesn't influence the result of the group trigger. To create a
nested trigger condition:

Select Basic OR under Trigger Conditions.

2. In the Setup tab, select several nodes. Include groups in your selection.
3. Right-click the Setup tab and select Group.
4. Select the nested group and right-click to set a group trigger condition that applies

the reduction AND, OR, NAND, NOR, XOR, XNOR, or logical TRUE or FALSE.

Note: You can only select OR and AND group trigger conditions for bottom-level
groups (groups with no groups as children).

Figure 178. Applying Trigger Condition to Nested Group

trigger 2017/04f1115:21:05 #1 Lock mode: _ __ALLm_v all changes 3 | signal Configuration x
Node Data Enable figger Enab|Trigger Conditions, 7 b 7
Typ Name . 5 |1 BasicOR = Flostifsactor 1 = ‘:
.55[1)~DUPLICATE o v il Storage qualifier
.55[3]~-DUPLICATE v v =) ‘
™ e T 7| OR Type | & mput port BE|
[N .J~DUPLICATE| v v [—— ‘
S-.55010.13] 7 Xh [OR) s Input port: jauto_stp_external_storage_gualifier | ... ‘
R X T
- SEECATE hd & Nodes Allocated: @ Auta Manual: | B
> . PLICATE v 4 [E] * OR
NAND v Record data discontinuities
NOR Disable storage qualifier
XOR
o ED)
7 Data | B setup | TRUE
S B
FALSE
| * auto_signaltap_0 | [%]auto_signaltap_1 |
100% 00:00:06

#8 Don't Care

A Low

“\ Falling Edge
/" Rising Edge
T High

2 Either Edge

Insert Value.

14.4.2 Comparison Trigger Conditions

The Comparison trigger allows you to compare multiple grouped bits of a bus to an
expected integer value by specifying simple comparison conditions on the bus node.
The Comparison trigger preserves all the trigger conditions that the Basic OR trigger
includes. You can use the Comparison trigger in combination with other triggers. You
can also switch between Basic OR trigger and Comparison trigger at run-time,
without the need for recompilation.

Signal Tap Logic Analyzer supports the following types of Comparison trigger
conditions:

e Single-value comparison—compares a bus node’s value to a numeric value that
you specify. Use one of these operands for comparison: >, >=, ==, <=, <,
Returns 1 when the bus node matches the specified nhumeric value.

e Interval check—verifies whether a bus node’s value confines to an interval that
you define. Returns 1 when the bus node's value lies within the specified bounded
interval.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
353

] ®
l n tel 14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Follow these rules when using the Comparison trigger condition:

e Apply the Comparison trigger only to bus nodes consisting of leaf nodes.
e Do not form sub-groups within a bus node.

e Do not enable or disable individual trigger nodes within a bus node.

e Do not specify comparison values (in case of single-value comparison) or
boundary values (in case of interval check) exceeding the selected node’s bus-
width.

14.4.2.1 Specifying the Comparison Trigger Conditions

Follow these steps to specify the Comparison trigger conditions:
1. From the Setup tab, select Comparison under Trigger Conditions.
2. Right-click the node in the trigger editor, and select Compare.

Figure 179. Selecting the Comparison Trigger Condition

trigger: 2015/12/01 15:59:44 %0 Lock mode: [Alow al changes ~
Node | pata Enable | Trigger Enable [Trigger Conditions|
Type [Alias | Name 10 10 1/[Comparison_v | Select Comparison from the
> =-inc_counter(0.9)

Trigger Conditions list

inc_counter{0]

inc_counter{1] Advaticed

°
o
2

inc_counter{2)

inc_counter3]

inc_counter{4]
inc_counter{S]
inc_counter{s)

XNOR
TRUE

inc_counter{7]

inc_counter(8)

A
3

(e

Right-click your node and select Compare
to set trigger condition values

inc_counter{s] FALSE

Compare.

Don' Care
Low
Faling Edge
Rising Edge
High

R=lSAle B

Either Edge.

Insert Value.

3. Select the Comparison type from the Compare window.

— If you choose Single-value comparison as your comparison type, specify
the operand and value.

— If you choose Interval check as your comparison type, provide the lower and
upper bound values for the interval.

You can also specify if you want to include or exclude the boundary values.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
354

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Figure 180. Specifying the Comparison Values

Compares the bus node’s value to
a specified numeric value

2 Compare
Node:
Comparison type.
Single-value comparison

Operand

Vale:

Interval check

Cancel

2 Compare
Node:

Comparison type:

Single-value comparison

Interval check
Lower bound value: 0

& Exclusive

Incusive

® Excusive

Incusive

nc_counterfo.9)
[mervaicnesk ~]

Upper bound value: 1023

Cancel

intel.

Verifies whether the bus node’s value
confines to a specified bounded interval

Specify inclusion or exclusion of boundary values

4. Click OK. The trigger editor displays the resulting comparison expression in the
group node condition text box.

Note: You can modify the comparison condition in the text box with a valid

expression.

Figure 181. Resulting Comparison Condition in Text Box

trigger: 2015/12/04 15:13:40 #0

Lock mode: | Alow all changes

Node

| pata Enable [Trigger Enable [Trigger Conditions|

Type | Alias Hame

= =-inc_counter{0..9]

inc_counter(0]

inc_counter{1]

inc_counter(2]

e

inc_counter{3]

inc_counterf4]

inc_counter(s]

inc_counter(6]

inc_counter{7]

inc_counter(g]

0" [0 0"

inc_counter(g]

trigger: 2015/12/04 15:13:40 #0

| 10
¥

CEEEEEEEREREEs

|1 V[Comparison_ ~ |

=0

Lock mode: [5" Alow all changes

=]

Node

| pata Enable [Trigger Enable [Trigger Conditions|

Type | Alias Name

= =-inc_counter{0..9]

inc_counter{0]

inc_counter{1]

inc_counter2]

o

inc_counter{3]

inc_counterf4]

inc_counter(s]

inc_counter(6]

inc_counter7]

inc_counter(8]

0 [0 [0

inc_counter(g]

0 | 10
[1]

SiSISISISHISISISISTSHS

i comarssn_~

(100, 2T

14.4.3 Advanced Trigger Conditions

Group node condition text box displaying
the resulting comparison expression

Modify the comparison condition in the text box
with a valid expression

To capture data for a given combination of conditions, build an advanced trigger. The
Signal Tap Logic Analyzer provides the Advanced Trigger tab, which helps you build
a complex trigger expression using a GUI.

Open the Advanced Trigger tab by selecting Advanced in the Trigger Conditions
drop-down menu.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

355

intel.

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Figure 182. Accessing the Advanced Trigger Condition Tab

Figure 183. Advanced Trigger Condition Tab

Table 111.

auto_signaltap_1 Lock mode: | | Allow all changes |
Node Data Enable| Trigger Enable | Trigger l:ondlllonl|
Type|Alias Name 3 3 1 vt'-.gp_sir ann = |
> in[21]~input . v Basic AND
he * : S Select Advanced from the
@ | iniz-input & v Comparisch Trigger Conditions List

Advanced Trigger Condition Editor Window

Node List

Advanced Trigger Condition Editor: Condition 1

Name
1{0] mod_1 |address(6]-DUPLICATE :‘:
1[0] mod_1 |address[0]-DUPLICATE
I[0] mod_1|address[4]~DUPLICATE
= (0] mod_1 |address(12]-DUPLICATE

Node List Pane

N0}

Result: ELD({1fsr_q[3]~DUPLICATE}, 1) B

-1 detector 0

I
| oblectiorary:
i Edge & Level Detector
@ ® InputObjects.
» Bitvalue
- Bus Value

Object Library Pane

> Bus i E

-
Ee Tl
VNSNS | ~ Result

EDGE ELEVEL|
DETECTOR

7 pata | msewp T Advanced Trigger 1

To build a complex trigger condition in

an expression tree, drag-and-drop operators

from the Object Library pane and the Node List pane into the Advanced Trigger

Configuration Editor window.

To configure the operators’ settings, double-click or right-click the operators that you

placed and click Properties.

Advanced Triggering Operators

Category

Name

Signal Detection

Edge and Level Detector

Input Objects

Bit

Bit Value
Bus

Bus Value

Comparison

Less Than

Less Than or Equal To
Equality

Inequality

Greater Than or Equal To
Greater Than

Bitwise

Bitwise Complement
Bitwise AND

Bitwise OR

Bitwise XOR

Logical

Logical NOT
Logical AND
Logical OR

Logical XOR

Reduction

Reduction AND
Reduction OR
Reduction XOR

Shift

Left Shift

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

356

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Category

Name

Right Shift

Custom Trigger HDL

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your

advanced trigger condition, use the shortcut menu and select Arrange All Objects.

Alternatively, use the Zoom-Out command to fit more objects into the Advanced

Trigger Condition Editor window.

14.4.3.1 Examples of Advanced Triggering Expressions

The following examples show how to use Advanced Triggering:

Figure 184. Bus outa Is Greater Than or Equal to Bus outb

Trigger when bus outa is greater than or equal to outb.
Advanced Trigger Condition Editor: Level 1

Result: cuta>=ocuth

B compatison_0
all

[+ outa O =) result
T
=)

4 |GREATER THAN
OR EQUALTO

Figure 185. Enable Signal Has a Rising Edge

Trigger when bus outa is greater than or equal to bus outb, and when the enable signal has a rising edge.

Result:

= compatizon_0
v [resull
4 Eﬂ aD> =

4 | GREATER THAN
OR EQUAL TO

=] dstactor O

—
EDGE & LEVEL
DETECTOR

= logical 0

dataln] =
data[0]

LOGICAL AND

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

357

intel.

Figure 186.

14 Design Debugging with the Signal Tap Logic Analyzer

Bitwise AND Operation

QPS5V3 | 2017.11.06

Trigger when bus outa is greater than or equal to bus outb, or when the enable signal has a rising edge. Or,
when a bitwise AND operation has been performed between bus outc and bus outd, and all bits of the result
of that operation are equal to 1.

Result

GREATER THAN
OR EQUALTO

EDGE & LEVEL]
DETECTOR

datalr]
datal]
LOGICAL OR

bitwize_0

aln}
W o =,10]]
a0} datal)
Py @ﬁ\ E) "
3 owd g =40 result0] 4 r

REDUCTION
AND

BITWISE AND

teduction_0

result]

14.4.4 Custom Trigger HDL Object

Signal Tap Logic Analyzer allows you to use your own HDL module to create a custom
trigger condition. You can use the Custom Trigger HDL object to simulate your
triggering logic and ensure that the logic itself is not faulty. Additionally, you can tap
instances of modules anywhere in the hierarchy of your design, without having to

manually route all the necessary connections.

The Custom Trigger HDL object appears in the Object Library pane of the Advanced
Trigger editor.

Figure 187. Object Library

Node List:

Advanced Trigger Condition Editor: Condition 1

Type|Allas

Womc Result:

uc_instjnum[o]
uc_instinum[5] ‘

. uc_Inst|num(17] __[=
‘ D]

Object Library:

[+ ® Logical Cperators
® Reduction Operators

|

7 Data ‘ &% Setup | T Advanced Trigger 1

14.4.4.1 Using the Custom Trigger HDL Object

To define a custom trigger flow:

1.
2.

Select the trigger you want to edit.

Open the Advanced Trigger tab by selecting Advanced in the Trigger

Conditions drop-down menu.

Add to your project the HDL source file that contains the trigger module using the

Project Navigator.

— Alternatively, append the HDL for your trigger module to a source file already

included in the project.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

358

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 188. HDL Trigger in the Project Navigator
|Project Navigator
& Files
p i i m.v
Eﬁ ..fexample_trigger.v
TestPro)_test.v
31‘-@ TestProj.v
f.’ﬁ counters.v
E| stp2.stp

18 x

@ Herarchy | E|Fies | o Desgnunits | 4|p
4. Implement the inputs and outputs that your Custom Trigger HDL module requires.

5. Drag in your Custom Trigger HDL object and connect the object’s data input bus
and result output bit to the final trigger result.

Figure 189. Custom Trigger HDL Object

i=]... trioge
[001
dataf| result]

HDL—¢C

Custorn
Trigger HOL

6. Right-click your Custom Trigger HDL object and configure the object’s properties.

Figure 190. Configure Object Properties

27| Object Properties ==
General Parameters
e
Name: Custom HDL Module Name
-

Settng: test_trigger -
Description: - specifies the module name of the custom trigger
HOL.

Existing parameter settings:

Name Setting Configurable at Runti
Custom HOL Module Name test_trigger Never
Configuration Bitstream 001 Aways
Pipeline 0 Neve
]

7. Compile your design.
8. Acquire data with Signal Tap using your custom Trigger HDL object.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
359

] ®
l n tel 14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Example 35. Verilog HDL Triggers

The following trigger uses configuration bitstream:
module test_trigger

input acg_clk, reset,
input[3:0] data_in,
input[1:0] pattern_in,
output reg trigger_out
)
always @(pattern_in) begin
case (pattern_in)

2"b00:
trigger_out = &data_in;
2°b01:
trigger_out = |data_in;
2"b10:
trigger_out = 17°b0;
2"b11l:
trigger_out = 1%bl;
endcase
end
endmodule

This trigger does not have configuration bitstream:

module test_trigger_no_bs

(

input acq_clk, reset,
input[3:0] data_in,
output reg trigger_out
)
assign trigger_out = &data_in;
endmodule

14.4.4.2 Required Inputs and Outputs of Custom Trigger HDL Module

Table 112. Custom Trigger HDL Module Required Inputs and Outputs

Name Description Input/Output Required/ Optional
acqg_clk Acquisition clock that Signal Tap uses Input Required
reset Reset that Signal Tap uses when restarting a Input Required
capture.
data_in e Data input you connect in the Advanced Input Required

Trigger editor.
e Data your module uses to trigger.

pattern_in e Module’s input for the configuration bitstream | Input Optional
property.

e Runtime configurable property that you can
set from Signal Tap GUI to change the
behavior of your trigger logic.

trigger_out Output signal of your module that asserts when Output Required
trigger conditions met.

14.4.4.3 Properties of Custom Trigger HDL Module

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
360

14 Design Debugging with the Signal Tap Logic Analyzer l n tel
QPS5V3 | 2017.11.06

Table 113.

Custom Trigger HDL Module Properties

Property Description

Custom HDL Module Name Module name of your triggering logic.

Configuration Bitstream e Allows you to create runtime-configurable trigger logic which can

change its behavior based upon the value of the configuration
bitstream.

e The configuration bitstream property is read as binary, therefore it
must contain only the characters 1 and 0. The bit-width (number of
1s and Os) must match the pattern_in bit width.

e A blank configuration bitstream implies that your module does not
have a pattern_in input.

Pipeline

Specifies the number of pipeline stages in your triggering logic.

For example, if after receiving a triggering input the LA needs three clock
cycles to assert the trigger output, you can denote a pipeline value of
three.

14.4.5 Trigger Condition Flow Control

The Trigger Condition Flow allows you to define the relationship between a set of
triggering conditions. Signal Tap Logic Analyzer Signal Configuration pane offers two
flow control mechanisms for organizing trigger conditions:

e Sequential Triggering—default triggering flow. Sequential triggering allows you
to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

e State-Based Triggering—gives the greatest control over your acquisition buffer.
Custom-based triggering allows you to organize trigger conditions into states
based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

14.4.5.1 Sequential Triggering

Sequential triggering flow allows you to cascade up to 10 levels of triggering
conditions. Signal Tap Logic Analyzer sequentially evaluates each of the conditions.

When the last triggering condition evaluates to TRUE, the Signal Tap Logic Analyzer
triggers the acquisition buffer. For segmented buffers, every acquisition segment after
the first triggers on the last condition that you specified. Use the Simple Sequential
Triggering feature with basic triggers, comparison triggers, advanced triggers, or a
mix of all three. The figure illustrates the simple sequential triggering flow for non-
segmented and segmented buffers.

The external trigger is considered as trigger level 0. The external trigger must be
evaluated before the main trigger levels are evaluated.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
361

] ®
l n tel 14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Figure 191. Sequential Triggering Flow
Non Segmented Buffer Segmented Buffer

n<10
Trigger Condition 1

Trigger Condition 1

Trigger Condition 2

'

\ n-2transitions

ggerCond Dy hcqustionseqmen
' n-2transitions Trigger Condition n | ———==—»(Acquisition Segment

‘ Q‘ trigger, -
) trigger Trigger Condition n 2 (Acquisiion Segment
Trigger Condition n Acquisition Buffer

/

m-2 transitions

‘
\

P - - trigger —
Trigger Condition n | —————(Acquisition Segment

Notes to figure:

1. The acquisition buffer starts capture when all n triggering levels are satisfied,
where n<10.

2. If you define an external trigger input, the Logic Analyzer evaluates it before
evaluating all other trigger conditions.

14.4.5.1.1 Configuring the Sequential Triggering Flow

To configure Signal Tap Logic Analyzer for sequential triggering:
1. On Trigger Flow Control, select Sequential

2. On Trigger Conditions, select the number of trigger conditions from the drop-
down list.
The Node List pane now displays the same number of trigger condition columns.

3. Configure each trigger condition in the Node List pane.
You can enable/disable any trigger condition from the column header.

Figure 192. Sequential Triggering Flow Configuration

} auto_signaltap_0 Lockmode: | . Allow all changes = Signal C: x
| Node Data Enable| Trigger R iifle Trigger Conditions E
1| L% Name 7 7 10 ransitional |1/vCom & |2 ¥ Bz & |3 ¥IBas & |4 ¥ Basic & Trigger

2 data[4)~4 t v v v =2 T

= -vee — v v) Nodes Allocated: @ Auto Manual; | |t

= data[7]-7 v v v ASLiasissssssssssssssssiiiiiiEEiissas
= SBD = = = = e = % - Trigger flow control: | Sequential]

‘» datal1]-1 Ed A] L] i 5 b Triggerposition: | S Post trigger position =]

5 data[2]~2 v v v v Vi] T =

= data(3]-3 v v & Trigger conditions: | 4 =

. data[5]~5 vl ¥l v| £d = = B o

= datal6]~6 v v v o] X o k3 A

.

| Jresecwmput [T | 7 1] B | m | m | @]

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
362

™ ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

14.4.5.2 State-Based Triggering

Figure 193.

With state-based triggering, a state diagram organizes the events that trigger the
acquisition buffer. The states capture all actions that the acquisition buffer performs,
and each state contains conditional expressions that define transition conditions.

Custom state-based triggering grants control over triggering condition arrangement,
and allows for more efficient use of the space available in the acquisition buffer,
because the Logic Analyzer only captures samples of interest.

To help you describe the relationship between triggering conditions, the state-based
triggering flow provides tooltips within the flow GUI. Additionally, you can use the
Signal Tap Trigger Flow Description Language, which is based upon conditional
expressions.

State-Based Triggering Flow

L n<20
Transition Ck
Condition: i $:2
: (]}
15:b 53
TCS: ¢
State: 1 Y\T(I—/ S: n (last state)
Trigger Condition Set: a 1¢S:d

J segment_trigger JLsegment_trigger JLsegment_ trigger segment_trigger

Girst Acquisition SegmenD Q\Iext Acquisition SegmenD @ext Acquisition SegmenD Gast Acquisition Segment)

Segmented Acquisition Buffer

Notes to figure:
1. You can define up to 20 different states.

2. If you define an external trigger input, the logic analyzer evaluates it before any
conditions in the custom state-based triggering flow.

Each state allows you to define a set of conditional expressions. Each conditional
expression is a Boolean expression that depends on a combination of triggering
conditions, counters, and status flags. You configure the triggering conditions within
the Setup tab. The Signal Tap Logic Analyzer custom-based triggering flow provides
counters and status flags.

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides you
with an optional count that specifies the number of samples the buffer captures before
the logic analyzer stops acquisition of the current segment. The count argument
allows you to control the amount of data the buffer captures before and after a
triggering event occurs.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
363

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The logic analyzer uses counter and status flag resources as
optional inputs in conditional expressions. Counters and status flags are useful for
counting the number of occurrences of certain events and for aiding in triggering flow
control.

The state-based triggering flow allows you to capture a sequence of events that may
not necessarily be contiguous in time. For example, a communication transaction
between two devices that includes a hand shaking protocol containing a sequence of
acknowledgements.

14.4.5.2.1 State-Based Triggering Flow Tab

The State-Based Trigger Flow tab is the control interface for the custom state-
based triggering flow.

This tab is only available when you select State-Based on the Trigger Flow Control
list. If you specify Trigger Flow Control as Sequential, the State-Based Trigger
Flow tab is not visible.

Figure 194. State-Based Triggering Flow Tab

‘ State Diagram: State Machine: Resources:
| - - —
‘ Number of states ‘11 | | Display mode: | All states in one window | | Flags: |10 H ‘
|| Current state: AllStates; Mame Initial Value | Current Valy*|
| o || state sT1: 1 Y
‘ m if (conditionl) f2 1
4 begin 3 o
| ; decrement c1; 4 1
sT1 :\ set f1; f5 0
) goto STZ; - T L
572 |7 and s LD
) state ST2: Counters: |10 31
| 573 |¥ if (conditionz)
- begin Name Width Initial Value [*
increment c2; <l 4 1
574 | clear f2; c2 4 o
) goto ST3; =] 1 1
—— o end c4 1 o
[s15] o i
) state ST3: 6 B o =
=76 f if (condition3) el)
) begin Configurable at runtime
o decrement c3;
[s77] set f3; Goto state destinations
goto ST4;
S Comparison values
[s78] end
Comparison operators
state ST4:
5Ta : if (conditiond) Logical operators
I) || henin
I -
|| 7 pata | % setup | F state-Based Trigger Flow |

State Diagram Pane

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

364

The State-Based Trigger Flow tab contains three panes:

number of available states, use the menu above the graphical overview.

The State Diagram pane provides a graphical overview of your triggering flow. this
pane displays the number of available states and the state transitions. To adjust the

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

State Machine Pane

The State Machine pane contains the text entry boxes where you define the
triggering flow and actions associated with each state.

e You can define the triggering flow using the Signal Tap Trigger Flow Description
Language, a simple language based on “if-else” conditional statements.

e Tooltips appear when you move the mouse over the cursor, to guide command
entry into the state boxes.

e The GUI provides a syntax check on your flow description in real-time and
highlights any errors in the text flow.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window,
select the appropriate option under State Display mode.

Related Links
Signal Tap Trigger Flow Description Language on page 366

Resources Pane

The Resources pane allows you to declare status flags and counters for your Custom
Triggering Flow's conditional expressions.

e You can increment/decrement counters or set/clear status flags within your
triggering flow.

e You can specify up to 20 counters and 20 status flags.

e To initialize counter and status flags, right-click the row in the table and select Set
Initial Value.

e To specify a counter width, right-click the counter in the table and select Set
Width.

e To assist in debugging your trigger flow specification, the logic analyzer
dynamically updates counters and flag values after acquisition starts.

The Configurable at runtime settings allow you to control which options can change
at runtime without requiring a recompilation.

Table 114. Runtime Reconfigurable Settings, State-Based Triggering Flow
Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In
addition, you can modify the segment_trigger and trigger action post-fill
count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.

Related Links
e Performance and Resource Considerations on page 380

e Runtime Reconfigurable Options on page 383

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
365

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

14.4.5.2.2 Trigger Lock Mode

Note:

Figure 195.

Trigger lock mode restricts changes to only the configuration settings that you specify
as Configurable at runtime. The runtime configurable settings for the Custom
Trigger Flow tab are on by default.

You may get some performance advantages by disabling some of the runtime
configurable options.

You can restrict changes to your Signal Tap configuration to include only the options
that do not require a recompilation. Trigger lock-mode allows you to make changes
that reflect immediately in the device.

1. On the Setup tab, point to Lock Mode and select Allow trigger condition
changes only.

Allow Trigger Conditions Change Only

|| trieger: 2008/01/24 14:16:26 #1 i Lock mode: |
()
Node Data Enable TE Allow incremental route changes only

| Allow all changes signal Configuration:

‘ & condition3 Clock: |clock
= Nass 3 & Allow trigger condition changes only 4 =
|Bar

e
in[1] Data

ut in2)

a5 [» Sample depth

2. Modify the Trigger Flow conditions.

Incremental Route lock-mode restricts the GUI to only allow changes that require an
Incremental Route compilation using Rapid Recompile. Use Rapid Recompile to
perform incremental routing and gain a 2-4x speedup over the initial full compilation.

14.4.5.3 Signal Tap Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional expressions per
state to define a set of actions.

To describe the actions the Logic Analyzer evaluates when a state is reached, you
follow this syntax:
Syntax of Trigger Flow Description Language
state <state_| abel >:
<action_list>
it (<bool ean_expressi on>)
<action_list>
[else if (<bool ean_expressi on>)
<action_list>]

[else
<action_list>]

¢ Non-terminals are delimited by "<>".
* Optional arguments are delimited by "[]"
e The priority for evaluation of conditional statements is from top to bottom.

e The Trigger Flow Description Language allows multiple else iF conditions.

<state_label> on page 367
<boolean_expression> on page 367
<action_list> on page 368

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

366

®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel
QPS5V3 | 2017.11.06

Related Links
Custom Triggering Flow Application Examples on page 397

14.4.5.3.1 <state_label>

Identifies a given state. You use the state label to start describing the actions the
Logic Analyzer evaluates once said state is reached. You can also use the state label
with the goto command.

The state description header syntax is:
state <state_label>

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

14.4.5.3.2 <boolean_expression>

Collection of operators and operands that evaluate into a Boolean result. The
operators can be logical or relational. Depending on the operator, the operand can
reference a trigger condition, a counter and a register, or a numeric value. To group a
set of operands within an expression, you use parentheses.

Table 115. Logical Operators
Logical operators accept any boolean expression as an operand.
Operator Description Syntax
1 NOT operator I exprl
&& AND operator exprl && expr2
11 OR operator exprl || expr2
Table 116. Relational Operators
You use relational operators on counters or status flags.
Operator Description Syntax
> Greater than <identifier> > <nunerical _val ue>
>= tGreater than or Equal <i dentifier> >= <nunerical _val ue>
(o]
== Equals <identifier> == <numerical _val ue>
1= Does not equal <i dentifier> I= <nunerical _val ue>
<= Less than or equal to <identifier> <= <nunerical _val ue>
< Less than <identifier> < <nurerical _val ue>
Notes to table:
1. <identifier> indicates a counter or status flag.
2. <numerical_value> indicates an integer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
367

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Note: e The <boolean_expression> in an if statement can contain a single event or
multiple event conditions.

* When the boolean expression evaluates TRUE, the logic analyzer evaluates all the

commands in the <action_list> concurrently.

14.4.5.3.3 <action_list>

List of actions that the Logic Analyzer performs within a state once a condition is
satisfied.

e Each action must end with a semicolon (;).

e If you specify more than one action within an if or an else if clause, you must
delimit the action_list with begin and end tokens.

Possible actions include:

Resource Manipulation Action

The resources the trigger flow description uses can be either counters or status flags.

Table 117. Resource Manipulation Actions

Action Description Syntax
increment Increments a counter resource by 1 ARERENER: <eeumkar i demi il arse
decrement Decrements a counter resource by 1

decrement <counter_identifier>;

reset Resets counter resource to initial value reseth<countiermilaentiltilerss
set Sets a status flag to 1 set <register_flag_identifier>;
clear Sets a status flag to O

clear <register_flag_identifier>;

Buffer Control Actions

Actions that control the acquisition buffer.

Table 118. Buffer Control Actions

Ends acquisition of the current segment. After
evaluating this command, the Signal Tap Logic
Analyzer starts acquiring from the next segment. If
all segments are written, the Logic Analyzer

Action Description Syntax
trigger Stops the acquisition for the current buffer and trigger <post-fill _count>;
ends analysis. This command is required in every - ’
flow definition.
segment_trigger | Available only in segmented acquisition mode. segment_trigger <post-fill _count>:

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

368

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Action Description Syntax

overwrites the oldest segment with the latest
sample. When a trigger action is evaluated the
acquisition stops.

start_store Active only in state-based storage qualifier mode.

a - start_store
Asserts the write_enable to the Signal Tap

acquisition buffer.

stop_store Active only in state-based storage qualifier mode.

- ; X stop_store
De-asserts the write_enable signal to the Signal

Tap acquisition buffer.

Both trigger and segment_trigger actions accept an optional post-fill_count
argument.

Related Links
Post-fill Count on page 373

State Transition Action

Specifies the next state in the custom state control flow. The syntax is:
goto <state label>;

14.4.5.4 Using the State-Based Storage Qualifier Feature

Note:

Selecting a state-based storage qualifier type enables the start_store and
stop_store actions. When you use these actions in conjunction with the expressions
of the State-based trigger flow, you get maximum flexibility to control data written
into the acquisition buffer.

You can only apply the start_store and stop_store commands to a non-
segmented buffer.

The start_store and stop_store commands are similar to the start and stop
conditions of the start/stop storage qualifier mode. If you enable storage
qualification, Signal Tap Logic Analyzer doesn't write data into the acquisition buffer
until the start_store command occurs. However, in the state-based storage
qualifier type you must include a trigger command as part of the trigger flow
description. This trigger command is necessary to complete the acquisition and
display the results on the waveform display.

14.4.5.4.1 Storage Qualification Feature for the State-Based Trigger Flow.

This trigger flow description contains three trigger conditions that happen at different
times after you click Start Analysis:

State 1: ST1:
if (conditionl)
start_store;
else if (condition2)
trigger value;
else if (condition3)
stop_store;

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
369

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Figure 196. Capture Scenario for Storage Qualification with the State-Based Trigger Flow

When you apply the trigger flow to the scenario in the figure:
Time Scale for data stream

at the start of acquisition
Condition 1 occurs Condition 2 occurs Condition 3 occurs
| | | | »
| | | | v
a b c Sample
n samples
m samples

1. The Signal Tap Logic Analyzer does not write into the acquisition buffer until
Condition 1 occurs (sample a).

2. When Condition 2 occurs (sample b), the logic analyzer evaluates the trigger
value command, and continues to write into the buffer to finish the acquisition.

3. The trigger flow specifies a stop_store command at sample ¢, which occurs m
samples after the trigger point.

4. If the data acquisition finishes the post-fill acquisition samples before Condition 3
occurs, the logic analyzer finishes the acquisition and displays the contents of the
waveform. In this case, the capture ends if the post-fill count value is < m.

5. 1If the post-fill count value in the Trigger Flow description 1 is > m samples, the
buffer pauses acquisition indefinitely, provided there is no recurrence of Condition
1 to trigger the logic analyzer to start capturing data again.

The Signal Tap Logic Analyzer continues to evaluate the stop_store and
start_store commands even after evaluating the trigger. If the acquisition paused,
click Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state update in real-time during a data
acquisition.

Example 36. Real data acquisition of the previous scenario

Figure 197. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)

The data capture finishes successfully. It uses a buffer with a sample depth of 64, m = n = 10, and post-
fill count = 5.

click to insert time bar

Hode ! 2
Type | Alias Hame dAz41 40 9 8 7 6 5 -4 3 2 4 0 1 2 3 4 5 §
o - data_out 0h 00h ¥ 02h) 00h I

post-fill count

Condition 1 Condition 2

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
370

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Figure 198.

intel.

Storage Qualification with Post-Fill Count Value Greater than m (Acquisition
Indefinitely Paused)

The logic analyzer pauses indefinitely, even after a trigger condition occurs due to a stop_store condition.

This scenario uses a sample depth of 64, withm = n =

R Quartus Il
File Edit

View Project Processing Tools

10 and post-fill count = 15.

Status bar and current value fields provide
real time status of the data acqusition

B(=1E

Window

Instance Manager. "o 0 W] @ X
Instance LEs: 662 | Memory: 895 | M512MLAR 0/94 | MAK M3IK: 2/
E] auto_signaltap_0 862 cells 896 bitz 0 Blocks 1 bloc
£ | k.
State Diagram: State Machine: Mo erars, Resources:
L = a
N beroisates: l_;l Display mode: I One window per state Flags:
Current state: 5T1 SIS MName | Initial Va... rent Yalue
i dt 1 f1 0 1
i [c_on ition1 | f2 0 1
begin £3 0
START start_store;
setf1; < | ¥
end — —
ST1: else if [condition]] Counters: -]
begin :
trigger 10; Name | width | Initial value | cur
set f2; 1 8 0 0
end
else if [condition L4
begin < | >
stop_store;
set f3; . .
end i~ Configurable at runtime

[B] Data | [zl Setup | E] State-Based Trigger Flow

<

: auto_signaltap_0

For Help, press F1

NN

Flags added to trigger flow
description to help gauge
execution during runtime

Figure 199. Waveform After Forcing the Analysis to Stop

click to insert time bar

Hode

2]
i

Type [Alias | Hame 0 2 3 4 & & 7T ® 9 10 41 12 13 14 15 16 7 18 13 20 2 22 23 24|
@ | - data_out[0.5]] mp 00h [00h
Condition 1 Condition 2 Condition 3

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
371

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.

Example 37. Trigger flow description that skips three clock cycles of samples after hitting
condition 1

Code:

State 1: ST1
start_store
it (conditionl)
begin
stop_store;
goto ST2;
end
State 2: ST2
if (cl1 < 3)
increment cl; //skip three clock cycles; cl initialized to O
else if (cl == 3)

begin
start_store;//start_store necessary to enable writing to finish
//acquisition
trigger;
end

The figures show the data transaction on a continuous capture and the data capture
when you apply the Trigger flow description.

Figure 200. Continuous Capture of Data Transaction

Hode |D
Type | Alias Hame l E £] = o 2 1 & g 10 7z T
o - data_out[D.5] 00h ¥ 0h {02h ¥ 03h ¥ Dah Dah OCh ¥ DEh 10 11h {120 {130 X1

Figure 201. Capture of Data Transaction with Trigger Flow Description Applied

log: 2008/08/29 16:16:43 #0

Hode lU 1|
Type[alias | Hame [12 0 5 & 4 2 0 2 4 8§ 0
=4 - data_out{0..5] 00h {01 {05k)(06h 07h {08h DS (DA ¥ 0Bh DCh)0Dh }0Eh)0

I 3 Clock Cycles Skipped
Trigger Condition 1

14.4.6 Specify Trigger Position

You can specify the amount of data the Logic Analyzer acquires before and after a
trigger event. Positions for Runtime and Power-Up triggers are separate.

Signal Tap Logic Analyzer offers three pre-defined ratios of pre-trigger data to post-
trigger data:

e Pre—Saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

e Center—Saves 50% pre-trigger and 50% post-trigger data.

e Post—Saves signal activity that occurred before the trigger (88% pre-trigger,
12% post-trigger).

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
372

QPS5V3 | 2017.11.06

™ ®
14 Design Debugging with the Signal Tap Logic Analyzer < l n tel)

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

Related Links
State-Based Triggering on page 363

14.4.6.1 Post-fill Count

In a custom state-based triggering flow with the segment_trigger and trigger
buffer control actions, you can use the post-fill_count argument to specify a
custom trigger position.

e If you do not use the post-Ffill_count argument, the trigger position for the
affected buffer defaults to the trigger position you specified in the Setup tab.

e In the trigger buffer control action (for non-segmented buffers), post-
Fill_count specifies the number of samples to capture before stopping data
acquisition.

e In the segment_trigger buffer control action (for segmented buffer), post-
Fill_count specifies a data segment.

Note: In the case of segment_trigger, acquisition of the current buffer stops
immediately if a subsequent triggering action is issued in the next state,
regardless of the current buffer's post-fill count. The Logic Analyzer discards
the remaining unfilled post-count acquisitions in the current buffer, and
displays them as grayed-out samples in the data window.

When the Signal Tap data window displays the captured data, the trigger position
appears as the number of post-count samples from the end of the acquisition segment
or buffer.

Sample Number of Trigger Position = (N - Post-Fill Count)

In this case, N is the sample depth of either the acquisition segment or non-
segmented buffer.

Related Links
Buffer Control Actions on page 368

14.4.7 Create a Power-Up Trigger

Power-up triggers capture events that occur during device initialization, immediately
after you power or reset the FPGA.

The typical use of Signal Tap Logic Analyzer is triggering events that occur during
normal device operation. You start an analysis manually once the target device is fully
powered on and the JTAG connection for the device is available. With Signal Tap
Power-Up Trigger feature, the Signal Tap Logic Analyzer captures data immediately
after device initialization.

You can add a different Power-Up Trigger to each logic analyzer instance in the Signal
Tap Instance Manager pane.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
373

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

14.4.7.1 Enabling a Power-Up Trigger

To enable the Power-Up Trigger for a logic analyzer instance, right-click the instance
and click Enable Power-Up Trigger. Alternatively, click Edit 0 Enable Power-Up
Trigger.

Power-Up Trigger appears as a child instance below the name of the selected instance.
The node list displays the default trigger conditions.

Figure 202. Enabling Power-Up Trigger in Signal Tap Logic Analyzer Editor

File Edit View Project Processing Tools Windc File Edit View Project Processing Tool

B d 9 UL - 7 B dH 9 -] o @

Instance Manager & |1 |invalid JTAG conf Instance Manager:] 1] -

Instance Status Enabled LE Instance Status
=] !\"_,| auto_signaltap O Notrunning

: Power-Up Trigger

T
4]

: 44, ' rigg [] "1+ | Advan
Object Library: in< Object Library: Resu,

: i Instance Status Help . L

* Edge & Levelvetecior =k ! i ® Edge & Level Detector I_A!

To disable a Power-Up Trigger, right-click the instance and click Disable Power-Up
Trigger.

auto_signaltap O

Notrunnine

Create Instance

Delete Instance Del

Rename Instance F2

Enable Power-Up Trigger

14.4.7.2 Manage and Configure Power-Up and Runtime Trigger Conditions

Note:

You can create basic, comparison, and advanced trigger conditions for your enabled
Power-Up Trigger as you do with a Run-Time Trigger.

Since each instance now has two sets of trigger conditions—the Power-Up Trigger and
the Run-Time Trigger—you can differentiate between the two with color coding. Power-
Up Trigger conditions that you can adjust are color coded light blue, while Run-Time
Trigger conditions you cannot adjust remain white.

To switch between the trigger conditions of the Power-Up Trigger and the Run-Time
Trigger, double-click the instance name or the Power-Up Trigger name in the Instance
Manager.

You cannot make changes to Power-Up Trigger conditions that would normally require
a full recompile with Runtime Trigger conditions, such as adding signals, deleting
signals, or changing between basic, comparison, and advanced triggers. To apply
these changes to the Power-Up Trigger conditions, first make the changes using the
Runtime Trigger conditions.

Any change made to the Power-Up Trigger conditions requires that you recompile the
Signal Tap Logic Analyzer instance, even if a similar change to the Runtime Trigger
conditions does not require a recompilation.

To copy trigger conditions from a Run-Time Trigger to a Power-Up Trigger or vice
versa, right-click the trigger name in the Instance Manager and click Duplicate
Trigger. Alternatively, select the trigger name and click Edit O Duplicate Trigger.

You can also use In-System Sources and Probes in conjunction with the Signal Tap
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected nets over the JTAG chain.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

374

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Related Links
Design Debugging Using In-System Sources and Probes on page 49

14.4.8 External Triggers

To trigger Signal Tap Logic Analyzer from an external source, you can create an
external trigger input.

The external trigger input behaves like trigger condition 1, in that it must evaluate to
TRUE before the logic analyzer evaluates any other configured trigger conditions.

Signal Tap Logic Analyzer supplies a signal to trigger external devices or other logic
analyzer instances. These features allow you to synchronize external logic analysis
equipment with the internal logic analyzer. Power-Up Triggers can use the external
triggers feature, but they must use the same source or target signal as their
associated Run-Time Trigger.

You can use external triggers to perform cross-triggering on a hard processor system
(HPS):

e Use your processor debugger to configure the HPS to obey or disregard cross-
trigger request from the FPGA, and to issue or not issue cross-trigger requests to
the FPGA.

e Use your processor debugger in combination with the Signal Tap external trigger
feature to develop a dynamic combination of cross-trigger behaviors.

e You can use the cross-triggering feature with the ARM Development Studio 5
(DS-5) software to implement a system-level debugging solution for your Intel
FPGA SoC.

Related Links
e FPGA-Adaptive Software Debug and Performance Analysis white paper

e Signal Configuration Pane
In Intel Quartus Prime Help

14.4.8.1 Using the Trigger Out of One Analyzer as the Trigger In of Another
Analyzer

An advanced feature of the Signal Tap Logic Analyzer is the ability to use the
Trigger out of one analyzer as the Trigger in to another analyzer. This feature allows
you to synchronize and debug events that occur across multiple clock domains.

To perform this operation, first turn on Trigger out for the source logic analyzer
instance. On the Instance list of the Trigger out trigger, select the targeted logic
analyzer instance. For example, if the instance named auto_signaltap_ O should
trigger auto_signaltap_1, select auto_signaltap_1]trigger_in.

Turning on Trigger out automatically enables the Trigger in of the targeted logic
analyzer instance and fills in the Instance field of the Trigger in trigger with the
Trigger out signal from the source logic analyzer instance. In this example,
auto_signaltap_O is targeting auto_signaltap_ 1. The Trigger In Instance field
of auto_signaltap_1 is automatically filled in with auto_signaltap_O]
trigger_out.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
375

http://www.altera.com/literature/wp/wp-01198-fpga-software-debug-soc.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

14.5 Compiling the Design

Note:

To incorporate the Signal Tap logic in your design and enable the JTAG connection, you
must compile your project. When you add a .stp file to your project, the Signal Tap
Logic Analyzer becomes part of your design. When you debug your design with a
traditional external logic analyzer, you must often make changes to the signals you
want to monitor as well as the trigger conditions.

Because these adjustments require that you recompile your design when using the
Signal Tap Logic Analyzer, use the Signal Tap Logic Analyzer feature along with
incremental compilation in the Intel Quartus Prime software to reduce recompilation
time.

14.5.1 Faster Compilations with Intel Quartus Prime Incremental
Compilation

You can add a Signal Tap Logic Analyzer instance to your design without recompiling
your original source code. Incremental compilation enables you to preserve the
synthesis and fitting results of your original design.

When you compile your design including a -stp file, Intel Quartus Prime software
automatically adds the sld_signaltap and sld_hub entities to the compilation
hierarchy. These two entities are the main components of the Signal Tap Logic
Analyzer, providing the trigger logic and JTAG interface required for operation.

Incremental compilation is also useful when you want to modify the configuration of
the _stp file. For example, you can change the buffer sample depth or memory type
without performing a full compilation. Instead, you only recompile the Signal Tap Logic
Analyzer, configured as its own design partition.

14.5.1.1 Enabling Incremental Compilation for Your Design

When enabled for your design, the Signal Tap Logic Analyzer is always a separate
partition. After the first compilation, you can use the Signal Tap Logic Analyzer to
analyze signals from the post-fit netlist. If your partitions are designed correctly,

subsequent compilations due to Signal Tap Logic Analyzer settings take less time.

The netlist type for the top-level partition defaults to source. To take advantage of
incremental compilation, specify the Netlist types for the partitions you want to tap as
Post-fit.

Related Links

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

376

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958382198
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958382198

™ ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

14.5.1.2 Using Incremental Compilation with the Signal Tap Logic Analyzer

Caution:

Note:

The Signal Tap Logic Analyzer uses the incremental compilation flow by default. For all
signals that you want to connect to the Signal Tap Logic Analyzer from the post-fit
netlist:

1. In the Design Partitions window, set the netlist type of the partition that contains
the signals to Post-Fit, with a Fitter Preservation Level of Placement and
Routing.

2. In the Node Finder, use the Signal Tap: post-fitting filter to add the signals of
interest to your Signal Tap configuration file.

3. If you want to add signals from the pre-synthesis netlist, set the netlist type to
Source File and use the Signal Tap: pre-synthesis filter in the Node Finder.
Do not use the netlist type Post-Synthesis with the Signal Tap Logic Analyzer.

When using post-fit and pre-synthesis nodes:

e Read all incremental compilation guidelines to ensure the proper partitioning of a
project.

e To speed up compile time, use only post-fit nodes for partitions specified as
preservation-level post-fit.

¢ Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap pre-
synthesis nodes for a particular partition, make all tapped nodes in that partition
pre-synthesis nodes and change the netlist type to source in the design partitions
window.

Node names can differ between a pre-synthesis netlist and a post-fit netlist. In
general, registers and user input signals share common names between the two
netlists. During compilation, certain optimizations change the names of combinational
signals in your RTL. If the type of node name chosen does not match the netlist type,
the compiler may not be able to find the signal to connect to your Signal Tap Logic
Analyzer instance for analysis. The compiler issues a critical warning to alert you of
this scenario. The signal that is not connected is tied to ground in the Signal Tap
data tab.

If you do use incremental compilation flow with the Signal Tap Logic Analyzer and
source file changes are necessary, be aware that you may have to remove compiler-
generated post-fit net names. Source code changes force the affected partition to go
through resynthesis. During synthesis, the compiler cannot find compiler-generated
net names from a previous compilation.

Intel FPGA recommends using only registered and user-input signals as debugging
taps in your .stp whenever possible.

Both registered and user-supplied input signals share common node names in the pre-
synthesis and post-fit netlist. As a result, using only registered and user-supplied
input signals in your .stp limits the changes you need to make to your Signal Tap
Logic Analyzer configuration.

You can check the nodes that are connected to each Signal Tap instance using the In-
System Debugging compilation reports. These reports list each node name you
selected to connect to a Signal Tap instance, the netlist type used for the particular
connection, and the actual node name used after compilation. If the incremental

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
377

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

compilation flow is not used, the In-System Debugging reports are located in the
Analysis & Synthesis folder. If the incremental compilation flow is used, this report is
located in the Partition Merge folder.

To verify that your original design was not modified, examine the messages in the
Partition Merge section of the Compilation Report.

Unless you make changes to your design partitions that require recompilation, only
the Signal Tap design partition is recompiled. If you make subsequent changes to only
the .stp, only the Signal Tap design partition must be recompiled, reducing your
recompilation time.

14.5.2 Prevent Changes Requiring Recompilation

Figure 203.

Configure the .stp to prevent changes that normally require recompilation. To do
this, select a Lock mode from above the node list in the Setup tab. To lock your
configuration, choose Allow trigger condition changes only.

Allow Trigger Conditions Change Only

trigger: 2008/01/24 14:16:26 #1 1 Lock mode: ‘ Allow all changes signal Configuration:
:

Node Data Enable TE Allow incremental route changes only
condition3 Clock: |clock

pe|Alias Name 8
' in[1]

in[2]

= Data
1

=
D

Sample depth:

Related Links
Verify Whether You Need to Recompile Your Project on page 382

14.5.3 Incremental Route with Rapid Recompile

You can use Incremental Route with Rapid Recompile to decrease compilation times.
After performing a full compilation on your design, you can use the Incremental Route
flow to achieve a 2-4x speedup over a flat compile. The Incremental Route flow is not
compatible with Partial Reconfiguration.

Intel Quartus Prime Standard Edition software supports Incremental Route with Rapid
Recompile for Arria V, Cyclone V, and Stratix V devices.

Related Links

Running Rapid Recompile
In Intel Quartus Prime Pro Edition Handbook Volume 1

14.5.3.1 Using the Incremental Route Flow

To use the Incremental Route flow:

1. Open your design and run Analysis & Elaboration (or a full compilation) to give
node visibility in Signal Tap.

Add Signal Tap to your design.

In the Signal Tap Signal Configuration pane, specify Manual in the Nodes
Allocated field for Trigger and Data nodes (and Storage Qualifier, if used).

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

378

https://www.altera.com/documentation/jbr1414694395857.html#jbr1414694395857

®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel
QPS5V3 | 2017.11.06

Figure 204. Manually Allocate Nodes

Figure 205.

[Signal Configuration: x
| e
Clock.
Data
Sample depth: 'L‘FZE — :7_ RAM type:)\uta 7:‘:_
Segmented: 54 egme =
ENadesAanaled‘ s Auto Manual { R E
Pipaline Factor: | O £
Storage qualifier
Type: E Continuous 3|
Input port, |
gNodes Allocated: ® Auto Manua | ZE
i datad
ze gualifie
Trigger
Er\lndesAlLacated‘ @ Auto Manual* “:E
Trigger flow control. | Sequential 5
Trigger position: ﬁPre tngger position =
Trigger conditions: 1 =

Manual node allocation allows you to control the number of nodes compiled into
the design, which is critical for the Incremental Route flow.

When you select Auto allocation, the number of nodes compiled into the design
matches the number of nodes in the Setup tab. If you add a node later, you
create a mismatch between the amount of nodes the device requires and the
amount of compiled nodes, and you must perform a full compilation.

Specify the number of nodes that you estimate necessary for the debugging
process. You can increase the number of nodes later, but this requires more
compilation time.

Add the nodes that you want to tap.

If you have not fully compiled your project, run a full compilation. Otherwise, start
incremental compile using Rapid Recompile.

Debug and determine additional signals of interest.
(Optional) Select Allow incremental route changes only lock-mode.

Incremental Route Lock-Mode

| trigger: 2008/01/24 14116:26 #1 gLa:k mode: [T allow all changes : signal Configuration:
4 —_
el Allow incremental route changes only
|ype[atias Ninms B H Allow trigger condition changesonly g -
ata

ut ——1

- ~ein1] |

-

Sample depth:

9. Add additional nodes in the Signal Tap Setup tab.

1

— Do not exceed the number of manually allocated nodes you specified.
— Avoid making changes to non-runtime configurable settings.

* Click the Rapid Recompile icon ﬁ from the toolbar. Alternatively, click Processing

O Start Rapid Recompile.

Note: The previous steps set up your design for Incremental Route, but the actual
Incremental Route process begins when you perform a Rapid Recompile.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
379

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

14.5.3.2 Tips to Achieve Maximum Speedup

e Basic AND (which applies to Storage Qualifier as well as trigger input) is the
fastest for the Incremental Route flow.

e Basic OR is slower for the Incremental Route flow, but if you avoid changing the
parent-child relationship of nodes within groups, you can minimize the impact on
compile time. You can change the sibling relationships of nodes.

— Basic OR and advanced triggers require re-synthesis when you change the
number/names of tapped nodes.

e Use the Incremental Route lock-mode to avoid inadvertent changes requiring a full
compilation.

14.5.4 Timing Preservation with the Signal Tap Logic Analyzer

In addition to verifying functionality, timing closure is one of the most crucial
processes in successful operation of your design.

Note: When you compile a project with a Signal Tap Logic Analyzer without the use of
incremental compilation, you must add IP to your existing design. This addition often
impacts the existing placement, routing, and timing of your design. To minimize the
effect that the Signal Tap Logic Analyzer has on your design, use incremental
compilation for your project. Incremental compilation is the default setting in new
designs. You can easily enable incremental compilation in existing designs. When the
Signal Tap Logic Analyzer is in a design partition, it has little to no affect on your
design.

For Intel Arria 10 devices, the Intel Quartus Prime Standard Edition software does not
support timing preservation for post-fit taps with Rapid Recompile.

Use the following techniques to help maintain timing:
* Avoid adding critical path signals to your .stp.

* Minimize the number of combinational signals you add to your .stp, and add
registers whenever possible.

e Specify an fyax constraint for each clock in your design.

Related Links

Timing Closure and Optimization
In Intel Quartus Prime Standard Edition Handbook Volume 2

14.5.5 Performance and Resource Considerations

When you perform logic analysis of your design, you can see the necessary trade-off
between runtime flexibility, timing performance, and resource usage.

The Signal Tap Logic Analyzer allows you to select runtime configurable parameters to
balance the need for runtime flexibility, speed, and area.

The default values of the runtime configurable parameters provide maximum
flexibility, so you can complete debugging as quickly as possible; however, you can
adjust these settings to determine whether there is a more appropriate configuration

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
380

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471203263

™ ®
14 Design Debugging with the Signal Tap Logic Analyzer < l n tel)

QPS5V3 | 2017.11.06

for your design. Because performance results are design-dependent, try these options
in different combinations until you achieve the desired balance between functionality,
performance, and utilization.

14.5.5.1 Signal Tap Logic in Critical Path

If Signal Tap logic is part of your critical path, follow these tips to speed up the
performance of the Signal Tap Logic Analyzer:

Disable runtime configurable options—Certain resources are allocated to
accommodate for runtime flexibility. If you use either advanced triggers or State-
based triggering flow, disable runtime configurable parameters for a boost in fyax
of the Signal Tap logic.

— If you are using State-based triggering flow, try disabling the Goto state
destination option and performing a recompilation before disabling the other
runtime configurable options. The Goto state destination option has the
greatest impact on fyax, as compared to the other runtime configurable
options.

Minimize the number of signals that have Trigger Enable selected—By
default, Signal Tap Logic Analyzer enable the Trigger Enable option for all signals
that you add to the .stp file. For signals that you do not plan to use as triggers,
turn this option off.

Turn on Physical Synthesis for register retiming—If many (more than the
number of inputs that fit in a LAB) enabled triggering signals fan-in logic to a
gate-based triggering condition (basic trigger condition or a logical reduction
operator in the advanced trigger tab), turn on Perform register retiming. This
can help balance combinational logic across LABs.

14.5.5.2 Signal Tap Logic Using Critical Resources

If your design is resource constrained, follow these tips to reduce the logic or memory
the Signal Tap Logic Analyzer uses:

Disable runtime configurable options—Disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in fewer LEs.

Minimize the number of segments in the acquisition buffer—You can reduce
the logic resources that the Signal Tap Logic Analyzer uses if you limit the
segments in your sampling buffer

Disable the Data Enable for signals that you use only for triggering—By
default, Signal Tap Logic Analyzer enables data enable options for all signals.
Turning off the data enable option for signals you use only as trigger inputs saves
on memory resources.

14.6 Program the Target Device or Devices

After you add the Signal Tap Logic Analyzer to your project and re-compile, you can
configure the FPGA target device.

If you want to debug multiple designs simultaneously, configure the device from
the .stp instead of the Intel Quartus Prime Programmer. This allows you to open
more than one _stp file and program multiple devices.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
381

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

14.6.1 Ensure Setting Compatibility Between .stp and .sof Files

Note:

A _stp file is compatible with a .soT file when the settings for the logic analyzer,
such as the size of the capture buffer and the signals you use for monitoring or
triggering, match the programming settings of the target device. If the files are not
compatible, you can still program the device, but you cannot run or control the logic
analyzer from the Signal Tap Logic Analyzer Editor.

e To ensure programming compatibility, program your device with the .sof file
generated in the most recent compilation.

e To check whether a particular .sof is compatible with the current Signal Tap
configuration, attach the .sof to the SOF manager.

When the Signal Tap Logic Analyzer detects incompatibility after the analysis starts,
the Intel Quartus Prime software generates a system error message containing two
CRC values: the expected value and the value retrieved from the _stp instance on the
device. The CRC value comes from all Signal Tap settings that affect the compilation.

Although having a Intel Quartus Prime project is not required when using an .stp, it
is recommended. The project database contains information about the integrity of the
current Signal Tap Logic Analyzer session. Without the project database, there is no
way to verify that the current .stp file matches the .sof file in the device. If you
have an .stp file that does not match the .sof file, the Signal Tap Logic Analyzer can
capture incorrect data.

Related Links
Manage Multiple Signal Tap Files and Configurations on page 350

14.6.2 Verify Whether You Need to Recompile Your Project

Before starting a debugging session, do not make any changes to the .stp settings
that require recompiling the project.

To verify whether a change you made requires recompiling the project, check the
Signal Tap status display at the top of the Instance Manager pane. This feature
allows you to undo the change, so that you do not need to recompile your project.

Related Links
Prevent Changes Requiring Recompilation on page 378

14.7 Running the Signal Tap Logic Analyzer

Debugging Signal Tap Logic Analyzer is similar using an external logic analyzer. You
initialize the logic analyzer by starting an analysis. When your trigger event occurs,
the logic analyzer stores the captured data in the device's memory buffer, and then
transfers this data to the .stp file with the JTAG connection.

You can also perform the equivalent of a force trigger instruction that lets you view
the captured data currently in the buffer without a trigger event occurring.

The flowchart shows how you operate the Signal Tap Logic Analyzer. indicates where
Power-Up and Runtime Trigger events occur and when captured data from these
events is available for analysis.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

382

®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel

QPS5V3 | 2017.11.06

Figure 206. Power-Up and Runtime Trigger Events Flowchart

Yes

Changes Require
Recompile?

Make Changes to Setup
(If Needed)

Compile Design

v

Program Device

Possible Missed Trigger
(Unless Power-Up
Trigger Enabled)

A
Manually Run
Signal Tap Logic Analyzer

Trigger Occurred?

Yes

Manually Stop Analyzer

Analyze Data: Power-Up Yes
or Run-Time Trigger

ontinue Debugging?

No

Data Downloaded?

Manually Read
Data from Device

You can also use In-System Sources and Probes in conjunction with the Signal Tap
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain.

Related Links

Design Debugging Using In-System Sources and Probes on page 49

14.7.1 Runtime Reconfigurable Options

When you use Runtime Trigger mode, you can change certain settings in the .stp
without recompiling your design.

Table 119.

Runtime Reconfigurable Features

Runtime Reconfigurable Setting

Description

Basic Trigger Conditions and Basic Storage
Qualifier Conditions

You can change without recompiling all signals that have the Trigger
condition turned on to any basic trigger condition value

Comparison Trigger Conditions and Comparison
Storage Qualifier Conditions

All the comparison operands, the comparison numeric values, and the
interval bound values are runtime-configurable.

You can also switch from Comparison to Basic OR trigger at runtime
without recompiling.

Advanced Trigger Conditions and Advanced
Storage Qualifier Conditions

Many operators include runtime configurable settings. For example, all
comparison operators are runtime-configurable. Configurable settings
appear with a white background in the block representation. This
runtime reconfigurable option is turned on in the Object Properties
dialog box.

Switching between a storage-qualified and a
continuous acquisition

Within any storage-qualified mode, you can switch to continuous
capture mode without recompiling the design. To enable this feature,
turn on disable storage qualifier.

State-based trigger flow parameters

Refer to Runtime Reconfigurable Settings, State-Based Triggering
Flow

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
383

Note:

Figure 207.

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Runtime Reconfigurable options can save time during the debugging cycle by allowing
you to cover a wider possible scenario of events without the need to recompile the
design. You may experience a slight impact to the performance and logic utilization.
You can turn off runtime re-configurability for advanced trigger conditions and the
state-based trigger flow parameters, boosting performance and decreasing area
utilization.

To configure the .stp file to prevent changes that normally require recompilation in
the Setup tab, select Allow Trigger Condition changes only above the node list.

In Incremental Route lock mode, Allow incremental route changes only, limits to
changes that only require an Incremental Route compilation, and not a full compile.

This example illustrates a potential use case for Runtime Reconfigurable features, by
providing a storage qualified enabled State-based trigger flow description, and
showing how to modify the size of a capture window at runtime without a recompile.
This example gives you equivalent functionality to a segmented buffer with a single
trigger condition where the segment sizes are runtime reconfigurable.

state ST1:
it (conditionl && (cl <= m))// each 'segment'" triggers on condition
/7 1

begin // m = number of total '"'segments"
start_store;
increment cl;
goto ST2:

End

else (c1 > m) // This else condition handles the last
// segment.
begin
start_store
Trigger (n-1)
end

state ST2:
if (c2 >=n) //n = number of samples to capture in each
//segment.
begin
reset c2;
stop_store;
goto ST1;
end

else (c2 < n)
begin
increment c2;
goto ST2;
end

m x n must equal the sample depth to efficiently use the space in the sample buffer.
The next figure shows the segmented buffer that the trigger flow example describes.

Segmented Buffer Created with Storage Qualifier and State-Based Trigger

Total sample depth is fixed, where m x n must equal sample depth.
Segment 1 Segment 2 Segmentm

| | | eee | |

1 n 1 n 1 n

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

384

| | ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel
QPS5V3 | 2017.11.06

During runtime, you can modify the values m and n. Changing the m and n values in
the trigger flow description adjust the segment boundaries without recompiling.

You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

This example is like the previous example with an additional state inserted. You use
this extra state to specify a different trigger condition that does not use the storage
qualifier feature. You insert status flags into the conditional statements to control the
execution of the trigger flow.

state ST1 :
if (condition2 && f1) // additional state added for a non-
segmented
// acquisition set fl to enable state
begin
start_store;
trigger
end
else if (1 f1)
goto ST2;
state ST2:
if ((conditionl && (cl <= m) && f2) // 2 status flag used to mask
state. Set T2
// to enable
begin
start_store;
increment cl;
goto ST3:
end
else (c1 >m)
start_store
Trigger (n-1)
end

state ST3:
if (c2 >=n)
begin
reset c2;
stop_store;
goto ST1;
end
else (c2 < n)
begin
increment c2;
goto ST2;
end

14.7.2 Signal Tap Status Messages

The table describes the text messages that might appear in the Signal Tap Status
Indicator in the Instance Manager pane before, during, and after a data acquisition.
Use these messages to monitor the state of the logic analyzer or what operation it is
performing.

Table 120. Text Messages in the Signal Tap Status Indicator

Message Message Description
Not running The Signal Tap Logic Analyzer is not running. There is no connection to a device or
the device is not configured.
(Power-Up Trigger) Waiting for The Signal Tap Logic Analyzer is performing a Runtime or Power-Up Trigger
clock (1) acquisition and is waiting for the clock signal to transition.
continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
385

intel.

Note:

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Message

Message Description

Acquiring (Power-Up)
pre-trigger data (1)

The trigger condition has not been evaluated yet. A full buffer of data is collected if
using the non-segmented buffer acquisition mode and storage qualifier type is
continuous.

Trigger In conditions met

Trigger In condition has occurred. The Signal Tap Logic Analyzer is waiting for the
condition of the first trigger condition to occur. This can appear if Trigger In is
specified.

Waiting for (Power-up) trigger (1)

The Signal Tap Logic Analyzer is now waiting for the trigger event to occur.

Trigger level <x> met

The condition of trigger condition x has occurred. The Signal Tap Logic Analyzer is
waiting for the condition specified in condition x + 1 to occur.

Acquiring (power-up) post-
trigger data (1)

The entire trigger event has occurred. The Signal Tap Logic Analyzer is acquiring the
post-trigger data. The amount of post-trigger data collected is you define between
12%, 50%, and 88% when the non-segmented buffer acquisition mode is selected.

Offload acquired (Power-Up) data
(1)

Data is being transmitted to the Intel Quartus Prime software through the JTAG
chain.

Ready to acquire

The Signal Tap Logic Analyzer is waiting for you to initialize the analyzer.

1. This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the text in

parentheses is added.

In segmented acquisition mode, pre-trigger and post-trigger do not apply.

14.8 View, Analyze, and Use Captured Data

Use the Signal Tap Logic Analyzer interface to examine the data you captured
manually or using a trigger, and use your findings to debug your design.

When in the Data view, you can use the drag-to-zoom feature by left-clicking to
isolate the data of interest.

14.8.1 Capturing Data Using Segmented Buffers

Segmented Acquisition buffers allow you to perform multiple captures with a separate
trigger condition for each acquisition segment. This feature allows you to capture a
recurring event or sequence of events that span over a long period time efficiently.

Each acquisition segment acts as a hon-segmented buffer, continuously capturing data
when it is activated. When you run an analysis with the segmented buffer option
enabled, the Signal Tap Logic Analyzer performs back-to-back data captures for each
acquisition segment within your data buffer. You define the trigger flow, or the type
and order in which the trigger conditions evaluate for each buffer, either in the
Sequential trigger flow control or in the Custom State-based trigger flow control.

The following figure shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

386

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 208.

Figure 209.

Segmented Acquisition Buffer

Trigger 1 Trigger 2 Trigger 3 Trigger 4
Post Pre Post Pre Post Pre Post Pre

Segment 1 Buffer Segment 2 Buffer Segment 3 Buffer Segment 4 Buffer

The Signal Tap Logic Analyzer finishes an acquisition with a segment, and advances to
the next segment to start a new acquisition. Depending on when a trigger condition
occurs, it may affect the way the data capture appears in the waveform viewer. The
figure illustrates the data capture method. The Trigger markers—Trigger 1, Trigger 2,
Trigger 3 and Trigger 4—refer to the evaluation of the segment_trigger and
trigger commands in the Custom State-based trigger flow. If you use a sequential
flow, the Trigger markers refer to trigger conditions specified within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the Signal Tap
Logic Analyzer starts evaluating Trigger 2 immediately. Data Acquisition for Segment 2
buffer starts when either Segment Buffer 1 finishes its post-fill count, or when Trigger
2 evaluates as TRUE, whichever condition occurs first. Thus, trigger conditions
associated with the next buffer in the data capture sequence can preempt the post-fill
count of the current active buffer. This allows the Signal Tap Logic Analyzer to
accurately capture all the trigger conditions that have occurred. Unused samples
appear as a blank space in the waveform viewer.

The next figure shows an example of a capture using sequential flow control with the
trigger condition for each segment specified as Don’t Care.

Segmented Capture with Preemption of Acquisition Segments

Type |Alias Hame 2
= e Bt] . .] sessssmrnes

Each segment before the last captures only one sample, because the next trigger
condition immediately preempts capture of the current buffer. The trigger position for
all segments is specified as pre-trigger (10% of the data is before the trigger condition
and 90% of the data is after the trigger position). Because the last segment starts
immediately with the trigger condition, the segment contains only post-trigger data.
The three empty samples in the last segment are left over from the pre-trigger
samples that the Signal Tap Logic Analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. For maximum flexibility on defining the trigger position, use the custom
state-based trigger flow. By adjusting the trigger position specific to your debugging
requirements, you can help maximize the use of the allocated buffer space.

14.8.2 Differences in Pre-fill Write Behavior Between Different Acquisition

Modes

The Signal Tap Logic Analyzer uses one of the following three modes when writing into
the acquisition memory:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
387

™ ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

e Non-segmented buffer
e Non-segmented buffer with a storage qualifier
e Segmented buffer

There are subtle differences in the amount of data captured immediately after running
the Signal Tap Logic Analyzer and before any trigger conditions occur. A non-
segmented buffer, running in continuous mode, completely fills the buffer with
sampled data before evaluating any trigger conditions. Thus, a non-segmented
capture without any storage qualification enabled always shows a waveform with a full
buffer's worth of data captured.

Filling the buffer provides you with as much data as possible within the capture
window. The buffer gets pre-filled with data samples prior to evaluating the trigger
condition. As such, Signal Tap requires that the buffer be filled at least once before
any data can be retrieved through the JTAG connection and prevents the buffer from
being dumped during the first acquisition prior to a trigger condition when you
perform a Stop Analysis.

For segmented buffers and non-segmented buffers using any storage qualification
mode, the Signal Tap Logic Analyzer immediately evaluates all trigger conditions while
writing samples into the acquisition memory. This evaluation is especially important
when using any storage qualification on the data set. The logic analyzer may miss a
trigger condition if it waits to capture a full buffer's worth of data before evaluating
any trigger conditions,

If the trigger event occurs on any data sample before the specified amount of pre-
trigger data has occurred, then the Signal Tap Logic Analyzer triggers and begins
filling memory with post-trigger data, regardless of the amount of pre-trigger data you
specify. For example, if you set the trigger position to 50% and set the logic analyzer
to trigger on a processor reset, start the logic analyzer, and then power on your target
system, the logic analyzer triggers. However, the logic analyzer memory is filled only
with post-trigger data, and not any pre-trigger data, because the trigger event, which
has higher precedence than the capture of pre-trigger data, occurred before the pre-
trigger condition was satisfied.

The figures for continuous data capture and conditional data capture show the
difference between a non-segmented buffer in continuous mode and a non-segmented
buffer using a storage qualifier. The configuration of the logic analyzer waveforms
below is a base trigger condition, sample depth of 64 bits, and Post trigger position.

Figure 210. Signal Tap Logic Analyzer Continuous Data Capture

™ Trig! T) Togt

Type
[+ = count
=4

Trigger Position

In the continuous data capture, Trigl occurs several times in the data buffer before
the Signal Tap Logic Analyzer actually triggers. A full buffer's worth of data is captured
before the logic analyzer evaluates any trigger conditions. After the trigger condition
occurs, the logic analyzer continues acquisition until it captures eight additional
samples (12% of the buffer, as defined by the "post-trigger" position).

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
388

™ ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

Figure 211. Signal Tap Logic Analyzer Conditional Data Capture

Hade [|
Tyve [Ailas | Hame 2] q | 7 3 i] [7 [
5 e ! . 3 2 1 !]
L4

15 data_owt 0i0h . Trig! . X Trigl) [X

Trigger Position

Note to figure:
1. Conditional capture, storage always enabled, post-fill count.

2. Signal Tap Logic Analyzer capture of a recurring pattern using a non-segmented
buffer in conditional mode. The configuration of the logic analyzer is a basic
trigger condition "Trigl" and sample depth of 64 bits. The Trigger in condition is
Don't care, which means that every sample is captured.

In conditional capture the logic analyzer triggers immediately. As in continuous
capture, the logic analyzer completes the acquisition with eight samples, or 12% of
64, the sample capacity of the acquisition buffer.

14.8.3 Creating Mnemonics for Bit Patterns

The mnemonic table feature allows you to assign a meaningful name to a set of bit
patterns, such as a bus. To create a mnemonic table, right-click in the Setup or Data
tab of an .stp and click Mnemonic Table Setup. You create a mnemonic table by
entering sets of bit patterns and specifying a label to represent each pattern. Once
you have created a mnemonic table, assign the table to a group of signals. To assign a
mnemonic table, right-click on the group, click Bus Display Format and select the
desired mnemonic table.

You use the labels you create in a table in different ways on the Setup and Data tabs.
On the Setup tab, you can create basic triggers with meaningful names by right-
clicking an entry in the Trigger Conditions column and selecting a label from the
table you assigned to the signal group. On the Data tab, if any captured data matches
a bit pattern contained in an assigned mnemonic table, the signal group data is
replaced with the appropriate label, making it easy to see when expected data
patterns occur.

14.8.4 Automatic Mnemonics with a Plug-In

When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click the name of the signal or signal
group. On the Bus Display Format shortcut menu, then click the name of the
mnemonic table that matches the plug-in.

As an example, the Nios II plug-in helps you to monitor signal activity for your design
as the code is executed. If you set up the logic analyzer to trigger on a function name
in your Nios II code based on data from an .elf, you can see the function name in
the Instance Address signal group at the trigger sample, along with the
corresponding disassembled code in the Disassembly signal group, as shown in
Figure 13-52. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
389

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Figure 212. Data Tab when the Nios II Plug-In is Used

log: 2006/09/29 16:55.45 #0 e = |
Type n&ul Name lﬁ? Value asll-zs 49 50 51 52||
4 | PC @ . Mioslhinst Address|{ ot _main+0x8) =empty= alt_maintOxc /. <empty= { <emply=

& | DIS | & ..Nios |l Disassembly { maov fp, sp) cempty= X movir2, 2 X <empty= X <emplys

< X |
[Al Data _‘E;a‘ Setup |

14.8.5 Locating a Node in the Design

When you find the source of an error in your design using the Signal Tap Logic
Analyzer, you can use the node locate feature to locate that signal in many of the tools
found in the Intel Quartus Prime software, as well as in your design files. This lets you
find the source of the problem quickly so you can modify your design to correct the
flaw. To locate a signal from the Signal Tap Logic Analyzer in one of the Intel Quartus
Prime software tools or your design files, right-click the signal in the .stp, and click
Locate in <tool name>.

You can locate a signal from the node list with the following tools:

¢ Assignment Editor

e Pin Planner

e Timing Closure Floorplan

e Chip Planner

e Resource Property Editor

e Technology Map Viewer

e RTL Viewer

e Design File

14.8.6 Saving Captured Data

When you save a data capture, Signal Tap Logic Analyzer stores this data in the
active .stp file, and the Data Log adds the capture as a log entry under the current
configuration.

When analysis is set to Auto-run mode, the Logic Analyzer creates a separate entry
in the Data Log to store the data captured each time the trigger occurred. This allows
you to review the captured data for each trigger event.

The default name for a log is based time stamp when the Logic Analyzer acquired the
data. As a best practice, rename the data log with a more meaningful name.

The organization of logs is hierarchical; the Logic Analyzer groups similar logs of
captured data in trigger sets.

Related Links
Data Log Pane on page 350

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
390

QPS5V3 | 2017.11.06

] ®
14 Design Debugging with the Signal Tap Logic Analyzer < l n tel)

14.8.7 Exporting Captured Data to Other File Formats

You can export captured data to the following file formats, for use with other EDA
simulation tools:

e Comma Separated Values File (.csv)
e Table File (.tbl)

e Value Change Dump File (.vcd)

e \ector Waveform File (.vwf)

* Graphics format files (- jpg, -bmp)

To export the captured data from Signal Tap Logic Analyzer, on the File menu, click
Export and specify the File Name, Export Format, and Clock Period.

14.8.8 Creating a Signal Tap List File

A _stp list file contains all the data the logic analyzer captures for a trigger event, in
text format.

Each row of the list file corresponds to one captured sample in the buffer. Columns
correspond to the value of each of the captured signals or signal groups for that
sample. If you defined a mnemonic table for the captured data, a matching entry from
the table replaces the numerical values in the list.

The .stp list file is especially useful when combined with a plug-in that includes
instruction code disassembly. You can view the order of instruction code execution
during the same time period of the trigger event.

To create a .stp list file in the Intel Quartus Prime software, click File O Create/
Update O Create Signal Tap List File.

Related Links
Adding Signals with a Plug-In on page 337

14.9 Other Features

The Signal Tap Logic Analyzer provides optional features not specific to a task flow.
The following techniques may offer advantages in specific circumstances.

14.9.1 Creating Signal Tap File from Design Instances

In addition to providing GUI support for generation of .stp files, the Intel Quartus
Prime software supports generation of a Signal Tap instance from logic defined in HDL
source files. This technique is helpful to modify runtime configurable trigger
conditions, acquire data, and view acquired data on the data log via Signal Tap
utilities.

14.9.1.1 Creating a .stp File from a Design Instance

To generate a .stp file from parameterized HDL instances within your design:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
391

®
l n tel 14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

1. Open or create an Intel Quartus Prime project that includes one or more HDL
instances of the Signal Tap logic analyzer.

2. Click Processing O Start O Start Analysis & Synthesis.

3. Click File O Create/Update 0 Create Signal Tap File from Design
Instance(s).

4. Specify a location for the .stp file that generates, and click Save.

Figure 213. Create Signal Tap File from Design Instances Dialog Box

s () save Signal Tap file as <@sj-lccf0693> —— ~) (=)
Lookin: |thcmefmsandcvaf‘l}' in_hdl_example_pr v| \} J 0 @, ‘El [!|
ﬂ Computer | Name ¥ | Size Type Date Modified
9 msandov ip “Folder 6 Mar 2...3:25:59
¥ ip_upgrade_part_diff_reports Folder 6 Mar 2..3:28:35
= output_files Folder 6 Mar 2..3:30:15
= gdb Folder & Mar2.3:25:59
signaltap_sys Folder 6 Mar 2...3:25:59
i tmp-clearbox Folder 6 Mar 2..3:29:15
pr_stp_file.stp 3KB stpFile 6 Mar2.3:25:59
(4] N3]]
File name: [my_s‘tp.stp l
Files of type: | Signal Tap Logic Analyzer Files (*stp) s | ‘ Cancel ‘

Note: If your project contains partial reconfiguration partitions, the Create Signal
Tap File from Design Instance(s) dialog box displays a tree view of the
PR partitions in the project. Select a partition from the view, and click
Create Signal Tap file. The resultant .stp file that generates contains all
HDL instances in the corresponding PR partition. The resultant .stp file
does not include the instances in any nested partial reconfiguration
partition.

Figure 214. Selecting Partition for . st p File Generation

(%Y O Create Signal Tap File from Design Instance(s) <@sj-iccf0693>

Select a partition to create its respective Signal Tap file:

Name Type Has Signal Tap instance(s)
B root_partition Top No

wrapper_a_part Partial reconfiguration Yes

CreateSignalTapfile‘ Close |

After successful .stp file creation, the Signal Tap Logic Analyzer appears. All the
fields are read-only, except runtime-configurable trigger conditions.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
392

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Figure 215. Generated . st p File

~@ () Signal Tap Logic - /h /1 tp_in_hd] 4 :_pr/stp_in_hdl_example_pritop - top - [my_stp.stp] < (v (&) (3
File Edit View Project Processing Tools Window Help :] e
o o> n 0
nstare Manager | 7] |12 |] |20 [t i configumaton PEpTE—— e

Instance Status Enabled LE usage Memory usage Hardware: . Setup

wrapper_inst_a|signalt.. Motrunning [
Device: t < | | Scan Chain
Bridge Index i &
>> | SOFManager: | &, | I |

4] 3]

trigger: 2017/03/06 13:3638 #1 Lock mode: b2 Signal Configuration: x |
Node Data Enable | Trigger Enable [Trigger Conditions| =l
Type|Alias Name 16 16 1[¥ Easl = Clock: | | |
wrapper_inst_a|data_in[12] |
Data |
wrapper_inst_a|data_in[13]
wrapper_inst_a|data_in[14] sample depth | RAM type -
wrapper_inst_a|data_in[15]
wrapper_inst_a|trigger_in[0] = egmented e =
wrapper_inst_a|trigger_in[1] =
> wrapper_inst_a|trigger_in[2] o2 Nodes Allocated: @ Manual ‘ B
£N wrapper_inst_a|trigger_in[3] = i e |
"HData | @ setup | - -
| Hierarchy Display: x | ¥ DataLog:| [x
|| B ¥ ® top B wrapper_inst_a|signaltap_test_inst_c|signaltap_sys_signaltap_ii_logic_analyzer_O|signaltap_sys_signaltap_ii_log
¥ ® wrapper_inst_a signal_set 2017/03/06 13:36:38 #0
trigger: 2017/03/06 13:36:38 #1
[®] wrapper_inst_a|signaltap_test_inst_c|signaltap_sys_signaltap_ii_logic_analyzer_0|signaltap_sys_signaltap_ii_logic_analyzer_0 _

Related Links

e Create Signal Tap File from Design Instances
In Intel Quartus Prime Help

e Custom Trigger HDL Object on page 358

14.9.2 Using the Signal Tap MATLAB MEX Function to Capture Data

Note:

When you use MATLAB for DSP design, you can acquire data from the Signal Tap Logic
Analyzer directly into a matrix in the MATLAB environment by calling the MATLAB MEX
function alt_signaltap_run, built into the Intel Quartus Prime software. If you use
the MATLAB MEX function in a loop, you can perform as many acquisitions in the same
amount of time as you can when using Signal Tap in the Intel Quartus Prime software
environment.

The Signal Tap MATLAB MEX function is available in the Windows* version and Linux
version of the Intel Quartus Prime software. This function is compatible with MATLAB
Release 14 Original Release Version 7 and later.

To set up the Intel Quartus Prime software and the MATLAB environment to perform
Signal Tap acquisitions:

1. In the Intel Quartus Prime software, create an .stp file.
2. In the node list in the Data tab of the Signal Tap Logic Analyzer Editor, organize

the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix.

Each column of the imported matrix represents a single Signal Tap acquisition
sample, while each row represents a signal or group of signals in the order you
defined in the Data tab.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
393

http://quartushelp.altera.com/current/#program/ela/ela_com_create_stp_from_mf.htm

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Note: Signal groups that the Signal Tap Logic Analyzer acquires and transfers into
the MATLAB MEX function have a width limit of 32 signals. To use the
MATLAB MEX function with a bus or signal group that contains more than 32
signals, split the group into smaller groups that do not exceed the limit.

Save the .stp file and compile your design. Program your device and run the
Signal Tap Logic Analyzer to ensure your trigger conditions and signal acquisition
work correctly.

In the MATLAB environment, add the Intel Quartus Prime binary directory to your
path with the following command:

addpath <Quartus install directory>\win

You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run

Use the MATLAB MEX function to open the JTAG connection to the device and run
the Signal Tap Logic Analyzer to acquire data. When you finish acquiring data,
close the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
("<stp filename>"[,("signed”]"unsigned®)[, "<i nstance names>"[, \
"<signal set nane>"[,"<trigger nane>"1111);

When capturing data, you must assign a filename, for example, <stp filename> as
a requirement of the MATLAB MEX function. Other MATLAB MEX function options
are described in the table:

Table 121. Signal Tap MATLAB MEX Function Options
Option Usage Description
signed "signed” The signed option turns signal group data into 32-bit two's-
unsigned unsigned- complement signed integers. The MSB of the group as

defined in the Signal Tap Data tab is the sign bit. The
unsigned option keeps the data as an unsigned integer.
The default is signed.

<instance name>

"auto_signaltap_ 0" Specify a Signal Tap instance if more than one instance is
defined. The default is the first instance in the .stp,

auto_signaltap_0.

<signal set name>
<trigger name>

"my_signalset”
"my_trigger”®

Specify the signal set and trigger from the Signal Tap data
log if multiple configurations are present in the .stp. The

default is the active signal set and trigger in the file.

During data acquisition, you can enable or disable verbose mode to see the status
of the logic analyzer. To enable or disable verbose mode, use the following
commands:

alt_signaltap_run("VERBOSE_ON®");-alt_signaltap_run("VERBOSE_OFF");

When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run("END_CONNECTION®);

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

394

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

14.9.3 Using Signal Tap in a Lab Environment

You can install a stand-alone version of the Signal Tap Logic Analyzer. This version is
particularly useful in a lab environment in which you do not have a workstation that
meets the requirements for a complete Intel Quartus Prime installation, or if you do
not have a license for a full installation of the Intel Quartus Prime software. The
standalone version of the Signal Tap Logic Analyzer is included with and requires the
Intel Quartus Prime stand-alone Programmer which is available from the Downloads
page of the Altera website.

14.9.4 Remote Debugging Using the Signal Tap Logic Analyzer

14.9.4.1 Debugging Using a Local PC and an SoC

You can use the System Console with Signal Tap Logic Analyzer to remote debug your
Intel FPGA SoC. This method requires one local PC, an existing TCP/IP connection, a
programming device at the remote location, and an Intel FPGA SoC.

Related Links
Remote Hardware Debugging over TCP/IP

14.9.4.2 Debugging Using a Local PC and a Remote PC

You can use the Signal Tap Logic Analyzer to debug a design that is running on a
device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:
e The Intel Quartus Prime software installed on the local PC

e Stand-alone Signal Tap Logic Analyzer or the full version of the Intel Quartus
Prime software installed on the remote PC

e Programming hardware connected to the device on the PCB at the remote location
e TCP/IP protocol connection

14.9.4.2.1 Equipment Setup

1. On the PC in the remote location, install the standalone version of the Signal Tap
Logic Analyzer, included in the Intel Quartus Prime stand-alone Programmer, or
the full version of the Intel Quartus Prime software.

2. Connect the remote computer to Intel programming hardware, such as the or Intel
FPGA Download Cable.

On the local PC, install the full version of the Intel Quartus Prime software.
Connect the local PC to the remote PC across a LAN with the TCP/IP protocol.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
395

http://www.altera.com
http://www.altera.com/literature/an/an_693.pdf

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

14.9.5 Using the Signal Tap Logic Analyzer in Devices with Configuration
Bitstream Security

Certain device families support bitstream decryption during configuration using an on-
device AES decryption engine. You can still use the Signal Tap Logic Analyzer to
analyze functional data within the FPGA. However, note that JTAG configuration is not
possible after the security key has been programmed into the device.

Intel FPGA recommends that you use an unencrypted bitstream during the prototype
and debugging phases of the design. Using an unencrypted bitstream allows you to
generate new programming files and reconfigure the device over the JTAG connection
during the debugging cycle.

If you must use the Signal Tap Logic Analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design must
contain at least one instance of the Signal Tap Logic Analyzer. After the FPGA is
configured with a Signal Tap Logic Analyzer instance in the design, when you open the
Signal Tap Logic Analyzer in the Intel Quartus Prime software, you then scan the chain
and are ready to acquire data with the JTAG connection.

14.9.6 Monitor FPGA Resources Used by the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer has a built-in resource estimator that calculates the
logic resources and amount of memory that each logic analyzer instance uses.
Furthermore, because the most demanding on-chip resource for the logic analyzer is
memory usage, the resource estimator reports the ratio of total RAM usage in your
design to the total amount of RAM available, given the results of the last compilation.
The resource estimator provides a warning if a potential for a “no-fit” occurs.

You can see resource usage (by instance and total) in the columns of the Instance
Manager pane of the Signal Tap Logic Analyzer Editor. Use this feature when you
know that your design is running low on resources.

The logic element value that the resource usage estimator reports may vary by as
much as 10% from the actual resource usage.

14.10 Design Example: Using Signal Tap Logic Analyzers

The system in this example contains many components, including a Nios processor, a
direct memory access (DMA) controller, on-chip memory, and an interface to external
SDRAM memory. After you press a button, the processor initiates a DMA transfer,
which you analyze using the Signal Tap Logic Analyzer. In this example, the Nios
processor executes a simple C program from on-chip memory and waits for you to
press a button.

Related Links

AN 446: Debugging Nios II Systems with the Signal Tap Embedded Logic Analyzer
application note

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
396

http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an446.pdf

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

14.11 Custom Triggering Flow Application Examples

The custom triggering flow in the Signal Tap Logic Analyzer is most useful for
organizing a number of triggering conditions and for precise control over the
acquisition buffer. This section provides two application examples for defining a
custom triggering flow within the Signal Tap Logic Analyzer. Both examples can be
easily copied and pasted directly into the state machine description box by using the
state display mode All states in one window.

Related Links
On-chip Debugging Design Examples website

14.11.1 Design Example 1: Specifying a Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer.

The example shows how to apply a trigger position to all segments in the acquisition
buffer. The example describes a triggering flow for an acquisition buffer split into four
segments. If each acquisition segment is 64 samples in depth, the trigger position for
each buffer will be at sample #34. The acquisition stops after all four segments are
filled once.

if (cl == 3 && conditionl)
trigger 30;

else if (conditionl)

begin
segment_trigger 30;
increment cl;

end

Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values.

The Data tab displays the last acquisition before stopping the buffer as the last
sample number in the affected segment. The trigger position in the affected segment
is then defined by N — post count fill, where N is the number of samples per
segment.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
397

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

] ®
l n tel) 14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Figure 216. Specifying a Custom Trigger Position

Trigger

d Sample #1

Last Sample

14.11.2 Designh Example 2: Trigger When triggercond1 Occurs Ten Times
between triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events
before triggering the acquisition buffer. The example shows such a sample flow. This
example uses three basic triggering conditions configured in the Signal Tap Setup tab.

This example triggers the acquisition buffer when conditionl occurs after
condition3 and occurs ten times prior to condition3. If condition3 occurs prior
to ten repetitions of conditionl, the state machine transitions to a permanent wait
state.

state ST1:
if (condition2)
begin
reset cl;
goto ST2;
end
State ST2 :
if (conditionl)
increment cl;
else if (condition3 && cl < 10)
goto ST3;
else if (condition3 && cl >= 10)
trigger;
ST3:
goto ST3;

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
398

] ®
14 Design Debugging with the Signal Tap Logic Analyzer l n tel)

QPS5V3 | 2017.11.06

14.12 Signal Tap Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run some procedures at a command prompt. For detailed information about
scripting command options, refer to the Intel Quartus Prime Command-Line and Tcl
API Help browser. To run the Help browser, type the following at the command
prompt:

quartus_sh --ghelp

Related Links

Tcl Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

14.12.1 Signal Tap Tcl Commands

The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Intel Quartus Prime GUI. You cannot execute Signal Tap Tcl
commands from within the Tcl console in the Intel Quartus Prime software. You must
run them from the command-line with the quartus_stp executable. To execute a Tcl
file that has Signal Tap Logic Analyzer Tcl commands, use the following command:

quartus_stp -t <Tcl file>

Example 38. Continuously capturing data
This excerpt shows commands you can use to continuously capture data. Once the
capture meets trigger condition e, the data is captured and stored in the data log.

Open Signal Tap session
open_session -name stpl.stp

Start acquisition of instances auto_signaltap_0 and
auto_signaltap_1 at the same time

Calling run_multiple_end will start all instances
run_multiple_start

run -instance auto_signaltap 0 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5

run_multiple_end

Close Signal Tap session
close_session

Related Links

riquartus::stp
In Intel Quartus Prime Help

14.12.2 Signal Tap Command-Line Options

To compile your design with the Signal Tap Logic Analyzer using the command prompt,
use the quartus_stp command. You can use the following options with the
quartus_stp executable:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
399

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_stp_ver_1.0.htm

intel.

Table 122.

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

quartus_st p Command-Line Options

Option Usage Description

--stp_TFile <stp_filename> Mandatory Specifies the name of the .stp file.

--enable

Optional Creates assignments to the specified .stp in the .qsf
and changes ENABLE_SIGNALTAP to ON. Includes Signal
Tap Logic Analyzer in the next compilation. If no .stp is
specified in the .gsT, the --stp_File option must be
used. If omitted, the compiler uses the current value of
ENABLE_SIGNALTAP in the .gsT Ffile.

--disable

Optional Removes the .stp reference from the .qs¥ and changes
ENABLE_SIGNALTAP to OFF. The Signal Tap Logic
Analyzer is removed from the design database the next
time you compile your design. If the --disable option
is omitted, the current value of ENABLE_SIGNALTAP in
the .gsf is used.

--create_signaltap_hdl_file Optional Creates an .Stp representing the Signal Tap instance.

You must use the --stp_file option to create an .stp.
Equivalent to the Create Signal Tap File from Design
Instance(s) command in the Intel Quartus Prime
software.

The first example illustrates how to compile a design with the Signal Tap Logic
Analyzer at the command line.

quartus_stp filtref --stp_file stpl.stp --enable

quartus_map filtref --source=Ffiltref._bdf --family=CYCLONE
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns
quartus_asm filtref

The quartus_stp --stp_Ffile stpl.stp --enable command creates the QSF
variable and instructs the Intel Quartus Prime software to compile the stpl.stp file
with your design. The ——enable option must be applied for the Signal Tap Logic
Analyzer to compile into your design.

The example below shows how to create a new .stp after building the Signal Tap
Logic Analyzer instance with the IP Catalog.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stpl.stp

Related Links

Command-Line Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

400

https://www.altera.com/documentation/mwh1410471012784.html#mwh1410470998554

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

14.13 Document Revision History

Table 123. Document Revision History

Date Version

Changes Made

2017.11.06 17.1.0

Clarified information about the Data Log Pane.
Updated Figure: Data Log and renamed to Simple Data Log.
Added Figure: Accessing the Advanced Trigger Condition Tab.

2017.05.08 17.0.0

Added: Open Standalone Signal Tap Logic Analyzer GUI.

Updated figures on Create Signal Tap File from Design
Instance(s).

2016.10.31 16.1.0

Added: Create Signal Tap File from Design Instance(s).
Removed reference to unsupported Talkback feature.

2016.05.03 16.0.0 .

Added: Specifying the Pipeline Factor
Added: Comparison Trigger Conditions

2015.11.02 15.1.0

Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0

Added content for Floating Point Display Format in table: Signal Tap
Logic Analyzer Features and Benefits.

2014.12.15 14.1.0

Updated location of Fitter Settings, Analysis & Synthesis Settings,
and Physical Synthesis Optimizations to Compiler Settings.

December 2014 14.1.0

Added MAX 10 as supported device.

Removed Full Incremental Compilation setting and Post-Fit
(Strict) netlist type setting information.

Removed outdated GUI images from "Using Incremental
Compilation with the Signal Tap Logic Analyzer" section.

June 2014 14.0.0

DITA conversion.

Replaced MegaWizard Plug-In Manager and Megafunction
content with IP Catalog and parameter editor content.

Added flows for custom trigger HDL object, Incremental Route
with Rapid Recompile, and nested groups with Basic OR.

GUI changes: toolbar, drag to zoom, disable/enable instance,
trigger log time-stamping.

November 2013 13.1.0

trig

Removed HardCopy material. Added section on using cross-

Added section on remote debugging an Altera SoC and added link to
application note 693. Updated support for MEX function.

gering with DS-5 tool and added link to white paper 01198.

May 2013 13.0.0

Added recommendation to use the state-based flow for
segmented buffers with separate trigger conditions, information
about Basic OR trigger condition, and hard processor system
(HPS) external triggers.

Updated “Segmented Buffer” on page 13-17, Conditional Mode
on page 13-21, Creating Basic Trigger Conditions on page 13-16,
and Using External Triggers on page 13-48.

June 2012 12.0.0

Sig

Updated Figure 13-5 on page 13-16 and “Adding Signals to the

nal Tap File” on page 13-10.

November 2011 11.0.1

Template update.
Minor editorial updates.

May 2011 11.0.0

Updated the requirement for the standalone Signal Tap software.

December 2010 10.0.1

Changed to new document template.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

401

intel.

14 Design Debugging with the Signal Tap Logic Analyzer
QPS5V3 | 2017.11.06

Date Version Changes Made
July 2010 10.0.0 e Add new acquisition buffer content to the “View, Analyze, and
Use Captured Data” section.
e Added script sample for generating hexadecimal CRC values in
programmed devices.
e Created cross references to Intel Quartus Prime Help for
duplicated procedural content.
November 2009 9.1.0 No change to content.
March 2009 9.0.0 e Updated Table 13-1
e Updated “Using Incremental Compilation with the Signal Tap
Logic Analyzer” on page 13-45
e Added new Figure 13-33
e Made minor editorial updates
November 2008 8.1.0 Updated for the Intel Quartus Prime software version 8.1 release:
e Added new section “Using the Storage Qualifier Feature” on
page 14-25
* Added description of start_store and stop_store
commands in section “Trigger Condition Flow Control” on
page 14-36
e Added new section “"Runtime Reconfigurable Options” on
page 14-63
May 2008 8.0.0 Updated for the Intel Quartus Prime software version 8.0:
e Added “Debugging Finite State machines” on page 14-24
e Documented various GUI usability enhancements, including
improvements to the resource estimator, the bus find feature,
and the dynamic display updates to the counter and flag
resources in the State-based trigger flow control tab
e Added “Capturing Data Using Segmented Buffers” on page 14-
16
e Added hyperlinks to referenced documents throughout the
chapter
e Minor editorial updates

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the

documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

402

https://www.altera.com/search-archives

n ®>
QPS5V3 | 2017.11.06 l n tel

16 Debugging Single Event Upset Using the Fauilt
Injection Debugger

You can detect and debug single event upset (SEU) using the Fault Injection Debugger
in the Intel Quartus Prime software. Use the debugger with the Intel FPGA Fault
Injection IP core to inject errors into the configuration RAM (CRAM) of an Intel FPGA
device.

The injected error simulates the soft errors that can occur during normal operation
due to SEUs. Since SEUs are rare events, and therefore difficult to test, you can use
the Fault Injection Debugger to induce intentional errors in the FPGA to test the
system's response to these errors.

The Fault Injection Debugger is available for Intel Arria 10 and Stratix V family
devices. For assistance with support for Arria V or Cyclone V family devices, file a
service request using your myAltera account.

The Fault Injection Debugger provides the following benefits:

¢ Allows you to evaluate system response for mitigating single event functional
interrupts (SEFI).

e Allows you to perform SEFI characterization, eliminating the need for entire
system beam testing. Instead, you can limit the beam testing to failures in time
(FIT)/Mb measurement at the device level.

e Scale FIT rates according to the SEFI characterization that is relevant to your
design architecture. You can randomly distribute fault injections throughout the
entire device, or constrain them to specific functional areas to speed up testing.

e Optimize your design to reduce SEU-caused disruption.

Related Links

e myAltera Log In

e Single Event Upsets

e AN 737: SEU Detection and Recovery in Intel Arria 10 Devices

e Understanding Single Event Functional Interrupts in FPGA Designs White Paper

16.1 Single Event Upset Mitigation

Integrated circuits and programmable logic devices such as FPGAs are susceptible to
SEUs. SEUs are random, nondestructive events, caused by two major sources: alpha
particles and neutrons from cosmic rays. Radiation can cause either the logic register,
embedded memory bit, or a configuration RAM (CRAM) bit to flip its state, thus
leading to unexpected device operation.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

https://www.altera.com/mal-all/mal-signin.html
http://www.altera.com/support/reliability/seu/seu-index.html
https://www.altera.com/documentation/sss1429097548237.html#sss1429097674429
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01207-single-event-functional-interrupt.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
l n tel) 16 Debugging Single Event Upset Using the Fault Injection Debugger

QPS5V3 | 2017.11.06

Intel Arria 10, Arria V, Cyclone V, Stratix V and newer devices have the following
CRAM capabilities:

e Error Detection Cyclical Redundance Checking (EDCRC)

e Automatic correction of an upset CRAM (scrubbing)

e Ability to create an upset CRAM condition (fault injection)

For more information about SEU mitigation in Intel FPGA devices, refer to the SEU
Mitigation chapter in the respective device handbook.

Related Links

e SEU Mitigation in Intel Arria 10 Devices: Hierarchy Tagging Online Course

e Mitigating Single Event Upsets in Intel Arria 10 Devices Online Course

16.2 Hardware and Software Requirements

The following hardware and software is required to use the Fault Injection Debugger:
e Intel Quartus Prime software version 14.0 or later.

e FEATURE line in your Intel FPGA license that enables the Fault Injection IP core.
For more information, contact your local Intel FPGA sales representative.

e Download cable (Intel FPGA Download Cable, Intel FPGA Download Cable II, Intel
FPGA Ethernet Cable, or Intel FPGA Ethernet Cable II).

e Intel FPGA development kit or user designed board with a JTAG connection to the
device under test.

e (Optional) FEATURE line in your Intel FPGA license that enables the Advanced SEU
Detection IP core.

Related Links
Altera Website: Contact Us

16.3 Using the Fault Injection Debugger and Fault Injection IP Core

The Fault Injection Debugger works together with the Fault Injection IP core. First,
you instantiate the IP core in your design, compile, and download the resulting
configuration file into your device. Then, you run the Fault Injection Debugger from
within the Intel Quartus Prime software or from the command line to simulate soft
errors.

e The Fault Injection Debugger allows you to operate fault injection experiments
interactively or by batch commands, and allows you to specify the logical areas in
your design for fault injections.

e The command-line interface is useful for running the debugger via a script.

The Fault Injection Debugger communicates with the Fault Injection IP core via the
JTAG interface. The Fault Injection IP accepts commands from the JTAG interface and
reports status back through the JTAG interface.

Note: The Fault Injection IP core is implemented in soft logic in your device; therefore, you
must account for this logic usage in your design. One methodology is to characterize
your design’s response to SEU in the lab and then omit the IP core from your final
deployed design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
404

https://www.altera.com/support/training/course/oseuhier.html
https://www.altera.com/support/training/course/oseumtgtn.html
http://www.altera.com/corporate/contact/con-index.html

QPS5V3 | 2017.11.06

] ®
16 Debugging Single Event Upset Using the Fault Injection Debugger < l n tel)

You use the Fault Injection IP core with the following IP cores:

e The Error Message Register (EMR) Unloader IP core, which reads and stores data
from the hardened error detection circuitry in Intel FPGA devices.

e (Optional) The Advanced SEU Detection (ASD) IP core, which compares single-bit
error locations to a sensitivity map during device operation to determine whether
a soft error affects it.

Figure 217. Fault Injection Debugger Overview Block Diagram

Intel FPGA
Unused Logic
Command-Line /\/é:> -
Interface or JTAG . ® (ritical
Fault Injection P FauItIn;;e)ctmnIP User Logic
Debugger User
Interface ¢
EMR Unloader IP -
¢ 2) O Non-Cr|t!caI
e User Logic
Sensitivity Map ¢
Header File (.smh)
Advanced SEU
Detection IP (3)

Q Injected Error

Notes:

1. The fault Injection IP flips the bits of the targeted logic.

2. The Fault Injection Debugger and Advanced SEU Detection IP use the same
EMR Unloader instance.

3. The Advanced SEU Detection IP core is optional.

Related Links
e About SMH Files on page 408

e AN 539: Test Methodology or Error Detection and Recovery using CRC in Intel
FPGA Devices

e Instantiating the Intel FPGA Fault Injection IP Core on page 405
e About the EMR Unloader IP Core on page 406
e About the Advanced SEU Detection IP Core on page 407
16.3.1 Instantiating the Intel FPGA Fault Injection IP Core
The Fault Injection IP core does not require you to set any parameters. To use the IP
core, create a new IP instance, include it in your Platform Designer (Standard)

system, and connect the signals as appropriate.

Note: You must use the Fault Injection IP core with the Error Message Register (EMR)
Unloader IP core.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
405

https://www.altera.com/documentation/sss1425362075409.html#sss1425362165035
https://www.altera.com/documentation/sss1425362075409.html#sss1425362165035

®
l n tel 16 Debugging Single Event Upset Using the Fault Injection Debugger
QPS5V3 | 2017.11.06

The Fault Injection and the EMR Unloader IP cores are available in Platform Designer
(Standard) and the IP Catalog. Optionally, you can instantiate them directly into your
RTL design, using Verilog HDL, SystemVerilog, or VHDL.

Related Links

Intel FPGA Fault Injection IP Core User Guide

16.3.1.1 About the EMR Unloader IP Core
The EMR Unloader IP core provides an interface to the EMR, which is updated
continuously by the device’s EDCRC that checks the device's CRAM bits CRC for soft

errors.

Figure 218. Example Platform Designer (Standard) System Including the Fault Injection
IP Core and EMR Unloader IP Core

Address Map §Z§| Interconnect Requirements 53|

|| g System: fid Path: dock_bridge_0.in_dk
4 Use Connections MName Description Export
L] B dock_bridge_0
b 4 Double-click to export
E L out_dk Clock Output clock_bridge_0_out_clk (
' B reset_bridge_0 Reset Bridge
= ok Clack Input 1
-~ s in_reset Reset Input reset_bridge_0_in_reset [
- —— out_reset Reset Output [
= = DQ emr_unloader_0 |Altera Error Message Register Unloader
dock Clock Input 1
reset Reset Input [
CrCerror_pin Conduit
- creerror Conduit emr_unloader_0_crcerror [
o emr_read Conduit emr_unloader_0_emr_read [
avst_emr_src Avalon Streaming Source [
B fault_injection_0 Altera Fault Injection
Creerror_pin Conduit
- avst_emr_snk Avalon Streaming Sink f
reset Feset Input
T error_injected Conduit fault_injection_0_error_injected
- error_scrubbed Conduit fault_injection_0_error_scrubbed
M intosc Clock Output i

Figure 219. Example Intel FPGA Fault Injection IP Core and EMR Unloader IP Core Block

Diagram
creerror_pin error_injected
emr_data 67 error_scrubbed \
Intel FPGAENOr | emy_valid” | Intel FPGA Fault | intosc >
G S/ Injection IP Core
Unloader IP Core
reset N)
dk >
System Reset

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
406

https://www.altera.com/documentation/esc1428515496663.html#esc1428515747926

16 Debugging Single Event Upset Using the Fault Injection Debugger
QPS5V3 | 2017.11.06

Related Links
Intel FPGA Error Message Unloader IP Core User Guide

16.3.1.2 About the Advanced SEU Detection IP Core

Figure 220.

16.3.2 Defining Fault Injection Areas

Use the Advanced SEU Detection (ASD) IP core when SEU tolerance is a design
concern.

You must use the EMR Unloader IP core with the ASD IP core. Therefore, if you use
the ASD IP and the Fault Injection IP in the same design, they must share the EMR
Unloader output via an Avalon-ST splitter component. The following figure shows a
Platform Designer (Standard) system in which an Avalon-ST splitter distributes the

EMR contents to the ASD and Fault Injection IP cores.

Using the ASD and Fault Injection IP in the Same Platform Designer
(Standard) System

Kd4r M &l XE+

=

I: System Contents 53] Address Map &5 | Interconnect Requirements &5 |

- g System: seu_refdes Path: dock_bridge_intosc

=4
i
m

<]

Connections

!

QQT

S
<
<

Ol S
o

—
<
<

Related Links
Intel FPGA Advanced SEU Detection IP Core User Guide

Header (.smh) file.

Mame

Description

= clock_bridge_intosc Clock Bridge

in_dk
out_ck

E reset_bridge
dk
in_reset
out_reset

= IE emr_unloader
dock
reset
creerror_pin
areerror
emr_read
avst_emr_src

E emr_splitter
dk
reset
in
outd
outl

O fault_injection
creerror_pin
avst_emr_snk
reset
error_injected
error_scrubbed
intosc

El reset_to_asd
dk
in_reset
out_reset

B adv_seu
dock
reset
cache_comparison_off
avst_emr_snk
asd_sp_master
errors

Clock Input

Clock Output

Reset Bridge

Clock Input

Reset Input

Reset Qutput

Altera Error Message Register Unloader
Clock Input

Reset Input

Conduit.

Conduit.

Conduit

Avalon Streaming Source
Avalon-ST Splitter

Clock Input

Reset Input

Awalon Streaming Sink
Awvalon Streaming Source
Awvalon Streaming Source
Altera Fault Injection
Conduit

Avalon Streaming Sink
Reset Input

Conduit.

Conduit.

Clock OQutput

Reset Bridge

Clock Input

Reset Input

Reset Output

Altera Advanced SEU Detection
Clock Input

Reset Input

Conduit

Avalon Streaming Sink
Avalon Memory Mapped Master
Conduit.

Export

intosc

croerror
emr_read

error_injected
error_scrubbed

adv_seu_reset

cache_compatrison_off

errors

Clock

fault_injection_intosc
dlock_bridge_intosc_out_dk

fault_injection_intosc
el
el

fault_injection_intosc
[dock]

[clock]
[clock]
[clock]

fault_injection_intosc
[clk]
el
el
el

ifault_injection_intosc

ifault_injection_intosc

fault_injection_intosc
[k
[k

fault_injection_intosc
[dock]
[dock]
[dock]
[dock]
[dock]

You can define specific regions of the FPGA for fault injection using a Sensitivity Map

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

407

https://www.altera.com/documentation/esc1417461530107.html#esc1417477325834
https://www.altera.com/documentation/sss1424671189302.html#sss1424671317650

™ ®
l n tel) 16 Debugging Single Event Upset Using the Fault Injection Debugger

QPS5V3 | 2017.11.06

The SMH file stores the coordinates of the device CRAM bits, their assigned region
(ASD Region), and criticality. During the design process you use hierarchy tagging to
create the region. Then, during compilation, the Intel Quartus Prime Assembler
generates the SMH file. The Fault Injection Debugger limits error injections to specific
device regions you define in the SMH file.

16.3.2.1 Performing Hierarchy Tagging

You define the FPGA regions for testing by assigning an ASD Region to the location.
You can specify an ASD Region value for any portion of your design hierarchy using
the Design Partitions Window.

Choose Assignments [0 Design Partitions Window.

2. Right-click anywhere in the header row and turn on ASD Region to display the
ASD Region column (if it is not already displayed).

3. Enter a value from 0 to 16 for any partition to assign it to a specific ASD Region.

— ASD region 0 is reserved to unused portions of the device. You can assign a
partition to this region to specify it as non-critical..

— ASD region 1 is the default region. All used portions of the device are assigned
to this region unless you explicitly change the ASD Region assignment.

16.3.2.2 About SMH Files

The SMH file contains the following information:

e If you are not using hierarchy tagging (i.e., the design has no explicit ASD Region
assignments in the design hierarchy), the SMH file lists every CRAM bit and
indicates whether it is sensitive for the design.

e If you have performed hierarchy tagging and changed default ASD Region
assignments, the SMH file lists every CRAM bit and it's assigned ASD region.

The Fault Injection Debugger can limit injections to one or more specified regions.

Note: To direct the Assembler to generate an SMH file:

e Choose Assighnments [0 Device [Device and Pin Options O Error Detection
CRC.

e Turn on the Generate SEU sensitivity map file (.smh) option.
16.3.3 Using the Fault Injection Debugger

To use the Fault Injection Debugger, you connect to your device via the JTAG interface.
Then, configure the device and perform fault injection.

To launch the Fault Injection Debugger, choose Tools [0 Fault Injection Debugger
in the Intel Quartus Prime software.

Note: Configuring or programming the device is similar to the procedure used for the
Programmer or Signal Tap Logic Analyzer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
408

] ®
16 Debugging Single Event Upset Using the Fault Injection Debugger l n tel)

QPS5V3 | 2017.11.06

Figure 221. Fault Injection Debugger

View Tools Window Help &

’ &, Hardware Setup...] Progress: 100% {Successful) j
Chain Process Device chain - USB-Blaster [USE-0]
[' start |
[y auto Detect] SSGXEATKZF40 5M2210Z/..
TTTITTIIT

u .

’ [select File...] o1 C .
—: —

Program/Configure = .

H H
Fault Injection gEmmRmEEE

fid.sof
Inject Fault

@ Run for 1 iterations

) Run until stopped

[Read EMR]

£

[Scrub]

To configure your JTAG chain:

1. Click Hardware Setup. The tool displays the programming hardware connected
to your computer.

Select the programming hardware you wish to use.
Click Close.

Click Auto Detect, which populates the device chain with the programmable
devices found in the JTAG chain.

Related Links
Targeted Fault Injection Feature on page 415
16.3.3.1 Configuring Your Device and the Fault Injection Debugger

The Fault Injection Debugger uses a .sof and (optionally) a Sensitivity Map Header
(.smbh) file.

The Software Object File (.sof) configures the FPGA. The .smh file defines the
sensitivity of the CRAM bits in the device. If you do not provide an .smh file, the Fault
Injection Debugger injects faults randomly throughout the CRAM bits.

To specify a .sof:

Select the FPGA you wish to configure in the Device chain box.

2. Click Select File.
3. Navigate to the .sof and click OK. The Fault Injection Debugger reads the .sof.
4. (Optional) Select the SMH file.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
409

] ®
l n tel) 16 Debugging Single Event Upset Using the Fault Injection Debugger

QPS5V3 | 2017.11.06

If you do not specify an SMH file, the Fault Injection Debugger injects faults
randomly across the entire device. If you specify an SMH file, you can restrict
injections to the used areas of your device.

a. Right-click the device in the Device chain box and then click Select SMH

File.
b. Select your SMH file.
c. Click OK.
5. Turn on Program/Configure.
6. Click Start.

The Fault Injection Debugger configures the device using the .sof.

Figure 222. Context Menu for Selecting the SMH File
rw Programmer Fault Injection Debugger - CJUsersfsngj-ﬁé_kh)preu Board;a_aﬂpﬁme_ﬁd_qs..lg W= g1

View Tools Window Help 5

’ %, Hardware Setup... l Progress:

Chain Process Device chain - USB-Blaster [USE-0]

[i Start |

’ iy Auto Detect] SSGXEATK2F40 5M2210Z/..

TTTTITTT

.

[Ui Select File... | : @
H

Program/Configure E |
u Auto Detect
H

Fault Injection mEmess Start Programming/Configuration

SYQN.5
[T tnject Fault SVEH.EN Select Programming File...
@ Run for 1| iterations Delete Programming File. ..
. TDO
Run until stopped —
S Select SMH Fie. .
Start Stop Delete SMH File. ..
Rl v Program/Configure this Device 1
Serub Inject Fault into this Device
Show Device Sensiti\ﬁy Map

~ |

16.3.3.2 Constraining Regions for Fault Injection

After loading an SMH file, you can direct the Fault Injection Debugger to operate on
only specific ASD regions.
To specify the ASD region(s) in which to inject faults:

1. Right-click the FPGA in the Device chain box, and click Show Device
Sensitivity Map.

2. Select the ASD region(s) for fault injection.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
410

16 Debugging Single Event Upset Using the Fault Injection Debugger
QPS5V3 | 2017.11.06

Figure 223. Device Sensitivity Map Viewer

i Device 1 - Sensitivity M

intel.

Bit:

Search

Frame:
Zoom: - | | +

| Coverage percentage: 0.33% (322272 Bits)

D Allow overlapping regions injection

Mot critical
ASD region(s) -
ASD region(s) -
ASD region(s) -
ASD region(s) -
ASD region(s) -
ASD region(s) -
ASD region(s) -
ASD region(s) -
(s)-
ASD region(s) -

m

ASD region:

.

OO0O0OOO0OO0OmOgOO

ASD region(s) -

ASD region(s) -

ASD region(s) -

ASD region(s) -

ASD region(s) -
ASD region(s) -
ASD region(s) -
ASD region(s) -

= ASD region(s) -

ASD redion(s) -

Check region(s) to inject

land 2
land 3
land 4
land 5
land &
land 7
land 8
land 9

1and 10

16.3.3.3 Specifying Error Types

You can specify various types of errors for injection.
e Single errors (SE)

e Double-adjacent errors (DAE)

e Uncorrectable multi-bit errors (EMBE)

Intel FPGA devices can self-correct single and double-adjacent errors if the scrubbing

feature is enabled. Intel FPGA devices cannot correct multi-bit errors. Refer to the
chapter on mitigating SEUs for more information about debugging these errors.

You can specify the mixture of faults to inject and the injection time interval. To

specify the injection time interval:

1. 1In the Fault Injection Debugger, choose Tools [0 Options.

2. Drag the red controller to the mix of errors. Alternatively, you can specify the mix

numerically.
3. Specify the Injection interval time.
Click OK.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

411

] ®
l n tel) 16 Debugging Single Event Upset Using the Fault Injection Debugger

QPS5V3 | 2017.11.06

Figure 224. Specifying the Mixture of SEU Fault Types

e

Category:
LTIyl N) [ault Injection Debugger
Error Weights
|
M single error (SE) 80 %
SE
Double-adjacent error {DAE) : 15 Y
B Uncorrectable multi-bit error (UMBE) : |5 %
|
UMBE DAE
Injection interval time 100 ms
: Ok,] [Cancel] [Help

Related Links
Mitigating Single Event Upset

16.3.3.4 Injecting Errors

You can inject errors in several modes:

e Inject one error on command

e Inject multiple errors on command

e Inject errors until commanded to stop

To inject these faults:
1. Turn on the Inject Fault option.

2. Choose whether you want to run error injection for a number of iterations or until
stopped:

e If you choose to run until stopped, the Fault Injection Debugger injects errors
at the interval specified in the Tools 0 Options dialog box.

e If you want to run error injection for a specific number of iterations, enter the
number.

3. Click Start.

Note: The Fault Injection Debugger runs for the specified number of iterations or
until stopped.

The Intel Quartus Prime Messages window shows messages about the errors that are
injected. For additional information on the injected faults, click Read EMR. The Fault
Injection Debugger reads the device's EMR and displays the contents in the Messages
window.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
412

https://documentation.altera.com/#/link/jbr1437426657605/mwh1409959821369

®
16 Debugging Single Event Upset Using the Fault Injection Debugger l n tel
QPS5V3 | 2017.11.06

Figure 225. Intel Quartus Prime Error Injection and EMR Content Messages

@?E T cFiter=>

Type ID._ . Message

am X

Error Injection Information

ocee. - Error Information Read
w2242 from the Device EMR

Ox1E4E.

T

Messages

4] 0 »

System (16) /\ Processing /

0% 00:00:00

16.3.3.5 Recording Errors

You can record the location of any injected fault by noting the parameters reported in
the Intel Quartus Prime Messages window.

If, for example, an injected fault results in behavior you would like to replay, you can
target that location for injection. You perform targeted injection using the Fault
Injection Debugger command line interface.

16.3.3.6 Clearing Injected Errors

To restore the normal function of the FPGA, click Scrub. When you scrub an error, the
device’s EDCRC functions are used to correct the errors. The scrub mechanism is
similar to that used during device operation.

16.3.4 Command-Line Interface

You can run the Fault Injection Debugger at the command line with the quartus_ fid
executable, which is useful if you want to perform fault injection from a script.

Table 124. Command line Arguments for Fault Injection
Short Argument Long Argument Description
(o] cable Specify programming hardware or cable. (Required)
i index Specify the active device to inject fault. (Required)
n number Specify the number of errors to inject. The default value is
1. (Optional)
t time Interval time between injections. (Optional)
Note: Use quartus_fid --help to view all available options.

The following code provides examples using the Fault Injection Debugger command-
line interface.

T T T T

#

Find out which USB cables are available for this instance

The result shows that one cable is available, named "USB-Blaster"
#

$ quartus_fid --list

-Ir-1f<-): Command: quartus_fid --list

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
413

l n tel 16 Debugging Single Event Upset Using the Fault Injection Debugger
QPS5V3 | 2017.11.06

1) USB-Blaster on sj-sng-z4 [USB-0]
Info: Intel Quartus Prime 64-Bit Fault Injection Debugger was successful.
0 errors, 0 warnin
B T R R
#
Find which devices are available on USB-Blaster cable
The result shows two devices: a Stratix V A7, and a MAX V CPLD.
#
$ quartus_fid --cable USB-Blaster -a
Info: Command: quartus_fid --cable=USB-Blaster -a
Info (208809): Using programming cable "USB-Blaster on sj-sng-z4 [USB-0]"
1) USB-Blaster on sj-sng-z4 [USB-0]
029030DD 5SGXEA7H(1]2]3)/5SGXEA7K1/ . .
020A40DD 5M2210Z/EPM2210
Info: Intel Quartus Prime 64-Bit Fault Injection Debugger was successful.
0 errors, 0 warnings

TR R TN R NIRRT NIRRT NIRRT RN T N R TN IR TN TR TR R TN R TN TR TR TR IR TH IR TNTRT N TR THINT]
HHAHHHFHHHH AR

#

Program the Stratix V device

The --index option specifies operations performed on a connected device.
"=svgx.sof'" associates a .sof file with the device

"#p'" means program the device

#
#
#
$ quartus_fid --cable USB-Blaster --index "@l=svgx.sof#p"
Info (209016): Configuring device index 1

Info (209017): Device 1 contains JTAG ID code 0x029030DD

Info (209007): Configuration succeeded -- 1 device(s) configured

Info (209011): Successfully performed operation(s)

Info (208551): Program signature into device 1.

Info: Intel Quartus Prime 64-Bit Fault Injection Debugger was successful.
0 errors, 0 warnings

HHHHHHH A HH A A A A

#

Inject a fault into the device.

The #i operator indicates to inject faults

-n 3 indicates to inject 3 faults

#

$ quartus_fid --cable USB-Blaster --index "@l=svgx.sof#i" -n 3
Info: Command: quartus_fid --cable=USB-Blaster --index=@1=svgx.sof#i -n 3
Info (208809): Using programming cable "USB-Blaster on sj-sng-z4 [USB-0]"
Info (208521): Injects 3 error(s) into device(s)
Info: Intel Quartus Prime 64-Bit Fault Injection Debugger was successful.
0 errors, 0 warnings

AR R S R A R

#
Interactive Mode.
Using the #i operation with -n 0 puts the debugger into interactive mode.
Note that 3 faults were injected in the previous session;
"E" reads the faults currently in the EMR Unloader 1P core.
#
$ quartus_fid --cable USB-Blaster --index "@l=svgx.sof#i" -n O
Info: Command: quartus_fid --cable=USB-Blaster --index=@1=svgx.sof#i -n O
Info (208809): Using programming cable "USB-Blaster on sj-sng-z4 [USB-0]"
Enter :
"F" to inject fault
"E" to read EMR
"S" to scrub error(s)
Q" to quit
E
Info (208540): Reading EMR array
Info (208544): 3 frame error(s) detected in device 1.
Info (208545): Error #1 : Single error in frame 0x1028 at bit
Ox21EA.
Info (10914): Error #2 : Uncorrectable multi-bit error in frame
0x1116.

Info (208545): Error #3 : Single error in frame 0x1848 at bit

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
414

] ®
16 Debugging Single Event Upset Using the Fault Injection Debugger l n tel)

QPS5V3 | 2017.11.06

0x128C.
Enter :
"F" to inject fault
"E" to read EMR
"S" to scrub error(s)
Q" to quit

Info: Intel Quartus Prime 64-Bit Fault Injection Debugger was successful.
0 errors, 0 warnings
Info: Peak virtual memory: 1522 megabytes
Info: Processing ended: Mon Nov 3 18:50:00 2014
Info: Elapsed time: 00:00:29
Info: Total CPU time (on all processors): 00:00:13

16.3.4.1 Targeted Fault Injection Feature

Note:

The Fault Injection Debugger injects faults into the FPGA randomly. However, the
Targeted Fault Injection feature allows you to inject faults into targeted locations in
the CRAM. This operation may be useful, for example, if you noted an SEU event and
want to test the FPGA or system response to the same event after modifying a
recovery strategy.

The Targeted Fault Injection feature is available only from the command line interface.

You can specify that errors are injected from the command line or in prompt mode.

Related Links

AN 539: Test Methodology or Error Detection and Recovery using CRC in Intel FPGA
Devices

16.3.4.1.1 Specifying an Error List From the Command Line

The Targeted Fault Injection feature allows you to specify an error list from the
command line, as shown in the following example:

c:\Users\sng> quartus_fid -c 1 - i "@1=svgx.sof#i " -n 2 -user="@1=
0x2274 OxO5EF 0x2264 0x0500"
Where:

c 1 indicates that the fpga is controlled by the first cable on your computer.

i "@1= svgx.sof#i " indicates that the first device in the chain is loaded with the
object file svgx.sof and will be injected with faults.

n 2 indicates that two faults will be injected.
user="@1= 0x2274 OxXO5EF 0x2264 0x0500” is a user-specified list of faults to

be injected. In this example, device 1 has two faults: at frame 0x2274, bit 0xO5EF and
at frame 0x2264, bit 0x0500.

16.3.4.1.2 Specifying an Error List From Prompt Mode

You can operate the Targeted Fault Injection feature interactively by specifying the
number of faults to be 0 (-n 0). The Fault Injection Debugger presents prompt mode
commands and their descriptions.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
415

http://www.altera.com/literature/an/an539.pdf
http://www.altera.com/literature/an/an539.pdf

intel)

16 Debugging Single Event Upset Using the Fault Injection Debugger
QPS5V3 | 2017.11.06

Prompt Mode Command

Description

Inject a fault

Read the EMR

Scrub errors

Quit

In prompt mode, you can issue the F command alone to inject a single fault in a
random location in the device. In the following examples using the F command in
prompt mode, three errors are injected.

F #3 Ox12 0x34 0x56 0x78 * Ox9A OxBC +
e Error 1 - Single bit error at frame 0x12, bit 0x34

e Error 2 - Uncorrectable error at frame 0x56, bit 0x78 (an * indicates a multi-bit
error)

e Error 3 - Double-adjacent error at frame 0x9A, bit 0xBC (a + indicates a double
bit error)

F 0x12 0x34 0x56 0x78 *
One (default) error is injected:

Error 1 — Single bit error at frame 0x12, bit 0x34. Locations after the first frame/bit
location are ignored.

F #3 0x12 O0x34 Ox56 0x78 * Ox9A 0OxBC + OxDE Ox00

Three errors are injected:

e Error 1 - Single bit error at frame 0x12, bit 0x34

e Error 2 - Uncorrectable error at frame 0x56, bit 0x78

e Error 3 - Double-adjacent error at frame 0x9A, bit 0xBC
e Locations after the first 3 frame/bit pairs are ignored

16.3.4.1.3 Determining CRAM Bit Locations

Note:

When the Fault Injection Debugger detects a CRAM EDCRC error, the Error Message
Register (EMR) contains the syndrome, frame number, bit location, and error type
(single, double, or multi-bit) of the detected CRAM error.

During system testing, save the EMR contents reported by the Fault Injection
Debugger when you detect an EDCRC fault.

With the recorded EMR contents, you can supply the frame and bit numbers to the
Fault Injection Debugger to replay the errors noted during system testing, to further
design, and characterize a system recovery response to that error.

Related Links

AN 539: Test Methodology or Error Detection and Recovery using CRC in Intel FPGA
Devices

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

416

http://www.altera.com/literature/an/an539.pdf
http://www.altera.com/literature/an/an539.pdf

] ®
16 Debugging Single Event Upset Using the Fault Injection Debugger l n tel)

QPS5V3 | 2017.11.06

16.3.4.2 Advanced Command-Line Options: ASD Regions and Error Type
Weighting

You can use the Fault Injection Debugger command-line interface to inject errors into
ASD regions and weight the error types.

First, you specify the mix of error types (single bit, double adjacent, and multi-bit
uncorrectable) using the ——-weight <singl e errors>.<doubl e adj acent
errors>.<mul ti-bit errors> option. For example, for a mix of 50% single
errors, 30% double adjacent errors, and 20% multi-bit uncorrectable errors, use the
option —-weight=50.30.20. Then, to target an ASD region, use the -smh option to
include the SMH file and indicate the ASD region to target. For example:

$ quartus_fid --cable=USB-Blasterll --index "@l=svgx.sof#pi" --
weight=100.0.0 --smh=""@1l=svgx.smh#2" --number=30

This example command:

* Programs the device and injects faults (pi string)
Injects 100% single-bit faults (100.0.0)

e Injects only into ASD_REGION 2 (indicated by the #2)
Injects 30 faults

16.4 Document Revision History

Table 125. Document Revision History

Date Version Changes
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
2015.05.04 15.0.0 e Provided more detail on how to use the Fault Injection

Debugger throughout the document.
e Added more command-line examples.

2014.06.30 14.0.0 e Removed “Modifying the Quartus INI File” section.
e Added “Targeted Fault Injection Feature” section.
e Updated “Hardware and Software Requirements” section.

December 2012 2012.12.01 Preliminary release.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
417

https://www.altera.com/search-archives

®
QPS5V3 | 2017.11.06 l n tel

17 In-System Debugging Using External Logic Analyzers

17.1 About the Intel Quartus Prime Logic Analyzer Interface

Note:

The Intel Quartus Prime Logic Analyzer Interface (LAI) allows you to use an external
logic analyzer and a minimal number of Intel-supported device I/O pins to examine
the behavior of internal signals while your design is running at full speed on your
Intel-supported device.

The LAI connects a large set of internal device signals to a small number of output
pins. You can connect these output pins to an external logic analyzer for debugging
purposes. In the Intel Quartus Prime LAI, the internal signals are grouped together,
distributed to a user-configurable multiplexer, and then output to available I/O pins on
your Intel-supported device. Instead of having a one-to-one relationship between
internal signals and output pins, the Intel Quartus Prime LAI enables you to map many
internal signals to a smaller number of output pins. The exact number of internal
signals that you can map to an output pin varies based on the multiplexer settings in
the Intel Quartus Prime LAI.

The term “logic analyzer” when used in this document includes both logic analyzers
and oscilloscopes equipped with digital channels, commonly referred to as mixed
signal analyzers or MSOs.

The LAI does not support Hard Processor System (HPS) I/0s.

Related Links

Device Support Center

17.2 Choosing a Logic Analyzer

The Intel Quartus Prime software offers the following two general purpose on-chip
debugging tools for debugging a large set of RTL signals from your design:

e The Signal Tap Logic Analyzer

e An external logic analyzer, which connects to internal signals in your Intel-
supported device by using the Intel Quartus Prime LAI

Table 126. Comparing the Signal Tap Logic Analyzer with the Logic Analyzer Interface
Feature Description Recommended Logic
Analyzer
Sample Depth You have access to a wider sample depth with an LAI
external logic analyzer. In the Signal Tap Logic
Analyzer, the maximum sample depth is set to

continued...

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.altera.com/support/devices/dvs-index.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

17 In-System Debugging Using External Logic Analyzers

QPS5V3 | 2017.11.06

intel.

available to place and route when you use the Signal

Tap Logic Analyzer with your design. An external logic
analyzer adds minimal logic, which removes resource
limits on place-and-route.

Feature Description Recommended Logic
Analyzer

128 Kb, which is a device constraint. However, with
an external logic analyzer, there are no device
constraints, providing you a wider sample depth.

Debugging Timing Issues Using an external logic analyzer provides you with LAIL
access to a “timing” mode, which enables you to
debug combined streams of data.

Performance You frequently have limited routing resources LAL

Triggering Capability

The Signal Tap Logic Analyzer offers triggering
capabilities that are comparable to external logic
analyzers.

LAI or Signal Tap

data at speeds of over 200 MHz. You can achieve the
same acquisition speeds with an external logic
analyzer; however, you must consider signal integrity
issues.

Use of Output Pins Using the Signal Tap Logic Analyzer, no additional Signal Tap
output pins are required. Using an external logic
analyzer requires the use of additional output pins.

Acquisition Speed With the Signal Tap Logic Analyzer, you can acquire Signal Tap

Related Links

System Debugging Tools Overview on page 183

17.2.1 Required Components

To perform analysis using the LAI you need the following components:

e Intel Quartus Prime software version 15.1 or later

e The device under test

e An external logic analyzer

e An Intel FPGA communications cable

e A cable to connect the Intel-supported device to the external logic analyzer

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

419

] ®
l n tel) 17 In-System Debugging Using External Logic Analyzers

QPS5V3 | 2017.11.06

Figure 226. LAI and Hardware Setup

Board
External Logic Analyzer 2)
FPGA
LAI
(onnecfed to
Unused FPGA Pins
—
me <
FPGA Programming
Har d‘i”‘” e m Quartus Prime Software

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
the JTAG port. Support varies by vendor.

17.3 Flow for Using the LAI

Figure 227. LAI Workflow

C Start the Quartus Prime Software)

Create New Logic
Analyzer Interface File

l

Configure Logic Analyzer
Interface File

l

| Compile Project

| Program Device

| Control Output Pin |-—

| Debug Project

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Intel
Quartus Prime software via the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via
the JTAG port. Support varies by vendor.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
420

] ®
17 In-System Debugging Using External Logic Analyzers l n tel

QPS5V3 | 2017.11.06

17.4 Working with LAI Files

The . lai file stores the configuration of an LAI instance. The . lai file opens in the
LAI editor. The editor allows you to group multiple internal signals to a set of external

pins.

17.4.1 Configuring the File Core Parameters

After you create the . lai file, configure the . lai file core parameters by clicking on
the Setup View list, and then selecting Core Parameters. The table below lists
the . lai file core parameters.

Table 127. LAI File Core Parameters

Parameter

Description

Pin Count

The Pin Count parameter signifies the number of pins you want dedicated to your LAI. The pins must
be connected to a debug header on your board. Within the Intel-supported device, each pin is mapped
to a user-configurable number of internal signals.

The Pin Count parameter can range from 1 to 255 pins.

Bank Count

The Bank Count parameter signifies the number of internal signals that you want to map to each pin.
For example, a Bank Count of 8 implies that you will connect eight internal signals to each pin.

The Bank Count parameter can range from 1 to 255 banks.

Output/Capture
Mode

The Output/Capture Mode parameter signifies the type of acquisition you perform. There are two
options that you can select:

Combinational /Timing—This acquisition uses your external logic analyzer’s internal clock to
determine when to sample data. Because Combinational/Timing acquisition samples data
asynchronously to your Intel-supported device, you must determine the sample frequency you should
use to debug and verify your system. This mode is effective if you want to measure timing information,
such as channel-to-channel skew. For more information about the sampling frequency and the speeds
at which it can run, refer to the data sheet for your external logic analyzer.

Registered/State—This acquisition uses a signal from your system under test to determine when to
sample. Because Registered/State acquisition samples data synchronously with your Intel-supported
device, it provides you with a functional view of your Intel-supported device while it is running. This
mode is effective when you verify the functionality of your design.

Clock

The Clock parameter is available only when Output/Capture Mode is set to Registered State. You
must specify the sample clock in the Core Parameters view. The sample clock can be any signal in
your design. However, for best results, Intel FPGA recommends that you use a clock with an operating
frequency fast enough to sample the data you would like to acquire.

Power-Up State

The Power-Up State parameter specifies the power-up state of the pins you have designated for use
with the LAL You have the option of selecting tri-stated for all pins, or selecting a particular bank that
you have enabled.

17.4.2 Mapping the LAI File Pins to Available I/0 Pins

To configure the . lai file I/O pin parameters, select Pins in the Setup View list. To
assign pin locations for the LAI, double-click the Location column next to the
reserved pins in the Name column, and select a pin from the list. Once a pin is
selected, you can right-click and locate in the Pin Planner.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
421

] ®
l n tel) 17 In-System Debugging Using External Logic Analyzers

Figure 228.

QPS5V3 | 2017.11.06

Mapping LAI file Pins
Setup View: {Pins +|
Pin /o -
Type Index Name Location Standard

Lo 0 altera_reserved_lai_0_0 o 18V

Lo d 1 altera_reserved_lai_0_1 PIN_AB30 18V

{0 2 altera_reserved_lai_0_2 PIN_AC28 18V

Lo d 3 altera_reserved_lai_0_3 PIN_AC2 18V
[0 4 altera_reserved_lai_0_4 PIN_AC13 18V i
fo 5 altera_reserved_lai_0_5 PIN_A4 18V =

Related Links

Managing Device I/0 Pins
In Intel Quartus Prime Standard Edition Volume 2

17.4.3 Mapping Internal Signals to the LAI Banks

After you have specified the number of banks to use in the Core Parameters settings
page, you must assign internal signals for each bank in the LAL. Click the Setup View
arrow and select Bank n or All Banks.

To view all of your bank connections, click Setup View and select All Banks.

17.4.4 Using the Node Finder

Before making bank assignments, right click the Node list and select Add Nodes to
open the Node Finder. Find the signals that you want to acquire, then drag and drop
the signals from the Node Finder dialog box into the bank Setup View. When adding
signals, use Signal Tap: pre-synthesis for non-incrementally routed instances and
Signal Tap: post-fitting for incrementally routed instances.

As you continue to make assignments in the bank Setup View, the schematic of your
LAI in the Logical View pane begins to reflect your changes. Continue making
assignments for each bank in the Setup View until you have added all of the internal
signals for which you wish to acquire data.

Related Links

Node Finder Command
In Intel Quartus Prime Help

17.4.5 Compiling Your Intel Quartus Prime Project

After you save your . lai file, a dialog box prompts you to enable the Logic Analyzer
Interface instance for the active project. Alternatively, you can define the . lai file
your project uses in the Global Project Settings dialog box. After specifying the
name of your . lai file, compile your project.

To verify the Logic Analyzer Interface is properly compiled with your project, expand
the entity hierarchy in the Project Navigator. If the LAI is compiled with your design,
the sld_hub and sld_multitap entities are shown in the Project Navigator.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

422

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471036713
http://quartushelp.altera.com/current/#assign/unb/unb_com_node_finder.htm

17 In-System Debugging Using External Logic Analyzers
QPS5V3 | 2017.11.06

Figure 229. Project Navigator

Enily | Loge Cets |LC Regstess |
Ay Suatic EP15108672C7
-;-"nTr test 136 (1) 81
H-go sd_mutapauio I8 0 |35(11) {15
g sid_hubcsid hub_inst [100(25) |65

17.4.6 Programming Your Intel-Supported Device Using the LAI

ntel)

After compilation completes, you must configure your Intel-supported device before

using the LAI.

You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can also
consist of devices that do not support the LAI or non-Intel, JTAG-compliant devices. To
use the LAI in more than one Intel-supported device, create an . lai file and
configure an . lai file for each Intel-supported device that you want to analyze.

17.5 Controlling the Active Bank During Runtime

When you have programmed your Intel-supported device, you can control which bank
you map to the reserved . lai file output pins. To control which bank you map, in the
schematic in the Logical View, right-click the bank and click Connect Bank.

Figure 230. Configuring Banks

Legical Visw: ® | Setup View: [Bank i]
Pin Hode
Core Parametars Index [Type | Alios Horrs
6 Undo Ctrl+2 0 ap | State Clock
Bank ' Rado Chrl+y 1 [T g acldr(2]
auto_lal 0 Rename Bank F2 E w adar(1]
3 (Td acdr[0]
mE—
T datal1]
B > data[0]
7 W ke

17.5.1 Acquiring Data on Your Logic Analyzer

To acquire data on your logic analyzer, you must establish a connection between your
device and the external logic analyzer. For more information about this process and for
guidelines about how to establish connections between debugging headers and logic

analyzers, refer to the documentation for your logic analyzer.

17.6 Using the LAI with Incremental Compilation

The Incremental Compilation feature in the Intel Quartus Prime software allows you to
preserve the synthesis and fitting results of your design. This is an effective feature
for reducing compilation times if you only modify a portion of a design or you wish to

preserve the optimization results from a previous compilation.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

423

17 In-System Debugging Using External Logic Analyzers
QPS5V3 | 2017.11.06

The Incremental Compilation feature is well suited for use with LAI since LAI
comprises a small portion of most designs. Because LAI consists of only a small
portion of your design, incremental compilation helps to minimize your compilation
time. Incremental compilation works best when you are only changing a small portion
of your design. Incremental compilation yields an accurate representation of your
design behavior when changing the . lai file through multiple compilations.

17.7 Document Revision History

Table 128. Document Revision History

Date Version Changes
2017.05.08 17.0.0 e Updated figure: LAI Instance in Compilation Report.
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
June 2014 14.0.0 e Dita conversion
e Added limitation about HPS I/O support
June 2012 12.0.0 Removed survey link
November 2011 10.1.1 Changed to new document template
December 2010 10.1.0 e Minor editorial updates
e Changed to new document template
August 2010 10.0.1 Corrected links
July 2010 10.0.0 e Created links to the Intel Quartus Prime Help
e Editorial updates
e Removed Referenced Documents section
November 2009 9.1.0 ¢ Removed references to APEX devices
e Editorial updates
March 2009 9.0.0 e Minor editorial updates
e Removed Figures 15-4, 15-5, and 15-11 from 8.1 version
November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content
May 2008 8.0.0 e Updated device support list on page 15-3

e Added links to referenced documents throughout the chapter
e Added “Referenced Documents”

e Added reference to Section V. In-System Debugging

e Minor editorial updates

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

424

https://www.altera.com/search-archives

n ®>
QPS5V3 | 2017.11.06 l n tel

18 In-System Modification of Memory and Constants

18.1 About the In-System Memory Content Editor

The Intel Quartus Prime In-System Memory Content Editor allows to view and update
memories and constants with the JTAG port connection at runtime.

The In-System Memory Content Editor provides access to dense and complex FPGA
designs through the JTAG interface. You can then identify, test, and resolve issues with
your design by testing changes to memory contents in the FPGA while your design is
running.

When you use the In-System Memory Content Editor in conjunction with the Signal
Tap Logic Analyzer, you can view and debug your design in the hardware lab.

The ability to read data from memories and constants allows you to identify the source
of problems. The write capability allows you to bypass functional issues by writing
expected data. For example, if a parity bit in your memory is incorrect, you can use
the In-System Memory Content Editor to write the correct parity bit values into your
RAM, allowing your system to continue functioning. To check the error handling
functionality of your design, you can intentionally write incorrect parity bit values into
your RAM.

Related Links

e System Debugging Tools Overview on page 183

¢ Design Debugging with the Signal Tap Logic Analyzer on page 327

e Megafunctions/LPM
List of the types of memories and constants currently supported by the Intel
Quartus Prime software

18.2 Design Flow Using the In-System Memory Content Editor

To use the In-System Memory Content Editor, perform the following steps:
1. Identify the memories and constants that you want to access.

Edit the memories and constants to be run-time modifiable.

Perform a full compilation.

Program your device.

gu A W N

Launch the In-System Memory Content Editor.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://quartushelp.altera.com/current/index.htm#hdl/mega/mega_list_mega_lpm.htm
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

™ ®
l n tel) 18 In-System Modification of Memory and Constants

QPS5V3 | 2017.11.06

18.3 Creating In-System Modifiable Memories and Constants

When you specify that a memory or constant is run-time modifiable, the Intel Quartus
Prime software changes the default implementation. A single-port RAM is converted to
a dual-port RAM, and a constant is implemented in registers instead of look-up tables
(LUTs). These changes enable run-time modification without changing the functionality
of your design.

If you instantiate a memory or constant IP core directly with ports and parameters in
VHDL or Verilog HDL, add or modify the Ipm_hint parameter as follows:

In VHDL code, add the following:

Ipm_hint => "ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lIpm_hint =
"ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

18.4 Running the In-System Memory Content Editor

The In-System Memory Content Editor has three separate panes: the Instance
Manager, the JTAG Chain Configuration, and the Hex Editor.

The Instance Manager pane displays all available run-time modifiable memories and
constants in your FPGA device. The JTAG Chain Configuration pane allows you to
program your FPGA and select the Intel FPGA device in the chain to update.

Using the In-System Memory Content Editor does not require that you open a project.
The In-System Memory Content Editor retrieves all instances of run-time configurable
memories and constants by scanning the JTAG chain and sending a query to the
specific device selected in the JTAG Chain Configuration pane.

If you have more than one device with in-system configurable memories or constants
in a JTAG chain, you can launch multiple In-System Memory Content Editors within the
Intel Quartus Prime software to access the memories and constants in each of the
devices. Each In-System Memory Content Editor can access the in-system memories
and constants in a single device.

18.4.1 Instance Manager

Note:

You can read and write to in-system memory with the Instance Manager pane.
When you scan the JTAG chain to update the Instance Manager pane, you can view
a list of all run-time modifiable memories and constants in the design. The Instance
Manager pane displays the Index, Instance, Status, Width, Depth, Type, and Mode of
each element in the list.

In addition to the buttons available in the Instance Manager pane, you can read and
write data by selecting commands from the Processing menu, or the right-click menu
in the Instance Manager pane or Hex Editor pane.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

426

] ®
18 In-System Modification of Memory and Constants l n tel)

QPS5V3 | 2017.11.06

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running, Offloading data,

or Updating data. The health monitor provides information about the status of the
editor.

The Intel Quartus Prime software assigns a different index number to each in-system
memory and constant to distinguish between multiple instances of the same memory
or constant function. View the In-System Memory Content Editor Settings section

of the Compilation Report to match an index number with the corresponding instance
ID.

Related Links

Instance Manager Pane
In Intel Quartus Prime Help

18.4.2 Editing Data Displayed in the Hex Editor Pane

You can edit data read from your in-system memories and constants displayed in the
Hex Editor pane by typing values directly into the editor or by importing memory
files.

18.4.3 Importing and Exporting Memory Files

The In-System Memory Content Editor allows you to import and export data values for
memories that have the In-System Updating feature enabled. Importing from a data
file enables you to quickly load an entire memory image. Exporting to a data file
enables you to save the contents of the memory for future use.

18.4.4 Scripting Support

The In-System Memory Content Editor supports reading and writing of memory
contents via a Tcl script or Tcl commands entered at a command prompt. For detailed
information about scripting command options, refer to the Intel Quartus Prime
command-line and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --ghelp

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
427

http://quartushelp.altera.com/current/index.htm#program/red/red_com_instance_manager.htm

] ®
l n tel) 18 In-System Modification of Memory and Constants

QPS5V3 | 2017.11.06

The commonly used commands for the In-System Memory Content Editor are as
follows:

e Reading from memory:

read_content_from_memory
[-content_in_hex]

-instance_index <instance index>
-start_address <starting address>
-word_count <word count>

e Writing to memory:
write_content_to_memory

e Saving memory contents to a file:
save_content_from_memory_to_file

e Updating memory contents from a file:

update content_to memory_ from_ file

Related Links
e Tcl Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

e Command Line Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

e API Functions for Tcl
In Intel Quartus Prime Help

18.4.5 Programming the Device with the In-System Memory Content
Editor

If you make changes to your design, you can program the device from within the In-
System Memory Content Editor.

18.4.6 Example: Using the In-System Memory Content Editor with the
Signal Tap Logic Analyzer

The following scenario describes how you can use the In-System Updating of Memory
and Constants feature with the Signal Tap Logic Analyzer to efficiently debug your
design. You can use the In-System Memory Content Editor and the Signal Tap Logic
Analyzer simultaneously with the JTAG interface.

Scenario: After completing your FPGA design, you find that the characteristics of your
FIR filter design are not as expected.

1. To locate the source of the problem, change all your FIR filter coefficients to be in-
system modifiable and instantiate the Signal Tap Logic Analyzer.

2. Using the Signal Tap Logic Analyzer to tap and trigger on internal design nodes,
you find the FIR filter to be functioning outside of the expected cutoff frequency.

3. Using the In-System Memory Content Editor, you check the correctness of the
FIR filter coefficients. Upon reading each coefficient, you discover that one of the
coefficients is incorrect.

4. Because your coefficients are in-system modifiable, you update the coefficients
with the correct data with the In-System Memory Content Editor.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
428

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410470998554
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm

] ®
18 In-System Modification of Memory and Constants l n tel

QPS5V3 | 2017.11.06

In this scenario, you can quickly locate the source of the problem using both the
In-System Memory Content Editor and the Signal Tap Logic Analyzer. You can also
verify the functionality of your device by changing the coefficient values before
modifying the design source files.

You can also modify the coefficients with the In-System Memory Content Editor to
vary the characteristics of the FIR filter, for example, filter attenuation, transition
bandwidth, cut-off frequency, and windowing function.

18.5 Document Revision History

Table 129. Document Revision History

Date Version Changes
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
June 2014 14.0.0 e Dita conversion.
¢ Removed references to megafunction and replaced with IP core.
June 2012 12.0.0 Removed survey link.
November 2011 10.0.3 Template update.
December 2010 10.0.2 Changed to new document template. No change to content.
August 2010 10.0.1 Corrected links
July 2010 10.0.0 e Inserted links to Intel Quartus Prime Help
e Removed Reference Documents section
November 2009 9.1.0 e Delete references to APEX devices
e Style changes
March 2009 9.0.0 No change to content
November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 8.0.0 e Added reference to Section V. In-System Debugging in volume 3 of

the Intel Quartus Prime Handbook on page 16-1

¢ Removed references to the Mercury device, as it is now considered
to be a "Mature” device

e Added links to referenced documents throughout document
e Minor editorial updates

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the

documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
429

https://www.altera.com/search-archives

™ ®
QPS5V3 | 2017.11.06 l n tel:

19 Design Debugging Using In-System Sources and
Probes

The Signal Tap Logic Analyzer and Signal Probe allow you to read or “tap” internal
logic signals during run time as a way to debug your logic design.

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run time.

You can make the debugging cycle more efficient when you can drive any internal
signal manually within your design, which allows you to perform the following actions:

e Force the occurrence of trigger conditions set up in the Signal Tap Logic Analyzer

e Create simple test vectors to exercise your design without using external test
equipment

¢ Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Intel Quartus Prime software extends
the portfolio of verification tools, and allows you to easily control any internal signal
and provides you with a completely dynamic debugging environment. Coupled with
either the Signal Tap Logic Analyzer or Signal Probe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

The Virtual JTAG IP core and the In-System Memory Content Editor also give you the
capability to drive virtual inputs into your design. The Intel Quartus Prime software
offers a variety of on-chip debugging tools.

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE IP core
and an interface to control the ALTSOURCE_PROBE IP core instances during run time.
Each ALTSOURCE_PROBE IP core instance provides you with source output ports and
probe input ports, where source ports drive selected signals and probe ports sample
selected signals. When you compile your design, the ALTSOURCE_PROBE IP core sets
up a register chain to either drive or sample the selected nodes in your logic design.
During run time, the In-System Sources and Probes Editor uses a JTAG connection to
shift data to and from the ALTSOURCE_PROBE IP core instances. The figure shows a
block diagram of the components that make up the In-System Sources and Probes
Editor.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

™ ®
19 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

Figure 231. In-System Sources and Probes Editor Block Diagram

/ \ FPGA

Design Logic

© A

.
Probes Sources
\

altsource_probe
Megafunction

i

o
(=]

=)
o

tD

FPGA
JTAG . Quartus Prime
TD—> Controller [N | regramming B o are
k / Hardware

The ALTSOURCE_PROBE IP core hides the detailed transactions between the JTAG
controller and the registers instrumented in your design to give you a basic building
block for stimulating and probing your design. Additionally, the In-System Sources and
Probes Editor provides single-cycle samples and single-cycle writes to selected logic
nodes. You can use this feature to input simple virtual stimuli and to capture the
current value on instrumented nodes. Because the In-System Sources and Probes
Editor gives you access to logic nodes in your design, you can toggle the inputs of low-
level components during the debugging process. If used in conjunction with the Signal
Tap Logic Analyzer, you can force trigger conditions to help isolate your problem and
shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

e Creating virtual push buttons
e Creating a virtual front panel to interface with your design
e Emulating external sensor data

e Monitoring and changing run time constants on the fly

The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE IP core instances to increase the level of automation.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
431

] ®
l n tel) 19 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

Related Links

e System Debugging Tools
For an overview and comparison of all the tools available in the Intel Quartus
Prime software on-chip debugging tool suite

e System Debugging Tools
For an overview and comparison of all the tools available in the Intel Quartus
Prime software on-chip debugging tool suite

19.1 Hardware and Software Requirements

The following components are required to use the In-System Sources and Probes
Editor:

e Intel Quartus Prime software

or

e Intel Quartus Prime Lite Edition

e Download Cable (USB-Blaster™ download cable or ByteBlaster™ cable)

e Intel FPGA development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

e Arria® series

e Stratix® series

e Cyclone® series

e MAX® series

19.2 Design Flow Using the In-System Sources and Probes Editor

The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of
the In-System Sources and Probes IP core.

After you compile the design, you can control each instance via the In-System
Sources and Probes Editor pane or via a Tcl interface.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

432

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp

] ®
19 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

Figure 232. FPGA Design Flow Using the In-System Sources and Probes Editor

(reate a New Project or Open an
Existing Project

v

Configure altsource_probe
Megafunction

v

Instrument selected logic nodes
by Instantiating the
altsource_probe Megafunction
variation file into the HDL
Design

v

Compile the design &

v

Program Target Device(s)
* Debug/Modify HDL

Control Source and Probe
Instance(s)

Functionality ™\, No

Satisfied?

19.2.1 Instantiating the In-System Sources and Probes IP Core

You must instantiate the In-System Sources and Probes IP core before you can use
the In-System Sources and Probes editor. Use the IP Catalog and parameter editor to
instantiate a custom variation of the In-System Sources and Probes IP core.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
433

] ®
l n tel) 19 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

To configure the In-System Sources and Probes IP core, perform the following steps::
1. On the Tools menu, click Tools > IP Catalog.

2. Locate and double-click the In-System Sources and Probes IP core. The parameter
editor appears.

Specify a name for your custom IP variation.

4. Specify the desired parameters for your custom IP variation. You can specify up to
up to 512 bits for each source. Your design may include up to 128 instances of this
IP core.

5. Click Generate or Finish to generate IP core synthesis and simulation files
matching your specifications. The parameter editor generates the necessary
variation files and the instantiation template based on your specification. Use the
generated template to instantiate the In-System Sources and Probes IP core in
your design.

Note: The In-System Sources and Probes Editor does not support simulation. You
must remove the In-System Sources and Probes IP core before you create a
simulation netlist.

19.2.2 In-System Sources and Probes IP Core Parameters

Use the template to instantiate the variation file in your design.

Table 130. In-System Sources and Probes IP Port Information
Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input Source Data is written synchronously to this clock. This input is required
if you turn on Source Clock in the Advanced Options box in the
parameter editor.

source_ena No Input Clock enable signal for source_clk. This input is required if specified in
the Advanced Options box in the parameter editor.

source[] No Output Used to drive inputs to user design.

You can include up to 128 instances of the in-system sources and probes IP core in
your design, if your device has available resources. Each instance of the IP core uses a
pair of registers per signal for the width of the widest port in the IP core. Additionally,
there is some fixed overhead logic to accommodate communication between the IP
core instances and the JTAG controller. You can also specify an additional pair of
registers per source port for synchronization.

You can use the Intel Quartus Prime incremental compilation feature to reduce
compilation time. Incremental compilation allows you to organize your design into
logical partitions. During recompilation of a design, incremental compilation preserves
the compilation results and performance of unchanged partitions and reduces design
iteration time by compiling only modified design partitions.

19.3 Compiling the Design

When you compile your design that includes the In-System Sources and ProbesIP
core, the In-System Sources and Probes and SLD Hub Controller IP core are added to
your compilation hierarchy automatically. These IP cores provide communication
between the JTAG controller and your instrumented logic.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

434

™ ®
19 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

You can modify the humber of connections to your design by editing the In-System
Sources and Probes IP core. To open the design instance you want to modify in the
parameter editor, double-click the instance in the Project Navigator. You can then
modify the connections in the HDL source file. You must recompile your design after
you make changes.

You can use the Intel Quartus Prime incremental compilation feature to reduce
compilation design into logical partitions. During recompilation of a design,
incremental compilation preserves the compilation results and performance of
unchanged partitions and reduces design iteration time by compiling only modified
design partitions.

19.4 Running the In-System Sources and Probes Editor

The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE IP core instances within your design. The editor allows you to
view all available run time controllable instances of the ALTSOURCE_PROBE IP core in
your design, provides a push-button interface to drive all your source nodes, and
provides a logging feature to store your probe and source data.

To run the In-System Sources and Probes Editor:

e On the Tools menu, click In-System Sources and Probes Editor.

19.4.1 In-System Sources and Probes Editor GUI

The In-System Sources and Probes Editor contains three panes:

e JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

e Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

e In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open a
Intel Quartus Prime software project. The In-System Sources and Probes Editor
retrieves all instances of the ALTSOURCE_PROBE IP core by scanning the JTAG chain
and sending a query to the device selected in the JTAG Chain Configuration pane.
You can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE IP core instances in a single device. If you have more than one
device containing IP core instances in a JTAG chain, you can launch multiple In-
System Sources and Probes Editor panes to access the IP core instances in each
device.

19.4.2 Programming Your Device With JTAG Chain Configuration

After you compile your project, you must configure your FPGA before you use the In-
System Sources and Probes Editor.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
435

™ ®
l n tel) 19 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

To configure a device to use with the In-System Sources and Probes Editor, perform
the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances.
(The .sof may be automatically detected).

5. Click Program Device to program the target device.

19.4.3 Instance Manager

The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design and allows you to configure how data is acquired from or written to those
instances.

The following buttons and sub-panes are provided in the Instance Manager pane:

e Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

e Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read
interval setting.

e Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

o Read Source Data—Reads the data of the sources in the selected instances.

¢ Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by clicking
Manual.

e Event Log—Controls the event log in the In-System Sources and Probes
Editor pane.

e Write Source Data—Allows you to manually or continuously write data to the
system.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running Offloading data,
Updating data, or if an Unexpected JTAG communication error occurs. This
status indicator provides information about the sources and probes instances in your
design.

19.4.4 In-System Sources and Probes Editor Pane

The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
436

™ ®
19 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

The data is organized according to the index number of the instance. The editor
provides an easy way to manage your signals, and allows you to rename signals or
group them into buses. All data collected from in-system source and probe nodes is
recorded in the event log and you can view the data as a timing diagram.

19.4.4.1 Reading Probe Data

You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data.

This action produces a single sample of the probe data and updates the data column
of the selected index in the In-System Sources and Probes Editor pane. You can
save the data to an event log by turning on the Save data to event log option in the
Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously
read probe data. While reading, the status of the active instance shows Unloading.
You can read continuously from multiple instances.

You can access read data with the shortcut menus in the Instance Manager pane.

To adjust the probe read interval, in the Instance Manager pane, turn on the
Manual option in the Probe read interval sub-pane, and specify the sample rate in
the text field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You
can adjust the event log window buffer size in the Maximum Size box.

19.4.4.2 Writing Data

To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer.

Modified values that are not written out to the ALTSOURCE_PROBE instances appear in
red. To update the ALTSOURCE_PROBE instance, highlight the instance in the
Instance Manager pane and click Write source data. The Write source data
function is also available via the shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications you
make to the source data buffer to also write immediately to the ALTSOURCE_PROBE
instances. To continuously update the ALTSOURCE_PROBE instances, change the
Write source data field from Manually to Continuously.

19.4.4.3 Organizing Data

The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
437

19 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

The In-System Sources and Probes Editor pane allows you to rename any signal.
To rename a signal, double-click the name of the signal and type the new name.

The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over

the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (. spf). To save changes, on the File menu, click Save. The file contains
all the modifications you made to the signal groups, as well as the current data event

log.

19.5 Tcl interface for the In-System Sources and Probes Editor

Table 131.

To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run

quartus_stp.

The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

In-System Sources and Probes Tcl Commands

Command

Argument

Description

start_insystem_source_prob
e

-device_name <device name>
-hardware_name <hardware name>

Opens a handle to a device with the specified
hardware.

Call this command before starting any
transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware name>

Returns a list of all ALTSOURCE_PROBE
instances in your design. Each record
returned is in the following format:
{<instance Index>, <source width>, <probe
width>, <instance name>}

read_probe_data

—-instance_index <instance_index>
-value_in_hex (optional)

Retrieves the current value of the probe.

A string is returned that specifies the status
of each probe, with the MSB as the left-most
bit.

read_source_data

—-instance_index <instance_index>
-value_in_hex (optional)

Retrieves the current value of the sources.

A string is returned that specifies the status
of each source, with the MSB as the left-most
bit.

write_source_data

—-instance_index <instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.

A binary string is sent to the source ports,
with the MSB as the left-most bit.

end_insystem_source_probe

None

Releases the JTAG chain.

Issue this command when all transactions are
finished.

The example shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in the figure below. The
example design contains a DCFIFO with ALTSOURCE_PROBE instances to read from

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

438

] ®
19 Design Debugging Using In-System Sources and Probes l n tel
QPS5V3 | 2017.11.06

and write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE
instances. A pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in the example below, provide visibility into the contents of
the FIFO by performing single sample write and read operations and reporting the
state of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the Signal Tap Logic Analyzer.

Figure 233. DCFIFO Example Design Controlled by Tcl Script

altsource_probe
(Instance 0)

source_write_sel

s_write_req

D
Write_clock s_data[7..0] 0 |

wr_req_in
>)
data_in[7..0] \évarge[;r;c]{ wr_full -
write_clock
data_out
read_req Q7.0] —
— read_clock rd_empty —

rd_req_in

altsource_probe
(Instance 1)
s_read_req D Q

source_read_sel

read_clock

Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain

set usb [lindex [get _hardware_names] 0]

set device_name [lindex [get _device_names -hardware_name $usb] 0]
write procedure : argument value is integer

proc write {value} {

global device_name usb

variable full

start_insystem_source_probe -device_name $device_name -hardware_name $usb
#read full flag

set full [read_probe_data -instance_index 0]

if {$full == 1} {end_insystem_source_probe

return "Write Buffer Full”

##toggle select line, drive value onto port, toggle enable

##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;

##bit 9 = Source_write_sel

##int2bits Is custom procedure that returns a bitstring from an integer
argument

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
439

™ ®
l n tel) 19 Design Debugging Using In-System Sources and Probes

QPS5V3 | 2017.11.06

write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $valuel]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]
##clear transaction

write_source_data -instance_index 0 -value 0O

end_insystem_source_probe

proc read {} {

global device_name usb

variable empty

start_insystem_source_probe -device_name $device_name -hardware_name $usb
##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag
set empty [read_probe_data -instance_index 1]

if {[regexp {1........ } $empty]} { end_insystem source_probe

return "FIFO empty" }

toggle select line for read transaction

Source_read_sel = bit 0; s read_reg = bit 1

pulse read enable on DC FIFO

write_source_data -instance_index 1 -value Ox1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex

set x [read_probe_data -instance_index 1]

end_insystem_source_probe

return $x

}

Related Links

e Tcl Scripting

e Intel Quartus Prime Settings File Manual
e Command Line Scripting

e Tcl Scripting

e Intel Quartus Prime Settings File Manual

e Command Line Scripting

19.6 Design Example: Dynamic PLL Reconfiguration

The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to
provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG IP core provides an easy interface to
access the register chain counters. The ALTPLL_RECONFIG IP core provides a cache
that contains all modifiable PLL parameters. After you update all the PLL parameters in
the cache, the ALTPLL_RECONFIG IP core drives the PLL register chain to update the
PLL with the updated parameters. The figure shows a Stratix-enhanced PLL with
reconfigurable coefficients.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
440

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410470998554
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://www.altera.com/documentation/mwh1410471376527.html#mwh1410470998554

] ®
19 Design Debugging Using In-System Sources and Probes l n tel)

QPS5V3 | 2017.11.06

Figure 234. Stratix-Enhanced PLL with Reconfigurable Coefficients

Counters and Clock All Output Counters and
Delay Settings are Clock Delay Settings can
Programmable be Programmed Dynamically

R —] n ity PED Charge Loop o | > g0 M L »
Pump Filter ‘ ®
scandata —p» —» —
scanck —>D> 1SB ® o op B > LB ® o oD \SB
1) 2 +m At < 7
scanaclr 15 T
+93 Alq] »
> —
—»> 15B ® o oD B
+e3 At >
o)
MSB
LB eeoo

The following design example uses an ALTSOURCE_PROBE instance to update the PLL
parameters in the ALTPLL_RECONFIG IP core cache. The ALTPLL_RECONFIG IP core
connects to an enhanced PLL in a Stratix FPGA to drive the register chain containing
the PLL reconfigurable coefficients. This design example uses a Tcl/Tk script to
generate a GUI where you can enter in new m and n values for the enhanced PLL. The
Tcl script extracts the m and n values from the GUI, shifts the values out to the
ALTSOURCE_PROBE instances to update the values in the ALTPLL_RECONFIG IP core
cache, and asserts the reconfiguration signal on the ALTPLL_RECONFIG IP core. The
reconfiguration signal on the ALTPLL_RECONFIG IP core starts the register chain
transaction to update all PLL reconfigurable coefficients.

Figure 235. Block Diagram of Dynamic PLL Reconfiguration Design Example

50 MHz Stratix FPGA

@

>
JTAG Counter Stratix-Enhanced | G
In—Sysze;n Sl;)urces Interface S'"'Sy“emd Parameters | alt_pll_reconfig ﬁll:t_zg:jlakt 3 PLL
and Probes P Sourcesan > legatuncion | pii sl ¢
Td Interface Probes = » —k
Ll

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
441

®
l n tel 19 Design Debugging Using In-System Sources and Probes
QPS5V3 | 2017.11.06

This design example was created using a Nios II Development Kit, Stratix Edition. The
file sourceprobe DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

e Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in the figure below.

e Interactive Reconfig.gar—The archived Intel Quartus Prime project for this
design example.

Figure 236. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources
and Probes Tcl Package

—
B
Clk_in 50
Ntz Prescale Counter | oo G —— T
= Charge Loop uty Cycl Dela
[PFD P Filta vco Adjustment Y
e e] Adjustment
M
Prescale Counter Reconfigure
M

Related Links

¢ On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

e On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

19.7 Document Revision History

Table 132. Document Revision History

Date Version Changes
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

December 2010 10.1.0 Minor corrections. Changed to new document template.
July 2010 10.0.0 Minor corrections.

November 2009 9.1.0 ¢ Removed references to obsolete devices.

e Style changes.

March 2009 9.0.0 No change to content.
November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.
May 2008 8.0.0 e Documented that this feature does not support simulation on page 17-5

e Updated Figure 17-8 for Interactive PLL reconfiguration manager
e Added hyperlinks to referenced documents throughout the chapter
e Minor editorial updates

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
442

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

®
19 Design Debugging Using In-System Sources and Probes l n tel
QPS5V3 | 2017.11.06

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
443

https://www.altera.com/search-archives

QPS5V3 | 2017.11.06

20 Programming Intel FPGA Devices

The Intel Quartus Prime Programmer allows you to program and configure Intel FPGA
CPLD, FPGA, and configuration devices. After compiling your design, use the Intel
Quartus Prime Programmer to program or configure your device, to test the

functionality of the design on a circuit board.

20.1 Programming Flow

The main stages of programming your device are:

1. Compiling your design, such that the Intel Quartus Prime Assembler generates the

programming or configuration file.

2. Converting the programming or configuration file to target your configuration
device and, optionally, creating secondary programming files.

Table 133. Programming and Configuration File Format

File Format FPGA CPLD Configuration Serial
Device Configuration
Device
SRAM Object File (.sof) Yes — — —
Programmer Object File (.poT) — Yes Yes Yes
JEDEC JESD71 STAPL Format File (. jam) Yes Yes Yes —
Jam Byte Code File (.jbc) Yes Yes Yes -

3. Programming and configuring the FPGA, CPLD, or configuration device using the
programming or configuration file with the Intel Quartus Prime Programmer.

20.1.1 Stand-Alone Intel Quartus Prime Programmer

Intel FPGA offers the free stand-alone Programmer, which has the same full

functionality as the Intel Quartus Prime Programmer in the Intel Quartus Prime
software. The stand-alone Programmer is useful when programming your devices with
another workstation, so you do not need two full licenses. You can download the

stand-alone Programmer from the Download Center on the Altera website.

Stand-Alone Programmer Memory Limitations

The stand-alone Programmer may use significant memory during the following

operations:

e During auto-detect operations

e When the programming file is added to the flash

e During manual attachment of the flash into the Programmer window

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

™ ®
20 Programming Intel FPGA Devices l n tel :

QPS5V3 | 2017.11.06

Table 134.

The 32-bit stand-alone Programmer can only use a limited amount of memory when
launched in 32-bit Windows. Note the following specific limitations of 32-bit stand-
alone Programmer:

Stand-Alone Programmer Memory Limitations

Application Maximum Flash Device Size Flash Device Operation
Using PFL

32-bit Stand-Alone Programmer Up to 512 Mb Single Flash Device

64-bit Stand-Alone Programmer Upto 2 Gb Multiple Flash Device

Table 135.

The stand-alone Programmer supports combination and/or conversion of Intel Quartus
Prime programming files using the Convert Programming Files dialog box. You can
convert programming files, such as Mask Settings File (.ms¥), Partial-Mask SRAM
Object File (.pms¥), SRAM Object Files (.sof), or Programmer Object Files (.poT)
into other file formats that support device configuration schemes for Intel FPGA
devices.

Note the following device-specific file conversion limitations with use of the 32-bit
stand-alone Programmer:

Stand-Alone Programmer File Conversion Limitations

Programming File Conversion Device Support

32-bit Programming File Conversion All Supported Intel FPGA Devices Except Intel

Arria 10

64-bit Programming File Conversion All Supported Intel FPGA Devices

Related Links

Download Center

20.1.2 Optional Programming or Configuration Files

The Intel Quartus Prime software can generate optional programming or configuration
files in various formats that you can use with programming tools other than the Intel
Quartus Prime Programmer. When you compile a design in the Intel Quartus Prime
software, the Assembler automatically generates either a .sof or .pof. The
Assembler also allows you to convert FPGA configuration files to programming files for
configuration devices.

Related Links
AN 425: Using Command-Line Jam STAPL Solution for Device Programming

20.1.3 Secondary Programming Files

The Intel Quartus Prime software generates programming files in various formats for
use with different programming tools.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
445

https://www.altera.com/downloads/download-center.html
http://www.altera.com/literature/an/AN425.pdf

] ®
l n tel) 20 Programming Intel FPGA Devices

QPS5V3 | 2017.11.06

Table 136. File Types Generated by the Intel Quartus Prime Software and Supported by
the Intel Quartus Prime Programmer

File Type Generated by the Intel Quartus [Supported by the Intel Quartus
Prime Software Prime Programmer
.sof Yes Yes
.pof Yes Yes
-jam Yes Yes
.jbc Yes Yes
JTAG Indirect Configuration File (. jic) Yes Yes
Serial Vector Format File (.svT) Yes —
Hexadecimal (Intel-Format) Output File (.hexout) Yes —
Raw Binary File (.rbf) Yes Yes (11)
Raw Binary File for Partial Reconfiguration (.rb¥) Yes Yes (12)
Tabular Text File (.ttf) Yes —
Raw Programming Data File (. rpd) Yes —

20.2 Intel Quartus Prime Programmer Window

The Intel Quartus Prime Programmer window allows you to:

e Add your programming and configuration files.

e Specify programming options and hardware.

e Start the programming or configuration of the device.

To open the Programmer window, click Tools 0 Programmer. As you proceed
through the programming flow, the Intel Quartus Prime Message window reports the
status of each operation.

Related Links

Programmer Page (Options Dialog Box)
In Intel Quartus Prime Help

20.2.1 Editing the Details of an Unknown Device

When the Intel Quartus Prime Programmer automatically detects devices with shared
JTAG IDs, the Programmer prompts you to specify the device in the JTAG chain. If the
Programmer does not prompt you to specify the device, you must manually add each
device in the JTAG chain to the Programmer, and define the instruction register length
of each device.

(11) Raw Binary File (. rbF) is supported by the Intel Quartus Prime Programmer in Passive Serial
(PS) configuration mode.

(12) Raw Binary File for Partial Reconfiguration (.rb¥) is supported by the Intel Quartus Prime
Programmer in JTAG debug mode.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
446

http://quartushelp.altera.com/current/index.htm#program/pgm/pgm_com_options_tab.htm

] ®
20 Programming Intel FPGA Devices l n tel]

QPS5V3 | 2017.11.06

To edit the details of an unknown device, follow these steps:
Double-click the unknown device listed under the device column.
Click Edit.

Change the device Name.

Specify the Instruction register Length.

Click OK.

Save the .cdf file.

o U kW=

20.2.2 Setting Up Your Hardware

Before you can program or configure your device, you must have the correct hardware
setup. The Intel Quartus Prime Programmer provides the flexibility to choose a
download cable or programming hardware.

20.2.3 Setting the JTAG Hardware

The JTAG server allows the Intel Quartus Prime Programmer to access the JTAG
hardware. You can also access the JTAG download cable or programming hardware
connected to a remote computer through the JTAG server of that computer. With the
JTAG server, you can control the programming or configuration of devices from a
single computer through other computers at remote locations. The JTAG server uses
the TCP/IP communications protocol.

20.2.3.1 Running JTAG Daemon with Linux

The JTAGD daemon allows a remote machine to program or debug a board that is
connected to a Linux host over the network. The JTAGD daemon also allows multiple
programs to use JTAG resources at the same time. The JTAGD daemon is the Linux
version of a JTAG server.

Run the JTAGD daemon to avoid:
e The JTAGD server from exiting after two minutes of idleness.

e The JTAGD server from not accepting connections from remote machines, which
might lead to an intermittent failure.

To run JTAGD as a daemon, follow these steps:
1. Create an /etc/jtagd directory.

2. Set the permissions of this directory and the files in the directory to allow you to
have the read/write access.

3. Run jtagd (with no arguments) from your quartus/bin directory.

The JTAGD daemon is now running and does not terminate when you log off.

20.2.4 Using the JTAG Chain Debugger Tool

The JTAG Chain Debugger tool allows you to test the JTAG chain integrity and detect
intermittent failures of the JTAG chain. In addition, the tool allows you to shift in JTAG
instructions and data through the JTAG interface, and step through the test access
port (TAP) controller state machine for debugging purposes. You access the tool by
clicking Tools 0 JTAG Chain Debugger on the Intel Quartus Prime software.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
447

] ®
l n tel) 20 Programming Intel FPGA Devices

QPS5V3 | 2017.11.06

20.3 Programming and Configuration Modes

The following table lists the programming and configuration modes supported by Intel

FPGA devices.

Table 137. Programming and Configuration Modes

Configuration Mode Supported FPGA CPLD Configuration Serial Configuration
by the Intel Quartus Prime Device Device
Programmer
JTAG Yes Yes Yes —
Passive Serial (PS) Yes - - -
Active Serial (AS) Programming - - - Yes
Configuration via Protocol (CvP) Yes - — —
In-Socket Programming — Yes (except for Yes Yes
MAX II CPLDs)

Related Links

Configuration via Protocol (CvP) Implementation in V-series Intel FPGAs Devices User

Guide

Describes the CvP configuration mode.

20.4 Design Security Keys

The Intel Quartus Prime Programmer supports the generation of encryption key
programming files and encrypted configuration files for Intel FPGAs that support the
design security feature. You can also use the Intel Quartus Prime Programmer to
program the encryption key into the FPGA.

Related Links

AN 556: Using the Design Security Features in Intel FPGAs

20.5 Convert Programming Files Dialog Box

The Convert Programming Files dialog box in the Programmer allows you to
convert programming files from one file format to another. To access the Convert

Programming Files dialog box, click File 0 Convert Programming Files... on the
Intel Quartus Prime software.

For example, to store the FPGA data in configuration devices, you can convert
the .sof data to another format, such as .pof, .hexout, .rbf, .rpd, or .jic, and
then program the configuration device.

You can also configure multiple devices with an external host, such as a
microprocessor or CPLD. For example, you can combine multiple .sof files into

one .pof file. To save time in subsequent conversions, click Save Conversion Setup
to save your conversion specifications in a Conversion Setup File (.cof). Click Open
Conversion Setup Data to load your .cof setup in the Convert Programming
Files dialog box.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

https://www.altera.com/documentation/nik1412546950394.html#nik1412546833714
https://www.altera.com/documentation/nik1412546950394.html#nik1412546833714
https://www.altera.com/documentation/bhc1410500804155.html#bhc1410500731946

20 Programming Intel FPGA Devices l n tel

QPS5V3 | 2017.11.06

Example 39. Conversion Setup File Contents

<?xml version="1.0" encoding="US-ASCII'" standalone="yes'"?>
<cof>

<output_fFilename>output_file._pof</output_filename>
<n_pages>1</n_pages>
<width>1</width>
<mode>14</mode>
<sof_data>
<user_name>Page_0</user_name>
<page_flags>1</page_flags>
<bit0>
<sof_filename>/users/jbrossar/template/output_files/

template_test.sof</sof_filename>

</bit0>
</sof_data>
<version>7</version>
<create_cvp_file>0</create_cvp_file>
<create_hps_iocsr>0</create_hps_iocsr>
<auto_create_rpd>0</auto_create_rpd>
<options>
<map_Ffile>1</map_file>
</options>
<MAX10_device_options>
<por>0</por>
<io_pullup>1</io_pullup>
<auto_reconfigure>1</auto_reconfigure>
<isp_source>0</isp_source>
<verify_protect>0</verify_protect>
<epof>0</epof>
<ufm_source>0</ufm_source>
</MAX10_device_options>
<advanced_options>
<ignore_epcs_1id_check>0</ignore_epcs_id_check>
<ignore_condone_check>2</ignore_condone_check>
<plc_adjustment>0</plc_adjustment>
<post_chain_bitstream_pad_bytes>-1</post_chain_bitstream_pad_bytes>
<post_device_bitstream_pad_bytes>-1</post_device_bitstream_pad_bytes>
<bitslice_pre_padding>1</bitslice_pre_padding>
</advanced_options>

</cof>

Related Links

Convert Programming Files Dialog Box
In Intel Quartus Prime Help

20.5.1 Debugging Your Configuration

Use the Advanced option in the Convert Programming Files dialog box to debug
your configuration. You must choose the advanced settings that apply to your Intel
FPGA device. You can direct the Intel Quartus Prime software to enable or disable an
advanced option by turning the option on or off in the Advanced Options dialog box.
When you change settings in the Advanced Options dialog box, the change

affects .pof, .jic, .rpd, and .rbf files.

The following table lists the Advanced Options settings in more detail:

Table 138. Advanced Options Settings
Option Setting Description
Disable EPCS ID check FPGA skips the EPCS silicon ID verification.
Default setting is unavailable (EPCS ID check is enabled).

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
449

http://quartushelp.altera.com/current/program/pgm/pgm_com_convert.htm

intel.

20 Programming Intel FPGA Devices
QPS5V3 | 2017.11.06

Option Setting

Description

Applies to the single- and multi-device AS configuration
modes on all FPGA devices.

Disable AS mode CONF_DONE error check

FPGA skips the CONF_DONE error check.

Default setting is unavailable (AS mode CONF_DONE error
check is enabled).

Applies to single- and multi-device (AS) configuration
modes on all FPGA devices.

The CONF_DONE error check is disabled by default for
Stratix V, Arria V, and Cyclone V devices for AS-PS multi
device configuration mode.

Program Length Count adjustment

Specifies the offset you can apply to the computed PLC of
the entire bitstream.

Default setting is 0. The value must be an integer.

Applies to single- and multi-device (AS) configuration
modes on all FPGA devices.

Post-chain bitstream pad bytes

Specifies the number of pad bytes appended to the end of
an entire bitstream.

Default value is set to 0 if the bitstream of the last device is
uncompressed. Set to 2 if the bitstream of the last device is
compressed.

Post-device bitstream

pad bytes

Specifies the number of pad bytes appended to the end of
the bitstream of a device.

Default value is 0. No negative integer.

Applies to all single-device configuration modes on all FPGA
devices.

Bitslice padding value

Specifies the padding value used to prepare bitslice
configuration bitstreams, such that all bitslice configuration
chains simultaneously receive their final configuration data
bit.

Default value is 1. Valid setting is 0 or 1.

Use only in 2, 4, and 8-bit PS configuration mode, when you
use an EPC device with the decompression feature enabled.
Applies to all FPGA devices that support enhanced
configuration devices.

The following table lists the symptoms you may encounter if a configuration fails, and
describes the advanced options you must use to debug your configuration.

Failure Symptoms | Disable EPCS Disable AS PLC Settings Post-Chain Post-Device Bitslice
ID Check Mode Bitstream Pad | Bitstream Pad |Padding Value
CONF_DONE Bytes Bytes
Error Check
Configuration — Yes Yes Yes (14) —
failure occurs after Yes
a configuration 13)
cycle.
Decompression - Yes Yes Yes (13) Yes (14) -
feature is enabled.
Encryption feature - Yes Yes Yes (13) Yes (14) -
is enabled.

continued...

(13) Use only for multi-device chain

(14) Use only for single-device chain

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

450

] ®
20 Programming Intel FPGA Devices l n tel

QPS5V3 | 2017.11.06

Failure Symptoms | Disable EPCS Disable AS PLC Settings Post-Chain Post-Device Bitslice
ID Check Mode Bitstream Pad | Bitstream Pad (Padding Value
CONF_DONE Bytes Bytes
Error Check
CONF_DONE stays — Yes Yes (15) Yes (13) Yes (14) —
low after a

configuration cycle.

CONF_DONE goes - Yes Yes (16) — — —
high momentarily
after a
configuration cycle.

FPGA does not — — — Yes (13) Yes (14) —
enter user mode
even though
CONF_DONE goes
high.

Configuration Yes - - - - -
failure occurs at
the beginning of a
configuration cycle.

Newly introduced Yes — — — — —_
EPCS, such as
EPCS128.

Failure in .pof - — - - — Yes
generation for EPC
device using Intel
Quartus Prime
Convert
Programming File
Utility when the
decompression
feature is enabled.

20.5.2 Converting Programming Files for Partial Reconfiguration
The Convert Programming File dialog box supports the following programming file
generation and option for Partial Reconfiguration:

e Partial-Masked SRAM Object File (.pmsf) output file generation, with .msf
and .sof as input files.

o .rbf for Partial Reconfiguration output file generation, with a .pmsf as the input
file.

Note: The .rbf for Partial Reconfiguration file is only for Partial Reconfiguration.

e Providing the Enable decompression during Partial Reconfiguration option to
enable the option bit for bitstream decompression during Partial Reconfiguration,
when converting a full design .sof to any supported file type.

Related Links

Design Planning for Partial Reconfiguration

(15) start with positive offset to the PLC settings

(18) start with negative offset to the PLC settings

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
451

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958516629

QPS5V3 | 2017.11.06

™ ®
< l n tel) 20 Programming Intel FPGA Devices

20.5.2.1 Generating .pmsf using a .msf and a .sof
To generate the .pmsf in the Convert Programming Files dialog box, follow these
steps:

1. In the Convert Programming Files dialog box, under the Programming file
type field, select Partial-Masked SRAM Object File (.pmsf).

In the File name field, specify the necessary output file name.

In the Input files to convert field, add necessary input files to convert. You can
add only a .msf and .sof.

4. Click Generate.

20.5.2.2 Generating .rbf for Partial Reconfiguration Using a .pmsf

After generating the .pmsf, convert the .pmsf to a .rbf for Partial Reconfiguration in
the Convert Programming Files dialog box.

To generate the .rbf for Partial Reconfiguration, follow these steps:

1. In the Convert Programming Files dialog box, in the Programming file type
field, select Raw Binary File for Partial Reconfiguration (.rbf).

In the File name field, specify the output file name.

In the Input files to convert field, add input files to convert. You can add only
a .pmsf.

4. After adding the .pmsf, select the .pmsf and click Properties. The PMSF File
Properties dialog box appears.

5. Make your selection either by turning on or turning off the following options:

— Compression option—This option enables compression on Partial
Reconfiguration bitstream. If you turn on this option, then you must turn on
the Enable decompression during Partial Reconfiguration option.

— Enable SCRUB mode option—The default of this option is based on AND/OR
mode. This option is valid only when Partial Reconfiguration masks in your
design are not overlapped vertically. Otherwise, you cannot generate the .rbf
for Partial Reconfiguration.

— Write memory contents option—This option is a workaround for initialized
RAM/ROM in a Partial Reconfiguration region.

For more information about these option, refer to the Design Planning for Partial
Reconfiguration.

Click OK.
7. Click Generate.

20.5.2.3 Enable Decompression during Partial Reconfiguration Option

You can turn on the Enable decompression during Partial Reconfiguration option
in the SOF File Properties: Bitstream Encryption dialog box, which can be
accessed from the Convert Programming File dialog box. This option is available
when converting a .sof to any supported programming file types listed in Table 136
on page 446.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
452

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958516629
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958516629

QPS5V3 | 2017.11.06

™ ®
20 Programming Intel FPGA Devices ‘ l n tel]

This option is hidden for other targeted devices that do not support Partial
Reconfiguration. To view this option in the SOF File Properties: Bitstream
Encryption dialog box, the .sof must be targeted on an Intel FPGA device that
supports Partial Reconfiguration.

If you turn on the Compression option when generating the .rbf for Partial
Reconfiguration, then you must turn on the Enable decompression during Partial
Reconfiguration option.

20.6 Flash Loaders

Parallel and serial configuration devices do not support the JTAG interface. However,
you can use a flash loader to program configuration devices in-system via the JTAG
interface. You can use an FPGA as a bridge between the JTAG interface and the
configuration device. The Intel Quartus Prime software supports parallel and serial
flash loaders.

20.7 JTAG Debug Mode for Partial Reconfiguration

Note:

Note:

The JTAG debug mode allows you to configure partial reconfiguration bitstream
through the JTAG interface. Use this feature to debug PR bitstream and eventually
helping you in your PR design prototyping. This feature is available for internal and
external host. Using the JTAG debug mode forces the Data Source Controller to be in
x16 mode.

During JTAG debug operation, the JTAG command sent from the Intel Quartus Prime
Programmer ignores and overrides most of the Partial Reconfiguration IP core
interface signals (clk, pr_start, double_pr, data[], data_valid, and
data_read).

The TCK is the main clock source for PR IP core during this operation.

You can view the status of Partial Reconfiguration operation in the messages box and
the Progress bar in the Intel Quartus Prime Programmer. The PR_DONE, PR_ERROR,
and CRC_ERROR signals will be monitored during PR operation and reported in the
Messages box at the end of the operation.

The Intel Quartus Prime Programmer can detect the number of PR_DONE instruction(s)
in plain or compressed PR bitstream and, therefore, can handle single or double PR
cycle accordingly. However, only single PR cycle is supported for encrypted Partial
Reconfiguration bitstream in JTAG debug mode (provided that the specified device is
configured with the encrypted base bitstream which contains the PR IP core in the
design).

Configuring an incompatible PR bitstream to the specified device may corrupt your
design, including the routing path and the PR IP core placed in the static region. When
this issue occurs, the PR IP core stays in an undefined state, and the Intel Quartus
Prime Programmer is unable to reset the IP core. As a result, the Intel Quartus Prime
Programmer generates the following error when you try to configure a new PR
bitstream:

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
453

20 Programming Intel FPGA Devices
QPS5V3 | 2017.11.06

Error (12897): Partial Reconfiguration status: Can"t reset the PR megafunction.
This issue occurred because the design was corrupted by an incompatible PR
bitstream in the previous PR operation. You must reconfigure the device with a
good design.

20.7.1 Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode
To configure the Partial Reconfiguration bitstream in JTAG debug mode, follow these
steps:

1. In the Intel Quartus Prime Programmer GUI, right click a highlighted base
bitstream (in .sof) and then click Add PR Programming File to add the PR
bitstream (.rbf).

Figure 237. Adding PR Programming File

M Quartus T 64-Bit Programmer - [Chainl.cdf]* [E]
Fle Edit View Processing Tools Window Help 5 Search altera.com @
)
[Enable real-time ISP to allow background programming (for MAX II and MAX V devices)
o File Device Checksum Usercode Program/ Vel
Confiure
i stop D:/PR_IP/PR_External Host.sof NRI7A. 0BS7A3ED
o
<none K Delete Del <none
W | 4% Auto Detect Select Al Ctrl+A
I
\l_mb Add File... & Change File
-
| Al Save File =
EB Change File...
CrrsERvEEE©) Add IPS File...
A} Save File [H }
o1 E Change IFS File...
i Delete 1PS File e
A
0
T up eeemssen. Add PR Programming File... D?
SEGRMATNIFAD Change PR Programming File. .
TDO
4 Delete PR Programming File e
Attach Flash Device... =
; @ m [ﬁ) D <<Search>> Change Flash Device...
a Type D Message Delete Flash Device
% Add Device...
I
Change Device
W fl
N i up
1“"1 Down
Y
s Hardware Setup
ISP CLAMP State Editor
bl Define CFI Flash Device
Bl « & Properties ’
i}
=|_system /_Processing /
Add Partial Reconfiguration Programming File
L

2. After adding thePR bitstream, you can change or delete the Partial Reconfiguration
programming file by clicking Change PR Programming File or Delete PR
Programming File.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
454

20 Programming Intel FPGA Devices
QPS5V3 | 2017.11.06

Figure 238. Change PR Programming File or Delete PR Programming File

intel.

% Quartus T 64-Bit Programmer - [Chainl.cdf]*

E=NR=

File Edit View Processing Tools Window Help

S

Search altera,com @

&, Hardware Setup...| USB-Blaster [USB-0]

Wode:

[] Enable real-time 15P to allow background programming (for MAX IT and MAX V devices)

Progress: 100% (S.lﬂzssﬁ.l]-

@ E] [ﬁ) T <<Searchx

Type 1D

am x|

Message

Messages

Il
System /_Processing /

Attach Flash Device...
Change Flash Device...

Delete Flash Device

Add Device...

Change Device

Up

Down

Hardware

15P CLAMP State Editor
Define CFI Flash Device

Properties

File Device Chedksum Program/ Werify
Confure
& st <none SSEHMATMIF40 00000000
" ED:{PRfIP{ExbemaLHostJPRJeg\onljersonal‘rbf i bitstream 003F3492
N <nonex % Delete Del 0000000
u Select Al Ctrl+A
“ "
| [5, AddFle.. [t AddFie... =
I M Change File —
N
Wl | 2% Change File... .ﬂ‘ Save File
| L bl saverie Add PS5 File....
o Change IPS File... =
Delete IPS File
Tiup
W FGRMATNFA0 Add PR Programming File...
oo
Change PR Programming File... I}
Delete PR Programming File =

Setup

Change Partial Reconfiguration Programming File

3. Click Start to configure the PR bitstream. The Intel Quartus Prime Programmer
generates an error message if the specified device does not contain the PR IP core
in the design (you must instantiate the Partial Reconfiguration IP core in your
design to use the JTAG debug mode).

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

455

] ®
l n tel 20 Programming Intel FPGA Devices

QPS5V3 | 2017.11.06

Figure 239. Starting PR Bitstream Configuration

W Quartus I1 64-Bit Programmer - [ChainLcdf]* =8

Fle Edt View Processing Tools Window Hep Search attera.com (O]

£, Hardware Setup...| USB-Blaster [USE-0] Mode: |JTAG A Progress: 0% (Failed)

[T Enable real-time ISP to allow background programming (for MAX IT and MAX V devices)

m File Devics Checksum Usercode Frogram/ Verify Blank- Examne Secu
@ Start Configure Check Bit|
<none BEEXMATNIF40 00000000 <none>
il 5top
|D:/PR_IP/External_Host/PR_region1_personal.rbf bitstream 003F3492 [[[] [
il [3 Auto Detect <none> 5M22107 00000000 <none> (=] []
il
4 m »
[(M Add Fie... =
fl
W [P changeFie...
fl
| [k save File
I [23 add Device... E
Ml T up
il ™ BEGXMATNIF40 5M22102
i ™
¢
x| @ £y {ED T <<Search>> ~
3 @)
Bl Type ID Message
(] 209060 Started Programmer operation at Mon Aug 19 09:38:44 2013
fl € 12396 Fartial Reconfiguration status: Can't recognize Fartial Reconfiguration Megafunction in the device chain
ll € 209012 Operation failed I
fl (i) 209061 Ended Programmer operation at Mon Zug 1% 08:38:45 2013

< G

System (4) /\ Processing J

Messages

4. Configure the valid .rbf in JTAG debug mode with the Intel Quartus Prime
Programmer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
456

20 Programming Intel FPGA Devices

QPS5V3 | 2017.11.06

Figure 240. Configuring Valid .rbf

_ _ _ 5
A Quartus 164 Bit Programmer - [ChainLedfI™ i —— S sz

Fie Edt View Processng Tools Window Help 5 Search altera.com @

2, Hardware Setup...| USB-Blaster [USB-0] Made: [ITAG -] Progress: 100% (Successf) |

Enable real-time ISP to allow background programming (for MAX 11 and MAX V devices)

o File Device: Checksum Usercode Program/ Werify Blank- Examine Security Erase
Confoure Chedk s

| ol Sty ‘ D:jPR_IP/PR_External_Hest.sof BEGXMATNIFA0 0B976CBS 0B975CB6 O [O 0 0
s D:/PR_IP/FR _region1_personaZ.rbf bitstream 003F3A%A O l E] O 0o

<none> 5M22102 00000000 <none> O O O
< i |
(s, Add File... =

| B change Fie...
| Ik save Fie

[fiw |

.
g) @ T <seacn> o
a

ID Message

i

SSGXMATNIF40 5M22102

-~

209060 Started Programmer operation at Sun Aug 18 14:16:59 2013

209016 Configuring device index 1

209017 Device 1 contains JTAG ID code 0x02B030DD

209007 Configuration succeeded —- 1 device(s) configured

12895 Partial Reconfiguration status: Detected PR Megafunction is configured azs External Host
1.

Performing Partial Reconfiguration at device index 1

"

5 Partisl Reconfiguration status: Detected PR_DONE goes high during operation

"

5 Partial Reconfiguration status: Successfully performed Partial Reconfiguration operation at device index 1
Suceessfully performed operation(s)
061 Ended Programmer operation at Sun Aug 18 14:17:21 2013

2
2
9011
a

o

oo

ceeceee0e0l

Messages

< I
|j System (10) J/\ Processing / |

The JTAG debug mode is also supported if the PR IP core is pre-programmed on

the specified device.

intel.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification

457

intel.

20 Programming Intel FPGA Devices
QPS5V3 | 2017.11.06

Figure 241. Partial Reconfiguration IP Core Successfully Pre-programmed

-
W Quartus 11 64-Bit pmg.amr—[chainmiq'-m — _— e e =]]

Fle Edt View Processing Tools Window Help 5

Search altera,com

5o Hardware Setup...| USB-Blaster [USE-0]

Enable real-time ISP to allow background programming (for MAX IT and MAX V devices)

Mode: [JTAG -] Frogress: 100% (uceessf) |

File Device

<none > AEGHMATNIFA0 0000

Checksum

Erase

[m]

Examine

]

lank-

Usercode Program/ Bl
Check

Configure

Verify Security
Bit

[m]

0000

]

<none>

i Stop

{D:/PR_IPPR_region1_personaL.rbf bitstream 003F.

3492

<none: 5M2210Z 0000

0000 <none:

< I

K Delete
[Add Fil...
i |

i ot
— —

SSGXMATNIF40 5M22102

n

[E’ T ccSearch>>

Type ID

(i) 209060 Starced Programmer opsration at Sun Aug 18 1:

Amx|

Message

38 2013

12895 Partial Reconfiguration status:

Detected PR Megafunction is configured as External Host

12898 Performing Partial Reconfiguration at device index 1
12895 Partial Reconfiguration status: Detected PR_DONE goes high during cperatien

12895 Partial Reconfiguration status:

Successfully performed Partial Reconfiguration operation at device index 1

09011 Successfully performed operation(s)

2
209061 Ended Programmer cperation at Sun Aug 18 14:27:47

coeees

<

2013

Messages

system (7) /_Processing

6.
corrupted . rbf in JTAG debug mode.

Figure 242, Configuring Corrupted .rbf

Al Quartus I 64-Bit Programmer - [Chainl.cdfl*

The Intel Quartus Prime Programmer reports error when you try to configure the

-] — el e
=

File Edit View Processing Tools Window Help Search altera.com @
2, Hardware Setup...| usB-Blaster [UsB-0] Mode: [JTAG ~| Progress: l 9% (Falled)
Enable real-time 5P to allow background programming (for MAX 1T and MAX V devices)
m File Device Checksum Usercade Frogram/ Verfy Blank- Examine Security Erase
il Start Configure Check Bit
"~ dbswp | | |PPRIPPR Extemal Host.sof SSGEHMATNIFAD 0BO7ECBE OBOT6CES O]] O O
g D:/PR_IP/Compressed_corrupted.rbf bitstream 04265506 [F1 M1 M1 (i (i
|| [4% Auto Detect <none> 5M2210Z 00000000 <none> O O
I
3 Delete
ll] i | D
M | 2 AddFile i
ll
Wl | change Fie.
W ——
| [z save Fie /NS /NS
DI I - gl
| — —
fl
i Thiup
fl 7 BSEXMATNIF4D sM22107
| e
I -
] =
«<Search>> Y
ks
Wl [l Tvee ID Message
fl (i) 209060 Starced Programmer operation at Sun Aug 18 14:22:04 2013
ll (p 12895 Partial Reconfiguration status: Detected PR Megafunction is configured as External Host
fl (p 12898 Performing Partial Reconfiguration at device index 1
fl € 12897 Partial Reconfiguration status: Detected PR _ERROR goss high during operation
i € 12897 Partial Reconfiguration status: Failed to perform Partial Reconfiguration operation at device index 1
i €) 209012 Operation failed
fl (i 209061 Ended Programmer operation at Sun Aug 18 14:22:06 2013
M &
Iﬁ . i
g
L= _system (7) /_Pracessing 7
I I

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
458

n ®
20 Programming Intel FPGA Devices l n tel]

QPS5V3 | 2017.11.06

20.8 Verifying if Programming Files Correspond to a Compilation of
the Same Source Files

Intel Quartus Prime programming files support the project hash property, which helps
you determine if two or more programming files correspond to a compilation of the
same set of source files.

During compilation, the Intel Quartus Prime software produces an unique project

hash, and embeds this value in the programming files (.sof). The project hash is
available for Arria V, Stratix V, Cyclone V, Intel MAX 10, and Intel Arria 10 device
families.

The project hash does not change for different builds of the Intel Quartus Prime
software, or when you install a software patch. However, if you upgrade any IP with a
different build or patch, the project hash changes.

20.8.1 Obtaining Project Hash for Arria V, Stratix V, Cyclone V and Intel
MAX 10 Devices

To obtain the project hash value of a .sof programming file for a design targeted to
Arria V, Stratix V, Cyclone V, and Intel MAX 10 devices, use the following command,
which dumps out metadata information that includes the project hash.

quartus_cpf --info <sof-fil e- name>

Example 40. Output of Project Hash Extraction

In this example, the programming file name is cb_intosc.sof.

File: cb_intosc.sof
File CRC: 0x0000
Creator: Quartus Prime Compiler
Version 17.0.0 Internal Build 565 02/09/2017 SJ Standard Edition
Comment: UNIX
Device: 5SGSMD5K2F40
Data checksum: 0x02534E5A
JTAG usercode: 0x02534E5A
Project Hash: 0x556e737065636966696564

20.8.2 Obtaining Project Hash for Intel Arria 10 Devices

To obtain the project hash value of a .sof programming file for a design targeted to
Intel Arria 10 devices, use the quartus_asm command-line executable
(quartus_asm.exe in Windows) with the ——project_hash option.

quartus_asm --project_hash <sof-file>

Example 41. Output of Project Hash Command

In this example, the programming file is one_wire.sof.

Info:
Info: Running Quartus Prime Assembler

Info: Version 17.1.0 Build 569 08/23/2017 SJ Standard Edition

Info: Copyright (C) 2017 Intel Corporation. All rights reserved.
Info: Your use of Intel Corporation®s design tools, logic functions
Info: and other software and tools, and its AMPP partner logic
Info: functions, and any output files from any of the foregoing

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
459

20 Programming Intel FPGA Devices
QPS5V3 | 2017.11.06

Info: (including device programming or simulation files), and any
Info: associated documentation or information are expressly subject
Info: to the terms and conditions of the Intel Program License
Info: Subscription Agreement, the Intel Quartus Prime License Agreement,
Info: the Intel MegaCore Function License Agreement, or other

Info: applicable license agreement, including, without limitation,
Info: that your use is for the sole purpose of programming logic
Info: devices manufactured by Intel and sold by Intel or its

Info: authorized distributors. Please refer to the applicable
Info: agreement for further details.

Info: Processing started: Fri Aug 25 18:22:53 2017

Info: Command: quartus_asm --project _hash one_wire.sof

Info: Quartus(args): one_wire.sof

Info: Using INI file /data/test_asm/dis_all/quartus.ini
0x0e43694alffaf5da6088F900FFfb0f7b6

Info (23030): Evaluation of Tcl script /tools/quartuskit/17.1std/quartus/
common/tcl/apps/gasm/project_hash.tcl was successful

Info: Quartus Prime Assembler was successful. O errors, 0 warnings
Info: Peak virtual memory: 1123 megabytes

Info: Processing ended: Fri Aug 25 18:22:59 2017

Info: Elapsed time: 00:00:06

Info: Total CPU time (on all processors): 00:00:03

20.9 Scripting Support

In addition to the Intel Quartus Prime Programmer GUI, you can use the Intel Quartus
Prime command-line executable quartus_pgm.exe (or quartus_pgm in Linux) to
access programmer functionality from the command line and from scripts. The
programmer accepts .pof, .sof, and . jic programming or configuration files

and .cdf files.

The following example shows a command that programs a device:

quartus_pgm —c byteblasterll —m jtag —o bpv;design.pof

Where:

e -c byteblasterl 1 specifies the Intel FPGA Parallel Port Cable download cable
e -m jtag specifies the JTAG programming mode

e -0 bpv represents the blank-check, program, and verify operations

e design.pof represents the _pof used for the programming

The Programmer automatically executes the erase operation before programming the
device.

For Linux terminal, use:

quartus_pgm —c byteblasterll —m jtag —o bpv\;design.pof

Related Links

About Intel Quartus Prime Scripting
In Intel Quartus Prime Help

20.9.1 The jtagconfig Debugging Tool

You can use the jtagconftig command-line utility to check the devices in a JTAG
chain and the user-defined devices. The jtagconfig command-line utility is similar
to the auto detect operation in the Intel Quartus Prime Programmer.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
460

http://quartushelp.altera.com/current/reference/scripting/tcl_view_using_tcl_scripts.htm

] ®
20 Programming Intel FPGA Devices l n tel

QPS5V3 | 2017.11.06

For more information about the jtagconfig utility, use the help available at the
command prompt:

Jjtagconfig [-h | --help]

Note: The help switch does not reference the —n switch. The jtagconfig -n command
shows each node for each JTAG device.

Related Links

Command-Line Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

20.9.2 Generating a Partial-Mask SRAM Object File using a Mask Settings
File and a SRAM Object File

You can generate a .pmsT with the quartus_cpf command by typing the following
command:

quartus_cpf -p <pr_revision. nsf> <pr_revision.sof > <new fil enane. pnsf >

20.9.3 Generating Raw Binary File for Partial Reconfiguration using
a .pmsf

You can generate a . rb¥ for Partial Reconfiguration with the quartus_cpf command
by typing the following command:

quartus_cpf —o foo.txt —c <pr_revi sion. pnsf > <pr_revi sion. rbf >
Note: You must run this command in the same directory where the files are located.

20.10 Document Revision History

Table 139. Document Revision History

Date Version Changes
2017.11.06 17.1.0 e Updated Project Hash feature.
2017.05.08 17.0.0 e Added Project Hash feature.
2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.
2015.05.04 15.0.0 Added Conversion Setup File (.cof) description and example.
December 2014 14.1.0 Updated the Scripting Support section to include a Linux command to program a
device.
June 2014 14.0.0 e Added Running JTAG Daemon.

e Removed Cyclone III and Stratix III devices references.
e Removed MegaWizard Plug-In Manager references.

e Updated Secondary Programming Files section to add notes about the Intel Quartus
Prime Programmer support for .rbf files.

November 2013 13.1.0 e Converted to DITA format.

e Added JTAG Debug Mode for Partial Reconfiguration and Configuring Partial
Reconfiguration Bitstream in JTAG Debug Mode sections.

continued...

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
461

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410470998554

] ®
l n tel 20 Programming Intel FPGA Devices
QPS5V3 | 2017.11.06

Date Version Changes

November 2012 12.1.0 e Updated Table 18-3 on page 18-6, and Table 18-4 on page 18-8.

e Added “Converting Programming Files for Partial Reconfiguration” on page 18-10,
“Generating .pmsf using a .msf and a .sof” on page 18-10, “Generating .rbf for
Partial Reconfiguration Using a .pmsf” on page 18-12, “Enable Decompression
during Partial Reconfiguration Option” on page 18-14

e Updated “Scripting Support” on page 18-15.

June 2012 12.0.0 e Updated Table 18-5 on page 18-8.
e Updated “Intel Quartus Prime Programmer GUI” on page 18-3.

November 2011 11.1.0 e Updated “Configuration Modes” on page 18-5.
e Added “Optional Programming or Configuration Files” on page 18-6.
e Updated Table 18-2 on page 18-5.

May 2011 11.0.0 e Added links to Intel Quartus Prime Help.
e Updated “Hardware Setup” on page 21-4 and “JTAG Chain Debugger Tool” on page
21-4,
December 2010 10.1.0 e Changed to new document template.

e Updated “JTAG Chain Debugger Example” on page 20-4.
e Added links to Intel Quartus Prime Help.
e Reorganized chapter.

July 2010 10.0.0 e Added links to Intel Quartus Prime Help.
e Deleted screen shots.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 e Added a row to Table 21-4.

e Changed references from “JTAG Chain Debug” to “JTAG Chain Debugger”.
e Updated figures.

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
462

https://www.altera.com/search-archives

	 Intel Quartus Prime Standard Edition Handbook Volume 3 Verification
	Contents
	1 Simulating Intel FPGA Designs
	1.1 Simulator Support
	1.2 Simulation Levels
	1.3 HDL Support
	1.4 Simulation Flows
	1.5 Preparing for Simulation
	1.5.1 Compiling Simulation Models

	1.6 Simulating Intel FPGA IP Cores
	1.6.1 Generating IP Simulation Files
	1.6.1.1 Generating IP Functional Simulation Models (Intel Quartus Prime Standard Edition)

	1.6.2 Scripting IP Simulation
	1.6.2.1 Generating a Combined Simulator Setup Script
	1.6.2.2 Incorporating Simulator Setup Scripts from the Generated Template
	1.6.2.2.1 Sourcing Aldec* Simulator Setup Scripts
	1.6.2.2.2 Sourcing Cadence* Simulator Setup Scripts
	1.6.2.2.3 Sourcing ModelSim* Simulator Setup Scripts
	1.6.2.2.4 Sourcing VCS* Simulator Setup Scripts
	1.6.2.2.5 Sourcing VCS* MX Simulator Setup Scripts

	1.7 Using NativeLink Simulation (Intel Quartus Prime Standard Edition)
	1.7.1 Setting Up NativeLink Simulation (Intel Quartus Prime Standard Edition)
	1.7.2 Running RTL Simulation (NativeLink Flow)
	1.7.3 Running Gate-Level Simulation (NativeLink Flow)

	1.8 Running a Simulation (Custom Flow)
	1.9 Document Revision History

	2 ModelSim - Intel FPGA Edition, ModelSim, and QuestaSim Support*
	2.1 Quick Start Example (ModelSim with Verilog)
	2.2 ModelSim, ModelSim-Intel FPGA Edition, and QuestaSim Guidelines
	2.2.1 Using ModelSim-Intel FPGA Edition Precompiled Libraries
	2.2.2 Disabling Timing Violation on Registers
	2.2.3 Passing Parameter Information from Verilog HDL to VHDL
	2.2.4 Increasing Simulation Speed
	2.2.5 Simulating Transport Delays
	2.2.6 Viewing Simulation Messages
	2.2.7 Generating Power Analysis Files
	2.2.8 Viewing Simulation Waveforms
	2.2.9 Simulating with ModelSim-Intel FPGA Edition Waveform Editor

	2.3 ModelSim Simulation Setup Script Example
	2.4 Unsupported Features
	2.5 Document Revision History

	3 Synopsys VCS and VCS MX Support
	3.1 Quick Start Example (VCS with Verilog)
	3.2 VCS and QuestaSim Guidelines
	3.2.1 Simulating Transport Delays
	3.2.2 Disabling Timing Violation on Registers
	3.2.3 Generating Power Analysis Files

	3.3 VCS Simulation Setup Script Example
	3.4 Document Revision History

	4 Cadence* Incisive Enterprise (IES) Support
	4.1 Quick Start Example (NC-Verilog)
	4.2 Cadence Incisive Enterprise (IES) Guidelines
	4.2.1 Using GUI or Command-Line Interfaces
	4.2.2 Elaborating Your Design
	4.2.3 Back-Annotating Simulation Timing Data (VHDL Only)
	4.2.4 Disabling Timing Violation on Registers
	4.2.5 Simulating Pulse Reject Delays
	4.2.6 Viewing Simulation Waveforms

	4.3 IES Simulation Setup Script Example
	4.4 Document Revision History

	5 Aldec* Active-HDL and Riviera-PRO Support
	5.1 Quick Start Example (Active-HDL VHDL)
	5.2 Aldec Active-HDL and Riviera-PRO Guidelines
	5.2.1 Compiling SystemVerilog Files
	5.2.2 Simulating Transport Delays
	5.2.3 Disabling Timing Violation on Registers

	5.3 Using Simulation Setup Scripts
	5.4 Document Revision History

	6 Design Debugging Using In-System Sources and Probes
	6.1 Hardware and Software Requirements
	6.2 Design Flow Using the In-System Sources and Probes Editor
	6.2.1 Instantiating the In-System Sources and Probes IP Core
	6.2.2 In-System Sources and Probes IP Core Parameters

	6.3 Compiling the Design
	6.4 Running the In-System Sources and Probes Editor
	6.4.1 In-System Sources and Probes Editor GUI
	6.4.2 Programming Your Device With JTAG Chain Configuration
	6.4.3 Instance Manager
	6.4.4 In-System Sources and Probes Editor Pane
	6.4.4.1 Reading Probe Data
	6.4.4.2 Writing Data
	6.4.4.3 Organizing Data

	6.5 Tcl interface for the In-System Sources and Probes Editor
	6.6 Design Example: Dynamic PLL Reconfiguration
	6.7 Document Revision History

	7 Timing Analysis Overview
	7.1 Timing Analysis Overview
	7.2 Timing Analyzer Terminology and Concepts
	7.2.1 Timing Netlists and Timing Paths
	7.2.1.1 The Timing Netlist
	7.2.1.2 Timing Paths
	7.2.1.3 Data and Clock Arrival Times
	7.2.1.4 Launch and Latch Edges

	7.2.2 Clock Setup Check
	7.2.3 Clock Hold Check
	7.2.4 Recovery and Removal Time
	7.2.5 Multicycle Paths
	7.2.6 Metastability
	7.2.7 Common Clock Path Pessimism Removal
	7.2.8 Clock-As-Data Analysis
	7.2.9 Multicycle Clock Setup Check and Hold Check Analysis
	7.2.9.1 Multicycle Clock Setup
	7.2.9.2 Multicycle Clock Hold

	7.2.10 Multicorner Analysis

	7.3 Document Revision History

	8 The Intel Quartus Prime Timing Analyzer
	8.1 Enhanced Timing Analysis for Intel Arria 10 Devices
	8.2 Recommended Flow for First Time Users
	8.2.1 Creating and Setting Up your Design
	8.2.2 Specifying Timing Requirements
	8.2.2.1 Performing an Initial Analysis and Synthesis
	8.2.2.2 Creating a Constraint File from Intel Quartus Prime Templates with the Intel Quartus Prime Text Editor

	8.2.3 Performing a Full Compilation
	8.2.4 Verifying Timing
	8.2.5 Analyzing Timing in Designs Compiled in Previous Versions

	8.3 Timing Constraints
	8.3.1 Recommended Starting SDC Constraints
	8.3.1.1 create_clock
	8.3.1.2 derive_pll_clocks
	8.3.1.3 derive_clock_uncertainty
	8.3.1.4 SDC Constraint Creation Summary
	8.3.1.5 set_clock_groups
	8.3.1.5.1 Tips for Writing a set_clock_groups Constraint

	8.3.2 Creating Clocks and Clock Constraints
	8.3.2.1 Creating Base Clocks
	8.3.2.1.1 Automatically Detecting Clocks and Creating Default Clock Constraints

	8.3.2.2 Creating Virtual Clocks
	8.3.2.2.1 Example of Specifying an I/O Interface Clock

	8.3.2.3 I/O Interface Uncertainty
	8.3.2.4 Creating Generated Clocks
	8.3.2.4.1 Clock Divider Example
	8.3.2.4.2 Clock Multiplexor Example

	8.3.2.5 Deriving PLL Clocks
	8.3.2.6 Creating Clock Groups
	8.3.2.6.1 Exclusive Clock Groups
	8.3.2.6.2 Asynchronous Clock Groups

	8.3.2.7 Accounting for Clock Effect Characteristics
	8.3.2.7.1 Clock Latency
	8.3.2.7.2 Clock Uncertainty

	8.3.3 Creating I/O Requirements
	8.3.3.1 Input Constraints
	8.3.3.2 Output Constraints

	8.3.4 Creating Delay and Skew Constraints
	8.3.4.1 Advanced I/O Timing and Board Trace Model Delay
	8.3.4.2 Maximum Skew
	8.3.4.3 Net Delay
	8.3.4.4 Using create_timing_netlist

	8.3.5 Creating Timing Exceptions
	8.3.5.1 Precedence
	8.3.5.2 False Paths
	8.3.5.3 Minimum and Maximum Delays
	8.3.5.4 Delay Annotation
	8.3.5.5 Multicycle Paths
	8.3.5.6 Common Multicycle Variations
	8.3.5.6.1 Relaxing Setup with set_multicyle_path
	8.3.5.6.2 Accounting for a Phase Shift

	8.3.5.7 Examples of Basic Multicycle Exceptions
	8.3.5.7.1 Default Settings
	8.3.5.7.2 End Multicycle Setup = 2 and End Multicycle Hold = 0
	8.3.5.7.3 End Multicycle Setup = 2 and End Multicycle Hold = 1

	8.3.5.8 Application of Multicycle Exceptions
	8.3.5.8.1 Same Frequency Clocks with Destination Clock Offset
	8.3.5.8.2 Destination Clock Frequency is a Multiple of the Source Clock Frequency
	8.3.5.8.3 Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
	8.3.5.8.4 Source Clock Frequency is a Multiple of the Destination Clock Frequency
	8.3.5.8.5 Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset

	8.3.6 A Sample Design with SDC File

	8.4 Running the Timing Analyzer
	8.4.1 Intel Quartus Prime Settings
	8.4.2 SDC File Precedence

	8.5 Understanding Results
	8.5.1 Iterative Constraint Modification
	8.5.2 Set Operating Conditions Dialog Box
	8.5.3 Report Timing (Dialog Box)
	8.5.4 Report CDC Viewer Command
	8.5.4.1 Report Custom CDC Viewer Command

	8.5.5 Analyzing Results with Report Timing
	8.5.6 Correlating Constraints to the Timing Report

	8.6 Constraining and Analyzing with Tcl Commands
	8.6.1 Collection Commands
	8.6.1.1 Wildcard Characters
	8.6.1.2 Adding and Removing Collection Items
	8.6.1.3 Getting Other Information about Collections
	8.6.1.4 Using the get_pins Command

	8.6.2 Identifying the Intel Quartus Prime Software Executable from the SDC File
	8.6.3 Locating Timing Paths in Other Tools

	8.7 Generating Timing Reports
	8.8 Document Revision History

	9 Power Analysis
	9.1 Types of Power Analyses
	9.1.1 Differences between the EPE and the Intel Quartus Prime Power Analyzer

	9.2 Factors Affecting Power Consumption
	9.2.1 Device Selection
	9.2.2 Environmental Conditions
	9.2.3 Device Resource Usage
	9.2.4 Signal Activities

	9.3 Power Analyzer Flow
	9.3.1 Operating Settings and Conditions
	9.3.2 Signal Activities Data Sources
	9.3.2.1 Simulation Results

	9.4 Using Simulation Files in Modular Design Flows
	9.4.1 Complete Design Simulation
	9.4.2 Modular Design Simulation
	9.4.3 Multiple Simulations on the Same Entity
	9.4.4 Overlapping Simulations
	9.4.5 Partial Simulations
	9.4.5.1 Specifying Start and End Time when Performing Signal-Activity Calculations using the Limit VCD Period Option

	9.4.6 Node Name Matching Considerations
	9.4.7 Glitch Filtering
	9.4.7.1 Enabling Tool Based Glitch Filtering
	9.4.7.2 Enabling Glitch Filtering During Power Analysis

	9.4.8 Node and Entity Assignments
	9.4.8.1 Timing Assignments to Clock Nodes

	9.4.9 Default Toggle Rate Assignment
	9.4.10 Vectorless Estimation

	9.5 Using the Power Analyzer
	9.5.1 Common Analysis Flows
	9.5.1.1 Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	9.5.1.1.1 RTL Simulation Limitation

	9.5.1.2 Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
	9.5.1.3 Signal Activities from User Defaults Only

	9.5.2 Using .vcd for Power Estimation
	9.5.2.1 Generating a .vcd
	9.5.2.1.1 Generating a .vcd from ModelSim Software

	9.6 Power Analyzer Compilation Report
	9.7 Scripting Support
	9.7.1 Running the Power Analyzer from the Command–Line

	9.8 Document Revision History

	10 System Debugging Tools Overview
	10.1 System Debugging Tools Portfolio
	10.1.1 System Debugging Tools Comparison
	10.1.2 System-Level Debugging Infrastructure
	10.1.3 Debugging Ecosystem
	10.1.4 Tools to Analyze RTL Nodes
	10.1.4.1 Resource Usage
	10.1.4.1.1 Overhead Logic
	For Signal Probe
	For Logic Analyzer Interface
	For Signal Tap Logic Analyzer

	10.1.4.1.2 Resource Estimation

	10.1.4.2 Pin Usage
	10.1.4.2.1 For Signal Probe
	10.1.4.2.2 For Logic Analyzer Interface
	10.1.4.2.3 For Signal Tap Logic Analyzer

	10.1.4.3 Usability Enhancements
	10.1.4.3.1 Incremental Compilation
	10.1.4.3.2 Incremental Routing
	10.1.4.3.3 Automation Via Scripting
	10.1.4.3.4 Remote Debugging

	10.1.5 Suggested On-Chip Debugging Tools for Common Debugging Features
	10.1.6 Stimulus-Capable Tools
	10.1.6.1 In-System Sources and Probes
	10.1.6.1.1 Push Button Functionality

	10.1.6.2 In-System Memory Content Editor
	10.1.6.2.1 Generate Test Vectors

	10.1.6.3 Virtual JTAG Interface Megafunction
	10.1.6.4 System Console
	10.1.6.4.1 Test Signal Integrity
	10.1.6.4.2 Board Bring-Up and Verification
	10.1.6.4.3 Test Link Signal Integrity with Transceiver Toolkit

	10.2 Document Revision History

	11 Analyzing and Debugging Designs with System Console
	11.1 Introduction to System Console
	11.2 Debugging Flow with the System Console
	11.3 IP Cores that Interact with System Console
	11.3.1 Services Provided through Debug Agents

	11.4 Starting System Console
	11.4.1 Starting System Console from Nios II Command Shell
	11.4.2 Starting Stand-Alone System Console
	11.4.3 Starting System Console from Platform Designer (Standard)
	11.4.4 Starting System Console from Intel Quartus Prime
	11.4.5 Customizing Startup

	11.5 System Console GUI
	11.5.1 System Explorer Pane

	11.6 System Console Commands
	11.7 Running System Console in Command-Line Mode
	11.8 System Console Services
	11.8.1 Locating Available Services
	11.8.2 Opening and Closing Services
	11.8.3 SLD Service
	11.8.3.1 SLD Commands

	11.8.4 In-System Sources and Probes Service
	11.8.4.1 In-System Sources and Probes Commands

	11.8.5 Monitor Service
	11.8.5.1 Monitor Commands

	11.8.6 Device Service
	11.8.6.1 Device Commands

	11.8.7 Design Service
	11.8.7.1 Design Service Commands

	11.8.8 Bytestream Service
	11.8.8.1 Bytestream Commands

	11.8.9 JTAG Debug Service
	11.8.9.1 JTAG Debug Commands

	11.9 Working with Toolkits
	11.9.1 Convert your Dashboard Scripts to Toolkit API
	11.9.2 Creating a Toolkit Description File
	11.9.3 Registering a Toolkit
	11.9.4 Launching a Toolkit
	11.9.5 Matching Toolkits with IP Cores
	11.9.6 Toolkit API
	11.9.6.1 Customizing Toolkit API Widgets
	11.9.6.2 Toolkit API Script Examples
	11.9.6.3 Toolkit API GUI Example
	11.9.6.3.1 Toolkit API GUI Example .tcl File

	11.9.6.4 Toolkit API Commands
	11.9.6.4.1 toolkit_register
	11.9.6.4.2 toolkit_open
	11.9.6.4.3 get_quartus_ini
	11.9.6.4.4 toolkit_get_context
	11.9.6.4.5 toolkit_get_types
	11.9.6.4.6 toolkit_get_properties
	11.9.6.4.7 toolkit_add
	11.9.6.4.8 toolkit_get_property
	11.9.6.4.9 toolkit_set_property
	11.9.6.4.10 toolkit_remove
	11.9.6.4.11 toolkit_get_widget_dimensions

	11.9.6.5 Toolkit API Properties
	11.9.6.5.1 Widget Types and Properties
	11.9.6.5.2 barChart Properties
	11.9.6.5.3 button Properties
	11.9.6.5.4 checkBox Properties
	11.9.6.5.5 comboBox Properties
	11.9.6.5.6 dial Properties
	11.9.6.5.7 fileChooserButton Properties
	11.9.6.5.8 group Properties
	11.9.6.5.9 label Properties
	11.9.6.5.10 led Properties
	11.9.6.5.11 lineChart Properties
	11.9.6.5.12 list Properties
	11.9.6.5.13 pieChart Properties
	11.9.6.5.14 table Properties
	11.9.6.5.15 text Properties
	11.9.6.5.16 textField Properties
	11.9.6.5.17 timeChart Properties
	11.9.6.5.18 xyChart Properties

	11.10 ADC Toolkit
	11.10.1 ADC Toolkit Terms
	11.10.2 Setting the Frequency of the Reference Signal
	11.10.3 Tuning the Signal Generator
	11.10.4 Running a Signal Quality Test
	11.10.5 Running a Linearity Test
	11.10.6 ADC Toolkit Data Views

	11.11 System Console Examples and Tutorials
	11.11.1 Board Bring-Up with System Console Tutorial
	11.11.1.1 Setting Up the Board Bring-Up Design Example
	11.11.1.2 Verifying Clock and Reset Signals
	11.11.1.3 Verifying Memory and Other Peripheral Interfaces
	11.11.1.3.1 Locating and Opening the Master Service
	11.11.1.3.2 Avalon-MM Slaves
	Avalon-MM Commands

	11.11.1.3.3 Testing the PIO component
	11.11.1.3.4 Testing On-chip Memory
	11.11.1.3.5 Testing the Checksum Accelerator

	11.11.1.4 Platform Designer (Standard) Modules for Board Bring-up Example
	11.11.1.4.1 Checksum Accelerator Functionality

	11.11.2 Nios II Processor Example
	11.11.2.1 Processor Commands

	11.12 On-Board Intel FPGA Download Cable II Support
	11.13 About Using MATLAB and Simulink in a System Verification Flow
	11.14 Deprecated Commands
	11.15 Document Revision History

	12 Debugging Transceiver Links
	12.1 Channel Manager
	12.1.1 Channel Display Modes

	12.2 Transceiver Debugging Flow Walkthrough
	12.3 Configuring your System with Debugging Components
	12.3.1 Adapting an Intel FPGA Design Example
	12.3.1.1 Modifying Stratix V Design Examples
	12.3.1.1.1 Generating reconfig_clk from an Internal PLL

	12.3.2 Stratix V Debug System Configuration
	12.3.2.1 Bit Error Rate Test Configuration (Stratix V)
	12.3.2.2 PRBS Signal Eye Test Configuration (Stratix V)
	12.3.2.2.1 Enabling Serial Bit Comparator Mode (Stratix V)

	12.3.2.3 Custom Traffic Signal Eye Test Configuration (Stratix V)
	12.3.2.4 Link Optimization Test Configuration (Stratix V)
	12.3.2.5 PMA Analog Setting Control Configuration (Stratix V)

	12.3.3 Instantiating and Parameterizing Intel Arria 10 Debug IP cores
	12.3.3.1 Debug Settings for Transceiver IP Cores

	12.4 Programming the Design into an Intel FPGA
	12.5 Loading the Design in the Transceiver Toolkit
	12.6 Linking Hardware Resources
	12.6.1 Linking One Design to One Device
	12.6.2 Linking Two Designs to Two Devices
	12.6.3 Linking One Design on Two Devices
	12.6.4 Linking Designs and Devices on Separate Boards

	12.7 Verifying Hardware Connections
	12.8 Identifying Transceiver Channels
	12.8.1 Controlling Transceiver Channels
	12.8.2 Creating Links
	12.8.3 Manually Creating a Transceiver Link

	12.9 Running Link Tests
	12.9.1 Running BER Tests
	12.9.2 Signal Eye Margin Testing (Stratix V only)
	12.9.2.1 Running PRBS Signal Eye Tests (Stratix V only)

	12.9.3 Running Custom Traffic Tests (Stratix V only)
	12.9.4 Link Optimization Tests
	12.9.4.1 Running the Auto Sweep Test
	12.9.4.2 TODO task

	12.10 Controlling PMA Analog Settings
	12.11 User Interface Settings Reference
	12.12 Troubleshooting Common Errors
	12.13 Scripting API Reference
	12.13.1 Transceiver Toolkit Commands
	12.13.2 Data Pattern Generator Commands
	12.13.3 Data Pattern Checker Commands

	12.14 Document Revision History

	13 Quick Design Debugging Using Signal Probe
	13.1 Design Flow Using Signal Probe
	13.1.1 Perform a Full Compilation
	13.1.2 Reserve Signal Probe Pins
	13.1.3 Assign Signal Probe Sources
	13.1.4 Add Registers Between Pipeline Paths and Signal Probe Pins
	13.1.5 Perform a Signal Probe Compilation
	13.1.6 Analyze the Results of a Signal Probe Compilation
	13.1.7 What a Signal Probe Compilation Does
	13.1.8 Understanding the Results of a Signal Probe Compilation
	13.1.8.1 Analyzing Signal Probe Routing Failures

	13.2 Scripting Support
	13.2.1 Making a Signal Probe Pin
	13.2.2 Deleting a Signal Probe Pin
	13.2.3 Enabling a Signal Probe Pin
	13.2.4 Disabling a Signal Probe Pin
	13.2.5 Performing a Signal Probe Compilation
	13.2.5.1 Script Example

	13.2.6 Reserving Signal Probe Pins
	13.2.6.1 Common Problems When Reserving a Signal Probe Pin

	13.2.7 Adding Signal Probe Sources
	13.2.8 Assigning I/O Standards
	13.2.9 Adding Registers for Pipelining
	13.2.10 Running Signal Probe Immediately After a Full Compilation
	13.2.11 Running Signal Probe Manually
	13.2.12 Enabling or Disabling All Signal Probe Routing
	13.2.13 Allowing Signal Probe to Modify Fitting Results

	13.3 Document Revision History

	14 Design Debugging with the Signal Tap Logic Analyzer
	14.1 About the Signal Tap Logic Analyzer
	14.1.1 Hardware and Software Requirements
	14.1.2 Open Standalone Signal Tap Logic Analyzer GUI
	14.1.3 Backward Compatibility with Previous Versions of Intel Quartus Prime Software

	14.2 Signal Tap Logic Analyzer Task Flow Overview
	14.2.1 Add the Signal Tap Logic Analyzer to Your Design
	14.2.2 Configure the Signal Tap Logic Analyzer
	14.2.3 Define Trigger Conditions
	14.2.4 Compile the Design
	14.2.5 Program the Target Device or Devices
	14.2.6 Run the Signal Tap Logic Analyzer
	14.2.7 View, Analyze, and Use Captured Data

	14.3 Configuring the Signal Tap Logic Analyzer
	14.3.1 Assigning an Acquisition Clock
	14.3.2 Adding Signals to the Signal Tap File
	14.3.2.1 About Adding Pre-Synthesis Signals
	14.3.2.2 About Adding Post-Fit Signals
	14.3.2.2.1 Assigning Data Signals Using the Technology Map Viewer

	14.3.2.3 Preserving Signals
	14.3.2.4 Node List Signal Use Options
	14.3.2.4.1 Disabling and Enabling a Signal Tap Instance

	14.3.2.5 Untappable Signals

	14.3.3 Adding Signals with a Plug-In
	14.3.4 Adding Finite State Machine State Encoding Registers
	14.3.4.1 Modify and Restore Mnemonic Tables for State Machines
	14.3.4.2 Additional Considerations for State Machines in Signal Tap

	14.3.5 Specify the Sample Depth
	14.3.6 Capture Data to a Specific RAM Type
	14.3.7 Select the Buffer Acquisition Mode
	14.3.7.1 Non-Segmented Buffer
	14.3.7.2 Segmented Buffer

	14.3.8 Specify the Pipeline Factor
	14.3.9 Using the Storage Qualifier Feature
	14.3.9.1 Input Port Mode
	14.3.9.2 Transitional Mode
	14.3.9.3 Conditional Mode
	14.3.9.4 Start/Stop Mode
	14.3.9.5 State-Based
	14.3.9.6 Showing Data Discontinuities
	14.3.9.7 Disable Storage Qualifier

	14.3.10 Manage Multiple Signal Tap Files and Configurations
	14.3.10.1 Data Log Pane
	14.3.10.2 SOF Manager

	14.4 Defining Triggers
	14.4.1 Basic Trigger Conditions
	14.4.1.1 Using the Basic OR Trigger Condition with Nested Groups

	14.4.2 Comparison Trigger Conditions
	14.4.2.1 Specifying the Comparison Trigger Conditions

	14.4.3 Advanced Trigger Conditions
	14.4.3.1 Examples of Advanced Triggering Expressions

	14.4.4 Custom Trigger HDL Object
	14.4.4.1 Using the Custom Trigger HDL Object
	14.4.4.2 Required Inputs and Outputs of Custom Trigger HDL Module
	14.4.4.3 Properties of Custom Trigger HDL Module

	14.4.5 Trigger Condition Flow Control
	14.4.5.1 Sequential Triggering
	14.4.5.1.1 Configuring the Sequential Triggering Flow

	14.4.5.2 State-Based Triggering
	14.4.5.2.1 State-Based Triggering Flow Tab
	State Diagram Pane
	State Machine Pane
	Resources Pane

	14.4.5.2.2 Trigger Lock Mode

	14.4.5.3 Signal Tap Trigger Flow Description Language
	14.4.5.3.1 <state_label>
	14.4.5.3.2 <boolean_expression>
	14.4.5.3.3 <action_list>
	Resource Manipulation Action
	Buffer Control Actions
	State Transition Action

	14.4.5.4 Using the State-Based Storage Qualifier Feature
	14.4.5.4.1 Storage Qualification Feature for the State-Based Trigger Flow.

	14.4.6 Specify Trigger Position
	14.4.6.1 Post-fill Count

	14.4.7 Create a Power-Up Trigger
	14.4.7.1 Enabling a Power-Up Trigger
	14.4.7.2 Manage and Configure Power-Up and Runtime Trigger Conditions

	14.4.8 External Triggers
	14.4.8.1 Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	14.5 Compiling the Design
	14.5.1 Faster Compilations with Intel Quartus Prime Incremental Compilation
	14.5.1.1 Enabling Incremental Compilation for Your Design
	14.5.1.2 Using Incremental Compilation with the Signal Tap Logic Analyzer

	14.5.2 Prevent Changes Requiring Recompilation
	14.5.3 Incremental Route with Rapid Recompile
	14.5.3.1 Using the Incremental Route Flow
	14.5.3.2 Tips to Achieve Maximum Speedup

	14.5.4 Timing Preservation with the Signal Tap Logic Analyzer
	14.5.5 Performance and Resource Considerations
	14.5.5.1 Signal Tap Logic in Critical Path
	14.5.5.2 Signal Tap Logic Using Critical Resources

	14.6 Program the Target Device or Devices
	14.6.1 Ensure Setting Compatibility Between .stp and .sof Files
	14.6.2 Verify Whether You Need to Recompile Your Project

	14.7 Running the Signal Tap Logic Analyzer
	14.7.1 Runtime Reconfigurable Options
	14.7.2 Signal Tap Status Messages

	14.8 View, Analyze, and Use Captured Data
	14.8.1 Capturing Data Using Segmented Buffers
	14.8.2 Differences in Pre-fill Write Behavior Between Different Acquisition Modes
	14.8.3 Creating Mnemonics for Bit Patterns
	14.8.4 Automatic Mnemonics with a Plug-In
	14.8.5 Locating a Node in the Design
	14.8.6 Saving Captured Data
	14.8.7 Exporting Captured Data to Other File Formats
	14.8.8 Creating a Signal Tap List File

	14.9 Other Features
	14.9.1 Creating Signal Tap File from Design Instances
	14.9.1.1 Creating a .stp File from a Design Instance

	14.9.2 Using the Signal Tap MATLAB MEX Function to Capture Data
	14.9.3 Using Signal Tap in a Lab Environment
	14.9.4 Remote Debugging Using the Signal Tap Logic Analyzer
	14.9.4.1 Debugging Using a Local PC and an SoC
	14.9.4.2 Debugging Using a Local PC and a Remote PC
	14.9.4.2.1 Equipment Setup

	14.9.5 Using the Signal Tap Logic Analyzer in Devices with Configuration Bitstream Security
	14.9.6 Monitor FPGA Resources Used by the Signal Tap Logic Analyzer

	14.10 Design Example: Using Signal Tap Logic Analyzers
	14.11 Custom Triggering Flow Application Examples
	14.11.1 Design Example 1: Specifying a Custom Trigger Position
	14.11.2 Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	14.12 Signal Tap Scripting Support
	14.12.1 Signal Tap Tcl Commands
	14.12.2 Signal Tap Command-Line Options

	14.13 Document Revision History

	16 Debugging Single Event Upset Using the Fault Injection Debugger
	16.1 Single Event Upset Mitigation
	16.2 Hardware and Software Requirements
	16.3 Using the Fault Injection Debugger and Fault Injection IP Core
	16.3.1 Instantiating the Intel FPGA Fault Injection IP Core
	16.3.1.1 About the EMR Unloader IP Core
	16.3.1.2 About the Advanced SEU Detection IP Core

	16.3.2 Defining Fault Injection Areas
	16.3.2.1 Performing Hierarchy Tagging
	16.3.2.2 About SMH Files

	16.3.3 Using the Fault Injection Debugger
	16.3.3.1 Configuring Your Device and the Fault Injection Debugger
	16.3.3.2 Constraining Regions for Fault Injection
	16.3.3.3 Specifying Error Types
	16.3.3.4 Injecting Errors
	16.3.3.5 Recording Errors
	16.3.3.6 Clearing Injected Errors

	16.3.4 Command-Line Interface
	16.3.4.1 Targeted Fault Injection Feature
	16.3.4.1.1 Specifying an Error List From the Command Line
	16.3.4.1.2 Specifying an Error List From Prompt Mode
	16.3.4.1.3 Determining CRAM Bit Locations

	16.3.4.2 Advanced Command-Line Options: ASD Regions and Error Type Weighting

	16.4 Document Revision History

	17 In-System Debugging Using External Logic Analyzers
	17.1 About the Intel Quartus Prime Logic Analyzer Interface
	17.2 Choosing a Logic Analyzer
	17.2.1 Required Components

	17.3 Flow for Using the LAI
	17.4 Working with LAI Files
	17.4.1 Configuring the File Core Parameters
	17.4.2 Mapping the LAI File Pins to Available I/O Pins
	17.4.3 Mapping Internal Signals to the LAI Banks
	17.4.4 Using the Node Finder
	17.4.5 Compiling Your Intel Quartus Prime Project
	17.4.6 Programming Your Intel-Supported Device Using the LAI

	17.5 Controlling the Active Bank During Runtime
	17.5.1 Acquiring Data on Your Logic Analyzer

	17.6 Using the LAI with Incremental Compilation
	17.7 Document Revision History

	18 In-System Modification of Memory and Constants
	18.1 About the In-System Memory Content Editor
	18.2 Design Flow Using the In-System Memory Content Editor
	18.3 Creating In-System Modifiable Memories and Constants
	18.4 Running the In-System Memory Content Editor
	18.4.1 Instance Manager
	18.4.2 Editing Data Displayed in the Hex Editor Pane
	18.4.3 Importing and Exporting Memory Files
	18.4.4 Scripting Support
	18.4.5 Programming the Device with the In-System Memory Content Editor
	18.4.6 Example: Using the In-System Memory Content Editor with the Signal Tap Logic Analyzer

	18.5 Document Revision History

	19 Design Debugging Using In-System Sources and Probes
	19.1 Hardware and Software Requirements
	19.2 Design Flow Using the In-System Sources and Probes Editor
	19.2.1 Instantiating the In-System Sources and Probes IP Core
	19.2.2 In-System Sources and Probes IP Core Parameters

	19.3 Compiling the Design
	19.4 Running the In-System Sources and Probes Editor
	19.4.1 In-System Sources and Probes Editor GUI
	19.4.2 Programming Your Device With JTAG Chain Configuration
	19.4.3 Instance Manager
	19.4.4 In-System Sources and Probes Editor Pane
	19.4.4.1 Reading Probe Data
	19.4.4.2 Writing Data
	19.4.4.3 Organizing Data

	19.5 Tcl interface for the In-System Sources and Probes Editor
	19.6 Design Example: Dynamic PLL Reconfiguration
	19.7 Document Revision History

	20 Programming Intel FPGA Devices
	20.1 Programming Flow
	20.1.1 Stand-Alone Intel Quartus Prime Programmer
	20.1.2 Optional Programming or Configuration Files
	20.1.3 Secondary Programming Files

	20.2 Intel Quartus Prime Programmer Window
	20.2.1 Editing the Details of an Unknown Device
	20.2.2 Setting Up Your Hardware
	20.2.3 Setting the JTAG Hardware
	20.2.3.1 Running JTAG Daemon with Linux

	20.2.4 Using the JTAG Chain Debugger Tool

	20.3 Programming and Configuration Modes
	20.4 Design Security Keys
	20.5 Convert Programming Files Dialog Box
	20.5.1 Debugging Your Configuration
	20.5.2 Converting Programming Files for Partial Reconfiguration
	20.5.2.1 Generating .pmsf using a .msf and a .sof
	20.5.2.2 Generating .rbf for Partial Reconfiguration Using a .pmsf
	20.5.2.3 Enable Decompression during Partial Reconfiguration Option

	20.6 Flash Loaders
	20.7 JTAG Debug Mode for Partial Reconfiguration
	20.7.1 Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode

	20.8 Verifying if Programming Files Correspond to a Compilation of the Same Source Files
	20.8.1 Obtaining Project Hash for Arria V, Stratix V, Cyclone V and Intel MAX 10 Devices
	20.8.2 Obtaining Project Hash for Intel Arria 10 Devices

	20.9 Scripting Support
	20.9.1 The jtagconfig Debugging Tool
	20.9.2 Generating a Partial-Mask SRAM Object File using a Mask Settings File and a SRAM Object File
	20.9.3 Generating Raw Binary File for Partial Reconfiguration using a .pmsf

	20.10 Document Revision History

