
10Qsys System Design Components

2014.06.30

QII51025 Subscribe Send Feedback

You can use Qsys IP components to create Qsys systems. Qsys interfaces include components appropriate
for streaming high-speed data, reading and writing registers and memory, controlling off-chip devices, and
transporting data between components.

Qsys supports Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™ (version 2.0), AMBA AXI4-Lite™

(version 2.0), AMBA AXI4-Stream (version 1.0), and AMBA APB™ 3 (version 1.0) interface specifications.

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Creating a System with Qsys

• Qsys Interconnect

• Embedded Peripherals IP User Guide

Bridges
Bridges affect the way Qsys transports data between components. You can insert bridges between masters
and slave interfaces to control the topology of a Qsys system, which affects the interconnect that Qsys
generates. You can also use bridges to separate components into different clock domains to isolate clock
domain crossing logic.

A bridge has one slave interface and one master interface. In Qsys, one or more master interfaces from other
components connect to the bridge slave. The bridgemaster connects to one ormore slave interfaces on other
components.

ISO
9001:2008
Registered

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51025
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51025%202014.06.30)%20Qsys%20System%20Design%20Components&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com.cn/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Figure 10-1: Using a Bridge in a Qsys System

In this example, three masters have logical connections to three slaves, although physically each master
connects only to the bridge. Transfers initiated to the slave propagate to the master in the same order in
which they are initiated on the slave.

Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Master

Slave

S3

S

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

Clock Bridge
The Clock Bridge allows you to connect a clock source to multiple clock input interfaces. You can use the
clock bridge to connect a clock source that is outside the Qsys system. You create the connection through
an exported interface, and then connect to multiple clock input interfaces.

Clock outputs have the ability to fan-out without the use of a bridge. You require a bridge only when you
want a clock from an exported source to connect internally to more than one source.

Figure 10-2: Clock Bridge

PIO

S

DMA

M MS

Qsys System

Clock Bridge

External Clock from PCB

CIn

Export

COut

CIn CIn

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Clock Bridge10-2 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-MM Clock Crossing Bridge
The Avalon-MM Clock Crossing Bridge transfers Avalon-MM commands and responses between different
clock domains. You can also use the Avalon-MM Clock Crossing Bridge between AXI masters and slaves
of different clock domains.

The Avalon-MM Clock Crossing Bridge uses asynchronous FIFOs to implement clock crossing logic. The
bridge parameters control the depth of the command and response FIFOs in both the master and slave clock
domains. If the number of active reads exceeds the depth of the response FIFO, the Clock Crossing Bridge
stops sending reads.

To maintain throughput for high-performance applications, increase the response FIFO depth from the
default minimum depth, which is twice the maximum burst size.

Related Information
Creating a System with Qsys

Avalon-MM Clock Crossing Bridge Example

In this example, the Avalon-MM Clock Crossing bridges separate slave components into two groups. Low-
performance slave components are placed behind a single bridge and are clocked at a low speed. High
performance components are placed behind a second bridge and are clocked at a higher speed.

By inserting clock-crossing bridges, you optimize the Qsys interconnect and allow the Quartus® II Fitter to
optimize paths that require minimal propagation delay.

Altera CorporationQsys System Design Components

Send Feedback

10-3Avalon-MM Clock Crossing Bridge
QII51025
2014.06.30

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-3: Avalon-MM Clock Crossing Bridge

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon-MM
Clock-Crossing

Bridge

S

M

S

DDR
SDRAM

S

Flash
Memory

S

External
SRAM

JTAG Debug
Module

S

UART

S S

System ID

S

Seven Segment
PIO

S

LCD
Display

CPU

M

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon-MM Clock Crossing Bridge Parameters

Table 10-1: Avalon-MM Clock Crossing Bridge Parameters

DescriptionValuesParameters

Determines the data width of the
interfaces on the bridge, and affects the
size of both FIFOs. For the highest
bandwidth, set Data width to be as
wide as thewidestmaster that connects
to the bridge.

8, 16, 32, 64,
128, 256,512,
1024 (bits)

Data width

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Avalon-MM Clock Crossing Bridge Parameters10-4 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionValuesParameters

Number of bits per symbol. For
example, byte-oriented interfaces have
8-bit symbols.

1, 2, 4, 8, 16, 32,
64 (bits)

Symbol width

The address bits needed to address the
downstream slaves.

1-32 (bits)Address width

The minimum bridge address width
that is required to address the
downstream slaves.

-Use automatically-determined address width

Determines the maximum length of
bursts that the bridge supports.

1, 2, 4, 8, 16, 32,
64, 128, 256,
512, 1024 (bits)

Maximum burst size

Command (master-to-slave) FIFO
depth.

2, 4, 8, 16, 32,
64, 128, 256,
512, 1024 2048,
4096, 8192,
16384 (bits)

Command FIFO depth

Response (slave-to-master) FIFO
depth.

2, 4, 8,16, 32,
64, 128, 256,
512, 1024 2048,
4096,
8192,16384
(bits)

Respond FIFO depth

The number of pipeline stages in the
clock crossing logic in the issuing
master to target slave direction.
Increasing this value leads to a larger
meantime between failures (MTBF).
You can determine the MTBF for a
design by running a TimeQuest timing
analysis.

2, 3, 4, 5 (bits)Master clock domain synchronizer depth

The number of pipeline stages in the
clock crossing logic in the target slave
to master direction. Increasing this
value leads to a larger meantime
between failures (MTBF). You can
determine the MTBF for a design by
running a TimeQuest timing analysis.

2, 3, 4, 5 (bits)Slave clock domain synchronizer depth

Avalon-MM Pipeline Bridge
The Avalon-MM Pipeline Bridge inserts a register stage in the Avalon-MM command and response paths.
It accepts commands on its Avalon-MM slave port and propagates the commands to its Avalon-MM master

Altera CorporationQsys System Design Components

Send Feedback

10-5Avalon-MM Pipeline Bridge
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


port. The pipeline bridge provides separate parameters to turn on pipelining in the command and response
networks.

You can use the Avalon-MM bridge to export a single Avalon-MM slave interface to use to control multiple
Avalon-MM slave devices. The pipelining feature is optional. You can optionally turn off the pipelining
feature of this bridge.

Figure 10-4: Avalon-MM Pipeline Bridge in a XAUI PHY Transceiver IP Core

In this example, the bridge transfers commands received on its slave interface to its master port.

Interconnect

Exported to Embedded
Processor on PCB

Interleave

PCSS

Alt_PMA

SS

Low Latency
Controller

S

Transceiver
Reconfiguration

Controller

Xcvr
XAUI PHY

M

Avalon-MM
Pipeline

Bridge (Qsys)

S

PMA
Ch
Cntl

Because the slave interface is exported to the pins of the device, having a single slave port, rather than separate
ports for each slave device, reduces the pin count of the FPGA.

Avalon-MM Unaligned Burst Expansion Bridge
The Avalon-MM Unaligned Burst Expansion Bridge aligns read burst transactions from masters connected
to its slave interface, to the address space of slaves connected to its master interface. This alignment ensures
that all read burst transactions are delivered to the slave as a single transaction.

Figure 10-5: Avalon-MM Unaligned Burst Expansion Bridge

Slave Master

32 bit Avalon-MM
Master

Slave

Master

SlaveUnaligned Burst
Expansion Bridge

64 bit Avalon-MM
Slave

64 bit Avalon-MM
Slave

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Avalon-MM Unaligned Burst Expansion Bridge10-6 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


You can use the Avalon Unaligned Burst Expansion Bridge to align read burst transactions from masters
that have narrower data widths than the target slaves. Using the bridge for this purpose improves bandwidth
utilization for the master-slave pair, and ensures that un-aligned bursts are processed as single transactions
rather than multiple transactions.

Do not use the Avalon-MM Unaligned Burst Expansion Bridge if any connected slave has read side
effects from reading addresses that are exposed to any connected master's address map. This bridge
can cause read side effects due to alignment modification to read burst transaction addresses.

Note:

ForQsys 14.0, theAvalon-MMUnalignedBurst ExpansionBridge does not supportVHDL simulation.Note:

Related Information
Qsys Interconnect

Using the Avalon-MM Unaligned Burst Expansion Bridge
When a master sends a read burst transaction to a slave, the Avalon-MM Unaligned Burst Expansion Bridge
initially determines whether the start address of the read burst transaction is aligned to the slave's memory
address space. If the base address is aligned, the bridge does not change the base address. If the base address
is not aligned, the bridge aligns the base address to the nearest aligned address that is less than the requested
base address.

The Avalon-MM Unaligned Burst Expansion Bridge then determines whether the final word requested by
the master is the last word at the slave read burst address. If a single slave address contains multiple words,
all of those words must be requested in order for a single read burst transaction to occur.

• If the final word requested by the master is the last word at the slave read burst address, the bridge does
not modify the burst length of the read burst command to the slave.

• If the final word requested by the master is not the last word at the slave read burst address, the bridge
increases the burst length of the read burst command to the slave. The final word requested by the
modified read burst command is then the last word at the slave read burst address.

The bridge stores information about each aligned read burst command that it sends to slaves connected to
a master interface. When a read response is received on the master interface, the bridge determines if the
base address or burst length of the issued read burst command was altered.

If the bridge alters either the base address or the burst length of the issued read burst command, it receives
response words that the master did not request. The bridge suppresses words that it receives from the aligned
burst response that are not part of the original read burst command from the master.

Altera CorporationQsys System Design Components

Send Feedback

10-7Using the Avalon-MM Unaligned Burst Expansion Bridge
QII51025
2014.06.30

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-MM Unaligned Burst Expansion Bridge Parameters

Figure 10-6: Avalon-MM Unaligned Burst Expansion Bridge Parameter Editor

Table 10-2: Avalon-MM Unaligned Burst Expansion Bridge Parameters

DescriptionParameter

Data width of the master connected to the bridge.Data width

The address width of the master connected to the bridge.Address width (in WORDS)

The burstcount signal width of the master connected to the
bridge.

Burstcount width

The maximum pending read transactions interface property
of the bridge.

Maximum pending read transactions

The data width of the connected slave. Supported values are:
16, 32, 64, 128, 256, 512, 1024, 2048, and 4096 bits.

If you connect multiple slaves, all slaves must have
the same data width.

Note:

Width of slave to optimize for

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Avalon-MM Unaligned Burst Expansion Bridge Parameters10-8 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionParameter

When turned on, the command path is pipelined,minimizing
the bridge's critical path at the expense of increased logic usage
and latency.

Pipeline command signals

Avalon-MM Unaligned Burst Expansion Bridge Example

Figure 10-7: Unaligned Burst Expansion Bridge

The example below shows an unaligned read burst command from a master that the Avalon-MM Unaligned
Burst Expansion Bridge converts to an aligned request for a connected slave, and the suppression of words
due to the aligned read burst command. In this example, a 32-bit master requests an 8-beat burst of 32-bit
words from a 64-bit slave with a start address that is not 64-bit aligned.

X
X
X
X
X
X
X
X

1
2
3
4
5
6
7
8
9
A
B
C

0
X
X
X
X

2, 3
4, 5
6, 7
8, 9
A, B
C, D
E, F

0, 1 X
X
X
X

Transaction 1
Transaction 2
Transaction 3
Transaction 4
Transaction 5

Transaction 1

X
X
X
X
X
X
X
X

1
2
3
4
5
6
7
8
9
A
B
C

0
X
X
X
X

2, 3
4, 5
6, 7
8, 9
A, B
C, D
E, F

0, 1 X
X
X
X

Transaction 1

With Avalon-MM Unaligned Burst Expansion Bridge

Bridge
Alignment

X*

X*

Note: the bridge suppresses
X* response words

Transaction 1

Without Avalon-MM Unaligned Burst Expansion Bridge

Because the target slave has a 64-bit data width, address 1 is unaligned in the slave's address space. As a
result, several smaller burst transactions are needed to request the data associated with the master's read
burst command.

With anAvalon-MMUnalignedBurst ExpansionBridge in place, the bridge issues a new read burst command
to the target slave beginning at address 0 with burst length 10, which requests data up to the word stored at
address 9.

When the bridge receives the word corresponding to address 0, it suppresses it from the master, and then
delivers the words corresponding to addresses 1 through 8 to the master. When the bridge receives the word
corresponding to address 9, it suppresses that word from the master.

Bridges Between Avalon and AXI Interfaces
When designing a Qsys system, you can make connections between AXI and Avalon interfaces without the
use of explicitly-instantiated bridges; the interconnect provides all necessary bridging logic. However, this
does not prevent the use of explicit bridges to separate the AXI and Avalon domains.

Altera CorporationQsys System Design Components

Send Feedback

10-9Avalon-MM Unaligned Burst Expansion Bridge Example
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-8: Avalon-MM Pipeline Bridge Between Avalon-MM and AXI Domains

Using an explicit Avalon-MMbridge to separate theAXI andAvalon domains reduces the amount of bridging
logic in the interconnect at the expense of concurrency.

Network

Avalon-MM

Avalon-MM
AXI

AXI

AXI
Avalon-MM

Shared Avalon & AXI Domain

Network

Avalon-MM
Pipeline Bridge

Avalon-MM

AXI

AXI
AXI

Network

Avalon-MM

Avalon-MM
Avalon-MMAXI

Shared Avalon & AXI Domains

AXI Bridge
With an AXI bridge, you can influence the placement of resource-intensive components, such as the width
and burst adapters. Depending on its use, an AXI bridge may reduce throughput and concurrency, in return
for higher fMax and less logic.

You can use an AXI bridge to group different parts of your Qsys system. Then, other parts of the system
connect to the bridge interface instead of to multiple separate master or slave interfaces. You can also use
an AXI bridge to export AXI interfaces from Qsys systems.

The example below shows a system with a single AXI master and three AXI slaves. It also has various
interconnect components, such as routers, demuxes, and muxes. Two of the slaves have a narrower data
width than the master; 16-bit slaves versus a 32-bit master. In this system, Qsys interconnect creates four
width adapters and four burst adapters to access the two slaves. In this case, you could improve resource
usage by adding an AXI bridge. This would result in Qsys having to add only two width adapters and two
burst adapters, one pair for the read channels, and another pair for the write channel.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
AXI Bridge10-10 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-9: AXI Example Without a Bridge: Adding a Bridge Can Reduce the Number of Adapters

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_2

Command
Mux_0

Command
Mux_4

Command
Mux_5

Command
Mux_1

Command
Mux_3

Width
Adapter_1

Width
Adapter_0

Width
Adapter_2

Burst
Adapter_1

Burst
Adapter_0

Burst
Adapter_2

AXI Slave
Agent_0

AXI
Slave_0

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_2

AXI
Slave_2

AXI Slave
Agent_1

AXI
Slave_1

Four width adapters (0 - 3) and four burst adapters
(0 - 3) are inserted between the master and slaves
for transaction adaptations for the example system.

The example below shows the same system with an AXI bridge component, and the decrease in the number
of width and burst adapters. Qsys creates only two width adapters, and two burst adapters, as compared to
the four width adapters and four burst adapters in the previous example. The system includes more
components, but the overall system performance improves because there are fewer resource-intensive width
and burst adapters.

Altera CorporationQsys System Design Components

Send Feedback

10-11AXI Bridge
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-10: Width and Burst Adapters Added to a System With a Bridge

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

Width
Adapter_0

AXI Slave
Agent_1

Burst
Adapter_0

AXI
Slave_2

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_0

AXI
Bridge

By inserting an AXI bridge, the
interconnect Is divided into two
domains (interconnect_0 and
interconnect_1). Notice the
reduction in the number of width
adapters from 4 to 2 after the
bridge insertion. The same
process applies for burst adapters.

Interconnect_0

AXI
Bridge

AXI Master
Agent

Router_0 Limiter_0

Router_1 Limiter_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

AXI Slave
Agent_0

AXI
Slave_0

Width and burst adapters
are not required in
Interconnect_1 because the
adaptations are performed
in Interconnect_0.

Interconnect_1

Command
Demux_0

Command
Demux_1

AXI Slave
Agent_1

AXI
Slave_1

AXI Bridge Signal Types

Based on parameter selections that you make for the AXI Bridge component, Qsys instantiates either the
AXI3 or AXI4 master and slave interfaces into the component.

In AXI3, aw/aruser accommodates sideband signal usage by hard processor systems (HPS).Note:

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
AXI Bridge Signal Types10-12 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 10-3: Sets of Signals for the AXI Bridge Based on the Protocol

AXI4AXI3Signal Name

yesyesawid / arid

yesyesawaddr /araddr

yes (8-bit)yes (4-bit)awlen / arlen

yesyesawsize/ arsize

yesyesawburst /arburst

yes (1-bit optional)yesawlock /arlock

yes (optional)yes (2-bit)awcache / arcache

yesyesawprot / arprot

yesyesawuser /aruser

yesyesawvalid / arvalid

yesyesawready /arready

yesnoawqos /arqos

yesnoawregion /arregion

no (optional)yeswid

yesyeswdata / rdata

yesyeswstrb

yesyeswlast /rvalid

yesyeswvalid /rlast

yesyeswready /rready

yesnowuser / ruser

yesyesbid / rid

yes (optional)yesbresp / rresp

yesyesbvalid

yesyesbready

AXI Bridge Parameters

In the parameter editor, you can customize the parameters for the AXI bridge according to the requirements
of your design.

Altera CorporationQsys System Design Components

Send Feedback

10-13AXI Bridge Parameters
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-11: AXI Bridge Parameter Editor

Table 10-4: AXI Bridge Parameters

DescriptionRangeTypeParameter

Specifies the AXI version and signals that
Qsys generates for the slave and master
interfaces of the bridge.

AXI3/
AXI4

stringAXI Version

Controls the width of the data for the
master and slave interfaces.

8:1024intData Width

Controls the width of the address for the
master and slave interfaces.

1-64 bitsintAddress Width

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
AXI Bridge Parameters10-14 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionRangeTypeParameter

Controls the multithreading feature and
out-of-order responses.

If a master issues different thread IDs to
different slaves, in order for a slave to view
the different thread IDs, you must set the
Read Data Reordering Depth to 1.

1-16intRead Data Reordering Depth

Controls the width of the write address
channel sideband signals of the master
and slave interfaces.

1-64 bitsintAWUSER Width

Controls the width of the read address
channel sideband signals of the master
and slave interfaces.

1-64 bitsintARUSER Width

Controls the width of the write data
channel sideband signals of the master
and slave interfaces.

1-64 bitsintWUSER Width

Controls the width of the read data
channel sideband signals of the master
and slave interfaces.

1-16 bitsintRUSER Width

Controls the width of the write response
channel sideband signals of the master
and slave interfaces.

1-16 bitsintBUSER Width

AXI Bridge Slave and Master Interface Parameters

Table 10-5: AXI Bridge Slave and Master Interface Parameters

DescriptionParameter

Controls the width of the thread ID of the master and
slave interfaces.

ID Width

Controls the depth of the FIFO that Qsys needs in the
interconnect agents based on the maximum pending
commands that the slave interface accepts.

Write/Read/Combined Acceptance Capability

Controls the depth of the FIFO that Qsys needs in the
interconnect agents based on the maximum pending
commands that the master interface issues. Issuing
capability must follow acceptance capability to avoid
unnecessary creation of FIFOs in the bridge.

Write/Read/Combined Issuing Capability

Altera CorporationQsys System Design Components

Send Feedback

10-15AXI Bridge Slave and Master Interface Parameters
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Maximumacceptance/issuing capability is amodel-only parameter and does not influence the bridge
HDL. The bridge does not backpressure when this limit is reached. Downstream components and/or
the interconnect must apply backpreasure.

Note:

Address Span Extender
The Address Span Extender creates a windowed bridge and allows memory-mapped master interfaces to
access a larger or smaller address map than the width of their address signals allow. With an address span
extender, a restricted master can access a broader address range. The address span extender splits the
addressable space into multiple separate windows so that the master can access the appropriate part of the
memory through the window.

The address span extender does not limit master and slave widths to a 32-bit and 64-bit configuration. You
can use the address span extender for other width configurations. The address span extender supports 1-64
bit address windows.

If a processor can address only 2GB of an address span, and your system contains 4GB of memory, the
address span extender can provide two 2GBwindows in the 4GBmemory address space. This issue sometimes
occurs with Altera SoC devices. For example, an HPS subsystem in an SoC device can address only 1GB of
an address span within the FPGA using the HPS-to-FPGA bridge. The address span extender enables the
SoC device to address all of the address space in the FPGA using multiple 1GB windows.

CTRL Register Layout

The control registers consist of a 64-bit register for each window. You write the base address that you want
for each window to its corresponding control register. For example, if CTRL_BASE is the base address of the
address span extender's control register, and there are two windows (0 and 1), then window 0’s control
register starts at CTRL_BASE, and window 1’s control register starts at CTRL_BASE + 8 (using byte addresses).

Calculating the Address Span Extender Slave Address

The diagrambelowdescribes howQsys calculates the slave address. In this example the address, span extender
is configured with a 28-bit address space for slaves. The lower 26 bits (bits 0 to 25 or [25:0]) is the offset
into a particular window and originate from the address span extender's data port. The upper 2 bits [27:26]
originate from the control registers.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Address Span Extender10-16 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-12: Address Span Extender

0x00000000_04000000

0x00000000_08000000

0x00000000_0C000000

0x00000000_00000000

0

1

2

3

Extended addr_regs[63:0]
addr[27:6]

Mapping Table (Sub-Windows)

(”Extended addr regs”[27:2] | “Slave addr”[25:0]) 00

[37:2] [1:0]

[27:26] [25:0]

28 bit Slave
Word Address

38 bit Master
Byte Address

Control
Port

Using the Address Span Extender
When you implement the address span extender in Qsys, you must know the amount of address space the
master uses (the size of the window), the total size of the addressable space (the number of windows), and
how much address space (the size of the window) you want a particular slave to occupy in a master’s address
map.

This component supports 1 to 64 address windows. Qsys requires an assigned number of registers to hold
the upper address bits for each window. In the parameter editor, you must select the number of bits in the
expanded address map you want to access (ExpandedMaster Byte AddressWidth), the number of bits you
want the master to see (Slave Word Address Width), and the number of sub-windows.

Each sub-window has a 64-bit register set that defines the sub window's upper address, and use only the bits
greater than the slave byte address.

• window 0—expanded address [63:0]
• window 1—expanded address [63:0]

Qsys uses the upper bits of the slave address to pick which window to use. For example, if you specify 4
windows, then Qsys uses the top 2 bits of the slave address to specify window [0,1,2,3]. Therefore having
more windows does require the windows to be smaller, for example having 4 windows requires the windows
themselves to be 1/4 the size of the slave address space. The total windowed address space is still equal to
the original slave address space, but the windows allow access to memory regions in a larger overall address
space.

In the parameter editor for the address span extender, you can click Documentation to obtain more
information about the component.

Altera CorporationQsys System Design Components

Send Feedback

10-17Using the Address Span Extender
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-13: Address Span Extender Parameter Editor

Alternate Options for the Address Span Extender
You can set parameters for the address span extender with an initial fixed address value. Enter an address
for theResetDefault forMasterWindow option, and selectTrue for theDisable SlaveControl Port option.
This allows the address span extender to function as a fixed, non-programmable component.

Each sub-window is equal in size and stacks sequentially in the windowed slave interface's address space.
To control the fixed address bits of a particular sub-window, you can write to the sub-window’s register in
the register control slave interface. Qsys structures the logic so that Qsys can optimize and remove bits that
are not needed.

If Burstcount Width is greater than 1, Qsys processes the read burst in a single cycle, and assumes all
byteenables are asserted on every cycle.

NIOS II Support
If the address span extender window is fixed, for example, the Disable Slave Control Port option is turned
on, then the address span extender performs as a bridge. Components on the slave side of the address span
extender that are within the window are visible to the NIOS II processor. Components partially within a
window appear to NIOS II as if they have a reduced span. For example, a memory partially within a window
appears as having a smaller size.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Alternate Options for the Address Span Extender10-18 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


You can also use the address span extender to provide a window for the Nios II processor so that the HPS
memory map is visible to NIOS II. In this way it is possible for the Nios II to communicate with HPS
peripherals.

In the example below, a NIOS II processor has an address span extender from address 0x40000 to 0x80000.
There is a window within the address span extender starting at 0x100000. Within the address span extender's
address space there is a slave at base address 0x1100000. The slave appears to NIOS II as being at address:

0x110000 - 0x100000 + 0x40000 = 0x050000

Figure 10-14: NIOS II Support and the Address Span Extender

0x80000

0x40000

Nios II
Address Span

Extender
Avalon-MM

Slave

0x140000

0x120000

0x110000

0x100000

Effective Slave Base Address =
0x110000 - 0x100000 + 0x040000
= 0x050000

If the address span extender window is dynamic. For example, when the Disable Slave Control Port option
is turned off, theNIOS II processor is unable to see components on the slave side of the address span extender.

AXI Default Slave
AnAXIDefault Slave provides a predictable error response service formaster interfaces that send transactions
that attempt to access an undefined memory region. This service guarantees an error response, should a
master access a memory region that is not decoded to an instantiated slave. The error response service also
helps to avoid unpredictable behavior in your system.

The default slave is an AXI3 component and displays in the IP Catalog as either AXIDefault Slave or Error
Response Slave.

AXI protocol requires that if the interconnect cannot successfully decode slave access, it must return the
DECERR error response. Therefore, the default slave is required in AXI systems where the address space is
not fully decoded to slave interfaces.

The default slave behaves like any other component in the system and is bound by translation and adaptation
interconnect logic. An increase in resource usage may occur when a default slave connects to masters of
different data widths, including Avalon or AXI-Lite masters.

You can connect clock, reset, and IRQ signals to a default slave, as well as AXI3 and AXI4 master interfaces
without also instantiating a bridge. When you connect a default slave to a master, the default slave accepts
cycles sent from the master, and returns the DECERR error response. On the AXI interface, the default slave
supports only a read and write acceptance of 1, and does not support write data interleaving. The read and
write channels are independent, and responses are returned when simultaneously targeted by a read and
write cycle.

Altera CorporationQsys System Design Components

Send Feedback

10-19AXI Default Slave
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


There is an optional interface on the default slave that supports CSR accesses for debug. CSR registers log
the required information when returning an error response. When turned on, this channel acts as an Avalon
interface with read and write channels with a fixed latency of 1.

To enable a slave interface as a default slave for a master interface in your system, you must connect the
slave to the master in your Qsys system. You specify a default slave for a master it by turning on the Default
Slave column option in the System Contents tab. A system can contain more than one default slave. Altera
recommends instantiating a separate default slave for each AXI master in your system.

For information about creating secure systems and accessing undefined memory regions, refer to Creating
a System with Qsys in volume 1 of the Quartus II Handbook.

Related Information
Creating a System with Qsys

AXI Default Slave Parameters
Figure 10-15: AXI Default Slave Parameter Editor

Table 10-6: AXI Default Slave Parameters

DescriptionValueParameter

Determines themaster IDwidth for error logging.1-8 bitsAXI master ID width

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
AXI Default Slave Parameters10-20 2014.06.30

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionValueParameter

Determines the address width for error logging.

This value also affects the overall address width of
the system, and should not exceed the maximum
address width required in the system.

8-64 bitsAXI address width

Determines the data width for error logging.32, 64,
or128 bits

AXI data width

When turned on, instantiates an Avalon CSR
interface for error logging.

On or OffEnable CSR Support (for error logging)

Depth of the transaction log, for example, the
number of transactions the CSR logs for cycles
with errors.

1-16 bitsCSR Error Log Depth

When turned on, controls debug access to theCSR
interface.

On or OffRegister Avalon CSR inputs

CSR Registers
When an access violation occurs, and the CSR port is enabled, the AXI Default Slave generates an interrupt
and transfers the transaction information into the error log FIFO.

The error log count continues until the nth log, where n is the log depth. When Qsys responds to the interrupt
bit, it reads the register until the interrupt bit is no longer valid. The interrupt bit is valid as long as there is
a valid bit in FIFO. A cleared interrupt bit is not affected by the FIFO status. When Qsys finishes reading
the register, the access violation service is ready to receive new access violation requests. If an access violation
occurs when FIFO is full, then an overflow bit is set, indicating more than n access violations have occurred,
and some are not logged.

Qsys exits the access violation service after either the interrupt bit is no longer set, or when it determines
that the access violation service has continued for too long.

CSR Interrupt Status Registers

Table 10-7: CSR Interrupt Status Registers

For CSR register maps: Address = Memory Address Base + Offset.
DescriptonDefaultAttributeBitOffset

Reserved.0R031:40x00

Read Access Violation Interrupt Overflow register

Asserted when a read access causes the Interconnect to
return a DECERR response, and the buffer log depth is full.
Indicates that there is a logging error lost due to an
exceeded buffer log depth. Cleared by setting the bit to
1.

0RW1C3

Altera CorporationQsys System Design Components

Send Feedback

10-21CSR Registers
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptonDefaultAttributeBitOffset

Write Access Violation Interrupt Overflow register

Asserted when a write access causes the Interconnect to
return a DECERR response, and the buffer log depth is full.
Indicates that there is a logging error lost due to an
exceeded buffer log depth. Cleared by setting the bit to
1.

0RW1C2

Read Access Violation Interrupt register

Asserted when a read access causes the Interconnect to
return a DECERR response. Cleared by setting the bit to
1.

Access violation are logged until the bit is
cleared.

Note:

0RW1C1

Write Access Violation Interrupt register

Asserted when a write access causes the Interconnect to
return a DECERR response. Cleared by setting the bit to
1.

Access violation are logged until the bit is
cleared.

Note:

0RW1C0

CSR Read Access Violation Log
The CSR read access violation log settings are valid only when an associated read interrupt register is set.
This set of registers should be read until the valid bit is cleared.

Table 10-8: CSR Read Access Violation Log

DescriptionDefaultAttributeBitOffset

Reserved.0R031:130x100

Indicates the burst type of the initiating cycle that causes
the access violation.

0R012:11

Indicates the burst length of the initiating cycle that
causes the access violation.

0R010:7

Indicates the burst size of the initiating cycle that causes
the access violation.

0R06:4

Indicates the PROT of the initiating cycle that causes the
access violation.

0R03:1

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
CSR Read Access Violation Log10-22 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionDefaultAttributeBitOffset

Read access violation log for the transaction is valid only
when this bit is set. This bit is cleared when the interrupt
register is cleared.

0R00

Master ID for the cycle that causes the access violation.0R031:00x104

Read cycle target address for the cycle that causes the
access violation (lower 32-bit).

0R031:00x108

Read cycle target address for the cycle that causes the
access violation (upper 32-bit). Valid only if widest
address in system is larger than 32-bits.

When this register is read, the current read
access violation log is recovered from FIFO.

Note:

0R031:00x10C

CSR Write Access Violation Log
The CSR write access violation log settings are valid only when an associated read interrupt register is set.
This set of registers should be read until the valid bit is cleared.

Table 10-9: CSR Write Access Violation Log

DescriptionDefaultAttributeBitOffset

Reserved.0R031:130x190

Indicates the burst type of the initiating cycle that causes
the access violation.

0R012:11

Indicates the burst length of the initiating cycle that
causes the access violation.

0R010:7

Indicates the burst size of the initiating cycle that causes
the access violation.

0R06:4

Indicates the PROT of the initiating cycle that causes the
access violation.

0R03:1

Write access violation log for the transaction is valid only
when this bit is set. This bit is cleared when the interrupt
register is cleared.

0R00

Master ID for the cycle that causes the access violation.0R031:00x194

Write target address for the cycle that causes the access
violation (lower 32-bit).

0R031:00x198

Write target address for the cycle that causes the access
violation (upper 32-bit). Valid only if widest address in
system is larger than 32-bits.

0R031:00x19C

Altera CorporationQsys System Design Components

Send Feedback

10-23CSR Write Access Violation Log
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionDefaultAttributeBitOffset

First 32-bits of the write data for the write cycle that
causes the access violation.

When this register is read, the current write
access violation log is recovered from FIFO,
when the data width is 32-bits.

Note:

0R031:00x1A0

Bits [63:32] of the write data for the write cycle that
causes the access violation. Valid only if the data width
is greater than 32 -bits.

0R031:00x1A4

Bits [95:64] of the write data for the write cycle that
causes the access violation. Valid only if the data width
is greater than 64 -bits.

0R031:00x1A8

The first bits (127:96) of the write data for the write cycle
that causes the access violation. Valid only if the data
width is greater than 64 -bits.

When this register is read, the current write
access violation log is recovered from FIFO.

Note:

0R031:00x1AC

Designating a Default Slave in the System Contents Tab
You can designate any slave in your Qsys system as the error response default slave. The designated default
slave provides an error response service for masters that attempt access to an undefined memory region.

1. In your Qsys system, in the SystemContents tab, right-click the header and turn on ShowDefault Slave
Column.

2. Select the slave that you want to designate as the default slave, and then click the checkbox for the slave
in the Default Slave column.

3. In the System Contents tab, in the Connections column, connect the designated default slave to one or
more masters.

Tri-State Components
The tri-state interface type allows you to design Qsys subsystems that connect to tri-state devices on your
PCB. You can use tri-state components to implement pin sharing, convert between unidirectional and
bidirectional signals, and create tri-state controllers for devices whose interfaces can be described using the
tri-state signal types.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Designating a Default Slave in the System Contents Tab10-24 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-16: Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

In this example, there are two generic Tri-State Conduit Controllers. The first is customized to control a
flash memory. The second is customized to control an off-chip SSRAM. The Tri-State Conduit Pin Sharer
multiplexes between these two controllers, and the Tri-State Conduit Bridge converts between an on-chip
encoding of tri-state signals and true bidirectional signals. By default, the Tri-State Conduit Pin Sharer and
Tri-State Conduit Bridge present byte addresses. Typically, each address location contains more than one
byte of data.

Altera FPGA

Printed Circuit Board

M

M

M

Nios II
Processor

Cn SSRAM

Cn Flash
TCM

S TCM

Generic Tri-state
Controller

Parameterized
for 2 MByte
x32 SSRAM

TCM

TCS Tri-state
Conduit
Pin

Sharer

Avalon-MM Master

Avalon-MM Slave

CnTCS
Tri-state
Conduit
Bridge

Generic Tri-state
Controller

Parameterized
for 8 MByte
x16 FlashS

S

TCS

TCM Avalon-TC Master

Avalon-TC Slave

ConduitCn

TCS

Altera CorporationQsys System Design Components

Send Feedback

10-25Tri-State Components
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-17: Address Connections from Qsys System to PCB

The flash device operates on 16-bit words andmust ignore the least-significant bit of theAvalon-MMaddress,
and shows addr[0]as not connected. The SSRAM memory operates on 32-bit words and must ignore the
two, low-order memory bits. Because neither device requires a byte address, addr[0] is not routed on the
PCB.

The flash device responds to address range 0 MBytes to 8 MBytes-1. The SSRAM responds to address range
8 MBytes to 10 MBytes-1. The PCB schematic for the PCB connects addr [21:0] to addr [18:0] of the
SSRAM device because the SSRAM responds to 32-bit word address. The 8 MByte flash device accesses 16-
bit words; consequently, the schematic does not connect addr[0]. The chipselect signals select between
the two devices.

PCB_Addr[21:0]

2 MByte SSRAM
(32-bit word)

2 MByte SSRAM
(32-bit word)

0

8 MBytes

16 MBytes

10 MBytes

PCB_Addr[19:1]

A[21:0]

8 MByte Flash
(16-bit word)

8 MByte Flash
(16-bit word)

UnusedA[18:0]

Tristate Conduit
Bridge

PCB

Qsys Address Map

Addr[22:1] PCB_Addr[21:0]

Addr[0]

Addr[23] x

x

If you create a custom tri-state conduit master with word aligned addresses, the Tri-state Conduit
Pin Sharer does not change or align the address signals.

Note:

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Tri-State Components10-26 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-18: Tri-State Conduit System in Qsys

Related Information

• Avalon Interface Specifications

• Avalon Tri-State Conduit Components User Guide

Generic Tri-State Controller
The Generic Tri-State Controller provides a template for a controller. You can customize the tri-state
controller with various parameters to reflect the behavior of an off-chip device. The following types of
parameters are available for the tri-state controller:

• Width of the address and data signals
• Read and write wait times
• Bus-turnaround time
• Data hold time

Altera CorporationQsys System Design Components

Send Feedback

10-27Generic Tri-State Controller
QII51025
2014.06.30

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_avalon_tc.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Tristate
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


In calculating delays, the Generic Tri-State Controller chooses the larger of the bus-turnaround time
and read latency. Turnaround time is measured from the time that a command is accepted, not from
the time that the previous read returned data.

Note:

The Generic Tri-State Controller includes the following interfaces:

• Memory-mapped slave interface—This interface connects to an memory-mapped master, such as a
processor.

• Tristate Conduit Master interface—Tri-state master interface usually connects to the tri-state conduit
slave interface of the tri-state conduit pin sharer.

• Clock sink—The component’s clock reference. You must connect this interface to a clock source.
• Reset sink—This interface connects to a reset source interface.

Tri-State Conduit Pin Sharer
The Tri-state Conduit Pin Sharer multiplexes between the signals of the connected tri-state controllers. You
connect all signals from the tri-state controllers to the Tri-state Conduit Pin Sharer and use the parameter
editor to specify the signals that are shared.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Tri-State Conduit Pin Sharer10-28 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-19: Tri-State Conduit Pin Sharer Parameter Editor

The parameter editor includes a Shared Signal Name column. If the widths of shared signals differ, the
signals are aligned on their 0th bit and the higher-order pins are driven to 0 whenever the smaller signal has
control of the bus. Unshared signals always propagate through the pin sharer. The tri-state conduit pin
sharer uses the round-robin arbiter to select between tri-state conduit controllers.

All tri-state conduit components are connected to a pin sharer must be in the same clock domain.Note:

Related Information
Avalon-ST Round Robin Scheduler on page 10-57

Tri-State Conduit Bridge
The Tri-State Conduit Bridge instantiates bidirectional signals for each tri-state signal while passing all other
signals straight through the component. The Tri-State Conduit Bridge registers all outgoing and incoming
signals, which adds two cycles of latency for a read request. You must account for this additional pipelining
when designing a custom controller. During reset, all outputs are placed in a high-impedance state. Outputs
are enabled in the first clock cycle after reset is deasserted, and the output signals are then bidirectional.

Altera CorporationQsys System Design Components

Send Feedback

10-29Tri-State Conduit Bridge
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Test Pattern Generator and Checker Cores
The data generation and monitoring solution for Avalon-ST consists of two components: a test pattern
generator core that generates data, and sends it out on an Avalon-ST data interface, and a test pattern checker
core that receives the same data and verifies it. Optionally, the data can be formatted as packets, with
accompanying start_of_packet and end_of_packet signals.

The test pattern generator inserts different error conditions, and the test pattern checker reports these error
conditions to the control interface, each via an Avalon Memory-Mapped (Avalon-MM) slave. The Throttle
Seed is the starting value for the throttle control random number generator. Altera recommends a unique
value for each instance of the test pattern generator and checker cores in a system.

Test Pattern Generator
Figure 10-20: Test Pattern Generator Core

The test pattern generator core accepts commands to generate data via an Avalon-MM command interface,
and drives the generated data to an Avalon-ST data interface. You can parameterize most aspects of the
Avalon-ST data interface, such as the number of error bits and data signal width, thus allowing you to test
components with different interfaces.

Avalon-MM
Slave Port

Av
alo

n-
MM

Sl
av
eP

or
t

Avalon-ST
SourceTEST PATTERN

GENERATOR
command data_out

control & status

The data pattern is calculated as: Symbol Value = Symbol Position in Packet XOR Data ErrorMask. Data that
is not organized in packets is a single stream with no beginning or end. The test pattern generator has a
throttle register that is set via the Avalon-MM control interface. The test pattern generator uses the value of
the throttle register in conjunction with a pseudo-random number generator to throttle the data generation
rate.

Test Pattern Generator Command Interface
The command interface for the Test Pattern Generator is a 32-bit Avalon-MM write slave that accepts data
generation commands. It is connected to a 16-element deep FIFO, thus allowing a master peripheral to drive
a number of commands into the test pattern generator.

The command interface maps to the following registers: cmd_lo and cmd_hi. The command is pushed into
the FIFO when the register cmd_lo (address 0) is addressed. When the FIFO is full, the command interface
asserts the waitrequest signal. You can create errors by writing to the register cmd_hi (address 1). The
errors are cleared when 0 is written to this register, or its respective fields.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Generator and Checker Cores10-30 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Test Pattern Generator Control and Status Interface

The control and status interface of the Test Pattern Generator is a 32-bit Avalon-MM slave that allows you
to enable or disable the data generation, as well as set the throttle. This interface also provides generation-
time information, such as the number of channels and whether or not data packets are supported.

Test Pattern Generator Output Interface
The output interface of the Test Pattern Generator is an Avalon-ST interface that optionally supports data
packets. You can configure the output interface to align with your system requirements. Depending on the
incoming stream of commands, the output data may contain interleaved packet fragments for different
channels. To keep track of the current symbol’s position within each packet, the test pattern generator
maintains an internal state for each channel.

You can configure the output interface of the test pattern generator with the following parameters:

• Number of Channels—Number of channels that the test pattern generator supports. Valid values are 1
to 256.

• DataBits Per Symbol—Bits per symbol is related to the width of readdata and writedata signals, which
must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per beat. Valid values are 1
to 256.

• Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Error Signal Width (bits)—Width of the error signal on the output interface. Valid values are 0 to 31.
A value of 0 indicates that the error signal is not in use.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Test Pattern Generator Functional Parameter

The Test Pattern Generator functional parameter allows you to configure the test pattern generator as a
whole system.

Altera CorporationQsys System Design Components

Send Feedback

10-31Test Pattern Generator Control and Status Interface
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Test Pattern Checker
Figure 10-21: Test Pattern Checker

The test pattern checker core accepts data via an Avalon-ST interface and verifies it against the same
predetermined pattern that the test pattern generator uses to produce the data. The test pattern checker core
reports any exceptions to the control interface. You can parameterizemost aspects of the test pattern checker's
Avalon-ST interface such as the number of error bits and the data signal width. This enables the ability to
test components with different interfaces. The test pattern checker has a throttle register that is set via the
Avalon-MM control interface. The value of the throttle register controls the rate at which data is accepted.

Avalon-MM
Slave Port

Av
alo

n-
ST

Si
nk

TEST PATTERN
CHECKER

data_in

control & status

The test pattern checker detects exceptions and reports them to the control interface via a 32-element deep
internal FIFO. Possible exceptions are data error, missing start-of-packet (SOP), missing end-of-packet
(EOP), and signaled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same exception occurs
more than once consecutively, only one exception descriptor is pushed into the FIFO. All exceptions are
ignored when the FIFO is full. Exception descriptors are deleted from the FIFO after they are read by the
control and status interface.

Test Pattern Checker Input Interface
The Test Pattern Checker input interface is an Avalon-ST interface that optionally supports data packets.
You can configure the input interface to align with your system requirements. Incoming data may contain
interleaved packet fragments. To keep track of the current symbol’s position, the test pattern checkermaintains
an internal state for each channel.

Test Pattern Checker Control and Status Interface
The Test Pattern Checker control and status interface is a 32-bit Avalon-MM slave that allows you to enable
or disable data acceptance, as well as set the throttle. This interface provides generation-time information,
such as the number of channels and whether the test pattern checker supports data packets. The control and
status interface also provides information on the exceptions detected by the test pattern checker. The interface
obtains this information by reading from the exception FIFO.

Test Pattern Checker Functional Parameter
The Test Pattern Checker functional parameter allows you to configure the test pattern checker as a whole
system.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker10-32 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Test Pattern Checker Input Parameters

You can configure the input interface of the test pattern checker using the following parameters:

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and writedata signals,
which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per beat. Valid values are 1
to 32.

• Include Packet Support—Indicates whether or not data packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Number of Channels—Number of channels that the test pattern checker supports. Valid values are 1 to
256.

• Error Signal Width (bits)—Width of the error signal on the input interface. Valid values are 0 to 31.
A value of 0 indicates that the error signal in not in use.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Software Programming Model for the Test Pattern Generator and Checker Cores
The HAL system library support, software files, and register maps describe the software programming model
for the test pattern generator and checker cores.

HAL System Library Support
ForNios II processor users, Altera providesHAL system library drivers that allow you to initialize and access
the test pattern generator and checker cores. Altera recommends you to use the provided drivers to access
the cores instead of accessing the registers directly.

For Nios II IDE users, copy the provided drivers from the following installation folders to your software
application directory:

• <IP installation directory>/ip/sopc_builder_ip/altera_avalon_data_source/HAL

• <IP installation directory>/ip/sopc_builder_ip/altera_avalon_data_sink/HAL

This instruction does not apply if you use the Nios II command-line tools.Note:

Test Pattern Generator and Test Pattern Checker Core Files
The following files define the low-level access to the hardware, and provide the routines for the HAL device
drivers.

Do not modify the test pattern generator or test pattern checker core files.Note:

• Test pattern generator core files:

• data_source_regs.h—Header file that defines the test pattern generator's register maps.
• data_source_util.h , data_source_util.c—Header and source code for the functions and variables

required to integrate the driver into the HAL system library.

• Test pattern checker core files:

• data_sink_regs.h—Header file that defines the core’s register maps.
• data_sink_util.h , data_sink_util.c—Header and source code for the functions and variables required

to integrate the driver into the HAL system library.

Altera CorporationQsys System Design Components

Send Feedback

10-33Test Pattern Checker Input Parameters
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Register Maps for the Test Pattern Generator and Test Pattern Checker Cores

Test Pattern Generator Control and Status Registers

Table 10-10: Test Pattern Generator Control and Status Register Map

Shows the offset for the test pattern generator control and status registers. Each register is 32-bits wide.
Register NameOffset

statusbase + 0

controlbase + 1

fillbase + 2

Table 10-11: Test Pattern Generator Status Register Bits

DescriptionAccessNameBit(s)

A constant value of 0x64.ROID[15:0]

The configured number of channels.RONUMCHANNELS[23:16]

The configured number of symbols per beat.RONUMSYMBOLS[30:24]

A value of 1 indicates data packet support.ROSUPPORTPACKETS[31]

Table 10-12: Test Pattern Generator Control Register Bits

DescriptionAccessNameBit(s)

Setting this bit to 1 enables the test pattern generator core.RWENABLE[0]

Reserved[7:1]

Specifies the throttle value which can be between 0–256, inclusively.
The test pattern generator uses this value in conjunction with a
pseudo-random number generator to throttle the data generation
rate.

Setting THROTTLE to 0 stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

RWTHROTTLE[16:8]

When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

RWSOFT RESET[17]

Reserved[31:18]

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Register Maps for the Test Pattern Generator and Test Pattern Checker Cores10-34 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 10-13: Test Pattern Generator Fill Register Bits

DescriptionAccessNameBit(s)

A value of 1 indicates that data transmission is in progress, or that
there is at least one command in the command queue.

ROBUSY[0]

Reserved[6:1]

The number of commands currently in the command FIFO.ROFILL[15:7]

Reserved[31:16]

Test Pattern Generator Command Registers

Table 10-14: Test Pattern Generator Command Register Map

Shows the offset for the command registers. Each register is 32-bits wide.
Register NameOffset

cmd_lobase + 0

cmd_hibase + 1

The cmd_lo is pushed into the FIFO only when the cmd_lo register is addressed.

Table 10-15: cmd_lo Register Bits

DescriptionAccessNameBit(s)

The segment size in symbols. Except for the last segment in a packet,
the size of all segments must be a multiple of the configured number
of symbols per beat. If this condition is not met, the test pattern
generator core inserts additional symbols to the segment to ensure
the condition is fulfilled.

RWSIZE[15:0]

The channel to send the segment on. If the channel signal is less
than 14 bits wide, the test pattern generator uses the low order bits
of this register to drive the signal.

RWCHANNEL[29:16]

Set this bit to 1 when sending the first segment in a packet. This bit
is ignored when data packets are not supported.

RWSOP[30]

Set this bit to 1 when sending the last segment in a packet. This bit
is ignored when data packets are not supported.

RWEOP[31]

Altera CorporationQsys System Design Components

Send Feedback

10-35Test Pattern Generator Command Registers
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 10-16: cmd_hi Register Bits

DescriptionAccessNameBit(s)

Specifies the value to drive the error signal. A non-zero value creates
a signalled error.

RWSIGNALED

ERROR

[15:0]

The output data is XORed with the contents of this register to create
data errors. To stop creating data errors, set this register to 0.

RWDATA ERROR[23:16]

Set this bit to 1 to suppress the assertion of the startofpacket signal
when the first segment in a packet is sent.

RWSUPPRESS

SOP

[24]

Set this bit to 1 to suppress the assertion of the endofpacket signal
when the last segment in a packet is sent.

RWSUPRESS

EOP

[25]

Test Pattern Checker Control and Status Registers

Table 10-17: Test Pattern Checker Control and Status Register Map

Shows the offset for the control and status registers. Each register is 32 bits wide.
Register NameOffset

statusbase + 0

controlbase + 1

Reserved

base + 2

base + 3

base + 4

exception_descriptorbase + 5

indirect_selectbase + 6

indirect_countbase + 7

Table 10-18: Test Pattern Checker Status Register Bits

DescriptionAccessNameBit(s)

Contains a constant value of 0x65.ROID[15:0]

The configured number of channels.RONUMCHANNELS[23:16]

The configured number of symbols per beat.RONUMSYMBOLS[30:24]

A value of 1 indicates packet support.ROSUPPORTPACKETS[31]

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker Control and Status Registers10-36 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 10-19: Test Pattern Checker Control Register Bits

DescriptionAccessNameBit(s)

Setting this bit to 1 enables the test pattern checker.RWENABLE[0]

Reserved[7:1]

Specifies the throttle value which can be between 0–256, inclusively.
Qsys uses this value in conjunction with a pseudo-random number
generator to throttle the data generation rate.

Setting THROTTLE to 0 stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full throttle.
Values between 0–256 result in a data rate proportional to the throttle
value.

RWTHROTTLE[16:8]

When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

RWSOFT RESET[17]

Reserved[31:18]

If there is no exception, reading the exception_descriptor register bit register returns 0.

Table 10-20: exception_descriptor Register Bits

DescriptionAccessNameBit(s)

A value of 1 indicates that an error is detected in the incoming data.RODATA ERROR[0]

A value of 1 indicates missing start-of-packet.ROMISSINGSOP[1]

A value of 1 indicates missing end-of-packet.ROMISSINGEOP[2]

Reserved[7:3]

The value of the error signal.ROSIGNALLED

ERROR

[15:8]

Reserved[23:16]

The channel on which the exception was detected.ROCHANNEL[31:24]

Table 10-21: indirect_select Register Bits

DescriptionAccessBits NameBit

Specifies the channel number that applies to the INDIRECT PACKET
COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR COUNT

registers.

RWINDIRECT

CHANNEL

[7:0]

Reserved[15:8]

Altera CorporationQsys System Design Components

Send Feedback

10-37Test Pattern Checker Control and Status Registers
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionAccessBits NameBit

The number of data errors that occurred on the channel specified
by INDIRECT CHANNEL.

ROINDIRECT

ERROR

[31:16]

Table 10-22: indirect_count Register Bits

DescriptionAccessBits NameBit

The number of data packets received on the channel specified by
INDIRECT CHANNEL.

ROINDIRECT

PACKET

COUNT

[15:0]

The number of symbols received on the channel specified by
INDIRECT CHANNEL.

ROINDIRECT

SYMBOL

COUNT

[31:16]

.

Test Pattern Generator API
The following subsections describe application programming interface (API) for the test pattern generator.

API functions are currently not available from the interrupt service routine (ISR).Note:

data_source_reset() on page 10-39

data_source_init() on page 10-39

data_source_get_id() on page 10-39

data_source_get_supports_packets() on page 10-40

data_source_get_num_channels() on page 10-40

data_source_get_symbols_per_cycle() on page 10-41

data_source_get_enable() on page 10-41

data_source_set_enable() on page 10-41

data_source_get_throttle() on page 10-42

data_source_set_throttle() on page 10-42

data_source_is_busy() on page 10-43

data_source_fill_level() on page 10-43

data_source_send_data() on page 10-43

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Generator API10-38 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_source_reset()

Table 10-23: data_source_reset()

DescriptionInformation Type

void data_source_reset(alt_u32 base);Prototype

NoThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

voidReturns

Resets the test pattern generator core including all internal counters and
FIFOs. The control and status registers are not reset by this function.

Description

data_source_init()

Table 10-24: data_source_init()

DescriptionInformation Type

int data_source_init(alt_u32 base, alt_u32 command_base);Prototype

NoThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.

command_base—Base address of the command slave.

Parameters

1—Initialization is successful.

0—Initialization is unsuccessful.

Returns

Performs the following operations to initialize the test pattern generator
core:

• Resets and disables the test pattern generator core.
• Sets the maximum throttle.
• Clears all inserted errors.

Description

data_source_get_id()

Table 10-25: data_source_get_id()

DescriptionInformation Type

int data_source_get_id(alt_u32 base);Prototype

Altera CorporationQsys System Design Components

Send Feedback

10-39data_source_reset()
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

YesThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

Test pattern generator core identifier.Returns

Retrieves the test pattern generator core’s identifier.Description

data_source_get_supports_packets()

Table 10-26: data_source_get_supports_packets()

DescriptionInformation Type

int data_source_init(alt_u32 base);Prototype

YesThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

1—Data packets are supported.

0—Data packets are not supported.

Returns

Checks if the test pattern generator core supports data packets.Description

data_source_get_num_channels()

Table 10-27: data_source_get_num_channels()

DescriptionDescription

int data_source_get_num_channels(alt_u32 base);Prototype

YesThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

Number of channels supported.Returns

Retrieves the number of channels supported by the test pattern generator
core.

Description

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_source_get_supports_packets()10-40 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_source_get_symbols_per_cycle()

Table 10-28: data_source_get_symbols_per_cycle()

DescriptionDescription

int data_source_get_symbols(alt_u32 base);Prototype

YesThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

Number of symbols transferred in a beat.Returns

Retrieves the number of symbols transferred by the test pattern generator
core in each beat.

Description

data_source_get_enable()

Table 10-29: data_source_get_enable()

DescriptionInformation Type

int data_source_get_enable(alt_u32 base);Prototype

YesThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

Value of the ENABLE bit.Returns

Retrieves the value of the ENABLE bit.Description

data_source_set_enable()

Table 10-30: data_source_set_enable()

DescriptionInformation Type

void data_source_set_enable(alt_u32 base, alt_u32 value);Prototype

NoThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.

value— ENABLE bit set to the value of this parameter.

Parameters

Altera CorporationQsys System Design Components

Send Feedback

10-41data_source_get_symbols_per_cycle()
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

voidReturns

Enables or disables the test pattern generator core. When disabled, the
test pattern generator core stops data transmission but continues to accept
commands and stores them in the FIFO

Description

data_source_get_throttle()

Table 10-31: data_source_get_throttle()

DescriptionInformation Type

int data_source_get_throttle(alt_u32 base);Prototype

YesThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

Throttle value.Returns

Retrieves the current throttle value.Description

data_source_set_throttle()

Table 10-32: data_source_set_throttle()

DescriptionInformation Type

void data_source_set_throttle(alt_u32 base, alt_u32 value)

;

Prototype

NoThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.

value—Throttle value.

Parameters

voidReturns

Sets the throttle value, which can be between 0–256 inclusively. The
throttle value, when divided by 256 yields the rate at which the test pattern
generator sends data.

Description

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_source_get_throttle()10-42 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_source_is_busy()

Table 10-33: data_source_is_busy()

DescriptionInformation Type

int data_source_is_busy(alt_u32 base);Prototype

YesThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

1—Test pattern generator core is busy.

0—Test pattern generator core is not busy.

Returns

Checks if the test pattern generator is busy. The test pattern generator
core is busy when it is sending data or has data in the command FIFO to
be sent.

Description

data_source_fill_level()

Table 10-34: data_source_fill_level()

DescriptionInformation Type

int data_source_fill_level(alt_u32 base);Prototype

YesThread-safe

<data_source_util.h >Include

base—Base address of the control and status slave.Parameters

Number of commands in the command FIFO.Returns

Retrieves the number of commands currently in the command FIFO.Description

data_source_send_data()

Table 10-35: data_source_send_data()

DescriptionInformation Type

int data_source_send_data(alt_u32 cmd_base, alt_u16 channel,

alt_u16 size, alt_u32 flags, alt_u16 error, alt_u8 data_

error_mask);

Prototype

NoThread-safe

<data_source_util.h >Include

Altera CorporationQsys System Design Components

Send Feedback

10-43data_source_is_busy()
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

cmd_base—Base address of the command slave.

channel—Channel to send the data.

size—Data size.

flags —Specifies whether to send or suppress SOP and EOP signals.
Valid values are DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP, DATA_
SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_SEND_SUPRESS_EOP.

error—Value asserted on the error signal on the output interface.

data_error_mask—Parameter and the data are XORed together to produce
erroneous data.

Parameters

Returns 1.Returns

Sends a data fragment to the specified channel. If data packets are
supported, applications must ensure consistent usage of SOP and EOP
in each channel. Except for the last segment in a packet, the length of
each segment is a multiple of the data width.

If data packets are not supported, applications must ensure that there are
no SOP and EOP indicators in the data. The length of each segment in a
packet is a multiple of the data width.

Description

Test Pattern Checker API
The following subsections describe API for the test pattern checker core. The API functions are currently
not available from the ISR.

data_sink_reset() on page 10-45

data_sink_init() on page 10-45

data_sink_get_id() on page 10-46

data_sink_get_supports_packets() on page 10-46

data_sink_get_num_channels() on page 10-46

data_sink_get_symbols_per_cycle() on page 10-47

data_sink_get_enable() on page 10-47

data_sink_set enable() on page 10-47

data_sink_get_throttle() on page 10-48

data_sink_set_throttle() on page 10-48

data_sink_get_packet_count() on page 10-49

data_sink_get_error_count() on page 10-49

data_sink_get_symbol_count() on page 10-49

data_sink_get_exception() on page 10-50

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Test Pattern Checker API10-44 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_sink_exception_is_exception() on page 10-50

data_sink_exception_has_data_error() on page 10-51

data_sink_exception_has_missing_sop() on page 10-51

data_sink_exception_has_missing_eop() on page 10-51

data_sink_exception_signalled_error() on page 10-52

data_sink_exception_channel() on page 10-52

data_sink_reset()

Table 10-36: data_sink_reset()

DescriptionInformation Type

void data_sink_reset(alt_u32 base);Prototype

NoThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

voidReturns

Resets the test pattern checker core including all internal counters.Description

data_sink_init()

Table 10-37: data_sink_init()

DescriptionInformation Type

int data_source_init(alt_u32 base);Prototype

NoThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

1—Initialization is successful.

0—Initialization is unsuccessful.

Returns

Performs the following operations to initialize the test pattern checker
core:

• Resets and disables the test pattern checker core.
• Sets the throttle to the maximum value.

Description

Altera CorporationQsys System Design Components

Send Feedback

10-45data_sink_reset()
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_sink_get_id()

Table 10-38: data_sink_get_id()

DescriptionInformation Type

int data_sink_get_id(alt_u32 base);Prototype

YesThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

Test pattern checker core identifier.Returns

Retrieves the test pattern checker core’s identifier.Description

data_sink_get_supports_packets()

Table 10-39: data_sink_get_supports_packets()

DescriptionInformation Type

int data_sink_init(alt_u32 base);Prototype

YesThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

1—Data packets are supported.

0—Data packets are not supported.

Returns

Checks if the test pattern checker core supports data packets.Description

data_sink_get_num_channels()

Table 10-40: data_sink_get_num_channels()

DescriptionInformation Type

int data_sink_get_num_channels(alt_u32 base);Prototype

YesThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

Number of channels supported.Returns

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_get_id()10-46 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

Retrieves the number of channels supported by the test pattern checker
core.

Description

data_sink_get_symbols_per_cycle()

Table 10-41: data_sink_get_symbols_per_cycle()

DescriptionInformation Type

int data_sink_get_symbols(alt_u32 base);Prototype

YesThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

Number of symbols received in a beat.Returns

Retrieves the number of symbols received by the test pattern checker core
in each beat.

Description

data_sink_get_enable()

Table 10-42: data_sink_get_enable()

DescriptionInformation Type

int data_sink_get_enable(alt_u32 base);Prototype

YesThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

Value of the ENABLE bit.Returns

Retrieves the value of the ENABLE bit.Description

data_sink_set enable()

Table 10-43: data_sink_set enable()

DescriptionInformation Type

void data_sink_set_enable(alt_u32 base, alt_u32 value);Prototype

NoThread-safe

Altera CorporationQsys System Design Components

Send Feedback

10-47data_sink_get_symbols_per_cycle()
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

<data_sink_util.h >Include

base—Base address of the control and status slave.

value—ENABLE bit is set to the value of the parameter.

Parameters

voidReturns

Enables the test pattern checker core.Description

data_sink_get_throttle()

Table 10-44: data_sink_get_throttle()

DescriptionInformation Type

int data_sink_get_throttle(alt_u32 base);Prototype

YesThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

Throttle value.Returns

Retrieves the throttle value.Description

data_sink_set_throttle()

Table 10-45: data_sink_set_throttle()

DescriptionInformation Type

void data_sink_set_throttle(alt_u32 base, alt_u32 value);Prototype

NoThread-safe

<data_sink_util.h >Include:

base—Base address of the control and status slave.

value—Throttle value.

Parameters

voidReturns

Sets the throttle value, which can be between 0–256 inclusively. The
throttle value, when divided by 256 yields the rate at which the test pattern
checker receives data.

Description

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_get_throttle()10-48 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_sink_get_packet_count()

Table 10-46: data_sink_get_packet_count()

DescriptionInformation Type

int data_sink_get_packet_count(alt_u32 base, alt_u32 channel)

;

Prototype

NoThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.

channel—Channel number.

Parameters

Number of data packets received on the channel.Returns

Retrieves the number of data packets received on a channel.Description

data_sink_get_error_count()

Table 10-47: data_sink_get_error_count()

DescriptionInformation Type

int data_sink_get_error_count(alt_u32 base, alt_u32 channel)

;

Prototype

NoThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.

channel—Channel number.

Parameters

Number of errors received on the channel.Returns

Retrieves the number of errors received on a channel.Description

data_sink_get_symbol_count()

Table 10-48: data_sink_get_symbol_count()

DescriptionInformation Type

int data_sink_get_symbol_count(alt_u32 base, alt_u32 channel)

;

Prototype

NoThread-safe

<data_sink_util.h >Include

Altera CorporationQsys System Design Components

Send Feedback

10-49data_sink_get_packet_count()
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

base—Base address of the control and status slave.

channel—Channel number.

Parameters

Number of symbols received on the channel.Returns

Retrieves the number of symbols received on a channel.Description

data_sink_get_exception()

Table 10-49: data_sink_get_exception()

DescriptionInformation Type

int data_sink_get_exception(alt_u32 base);Prototype

YesThread-safe

<data_sink_util.h >Include

base—Base address of the control and status slave.Parameters

First exception descriptor in the exception FIFO.

0—No exception descriptor found in the exception FIFO.

Returns

Retrieves the first exception descriptor in the exception FIFO and pops
it off the FIFO.

Description

data_sink_exception_is_exception()

Table 10-50: data_sink_exception_is_exception()

DescriptionInformation Type

int data_sink_exception_is_exception(int exception);Prototype

YesThread-safe

<data_sink_util.h >Include

exception—Exception descriptorParameters

1—Indicates an exception.

0—No exception.

Returns

Checks if an exception descriptor describes a valid exception.Description

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_get_exception()10-50 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


data_sink_exception_has_data_error()

Table 10-51: data_sink_exception_has_data_error()

DescriptionInformation Type

int data_sink_exception_has_data_error(int exception);Prototype

YesThread-safe

<data_sink_util.h >Include

exception—Exception descriptor.Parameters

1—Data has errors.

0—No errors.

Returns

Checks if an exception indicates erroneous data.Description

data_sink_exception_has_missing_sop()

Table 10-52: data_sink_exception_has_missing_sop()

DescriptionInformation Type

int data_sink_exception_has_missing_sop(int exception);Prototype

YesThread-safe

<data_sink_util.h >Include

exception—Exception descriptor.Parameters

1—Missing SOP.

0—Other exception types.

Returns

Checks if an exception descriptor indicates missing SOP.Description

data_sink_exception_has_missing_eop()

Table 10-53: data_sink_exception_has_missing_eop()

DescriptionInformation Type

int data_sink_exception_has_missing_eop(int exception);Prototype

YesThread-safe

<data_sink_util.h >Include

exception—Exception descriptor.Parameters

Altera CorporationQsys System Design Components

Send Feedback

10-51data_sink_exception_has_data_error()
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionInformation Type

1—Missing EOP.

0—Other exception types.

Returns

Checks if an exception descriptor indicates missing EOP.Description

data_sink_exception_signalled_error()

Table 10-54: data_sink_exception_signalled_error()

DescriptionInformation Type

int data_sink_exception_signalled_error(int exception);Prototype

YesThread-safe

<data_sink_util.h >Include

exception—Exception descriptor.Parameters

Signal error value.Returns

Retrieves the value of the signaled error from the exception.Description

data_sink_exception_channel()

Table 10-55: data_sink_exception_channel()

DescriptionInformation Type

int data_sink_exception_channel(int exception);Prototype

YesThread-safe

<data_sink_util.h >Include

exception—Exception descriptor.Parameters

Channel number on which an exception occurred.Returns

Retrieves the channel number on which an exception occurred.Description

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
data_sink_exception_signalled_error()10-52 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-ST Splitter Core
Figure 10-22: Avalon-ST Splitter Core

The Avalon-ST Splitter Core allows you to replicate transactions from an Avalon-ST source interface to
multiple Avalon-ST sink interfaces. This core supports from 1 to 16 outputs.

Output 0

In_Data

Out_Data

Av
alo

n-
ST

Si
nk

Avalon-ST
Splitter Core

Output N
Avalon-ST
Source0

Clock

Avalon-ST
SourceN

The Avalon-ST Splitter core copies input signals from the input interface to the corresponding output signals
of each output interface without altering the size or functionality. This includes all signals except for the
ready signal. The core includes a clock signal to determine the Avalon-ST interface and clock domain where
the core resides. Because the splitter core does nor use the clock signal internally, latency is not introduced
when using this core.

Splitter Core Backpressure
The Avalon-ST Splitter core integrates with backpressure by AND-ing the ready signals from the output
interfaces and sending the result to the input interface. As a result, if an output interface deasserts the ready
signal, the input interface receives the deasserted ready signal, as well. This functionality ensures that
backpressure on the output interfaces is propagated to the input interface.

When the Qualify Valid Out parameter is set to 1, the out_valid signals on all other output interfaces are
gated when backpressure is applied from one output interface. In this case, when any output interface
deasserts its ready signal, the out_valid signals on the other output interfaces are also deasserted.

When the Qualify Valid Out parameter is set to 0, the output interfaces have a non-gated out_valid signal
when backpressure is applied. In this case, when an output interface deasserts its ready signal, the out_valid
signals on the other output interfaces are not affected.

Because the logic is combinational, the core introduces no latency.

Splitter Core Interfaces
The Avalon-ST Splitter core supports streaming data, with optional packet, channel, and error signals. The
core propagates backpressure from any output interface to the input interface.

Table 10-56: Avalon-ST Splitter Core Support

SupportFeature

Ready latency = 0.Backpressure

Configurable.Data Width

Altera CorporationQsys System Design Components

Send Feedback

10-53Avalon-ST Splitter Core
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


SupportFeature

Supported (optional).Channel

Supported (optional).Error

Supported (optional).Packet

Splitter Core Parameters

Table 10-57: Avalon-ST Splitter Core Parameters

DescriptionDefault ValueLegal ValuesParameter

The number of output interfaces. Qsys
supports 1 for some systems where no
duplicated output is required.

21 to 16Number Of Outputs

Determines whether the out_valid signal is
gated or non-gated when backpressure is
applied.

10 or 1Qualify Valid Out

The width of the data on the Avalon-ST data
interfaces.

81–512Data Width

The number of bits per symbol for the input
and output interfaces. For example, byte-
oriented interfaces have 8-bit symbols.

81–512Bits Per Symbol

Indicates whether or not data packet transfers
are supported. Packet support includes the
startofpacket, endofpacket, and empty

signals.

00 or 1Use Packets

The option to enable or disable the channel
signal.

00 or 1Use Channel

The width of the channel signal on the data
interfaces. This parameter is disabled when
Use Channel is set to 0.

10-8Channel Width

The maximum number of channels that a
data interface can support. This parameter is
disabled when Use Channel is set to 0.

10-255Max Channels

The option to enable or disable the error
signal.

00 or 1Use Error

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Splitter Core Parameters10-54 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DescriptionDefault ValueLegal ValuesParameter

The width of the error signal on the output
interfaces. A value of 0 indicates that the
splitter core is not using the error signal.
This parameter is disabled when Use Error
is set to 0.

10–31Error Width

Avalon-ST Delay Core
Figure 10-23: Avalon-ST Delay Core

The Avalon-ST Delay Core provides a solution to delay Avalon-ST transactions by a constant number of
clock cycles. This core supports up to 16 clock cycle delays.

Out_Data
In_Data

Clock

Av
alo

n-
ST

Si
nk

Avalon-ST
SourceAvalon-ST

Delay Core

TheDelay core adds a delay between the input and output interfaces. The core accepts transactions presented
on the input interface and reproduces them on the output interface N cycles later without changing the
transaction.

The input interface delays the input signals by a constant N number of clock cycles to the corresponding
output signals of the output interface. The Number Of Delay Clocks parameter defines the constant N,
which must be between 0 and 16. The change of the in_valid signal is reflected on the out_valid signal
exactly N cycles later.

Delay Core Reset Signal
The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal. When the core asserts
the reset signal, the output signals are held at 0. After the reset signal is deasserted, the output signals are
held at 0 for N clock cycles. The delayed values of the input signals are then reflected at the output signals
after N clock cycles.

Delay Core Interfaces
The Delay core supports streaming data, with optional packet, channel, and error signals. The delay core
does not support backpressure.

Table 10-58: Avalon-ST Delay Core Support

SupportFeature

Not supported.Backpressure

Configurable.Data Width

Altera CorporationQsys System Design Components

Send Feedback

10-55Avalon-ST Delay Core
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


SupportFeature

Supported (optional).Channel

Supported (optional).Error

Supported (optional).Packet

Delay Core Parameters

Table 10-59: Avalon-ST Delay Core Parameters

DescriptionDefault ValueLegal ValuesParameter

Specifies the delay the core introduces, in
clock cycles. Qsys supports 0 for some
systems where no delay is required.

10 to 16Number Of Delay Clocks

The width of the data on the Avalon-ST data
interfaces.

81–512Data Width

The number of bits per symbol for the input
and output interfaces. For example, byte-
oriented interfaces have 8-bit symbols.

81–512Bits Per Symbol

Indicates whether or not data packet transfers
are supported. Packet support includes the
startofpacket, endofpacket, and empty

signals.

00 or 1Use Packets

The option to enable or disable the channel
signal.

00 or 1Use Channel

The width of the channel signal on the data
interfaces. This parameter is disabled when
Use Channel is set to 0.

10-8Channel Width

The maximum number of channels that a
data interface can support. This parameter is
disabled when Use Channel is set to 0.

10-255Max Channels

The option to enable or disable the error
signal.

00 or 1Use Error

The width of the error signal on the output
interfaces. A value of 0 indicates that the error
signal is not in use. This parameter is disabled
when Use Error is set to 0.

10–31Error Width

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Delay Core Parameters10-56 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-ST Round Robin Scheduler
Figure 10-24: Avalon-ST Round Robin Scheduler

The Avalon-ST Round Robin Scheduler core controls the read operations from a multi-channel Avalon-ST
component that buffers data by channels. It reads the almost-full threshold values from themultiple channels
in the multi-channel component and issues the read request to the Avalon-ST source according to a
round-robin scheduling algorithm.

Request
(Channel_select) Almost Full StatusAvalon-ST

Round-Robin
SchedulerAv

alo
n-
MM

W
rite

Ma
ste

r

Avalon-ST
Sink

In a multi-channel component, the component can store data either in the sequence that it comes in (FIFO),
or in segments according to the channel. When data is stored in segments according to channels, a scheduler
is needed to schedule the read operations.

Almost-Full Status Interface (Round Robin Scheduler)
The Almost-Full Status interface is an Avalon-ST sink interface that collects the almost-full status from the
sink components for the channels in the sequence provided.

Table 10-60: Avalon-ST Interface Feature Support

PropertyFeature

Not supportedBackpressure

Data width = 1; Bits per symbol = 1Data Width

Maximum channel = 32; Channel width = 5Channel

Not supportedError

Not supportedPacket

Request Interface (Round Robin Scheduler)
The Request Interface is an Avalon-MM write master interface that requests data from a specific channel.
The Avalon-ST Round Robin Scheduler cycles through the channels it supports and schedules data to be
read.

Round Robin Scheduler Operation
If a particular channel is almost full, the Avalon-ST Round Robin Scheduler does not schedule data to be
read from that channel in the source component.

Altera CorporationQsys System Design Components

Send Feedback

10-57Avalon-ST Round Robin Scheduler
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The scheduler only requests 1 beat of data from a channel at each transaction. To request 1 beat of data from
channel n, the scheduler writes the value 1 to address (4 ×n). For example, if the scheduler is requesting data
from channel 3, the scheduler writes 1 to address 0xC. At every clock cycle, the scheduler requests data from
the next channel. Therefore, if the scheduler starts requesting from channel 1, at the next clock cycle, it
requests from channel 2. The scheduler does not request data from a particular channel if the almost-full
status for the channel is asserted. In this case, the scheduler uses one clock cycle without a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component is able to service the
request transaction. The component asserts waitrequest when it cannot accept new requests.

Table 10-61: Avalon-ST Round Robin Scheduler Ports

DescriptionDirectionSignal

Clock and Reset

Clock reference.Inclk

Asynchronous active low reset.Inreset_n

Avalon-MM Request Interface

The write address that indicates which channel has
the request.

Outrequest_address (log2 Max_

Channels–1:0)

Write enable signal.Outrequest_write

The amount of data requested from the particular
channel.

This value is always fixed at 1.

Outrequest_writedata

Wait request signal that pauses the scheduler when
the slave cannot accept a new request.

Inrequest_waitrequest

Avalon-ST Almost-Full Status Interface

Indicates that almost_full_channel and almost_

full_data are valid.
Inalmost_full_valid

Indicates the channel for the current status indication.Inalmost_full_channel (Channel_

Width–1:0)

A 1-bit signal that is asserted high to indicate that the
channel indicated by almost_full_channel is almost
full.

Inalmost_full_data (log2 Max_

Channels–1:0)

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Round Robin Scheduler Operation10-58 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Round Robin Scheduler Parameters

Table 10-62: Avalon-ST Round Robin Scheduler Parameters

DescriptionValuesParameters

Specifies the number of channels the Avalon-ST Round
Robin Scheduler supports.

2–32Number of channels

Specifies whether the scheduler uses the almost-full interface.
If not, the core requests data from the next channel at the
next clock cycle.

0–1Use almost-full status

Avalon Packets to Transactions Converter
Figure 10-25: Avalon Packets to Transactions Converter Core

The Avalon Packets to Transactions Converter core receives streaming data from upstream components
and initiates Avalon-MM transactions. The core then returns Avalon-MM transaction responses to the
requesting components.

Av
alo

n-
ST

Si
nk

Avalon
Packets to
Transactions
Converter

data_out

Av
alo

n-
MM

Ma
ste

rdata_in

Av
alo

n-
ST

So
ur
ce

Avalon-MM
Slave

Component

The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples of the
Packets to Transactions Converter core. For more information, refer to the Avalon Interface Specifi-
cations.

Note:

Related Information
Avalon Interface Specifications

Packets to Transactions Converter Interfaces

Table 10-63: Properties of Avalon-ST Interfaces

PropertyFeature

Ready latency = 0.Backpressure

Data width = 8 bits; Bits per symbol = 8.Data Width

Altera CorporationQsys System Design Components

Send Feedback

10-59Round Robin Scheduler Parameters
QII51025
2014.06.30

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


PropertyFeature

Not supported.Channel

Not used.Error

Supported.Packet

The Avalon-MM master interface supports read and write transactions. The data width is set to 32 bits, and
burst transactions are not supported.

Packets to Transactions Converter Operation
The Packets to Transactions Converter core receives streams of packets on its Avalon-ST sink interface and
initiates Avalon-MM transactions. Upon receiving transaction responses from Avalon-MM slaves, the core
transforms the responses to packets and returns them to the requesting components via its Avalon-ST source
interface. The core does not report Avalon-ST errors.

Packets to Transactions Converter Data Packet Formats
A response packet is returned for every write transaction. The core also returns a response packet if a no
transaction (0x7f) is received. An invalid transaction code is regarded as a no transaction. For read
transactions, the core returns the data read.

The Packets to Transactions Converter core expects incoming data streams to be in the formats shown the
table below.

Table 10-64: Data Packet Formats

DescriptionFieldByte

Transaction Packet Format

Type of transaction.Transaction code0

Reserved for future use.Reserved1

Transaction size in bytes. For write transactions, the size
indicates the size of the data field. For read transactions,
the size indicates the total number of bytes to read.

Size[3:2]

32-bit address for the transaction.Address[7:4]

Transaction data; data to be written for write transactions.Data[n:8]

Response Packet Format

The transaction code with the most significant bit inversed.Transaction code0

Reserved for future use.Reserved1

Total number of bytes read/written successfully.Size[4:2]

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Packets to Transactions Converter Operation10-60 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information
Packets to Transactions Converter Interfaces on page 10-59

Packets to Transactions Converter Supported Transactions

Table 10-65: Packets to Transactions Converter Supported Transactions

Avalon-MM transactions supported by the Packets to Transactions Converter core.
DescriptionAvalon-MM TransactionTransaction

Code

Writes data to the address until the total number of bytes
written to the sameword address equals to the value specified
in the size field.

Write, non-incrementing address.0x00

Writes transaction data starting at the current address.Write, incrementing address.0x04

Reads 32 bits of data from the address until the total number
of bytes read from the same address equals to the value
specified in the size field.

Read, non-incrementing address.0x10

Reads the number of bytes specified in the size parameter
starting from the current address.

Read, incrementing address.0x14

No transaction is initiated. You can use this transaction type
for testing purposes. Although no transaction is initiated on
the Avalon-MM interface, the core still returns a response
packet for this transaction code.

No transaction.0x7f

The Packets to Transactions Converter core can process only a single transaction at a time. The ready signal
on the core's Avalon-ST sink interface is asserted only when the current transaction is completely processed.

No internal buffer is implemented on the data paths. Data received on the Avalon-ST interface is forwarded
directly to the Avalon-MM interface and vice-versa. Asserting the waitrequest signal on the Avalon-MM
interface backpressures the Avalon-ST sink interface. In the opposite direction, if the Avalon-ST source
interface is backpressured, the read signal on the Avalon-MM interface is not asserted until the backpressure
is alleviated. Backpressuring the Avalon-ST source in the middle of a read could result in data loss. In this
cases, the core returns the data that is successfully received.

A transaction is considered complete when the core receives an EOP. For write transactions, the actual data
size is expected to be the same as the value of the size property. Whether or not both values agree, the core
always uses the end of packet (EOP) to determine the end of data.

Packets to Transactions Converter Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a transaction. If an SOP is received
in the middle of a transaction, the core drops the current transaction without returning a response packet
for the transaction, and initiates a new transaction. This effectively precesses packets without an end of
packet (EOP).

• Unsupported transaction codes—The core processes unsupported transactions as a no transaction.

Altera CorporationQsys System Design Components

Send Feedback

10-61Packets to Transactions Converter Supported Transactions
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-ST Streaming Pipeline Stage
The Avalon-ST pipeline stage receives data from an Avalon-ST source interface, and outputs the data to an
Avalon-ST sink interface. In the absence of back pressure, the Avalon-ST pipeline stage source interface
outputs data one cycle after receiving the data on its sink interface.

If the pipeline stage receives back pressure on its source interface, it continues to assert its source interface's
current data output. While the pipeline stage is receiving back pressure on its source interface and it receives
new data on its sink interface, the pipeline stage internally buffers the new data. It then asserts back pressure
on its sink interface.

Once the backpressure is deasserted, the pipeline stage's source interface is de-asserted and the pipeline stage
asserts internally buffered data (if present). Additionally, the pipeline stage de-asserts back pressure on its
sink interface.

Figure 10-26: Pipeline Stage Simple Register

If the ready signal is not pipelined, the pipeline stage becomes a simple register.

Sink Sourcedata_in data_outRegister 0

Figure 10-27: Pipeline Stage Holding Register

If the ready signal is pipelined, the pipeline stage must also include a second "holding" register.

Sink Sourcedata_in data_out
Register 1

Register 0

Full?

Full?

Streaming Channel Multiplexer and Demultiplexer Cores
The Avalon-ST channel multiplexer core receives data from various input interfaces and multiplexes the
data into a single output interface, using the optional channel signal to indicate the origin of the data. The
Avalon-ST channel demultiplexer core receives data from a channelized input interface and drives that data
to multiple output interfaces, where the output interface is selected by the input channel signal.

The multiplexer and demultiplexer cores can transfer data between interfaces on cores that support
unidirectional flow of data. The multiplexer and demultiplexer allow you to create multiplexed or demulti-
plexed data paths without having to write custom HDL code. The multiplexer includes an Avalon-ST Round
Robin Scheduler.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Avalon-ST Streaming Pipeline Stage10-62 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Related Information
Avalon-ST Round Robin Scheduler on page 10-57

Software Programming Model For the Multiplexer and Demultiplexer Components
The multiplexer and demultiplexer components do not have any user-visible control or status registers.
Therefore, Qsys cannot control or configure any aspect of the multiplexer or demultiplexer at run-time. The
components cannot generate interrupts.

Avalon-ST Multiplexer
Figure 10-28: Avalon-ST Multiplexer

The Avalon-ST multiplexer takes data from a variety of input data interfaces, and multiplexes the data onto
a single output interface. The multiplexer includes a round-robin scheduler that selects from the next input
interface that has data. Each input interface has the same width as the output interface, so that the other
input interfaces are backpressured when the multiplexer is carrying data from a different input interface.

src
sink

data _ in _n

sink

data _ in 0

data _out..
.

Round Robin , Burst
Aware Scheduler

(optional )

sink

sink
..

.

channel

The multiplexer includes an optional channel signal that enables each input interface to carry channelized
data. The output interface channel width is equal to:

(log2 (n-1)) + 1 + w

where n is the number of input interfaces, and w is the channel width of each input interface. All input
interfaces must have the same channel width. These bits are appended to either the most or least significant
bits of the output channel signal.

The scheduler processes one input interface at a time, selecting it for transfer. Once an input interface has
been selected, data from that input interface is sent until one of the following scenarios occurs:

• The specified number of cycles have elapsed.
• The input interface has no more data to send and the valid signal is deasserted on a ready cycle.
• When packets are supported, endofpacket is asserted.

Multiplexer Input Interfaces
Each input interface is an Avalon-ST data interface that optionally supports packets. The input interfaces
are identical; they have the same symbol and data widths, error widths, and channel widths.

Multiplexer Output Interface
The output interface carries the multiplexed data stream with data from the inputs. The symbol, data, and
error widths are the same as the input interfaces.

Altera CorporationQsys System Design Components

Send Feedback

10-63Software Programming Model For the Multiplexer and Demultiplexer Components
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The width of the channel signal is the same as the input interfaces, with the addition of the bits needed to
indicate the origin of the data.

You can configure the following parameters for the output interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata signals,
which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer). Valid
values are 1 to 32.

• Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Channel SignalWidth (bits)—The number of bits Qsys uses for the channel signal for output interfaces.
For example, set this parameter to 1 if you have two input interfaces with no channel, or set this parameter
to 2 if you have two input interfaces with a channel width of 1 bit. The input channel can have a width
between 0-31 bits.

• Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of 0
means the error signal is not in use.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Multiplexer Parameters

You can configure the following parameters for the multiplexer:

• Number of Input Ports—The number of input interfaces that the multiplexer supports. Valid values are
2 to 16.

• Scheduling Size (Cycles)—The number of cycles that are sent from a single channel before changing to
the next channel.

• Use Packet Scheduling—When this parameter is turned on, the multiplexer only switches the selected
input interface on packet boundaries. Therefore, packets on the output interface are not interleaved.

• Use high bits to indicate source port—When this parameter is turned on, the multiplexer uses the high
bits of the output channel signal to indicate the origin of the input interface of the data. For example, if
the input interfaces have 4-bit channel signals, and the multiplexer has 4 input interfaces, the output
interface has a 6-bit channel signal. If this parameter is turned on, bits [5:4] of the output channel signal
indicate origin of the input interface of the data, and bits [3:0] are the channel bits that were presented
at the input interface.

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Multiplexer Parameters10-64 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-ST Demultiplexer
Figure 10-29: Avalon-ST Demultiplexer

That Avalon-ST demultiplexer takes data from a channelized input data interface and provides that data to
multiple output interfaces, where the output interface selected for a particular transfer is specified by the
input channel signal.

sink
data _out _n

data _out 0

sinksinkdata _ in

src

src

..
.

..
.

channel

The data is delivered to the output interfaces in the same order it is received at the input interface, regardless
of the value of channel, packet, frame, or any other signal. Each of the output interfaces has the same width
as the input interface; each output interface is idle when the demultiplexer is driving data to a different
output interface. The demultiplexer uses log2 (num_output_interfaces) bits of the channel signal to select
the output for the data; the remainder of the channel bits are forwarded to the appropriate output interface
unchanged.

Demultiplexer Input Interface
Each input interface is an Avalon-ST data interface that optionally supports packets. You can configure the
following parameters for the input interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata signals,
which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer). Valid
values are 1 to 32.

• Include Packet Support—Indicates whether or not data packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)—The number of bits for the channel signal for output interfaces. A value
of 0 means that output interfaces do not use the optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of 0
means the error signal is in use.

If you change only bits per symbol, and do not change the data width, errors are generated.Note:

Demultiplexer Output Interface
Each output interface carries data from a subset of channels from the input interface. Each output interface
is identical; all have the same symbol and data widths, error widths, and channel widths. The symbol, data,
and error widths are the same as the input interface. The width of the channel signal is the same as the input
interface, without the bits that the demultiplexer uses to select the output interface.

Altera CorporationQsys System Design Components

Send Feedback

10-65Avalon-ST Demultiplexer
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Demultiplexer Parameters

You can configure the following parameters for the demultiplexer:

• Number of Output Ports—The number of output interfaces that the multiplexer supports Valid values
are 2 to 16.

• High channel bits select output—When this option is turned on, the demultiplexing function uses the
high bits of the input channel signal, and the low order bits are passed to the output. When this option
is turned off, the demultiplexing function uses the low order bits, and the high order bits are passed to
the output.

Where you place the signals in our design affects the functionality; for example, there is one input interface
and two output interfaces. If the low-order bits of the channel signal select the output interfaces, the even
channels goes to channel 0, and the odd channels goes to channel 1. If the high-order bits of the channel
signal select the output interface, channels 0 to 7 goes to channel 0 and channels 8 to 15 goes to channel 1.

Figure 10-30: Select Bits for the Demultiplexer

sink

data _out _n

data _out 0

sinksink
data _ in

src

src

channel <4 ..0>

channel <3 ..0>

channel <3..0>

Single-Clock and Dual-Clock FIFO Cores
The Avalon-ST Single-Clock and Avalon-ST Dual-Clock FIFO cores are FIFO buffers which operate with
a common clock and independent clocks for input and output ports respectively.

Figure 10-31: Avalon-ST Single Clock FIFO Core

Avalon-ST
Single-Clock

FIFO

Avalon-MM
Slave

almost_full almost_empty

csr

Avalon-ST
Status
Source

Avalon-ST
Status
Source

outin Avalon-ST
Data
Sink

Avalon-ST
Data
Source

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Demultiplexer Parameters10-66 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10-32: Avalon-ST Dual Clock FIFO Core

Avalon-MM
Slave

in_csr out_csr

Avalon-MM
Slave

outin

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO

Avalon-ST
Data
Sink

Avalon-ST
Data
Source

Interfaces Implemented in FIFO Cores
The following interfaces are implemented in FIFO cores:

Avalon-ST Data Interface on page 10-67

Avalon-MM Control and Status Register Interface on page 10-67

Avalon-ST Status Interface on page 10-68

Avalon-ST Data Interface

Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and source interfaces in
the dual-clock FIFO core are driven by different clocks.

Table 10-66: Avalon-ST Interfaces Properties

PropertyFeature

Ready latency = 0.Backpressure

Configurable.Data Width

Supported, up to 255 channels.Channel

Configurable.Error

Configurable.Packet

Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO core to include an optional Avalon-MM interface, and the dual-
clock FIFO core to include an Avalon-MM interface in each clock domain. The Avalon-MM interface
provides access to 32-bit registers, which allows you to retrieve the FIFO buffer fill level and configure the

Altera CorporationQsys System Design Components

Send Feedback

10-67Interfaces Implemented in FIFO Cores
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


almost-empty and almost-full thresholds. In the single-clock FIFO core, you can also configure the packet
and error handling modes.

Avalon-ST Status Interface

The single-clock FIFO core has two optional Avalon-ST status source interfaces from which you can obtain
the FIFO buffer almost-full and almost empty statuses.

FIFO Operating Modes
• Default mode—The core accepts incoming data on the in interface (Avalon-ST data sink) and forwards

it to the out interface (Avalon-ST data source). The core asserts the valid signal on the Avalon-ST source
interface to indicate that data is available at the interface.

• Store and forward mode—This mode applies only to the single-clock FIFO core. The core asserts the
valid signal on the out interface only when a full packet of data is available at the interface. In this mode,
you can also enable the drop-on-error feature by setting the drop_on_error register to 1. When this
feature is enabled, the core drops all packets received with the in_error signal asserted.

• Cut-through mode—This mode applies only to the single-clock FIFO core. The core asserts the valid
signal on the out interface to indicate that data is available for consumption when the number of entries
specified in the cut_through_threshold register are available in the FIFO buffer.

To use the store and forward or cut-through mode, turn on the Use store and forward parameter to include
the csr interface (Avalon-MM slave). Set the cut_through_threshold register to 0 to enable the store and
forward mode, and then set the register to any value greater than 0 to enable the cut-through mode. The
non-zero value specifies theminimumnumber of FIFO entries thatmust be available before the data is ready
for consumption. Setting the register to 1 provides you with the default mode.

Fill Level of the FIFO Buffer
You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control and status interface.
Turn on the Use fill level parameter (Use sink fill level and Use source fill level in the dual-clock FIFO
core) and read the fill_level register.

The dual-clock FIFO core has two fill levels. one in each clock domain. Due to the latency of the clock
crossing logic, the fill levels reported in the input and output clock domains may be different for any instance.
In both cases, the fill level may report badly for the clock domain; that is, the fill level is reported high in the
input clock domain, and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fMAX. This output stage is accounted for when
calculating the output fill level, but not when calculating the input fill level. Therefore, the best measure of
the amount of data in the FIFO is by the fill level in the output clock domain. The fill level in the input clock
domain represents the amount of space available in the FIFO (available space = FIFOdepth – input fill level).

Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO overflow and
underflow. This feature is available only in the single-clock FIFO core. To use the thresholds, turn on the
Use fill level, Use almost-full status, and Use almost-empty status parameters. You can access the
almost_full_threshold and almost_full_threshold registers via the csr interface and set the registers
to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and almost_empty interfaces
(Avalon-ST status source). The core asserts the almost_full signal when the fill level is equal to or higher

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Avalon-ST Status Interface10-68 2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


than the almost-full threshold. Likewise, the core asserts the almost_empty signal when the fill level is equal
to or lower than the almost-empty threshold.

Single-Clock and Dual-Clock FIFO Core Parameters

Table 10-67: Single-Clock and Dual-Clock FIFO Core Parameters

DescriptionLegal
Values

Parameter

These parameters determine the width of the FIFO.

FIFO width = Bits per symbol * Symbols per beat, where:
Bits per symbol is the number of bits in a symbol, and
Symbols per beat is the number of symbols transferred in
a beat.

1–32Bits per symbol

1–32Symbols per beat

The width of the error signal.0–32Error width

The FIFO depth. An output pipeline stage is added to the
FIFO to increase performance, which increases the FIFO
depth by one. <n> = n=1,2,3,4...

2 nFIFO depth

Turn on this parameter to enable data packet support on
the Avalon-ST data interfaces.

—Use packets

The width of the channel signal.1–32Channel width

Avalon-ST Single Clock FIFO Only

Turn on this parameter to include the Avalon-MM control
and status register interface.

—Use fill level

Avalon-ST Dual Clock FIFO Only

Turn on this parameter to include the Avalon-MM control
and status register interface in the input clock domain.

—Use sink fill level

Turn on this parameter to include the Avalon-MM control
and status register interface in the output clock domain.

—Use source fill level

The length of the write pointer synchronizer chain. Setting
this parameter to a higher value leads to better metastability
while increasing the latency of the core.

2–8Write pointer synchronizer
length

The length of the read pointer synchronizer chain. Setting
this parameter to a higher value leads to better metastability.

2–8Readpointer synchronizer length

Turn on this parameter to specify the maximum channel
number.

—Use Max Channel

Maximum channel number.1–255Max Channel

Altera CorporationQsys System Design Components

Send Feedback

10-69Single-Clock and Dual-Clock FIFO Core Parameters
QII51025
2014.06.30

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


For more information on metastability in Altera devices, refer to Understanding Metastability in
FPGAs. For more information on metastability analysis and synchronization register chains, refer
to the Managing Metastability.

Note:

Related Information

• Understanding Metastability in FPGAs

• Managing Metastability

Avalon-ST Single-Clock FIFO Registers

Table 10-68: Avalon-ST Single-Clock FIFO Registers

The csr interface in the Avalon-ST Single Clock FIFO core provides access to registers.
DescriptionResetAccessName32-Bit Word

Offset

24-bit FIFO fill level. Bits 24 to 31 are not used.0Rfill_

level

0

Reserved for future use.——Reserved1

Set this register to a value that indicates the FIFO buffer is
getting full.

FIFO
depth–1

RWalmost_

full_

threshold

2

Set this register to a value that indicates the FIFO buffer is
getting empty.

0RWalmost_

empty_

threshold

3

0—Enables store and forward mode.

Greater than 0—Enables cut-through mode and specifies
the minimum of entries in the FIFO buffer before the valid
signal on the Avalon-ST source interface is asserted. Once
the FIFO core starts sending the data to the downstream
component, it continues to do so until the end of the packet.

This register applies only when the Use store and forward
parameter is turned on.

0RWcut_

through_

threshold

4

0—Disables drop-on error.

1—Enables drop-on error.

This register applies onlywhen theUsepacket andUse store
and forward parameters are turned on.

0RWdrop_on_

error

5

Qsys System Design ComponentsAltera Corporation

Send Feedback

QII51025
Avalon-ST Single-Clock FIFO Registers10-70 2014.06.30

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 10-69: Register Description for Avalon-ST Dual-Clock FIFO

The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports the FIFO fill level.
DescriptionReset ValueAccessName32-Bit Word Offset

24-bit FIFO fill
level. Bits 24 to 31
are not used.

0Rfill_level0

Related Information

• Avalon Interface Specifications

• Avalon Memory-Mapped Design Optimizations

Document Revision History

Table 10-70: Document Revision History

The table below indicates edits made to the Qsys System Design Components content since its creation.
ChangesVersionDate

• AXI Bridge support.
• Address Span Extender

updates.
• Avalon-MM Unaligned Burst

Expansion Bridge support.

14.0.0June 2014

• Address Span Extender13.1.0November 2013

• Added Streaming Pipeline
Stage support.

• Added AMBA APB support.

13.0.0May 2013

• Moved relevant content from
the Embedded Peripherals IP
User Guide.

12.1.0November 2012

Related Information
Quartus II Handbook Archive

Altera CorporationQsys System Design Components

Send Feedback

10-71Document Revision History
QII51025
2014.06.30

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QII51025%202014.06.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	10. Qsys System Design Components
	Bridges
	Clock Bridge
	Avalon-MM Clock Crossing Bridge
	Avalon-MM Clock Crossing Bridge Example
	Avalon-MM Clock Crossing Bridge Parameters

	Avalon‑MM Pipeline Bridge
	Avalon-MM Unaligned Burst Expansion Bridge
	Using the Avalon-MM Unaligned Burst Expansion Bridge
	Avalon-MM Unaligned Burst Expansion Bridge Parameters
	Avalon-MM Unaligned Burst Expansion Bridge Example

	Bridges Between Avalon and AXI Interfaces
	AXI Bridge
	AXI Bridge Signal Types
	AXI Bridge Parameters
	AXI Bridge Slave and Master Interface Parameters

	Address Span Extender
	CTRL Register Layout
	Calculating the Address Span Extender Slave Address
	Using the Address Span Extender
	Alternate Options for the Address Span Extender
	NIOS II Support


	AXI Default Slave
	AXI Default Slave Parameters
	CSR Registers
	CSR Interrupt Status Registers
	CSR Read Access Violation Log
	CSR Write Access Violation Log

	Designating a Default Slave in the System Contents Tab

	Tri-State Components
	Generic Tri-State Controller
	Tri‑State Conduit Pin Sharer
	Tri‑State Conduit Bridge

	Test Pattern Generator and Checker Cores
	Test Pattern Generator
	Test Pattern Generator Command Interface
	Test Pattern Generator Control and Status Interface
	Test Pattern Generator Output Interface
	Test Pattern Generator Functional Parameter

	Test Pattern Checker
	Test Pattern Checker Input Interface
	Test Pattern Checker Control and Status Interface
	Test Pattern Checker Functional Parameter
	Test Pattern Checker Input Parameters

	Software Programming Model for the Test Pattern Generator and Checker Cores
	HAL System Library Support
	Test Pattern Generator and Test Pattern Checker Core Files
	Register Maps for the Test Pattern Generator and Test Pattern Checker Cores
	Test Pattern Generator Control and Status Registers
	Test Pattern Generator Command Registers
	Test Pattern Checker Control and Status Registers


	Test Pattern Generator API
	data_source_reset()
	data_source_init()
	data_source_get_id()
	data_source_get_supports_packets()
	data_source_get_num_channels()
	data_source_get_symbols_per_cycle()
	data_source_get_enable()
	data_source_set_enable()
	data_source_get_throttle()
	data_source_set_throttle()
	data_source_is_busy()
	data_source_fill_level()
	data_source_send_data()

	Test Pattern Checker API
	data_sink_reset()
	data_sink_init()
	data_sink_get_id()
	data_sink_get_supports_packets()
	data_sink_get_num_channels()
	data_sink_get_symbols_per_cycle()
	data_sink_get_enable()
	data_sink_set enable()
	data_sink_get_throttle()
	data_sink_set_throttle()
	data_sink_get_packet_count()
	data_sink_get_error_count()
	data_sink_get_symbol_count()
	data_sink_get_exception()
	data_sink_exception_is_exception()
	data_sink_exception_has_data_error()
	data_sink_exception_has_missing_sop()
	data_sink_exception_has_missing_eop()
	data_sink_exception_signalled_error()
	data_sink_exception_channel()


	Avalon-ST Splitter Core
	Splitter Core Backpressure
	Splitter Core Interfaces
	Splitter Core Parameters

	Avalon-ST Delay Core
	Delay Core Reset Signal
	Delay Core Interfaces
	Delay Core Parameters

	Avalon-ST Round Robin Scheduler
	Almost-Full Status Interface (Round Robin Scheduler)
	Request Interface (Round Robin Scheduler)
	Round Robin Scheduler Operation
	Round Robin Scheduler Parameters

	Avalon Packets to Transactions Converter
	Packets to Transactions Converter Interfaces
	Packets to Transactions Converter Operation
	Packets to Transactions Converter Data Packet Formats
	Packets to Transactions Converter Supported Transactions
	Packets to Transactions Converter Malformed Packets


	Avalon-ST Streaming Pipeline Stage
	Streaming Channel Multiplexer and Demultiplexer Cores
	Software Programming Model For the Multiplexer and Demultiplexer Components
	Avalon-ST Multiplexer
	Multiplexer Input Interfaces
	Multiplexer Output Interface
	Multiplexer Parameters

	Avalon-ST Demultiplexer
	Demultiplexer Input Interface
	Demultiplexer Output Interface
	Demultiplexer Parameters


	Single-Clock and Dual‑Clock FIFO Cores
	Interfaces Implemented in FIFO Cores
	Avalon-ST Data Interface
	Avalon-MM Control and Status Register Interface
	Avalon-ST Status Interface

	FIFO Operating Modes
	Fill Level of the FIFO Buffer
	Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
	Single-Clock and Dual-Clock FIFO Core Parameters
	Avalon-ST Single-Clock FIFO Registers

	Document Revision History


