
SCFIFO and DCFIFO IP Cores User Guide
2016.08.29

UG-MFNALT_FIFO Subscribe Send Feedback

Altera provides FIFO functions through the parameterizable single-clock FIFO (SCFIFO) and dual-clock
FIFO (DCFIFO) IP cores. The FIFO functions are mostly applied in data buffering applications that
comply with the first-in-first-out data flow in synchronous or asynchronous clock domains.

The specific names of the IP cores are as follows:

• SCFIFO: single-clock FIFO
• DCFIFO: dual-clock FIFO (supports same port widths for input and output data)
• DCFIFO_MIXED_WIDTHS: dual-clock FIFO (supports different port widths for input and output

data)

Note: The term “DCFIFO” refers to both the DCFIFO and DCFIFO_MIXED_WIDTHS IP cores, unless
specified.

Related Information

• Introduction to Altera IP Cores
Provides general information about all Altera FPGA IP cores, including parameterizing, generating,
upgrading, and simulating IP.

• Creating Version-Independent IP and Qsys Simulation Scripts
Create simulation scripts that do not require manual updates for software or IP version upgrades.

• Project Management Best Practices
Guidelines for efficient management and portability of your project and IP files.

• SCFIFO and DCFIFO IP Cores User Guide Archives on page 33
Provides a list of user guides for previous versions of the SCFIFO and DCFIFO IP cores.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-MFNALT_FIFO
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-MFNALT_FIFO%202016.08.29)%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/mwh1409960636914/mwh1409958250601/en-us
https://documentation.altera.com/#/link/mwh1409960636914/mwh1409958301774/en-us
https://documentation.altera.com/#/link/mwh1409960181641/esc1444754592005/en-us
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Configuration Methods
Table 1: Configuration Methods

You can configure and build the FIFO IP cores with methods shown in the following table.
Method Description

Using the FIFO parameter editor. Altera recommends using this method to build your
FIFO IP cores. It is an efficient way to configure and
build the FIFO IP cores. The FIFO parameter editor
provides options that you can easily use to configure
the FIFO IP cores.

You can access the FIFO IP core parameter editor in
Basic Functions > On Chip Memory > FIFO of the
IP catalog.(1)

Manually instantiating the FIFO IP cores. Use this method only if you are an expert user. This
method requires that you know the detailed specifi‐
cations of the IP cores. You must ensure that the
input and output ports used, and the parameter
values assigned are valid for the FIFO IP cores you
instantiate for your target device.

Related Information
Introduction to Altera IP Cores
Provides general information about the Quartus® Prime Parameter Editor

Specifications

Verilog HDL Prototype
You can locate the Verilog HDL prototype in the Verilog Design File (.v) altera_mf.v in the <Quartus®

Prime installation directory>\eda\sim_lib directory.

VHDL Component Declaration
The VHDL component declaration is located in the <Quartus Prime installation directory>\libraries\vhdl\
altera_mf\altera_mf_components.vhd

VHDL LIBRARY-USE Declaration
The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

LIBRARY altera_mf;

USE altera_mf_altera_mf_components.all;

(1) Do not use dcfifo or scfifo as the entity name for your FIFO Qsys system.

2 Configuration Methods
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


SCFIFO and DCFIFO Signals
This section provides diagrams of the SCFIFO and DCFIFO blocks to help in visualizing their input and
output ports. This section also describes each port in detail to help in understanding their usages,
functionality, or any restrictions. For better illustrations, some descriptions might refer you to a specific
section in this user guide.

Figure 1: SCFIFO and DCFIFO IP Cores Input and Output Signals

SCFIFO

data[7..0]

wrreq

rdreq

sclr

aclr

clock

almost_full

almost_empty

usedw[7..0]

empty

full

q[7..0]

DCFIFO

data[7..0]

wrreq

rdreq

wrempty

aclr

rdempty

rdusedw[8..0]

wrclk wrusedw[8..0]

q[7..0]

rdfull

wrfull

rdclk

eccstatus[1:0]

eccstatus[1:0]

For the SCFIFO block, the read and write signals are synchronized to the same clock; for the DCFIFO
block, the read and write signals are synchronized to the rdclk and wrclk clocks respectively. The prefixes
wr and rd represent the signals that are synchronized by the wrclk and rdclk clocks respectively.

Table 2: Input and Output Ports Description

This table lists the signals of the IP cores. The term “series” refers to all the device families of a particular device.
For example, “Stratix series” refers to the Stratix IV and Stratix V, unless specified otherwise.

Port Type Required Description

clock (2) Input Yes Positive-edge-triggered clock.
wrclk(3) Input Yes Positive-edge-triggered clock.

Use to synchronize the following ports:

• data

• wrreq

• wrfull

• wrempty

• wrusedw

(2) Only applicable for the SCFIFO IP core.
(3) Applicable for both of the DCFIFO IP cores.

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO Signals 3

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Port Type Required Description

rdclk(3) Input Yes Positive-edge-triggered clock.

Use to synchronize the following ports:

• q

• rdreq

• rdfull

• rdempty

• rdusedw

data (4) Input Yes Holds the data to be written in the FIFO IP core when the
wrreq signal is asserted. If you manually instantiate the
FIFO IP core, ensure the port width is equal to the lpm_
width parameter.

wrreq(4) Input Yes Assert this signal to request for a write operation.

Ensure that the following conditions are met:

• Do not assert the wrreq signal when the full (for
SCFIFO) or wrfull (for DCFIFO) port is high. Enable
the overflow protection circuitry or set the overflow_
checking parameter to ON so that the FIFO IP core
can automatically disable the wrreq signal when it is
full.

• The wrreq signal must meet the functional timing
requirement based on the full or wrfull signal.

• Do not assert the wrreq signal during the deassertion
of the aclr signal. Violating this requirement creates a
race condition between the falling edge of the aclr
signal and the rising edge of the write clock if the
wrreq port is set to high. For both the DCFIFO IP
cores that target Stratix and Cyclone series, you have
the option to automatically add a circuit to
synchronize the aclr signal with the wrclk clock, or
set the write_aclr_synch parameter to ON. Use this
option to ensure that the restriction is obeyed.

(4) Applicable for the SCFIFO, DCFIFO, and DCFIFO_MIXED_WIDTH IP cores.

4 SCFIFO and DCFIFO Signals
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Port Type Required Description

rdreq(4) Input Yes Assert this signal to request for a read operation. The
rdreq signal acts differently in normal mode and show-
ahead mode.

Ensure that the following conditions are met:

• Do not assert the rdreq signal when the empty (for
SCFIFO) or rdempty (for DCFIFO) port is high.
Enable the underflow protection circuitry or set the
underflow_checking parameter to ON so that the
FIFO IP core can automatically disable the rdreq
signal when it is empty.

• The rdreq signal must meet the functional timing
requirement based on the empty or rdempty signal.

sclr(2)

aclr(4)

Input No Assert this signal to clear all the output status ports, but
the effect on the q output may vary for different FIFO
configurations.

There are no minimum number of clock cycles for aclr
signals that must remain active.

q(4) Output Yes Shows the data read from the read request operation.

For the SCFIFO IP core and DCFIFO IP core, the width of
the q port must be equal to the width of the data port. If
you manually instantiate the IP cores, ensure that the port
width is equal to the lpm_width parameter.

For the DCFIFO_MIXED_WIDTHS IP core, the width of
the q port can be different from the width of the data
port. If you manually instantiate the IP core, ensure that
the width of the q port is equal to the lpm_width_r
parameter. The IP core supports a wide write port with a
narrow read port, and vice versa. However, the width ratio
is restricted by the type of RAM block, and in general, are
in the power of 2.

full(2)

wrfull(3)(5)

rdfull(3)(5)

Output No When asserted, the FIFO IP core is considered full. Do
not perform write request operation when the FIFO IP
core is full.

In general, the rdfull signal is a delayed version of the
wrfull signal. However, for Stratix III devices and later,
the rdfull signal function as a combinational output
instead of a derived version of the wrfull signal.
Therefore, you must always refer to the wrfull port to
ensure whether or not a valid write request operation can
be performed, regardless of the target device.

(5) Only applicable for the DCFIFO_MIXED_WIDTHS IP core.

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO Signals 5

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Port Type Required Description

empty(2)

wrempty(3)(5)

rdempty(3)(5)

Output No When asserted, the FIFO IP core is considered empty. Do
not perform read request operation when the FIFO IP
core is empty.

In general, the wrempty signal is a delayed version of the
rdempty signal. However, for Stratix III devices and later,
the wrempty signal function as a combinational output
instead of a derived version of the rdempty signal.
Therefore, you must always refer to the rdempty port to
ensure whether or not a valid read request operation can
be performed, regardless of the target device.

almost_full(2) Output No Asserted when the usedw signal is greater than or equal to
the almost_full_value parameter. It is used as an early
indication of the full signal.

almost_empty (2) Output No Asserted when the usedw signal is less than the almost_
empty_value parameter. It is used as an early indication
of the empty signal.(6)

usedw(2)

wrusedw(3)(5)

rdusedw(3)(5)

Output No Show the number of words stored in the FIFO.

Ensure that the port width is equal to the lpm_widthu
parameter if you manually instantiate the SCFIFO IP core
or the DCFIFO IP core. For the DCFIFO_MIXED_
WIDTH IP core, the width of the wrusedw and rdusedw
ports must be equal to the LPM_WIDTHU and lpm_widthu_
r parameters respectively.

For Stratix, Stratix GX, and Cyclone devices, the FIFO IP
core shows full even before the number of words stored
reaches its maximum value. Therefore, you must always
refer to the full or wrfull port for valid write request
operation, and the empty or rdempty port for valid read
request operation regardless of the target device.

(6) Under certain condition, the SCFIFO asserts the empty signal without ever asserting the almost_empty
signal. Refer to SCFIFO ALMOST_EMPTY Functional Timing on page 12 for more details.

6 SCFIFO and DCFIFO Signals
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Port Type Required Description

eccstatus(7) Output No A 2-bit wide error correction status port. Indicate whether
the data that is read from the memory has an error in
single-bit with correction, fatal error with no correction,
or no error bit occurs.

• 00: No error
• 01: Illegal
• 10: A correctable error occurred and the error has

been corrected at the outputs; however, the memory
array has not been updated.

• 11:An uncorrectable error occurred and uncorrectable
data appears at the output.

This port is only available for Arria 10 devices using
M20K memory block type.

The DCFIFO IP core rdempty output may momentarily glitch when the aclr input is asserted. To prevent
an external register from capturing this glitch incorrectly, ensure that one of the following is true:

• The external register must use the same reset which is connected to the aclr input of the DCFIFO IP
core, or

• The reset connected to the aclr input of the DCFIFO IP core must be asserted synchronous to the
clock which drives the external register.

The output latency information of the FIFO IP cores is important, especially for the q output port, because
there is no output flag to indicate when the output is valid to be sampled.

SCFIFO and DCFIFO Parameters

Table 3: SCFIFO and DCFIFO Parameters

Parameter Type Required Description

lpm_width Integer Yes Specifies the width of the data and q ports for the
SCFIFO IP core and DCFIFO IP core. For the
DCFIFO_MIXED_WIDTHS IP core, this
parameter specifies only the width of the data
port.

lpm_width_r (8) Integer Yes Specifies the width of the q port for the DCFIFO_
MIXED_WIDTHS IP core.

lpm_widthu Integer Yes Specifies the width of the usedw port for the
SCFIFO IP core, or the width of the rdusedw and
wrusedw ports for the DCFIFO IP core. For the
DCFIFO_MIXED_WIDTHS IP core, it only
represents the width of the wrusedw port.

lpm_widthu_r Integer Yes Specifies the width of the rdusedw port for the
DCFIFO_MIXED_WIDTHS IP core.

(7) Not applicable for the DCFIFO_MIXED_WIDTHS IP core.
(8) Only applicable for the DCFIFO_MIXED_WIDTHS IP core.

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO Parameters 7

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameter Type Required Description

lpm_numwords Integer Yes Specifies the depths of the FIFO you require. The
value must be at least 4.

The value assigned must comply to the following
equation:

2^LPM_WIDTHU

lpm_showahead String Yes Specifies whether the FIFO is in normal mode
(OFF) or show-ahead mode (ON). SCFIFO and
DCFIFO Show-Ahead Mode.

If you set the parameter to ON, you may reduce
performance.

lpm_type String No Identifies the library of parameterized modules
(LPM) entity name. The values are SCFIFO and
DCFIFO.

overflow_checking String No Specifies whether or not to enable the protection
circuitry for overflow checking that disables the
wrreq port when the FIFO IP core is full. The
values are ON or OFF. If omitted, the default is
ON.

underflow_checking String No Specifies whether or not to enable the protection
circuitry for underflow checking that disables the
rdreq port when the FIFO IP core is empty. The
values are ON or OFF. If omitted, the default is
ON.

Note that reading from an empty SCFIFO gives
unpredictable results.

enable_ecc(9) String No Specifies whether to enable the ECC feature that
corrects single bit errors, double adjacent bit
errors, and detects triple adjacent bit errors at the
output of the memory. This option is only available
for Arria 10 devices using M20K memory block
type.

The ECC is disabled by default.

delay_rdusedw (10)

delay_wrusedw(10)

String No Specify the number of register stages that you want
to internally add to the rdusedw or wrusedw port
using the respective parameter.

The default value of 1 adds a single register stage to
the output to improve its performance. Increasing
the value of the parameter does not increase the
maximum system speed. It only adds additional
latency to the respective output port.

(9) Not applicable for the DCFIFO_MIXED_WIDTHS IP core.
(10) Only applicable for the DCFIFO IP core.

8 SCFIFO and DCFIFO Parameters
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameter Type Required Description

rdsync_delaypipe (10)

wrsync_delaypipe (10)

Integer No Specify the number of synchronization stages in
the cross clock domain. The value of the rdsync_
delaypipe parameter relates the synchronization
stages from the write control logic to the read
control logic; the wrsync_delaypipe parameter
relates the synchronization stages from the read
control logic to the write control logic. Use these
parameters to set the number of synchronization
stages if the clocks are not synchronized, and set
the clocks_are_synchronized parameter to
FALSE.

The actual synchronization stage implemented
relates variously to the parameter value assigned,
depends on the target device.

The values of these parameters are internally
reduced by two. Thus, the default value of 3 for
these parameters corresponds to a single synchro‐
nization stage; a value of 4 results in two synchro‐
nization stages, and so on. Choose at least 4 (two
synchronization stages) for metastability
protection.

use_eab String No Specifies whether or not the FIFO IP core is
constructed using the RAM blocks. The values are
ON or OFF.

Setting this parameter value to OFF yields the
FIFO IP core implemented in logic elements
regardless of the type of the TriMatrix memory
block type assigned to the ram_block_type
parameter.

This parameter is enabled by default. FIFO will be
implemented using RAM blocks specified in ram_
block_type.

write_aclr_synch(10) String No Specifies whether or not to add a circuit that
causes the aclr port to be internally synchronized
by the wrclk clock. Adding the circuit prevents the
race condition between the wrreq and aclr ports
that could corrupt the FIFO IP core.

The values are ON or OFF. If omitted, the default
value is OFF. This parameter is only applicable for
Stratix and Cyclone series.

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO Parameters 9

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameter Type Required Description

read_aclr_synch String No Specifies whether or not to add a circuit that
causes the aclr port to be internally synchronized
by the rdclk clock. Adding the circuit prevents the
race condition between the rdreq and aclr ports
that could corrupt the FIFO IP core.

The values are ON or OFF. If omitted, the default
value is OFF.

clocks_are_synchronized (10) String No Specifies whether or not the write and read clocks
are synchronized which in turn determines the
number of internal synchronization stages added
for stable operation of the FIFO. The values are
TRUE and FALSE. If omitted, the default value is
FALSE. You must only set the parameter to TRUE
if the write clock and the read clock are always
synchronized and they are multiples of each other.
Otherwise, set this to FALSE to avoid metastability
problems.

If the clocks are not synchronized, set the
parameter to FALSE, and use the rdsync_
delaypipe and wrsync_delaypipe parameters to
determine the number of synchronization stages
required.

ram_block_type String No Specifies the target device’s Trimatrix Memory
Block to be used. To get the proper implementa‐
tion based on the RAM configuration that you set,
allow the Quartus Prime software to automatically
choose the memory type by ignoring this
parameter and set the use_eab parameter to ON.
This gives the compiler the flexibility to place the
memory function in any available memory
resource based on the FIFO depth required. Types
of RAM block type available; MLAB, M20K and
M144K.

add_ram_output_register String No Specifies whether to register the q output. The
values are ON and OFF. If omitted, the default
value is OFF.

You can set the parameter to ON or OFF for the
SCFIFO or the DCFIFO, that do not target
Stratix II, Cyclone II, and new devices. This
parameter does not apply to these devices because
the q output must be registered in normal mode
and unregistered in show-ahead mode for the
DCFIFO.

10 SCFIFO and DCFIFO Parameters
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Parameter Type Required Description

almost_full_value (11) Integer No Sets the threshold value for the almost_full port.
When the number of words stored in the FIFO IP
core is greater than or equal to this value, the
almost_full port is asserted.

almost_empty_value Integer No Sets the threshold value for the almost_empty
port. When the number of words stored in the
FIFO IP core is less than this value, the almost_
empty port is asserted.

allow_wrcycle_when_full(11) String No Allows you to combine read and write cycles to an
already full SCFIFO, so that it remains full. The
values are ON and OFF. If omitted, the default is
OFF. Use only this parameter when the OVERFLOW_
CHECKING parameter is set to ON.

intended_device_family String No Specifies the intended device that matches the
device set in your Quartus Prime project. Use only
this parameter for functional simulation.

SCFIFO and DCFIFO Functional Timing Requirements
The wrreq signal is ignored (when FIFO is full) if you enable the overflow protection circuitry in the FIFO
parameter editor, or set the OVERFLOW_CHECKING parameter to ON. The rdreq signal is ignored (when FIFO
is empty) if you enable the underflow protection circuitry in the FIFO IP core interface, or set the
UNDERFLOW_CHECKING parameter to ON.

If the protection circuitry is not enabled, you must meet the following functional timing requirements:

Table 4: Functional Timing Requirements

DCFIFO SCFIFO

Deassert the wrreq signal in the same clock cycle
when the wrfull signal is asserted.

Deassert the wrreq signal in the same clock cycle
when the full signal is asserted.

Deassert the rdreq signal in the same clock cycle
when the rdempty signal is asserted. You must
observe these requirements regardless of expected
behavior based on wrclk and rdclk frequencies.

Deassert the rdreq signal in the same clock cycle
when the empty signal is asserted.

(11) Only applicable for the SCFIFO IP core.

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO Functional Timing Requirements 11

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 2: Functional Timing for the wrreq Signal and the wrfull Signal

This figure shows the behavior for the wrreq and the wrfull signals.

Figure 3: Functional Timing for the rdreq Signal and the rdempty Signal

This shows the behavior for the rdreq the rdempty signals.

The required functional timing for the DCFIFO as described previously is also applied to the SCFIFO. The
difference between the two modes is that for the SCFIFO, the wrreq signal must meet the functional
timing requirement based on the full signal and the rdreq signal must meet the functional timing
requirement based on the empty signal.

SCFIFO ALMOST_EMPTY Functional Timing
In SCFIFO, the almost_emtpy is asserted only when the usedw is lesser than the almost_empty_value
that you set. The almost_empty signal does not consider the data readiness at the output. When the
almost_empty_value is set too low, it is possible to observe that SCFIFO asserts the empty signal without
asserting the almost_emtpy signal.

12 SCFIFO ALMOST_EMPTY Functional Timing
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 4: Example of empty Signal Assertion without Asserting almost_emtpy Signal

In this example, the almost_empty_value is 1 which means the almost_emtpy will assert when usedw is
0. There are three words in the FIFO before the read request is received. After the first read, the wrreq
asserts and the rdreq signal remains high. The usedw remains at 2. In the next cycle, the wrreq de-asserts
but there is another rdreq going on. The usedw decrease to 1 and the almost_emtpy signal remains low.
However, the write data has not been written into the FIFO due to the write latency. The empty signal
asserts to indicate the FIFO is empty.

SCFIFO and DCFIFO Output Status Flag and Latency
The main concern in most FIFO design is the output latency of the read and write status signals.

Table 5: Output Latency of the Status Flags for SCFIFO

This table shows the output latency of the write signal (wrreq) and read signal (rdreq) for the SCFIFO according
to the different output modes and optimization options.

Output Mode Optimization Option(12) Output Latency (in number of clock cycles)(13)

Normal (14)

Speed

wrreq / rdreq to full: 1
wrreq to empty: 2
rdreq to empty: 1
wrreq / rdreq to usedw[]: 1
rdreq to q[]: 1

Area

wrreq / rdreq to full: 1
wrreq / rdreq to empty : 1
wrreq / rdreq to usedw[] : 1
rdreq to q[]: 1

(12) Speed optimization is equivalent to setting the ADD_RAM_OUTPUT_REGISTER parameter to ON. Setting the
parameter to OFF is equivalent to area optimization.

(13) The information of the output latency is applicable for Stratix and Cyclone series only. It may not be
applicable for legacy devices such as the APEX® and FLEX® series.

(14) Normal output mode is equivalent to setting the LPM_SHOWAHEAD parameter to OFF. For Show-ahead mode,
the parameter is set to ON.

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO Output Status Flag and Latency 13

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Output Mode Optimization Option(12) Output Latency (in number of clock cycles)(13)

Show-ahead(14)

Speed

wrreq / rdreq to full: 1
wrreq to empty: 3
rdreq to empty: 1
wrreq / rdreq to usedw[]: 1
wrreq to q[]: 3
rdreq to q[]: 1

Area

wrreq / rdreq to full: 1
wrreq to empty: 2
rdreq to empty: 1
wrreq / rdreq to usedw[]: 1
wrreq to q[]: 2
rdreq to q[]: 1

Table 6: LE Implemented RAM Mode for SCFIFO and DCFIFO

Output Mode Optimization Option (15) Output Latency (in number of clock cycles) (16)

Normal (17)

Speed

wrreq / rdreq to full: 1
wrreq to empty: 2
rdreq to empty: 1
wrreq / rdreq to usedw[]: 1
rdreq to q[]: 1

Area

wrreq / rdreq to full: 1
wrreq / rdreq to empty : 1
wrreq / rdreq to usedw[] : 1
rdreq to q[]: 1

(12) Speed optimization is equivalent to setting the ADD_RAM_OUTPUT_REGISTER parameter to ON. Setting the
parameter to OFF is equivalent to area optimization.

(13) The information of the output latency is applicable for Stratix and Cyclone series only. It may not be
applicable for legacy devices such as the APEX® and FLEX® series.

(15) Speed optimization is equivalent to setting the ADD_RAM_OUTPUT_REGISTER parameter to ON. Setting the
parameter to OFF is equivalent to area optimization.

(16) The information of the output latency is applicable for Stratix and Cyclone series only. It may not be
applicable for legacy devices such as the APEX® and FLEX® series.

(17) Normal output mode is equivalent to setting the LPM_SHOWAHEAD parameter to OFF. For Show-ahead mode,
the parameter is set to ON.

14 SCFIFO and DCFIFO Output Status Flag and Latency
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Output Mode Optimization Option (15) Output Latency (in number of clock cycles) (16)

Show-ahead(17)

Speed

wrreq / rdreq to full: 1
wrreq to empty: 3
rdreq to empty: 1
wrreq / rdreq to usedw[]: 1
wrreq to q[]: 1
rdreq to q[]: 1

Area

wrreq / rdreq to full: 1
wrreq to empty: 2
rdreq to empty: 1
wrreq / rdreq to usedw[]: 1
wrreq to q[]: 1
rdreq to q[]: 1

Table 7: Output Latency of the Status Flag for the DCFIFO

This table shows the output latency of the write signal (wrreq) and read signal (rdreq) for the DCFIFO.
Output Latency (in number of clock cycles)(18)

wrreq to wrfull: 1 wrclk
wrreq to rdfull: 2 wrclk cycles + following n rdclk (19)

wrreq to wrempty: 1 wrclk
wrreq to rdempty: 2 wrclk(20) + following n rdclk (20)

wrreq to wrusedw[]: 2 wrclk
wrreq to rdusedw[]: 2 wrclk + following n + 1 rdclk (20)

wrreq to q[]: 1 wrclk + following 1 rdclk (20)

rdreq to rdempty: 1 rdclk
rdreq to wrempty: 1 rdclk + following n wrclk (20)

rdreq to rfull: 1 rdclk

(15) Speed optimization is equivalent to setting the ADD_RAM_OUTPUT_REGISTER parameter to ON. Setting the
parameter to OFF is equivalent to area optimization.

(16) The information of the output latency is applicable for Stratix and Cyclone series only. It may not be
applicable for legacy devices such as the APEX® and FLEX® series.

(18) The output latency information is only applicable for Arria® GX, Stratix, and Cyclone series.
(19) The number of n cycles for rdclk and wrclk is equivalent to the number of synchronization stages and are

related to the WRSYNC_DELAYPIPE and RDSYNC_DELAYPIPE parameters. For more information about how the
actual synchronization stage (n) is related to the parameters set for different target device, refer to Table 9

(20) This is applied only to Show-ahead output modes. Show-ahead output mode is equivalent to setting the LPM_
SHOWAHEAD parameter to ON

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO Output Status Flag and Latency 15

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Output Latency (in number of clock cycles)(18)

rdreq to wrfull: 1 rdclk + following n wrclk (20)

rdreq to rdusedw[]: 2 rdclk
rdreq to wrusedw[]: 1 rdclk + following n + 1 wrclk (20)

rdreq to q[]: 1 rdclk

SCFIFO and DCFIFO Metastability Protection and Related Options
The FIFO parameter editor provides the total latency, clock synchronization, metastability protection,
area, and fMAX options as a group setting for the DCFIFO.

Table 8: DCFIFO Group Setting for Latency and Related Options

This table shows the available group setting.
Group Setting Comment

Lowest latency but requires synchronized clocks This option uses one synchronization stage with no
metastability protection. It uses the smallest size and
provides good fMAX.

Select this option if the read and write clocks are
related clocks.

Minimal setting for unsynchronized clocks This option uses two synchronization stages with
good metastability protection. It uses the medium
size and provides good fMAX.

Best metastability protection, best fmax and
unsynchronized clocks

This option uses three or more synchronization
stages with the best metastability protection. It uses
the largest size but gives the best fMAX.

The group setting for latency and related options is available through the FIFO parameter editor. The
setting mainly determines the number of synchronization stages, depending on the group setting you
select. You can also set the number of synchronization stages you desire through the WRSYNC_DELAYPIPE
and RDSYNC_DELAYPIPE parameters, but you must understand how the actual number of synchronization
stages relates to the parameter values set in different target devices.

The number of synchronization stages set is related to the value of the WRSYNC_DELAYPIPE and
RDSYNC_DELAYPIPE pipeline parameters. For some cases, these pipeline parameters are internally scaled
down by two to reflect the actual synchronization stage.

Table 9: Relationship between the Actual Synchronization Stage and the Pipeline Parameters for Different
Target Devices

This table shows the relationship between the actual synchronization stage and the pipeline parameters.
Stratix II, Cyclone II, and later Other Devices

Actual synchronization stage = value of
pipeline parameter - 2 (21)

Actual synchronization stage = value of pipeline parameter

(18) The output latency information is only applicable for Arria® GX, Stratix, and Cyclone series.

16 SCFIFO and DCFIFO Metastability Protection and Related Options
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


The TimeQuest timing analyzer includes the capability to estimate the robustness of asynchronous
transfers in your design, and to generate a report that details the mean time between failures (MTBF) for
all detected synchronization register chains. This report includes the MTBF analysis on the synchroniza‐
tion pipeline you applied between the asynchronous clock domains in your DCFIFO. You can then decide
the number of synchronization stages to use in order to meet the range of the MTBF specification you
require.

Related Information

• Timing Closure and Optimization
Provides information about enabling metastability analysis and reporting.

• Area Optimization
Provides information about enabling metastability analysis and reporting.

• The TimeQuest Timing Analyzer
Provides information about enabling metastability analysis and reporting.

SCFIFO and DCFIFO Synchronous Clear and Asynchronous Clear Effect
The FIFO IP cores support the synchronous clear (sclr) and asynchronous clear (aclr) signals,
depending on the FIFO modes. The effects of these signals are varied for different FIFO configurations.
The SCFIFO supports both synchronous and asynchronous clear signals while the DCFIFO support
asynchronous clear signal and asynchronous clear signal that synchronized with the write and read clocks.

Table 10: Synchronous Clear and Asynchronous Clear in the SCFIFO

Mode Synchronous Clear (sclr)(22) Asynchronous Clear (aclr)

Effects on status ports
Deasserts the full and almost_full signals.

Asserts the empty and almost_empty signals.
Resets the usedw flag.

Commencement of effects upon
assertion

At the rising edge of the clock. Immediate (except for the q
output)

Effects on the q output for
normal output modes

The read pointer is reset and points
to the first data location. If the q
output is not registered, the output
shows the first data word of the
SCFIFO; otherwise, the q output
remains at its previous value.

The q output remains at its
previous value.

(21) The values assigned to WRSYNC_DELAYPIPE and RDSYNC_DELAYPIPE parameters are internally reduced by 2 to
represent the actual synchronization stage implemented. Thus, the default value 3 for these parameters
corresponds to a single synchronization pipe stage; a value of 4 results in 2 synchronization stages, and so on.
For these devices, choose 4 (2 synchronization stages) for metastability protection.

(22) The read and write pointers reset to zero upon assertion of either the sclr or aclr signal.

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO Synchronous Clear and Asynchronous Clear Effect 17

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471203263/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471288350/en-us
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Mode Synchronous Clear (sclr)(22) Asynchronous Clear (aclr)

Effects on the q output for show-
ahead output modes

The read pointer is reset and points
to the first data location. If the q
output is not registered, the output
remains at its previous value for
only one clock cycle and shows the
first data word of the SCFIFO at the
next rising clock edge. (23)

Otherwise, the q output remains at
its previous value.

If the q output is not registered,
the output shows the first data
word of the SCFIFO starting at
the first rising clock edge.

Otherwise, the q output remains
its previous value.

Table 11: Asynchronous Clear in DCFIFO

Mode Asynchronous Clear (aclr) aclr (synchronize with write
clock) (24) , (25)

aclr (synchronize with read
clock) (26) , (27)

Effects on status ports

Deasserts the wrfull
signal.

The wrfull signal is
asserted while the write
domain is clearing which
nominally takes three
cycles of the write clock
after the asynchronous
release of the aclr input.

The rdempty signal is
asserted while the read
domain is clearing
which nominally takes
three cycles of the read
clock after the
asynchronous release of
the aclr input.

Deasserts the rdfull signal.
Asserts the wrempty and rdempty signals.
Resets the wrusedw and rdusedw flags.

Commencement of
effects upon assertion

Immediate.

(22) The read and write pointers reset to zero upon assertion of either the sclr or aclr signal.
(23) The first data word shown after the reset is not a valid Show-ahead data. It reflects the data where the read

pointer is pointing to because the q output is not registered. To obtain a valid Show-ahead data, perform a
valid write after the reset.

(24) The wrreq signal must be low when the DCFIFO comes out of reset (the instant when the aclr signal is
deasserted) at the rising edge of the write clock to avoid a race condition between write and reset. If this
condition cannot be guaranteed in your design, the aclr signal needs to be synchronized with the write
clock. This can be done by setting the Add circuit to synchronize 'aclr' input with 'wrclk' option from the
FIFO parameter editor, or setting the WRITE_ACLR_SYNCH parameter to ON.

(25) Even though the aclr signal is synchronized with the write clock, asserting the aclr signal still affects all the
status flags asynchronously.

(26) The rdreq signal must be low when the DCFIFO comes out of reset (the instant when the aclr signal is
deasserted) at the rising edge of the read clock to avoid a race condition between read and reset. If this
condition cannot be guaranteed in your design, the aclr signal needs to be synchronized with the read
clock. This can be done by setting the Add circuit to synchronize 'aclr' input with 'rdclk' option from the
FIFO parameter editor, or setting the READ_ACLR_SYNCH parameter to ON.

(27) Even though the aclr signal is synchronized with the read clock, asserting the aclr signal affects all the
status flags asynchronously.

18 SCFIFO and DCFIFO Synchronous Clear and Asynchronous Clear Effect
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Mode Asynchronous Clear (aclr) aclr (synchronize with write
clock) (24) , (25)

aclr (synchronize with read
clock) (26) , (27)

Effects on the q output
for normal output
modes 

The output remains unchanged if it is not registered. If the port is registered, it is
cleared.

Effects on the q output
for show-ahead output
modes

The output shows 'X' if it is not registered. If the port is registered, it is cleared.

Recovery and Removal Timing Violation Warnings when Compiling a DCFIFO IP
Core

During compilation of a design that contains a DCFIFO IP core, the Quartus Prime software may issue
recovery and removal timing violation warnings.

You may safely ignore warnings that represent transfers from aclr to the read side clock domain. To
ensure that the design meets timing, enable the ACLR synchronizer for both read and write domains.

To enable the ACLR synchronizer for both read and write domains, on the DCFIFO 2 tab of the FIFO IP
core, turn on Asynchronous clear, Add circuit to synchronize ‘aclr’ input with ‘wrclk’, and Add circuit
to synchronize ‘aclr’ input with ‘rdclk’.

Note: For correct timing analysis, Altera recommends enabling the Removal and Recovery Analysis
option in the TimeQuest timing analyzer tool when you use the aclr signal. The analysis is turned
on by default in the TimeQuest timing analyzer tool.

SCFIFO and DCFIFO Show-Ahead Mode
You can set the read request/rdreq signal read access behavior by selecting normal or show-ahead mode.

(24) The wrreq signal must be low when the DCFIFO comes out of reset (the instant when the aclr signal is
deasserted) at the rising edge of the write clock to avoid a race condition between write and reset. If this
condition cannot be guaranteed in your design, the aclr signal needs to be synchronized with the write
clock. This can be done by setting the Add circuit to synchronize 'aclr' input with 'wrclk' option from the
FIFO parameter editor, or setting the WRITE_ACLR_SYNCH parameter to ON.

(25) Even though the aclr signal is synchronized with the write clock, asserting the aclr signal still affects all the
status flags asynchronously.

(26) The rdreq signal must be low when the DCFIFO comes out of reset (the instant when the aclr signal is
deasserted) at the rising edge of the read clock to avoid a race condition between read and reset. If this
condition cannot be guaranteed in your design, the aclr signal needs to be synchronized with the read
clock. This can be done by setting the Add circuit to synchronize 'aclr' input with 'rdclk' option from the
FIFO parameter editor, or setting the READ_ACLR_SYNCH parameter to ON.

(27) Even though the aclr signal is synchronized with the read clock, asserting the aclr signal affects all the
status flags asynchronously.

(28) For Stratix and Cyclone series, the DCFIFO only supports registered q output in Normal mode, and unregis‐
tered q output in Show-ahead mode. For other devices, you have an option to register or unregister the q
output (regardless of the Normal mode or Show-ahead mode) in the FIFO parameter editor or set through
the ADD_RAM_OUTPUT_REGISTER parameter.

UG-MFNALT_FIFO
2016.08.29 Recovery and Removal Timing Violation Warnings when Compiling a DCFIFO IP Core 19

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


For normal mode, the FIFO IP core treats the rdreq port as a normal read request that only performs read
operation when the port is asserted.

For show-ahead mode, the FIFO IP core treats the rdreq port as a read-acknowledge that automatically
outputs the first word of valid data in the FIFO IP core (when the empty is low) without asserting the
rdreq signal. Asserting the rdreq signal causes the FIFO IP core to output the next data word, if available.

Figure 5: Normal Mode Waveform

Data appears after the rdreq asserted.

Figure 6: Show-Ahead Mode Waveform

Data appears before the rdreq asserted.

Different Input and Output Width
The DCFIFO_MIXED_WIDTHS IP core supports different write input data and read output data widths
if the width ratio is valid. The FIFO parameter editor prompts an error message if the combinations of the
input and the output data widths produce an invalid ratio. The supported width ratio in a power of 2 and
depends on the RAM.

The IP core supports a wide write port with a narrow read port, and vice versa.

20 Different Input and Output Width
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 7: Writing 16-bit Words and Reading 8-bit Words

This figure shows an example of a wide write port (16-bit input) and a narrow read port (8-bit output).

In this example, the read port is operating at twice the frequency of the write port. Writing two 16-bit
words to the FIFO buffer increases the wrusedw flag to two and the rusedw flag to four. Four 8-bit read
operations empty the FIFO buffer. The read begins with the least-significant 8 bits from the 16-bit word
written followed by the most-significant 8 bits.

Figure 8: Writing 8-Bit Words and Reading 16-Bit Words

This figure shows an example of a narrow write port (8-bit input) with a wide read port (16-bit output).

In this example, the read port is operating at half the frequency of the write port. Writing four 8-bit words
to the FIFO buffer increases the wrusedw flag to four and the rusedw flag to two. Two 16-bit read
operations empty the FIFO. The first and second 8-bit word written are equivalent to the LSB and MSB of
the 16-bit output words, respectively. The rdempty signal stays asserted until enough words are written on
the narrow write port to fill an entire word on the wide read port.

UG-MFNALT_FIFO
2016.08.29 Different Input and Output Width 21

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


DCFIFO Timing Constraint Setting
The FIFO parameter editor provides the timing constraint setting for the DCFIFO IP core.

Table 12: DCFIFO Timing Constraint Setting Parameter in Quartus Prime

Parameter Description

Generate SDC File and
disable embedded
timing constraint(29)(30)

Allows you to bypass embedded timing constraints that uses set_false_path in
the synchronization registers. A user configurable SDC file is generated automat‐
ically when DCFIFO is instantiated from the IP Catalog. New timing constraints
consist of set_net_delay, set_max_skew, set_min_delay and set_max_delay
are used to constraint the design properly.

Embedded Timing Constraint
When using the Quartus Prime TimeQuest timing analyzer with a design that contains a DCFIFO block
apply the following false paths to avoid timing failures in the synchronization registers:

• For paths crossing from the write into the read domain, apply a false path assignment between the
delayed_wrptr_g and rs_dgwp registers:

set_false_path -from [get_registers {*dcfifo*delayed_wrptr_g[*]}] -to [get_registers

{*dcfifo*rs_dgwp*}]

• For paths crossing from the read into the write domain, apply a false path assignment between the
rdptr_g and ws_dgrp registers:

set_false_path -from [get_registers {*dcfifo*rdptr_g[*]}] -to [get_registers

{*dcfifo*ws_dgrp*}]

The false path assignments are automatically added through the HDL-embedded Synopsis design
constraint (SDC) commands when you compile your design. The related message is shown under the
TimeQuest timing analyzer report.

Note: The constraints are internally applied but are not written to the Synopsis Design Constraint File
(.sdc). To view the embedded-false path, type report_sdc in the console pane of the TimeQuest
timing analyzer GUI.

If you use the Quartus Prime timing analyzer, the false paths are applied automatically for the DCFIFO.

Note: If the DCFIFO is implemented in logic elements (LEs), you can ignore the cross-domain timing
violations from the data path of the DFFE array (that makes up the memory block) to the q output
register. To ensure the q output is valid, sample the output only after the rdempty signal is
deasserted.

Related Information
Quartus Prime TimeQuest Timing Analyzer

(29) Parameter is available in Quartus Prime v15.1 and applicable for Arria® 10 devices only. You can disable the
embedded timing constraint with QSF setting in prior Quartus Prime versions and other devices. Please
refer to KDB link on the QSF assignment setting.

(30) Altera recommends that you select this option for high frequency DCFIFO design.

22 DCFIFO Timing Constraint Setting
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

https://documentation.altera.com/#/link/jbr1437428483891/mwh1410383638859/en-us
http://www.altera.com/support/kdb/solutions/rd02232015_507.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


User Configurable Timing Constraint
DCFIFO contains multi-bit gray-coded asynchronous clock domain crossing (CDC) paths which derives
the DCFIFO fill-level. In order for the logic to work correctly, the value of the multi-bit must always be
sampled as 1-bit change at a given latching clock edge.

In the physical world, flip-flops do not have the same data and clock path insertion delays. It is important
for you to ensure and check the 1-bit change property is properly set. You can confirm this using the Fitter
and check using the TimeQuest timing anaylyzer.

TimeQuest timing analyzer will apply the following timing constraints for DCFIFO:

• Paths crossing from write into read domain are defined from the delayed_wrptr_g to rs_dgwp
registers.

•
set from_node_list [get_keepers $hier_path|dcfifo_component|auto_generated|
delayed_wrptr_g*]

•
set to_node_list [get_keepers $hier_path|dcfifo_component|auto_generated|
rs_dgwp|dffpipe*|dffe*]

• Paths crossing from read into write domain are defined from the rdptr_g and ws_dgrp registers.

•
set from_node_list [get_keepers $hier_path|dcfifo_component|auto_generated|
*rdptr_g*]

•
set to_node_list [get_keepers $hier_path|dcfifo_component|auto_generated|
ws_dgrp|dffpipe*|dffe*]

• For the above paths which cross between write and read domain, the following assignments apply:

•
set_max_skew -from $from_node_list -to $to_node_list
-get_skew_value_from_clock_period src_clock_period -skew_value_multiplier 0.8

•
set_min_delay -from $from_node_list -to $to_node_list -100

•
set_max_delay -from $from_node_list -to $to_node_list 100

•
set_net_delay -from $from_node_list -to $to_node_list -max
-get_value_from_clock_period dst_clock_period -value_multiplier 0.8

• The following set_net_delay on cross clock domain nets are for metastability:.

•
set from_node_mstable_list [get_keepers $hier_path|dcfifo_component|
auto_generated|ws_dgrp|dffpipe*|dffe*]
set to_node_mstable_list [get_keepers $hier_path|dcfifo_component|
auto_generated|ws_dgrp|dffpipe*|dffe*] 

•
set from_node_mstable_list [get_keepers $hier_path|dcfifo_component|
auto_generated|rs_dgwp|dffpipe*|dffe*]
set to_node_mstable_list [get_keepers $hier_path|dcfifo_component|
auto_generated|rs_dgwp|dffpipe*|dffe*]

•
set_net_delay -from $from_node_list -to $to_node_list -max -
get_value_from_clock_period dst_clock_period -value_multiplier 0.8

UG-MFNALT_FIFO
2016.08.29 User Configurable Timing Constraint 23

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


TimeQuest timing analyzer will apply the following timing constraints for mix-width DCFIFO:

• Paths crossing from write into read domain are defined from the delayed_wrptr_g to rs_dgwp
registers.

•
set from_node_list [get_keepers $hier_path|dcfifo_mixed_widths_component|
auto_generated|delayed_wrptr_g*]

•
set to_node_list [get_keepers $hier_path|dcfifo_mixed_widths_component|
auto_generated|rs_dgwp|dffpipe*|dffe*]

• Paths crossing from read into write domain are defined from the rdptr_g and ws_dgrp registers.

•
set from_node_list [get_keepers $hier_path|dcfifo_mixed_widths_component|
auto_generated|*rdptr_g*]

•
set to_node_list [get_keepers $hier_path|dcfifo_mixed_widths_component|
auto_generated|ws_dgrp|dffpipe*|dffe*]

• For the above paths which cross between write and read domain, the following assignments apply:

•
set_max_skew -from $from_node_list -to $to_node_list -
get_skew_value_from_clock_period src_clock_period -skew_value_multiplier 0.8

•
set_min_delay -from $from_node_list -to $to_node_list -100

•
set_max_delay -from $from_node_list -to $to_node_list 100

•
set_net_delay -from $from_node_list -to $to_node_list -max -
get_value_from_clock_period dst_clock_period -value_multiplier 0.8

• The following set_net_delay on cross clock domain nets are for metastability:

•
set from_node_mstable_list [get_keepers $hier_path|
dcfifo_mixed_widths_component|auto_generated|ws_dgrp|dffpipe*|dffe*]
set to_node_mstable_list [get_keepers $hier_path|dcfifo_mixed_widths_component|
auto_generated|ws_dgrp|dffpipe*|dffe*] 

•
set from_node_mstable_list [get_keepers $hier_path|
dcfifo_mixed_widths_component|auto_generated|rs_dgwp|dffpipe*|dffe*]
set to_node_mstable_list [get_keepers $hier_path|dcfifo_mixed_widths_component|
auto_generated|rs_dgwp|dffpipe*|dffe*]

•
set_net_delay -from $from_node_list -to $to_node_list -max - 
get_value_from_clock_period dst_clock_period -value_multiplier 0.8

24 User Configurable Timing Constraint
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


SDC Commands

Table 13: SDC Commands usage in the Quartus Prime Fitter and TimeQuest Timing Analyzer

These SDC descriptions provided are overview for DCFIFO use case. For the exact SDC details, refer to the
Quartus Prime TimeQuest Timing Analyzer chapter in the Quartus Prime Pro Edition Handbook.

SDC Command Fitter TimeQuest Analyzer Recommended Settings

set_max_

skew(31)
To constraint placement and
routing of flops in the multi-bit
CDC paths to meet the specified
skew requirement among bits.

To analyze whether the specified
skew requirement is fully met.
Both clock and data paths are
taken into consideration.

Set to less than 1
launch clock.

set_net_

delay
Similar to set_max_skew but
without taking clock skews into
considerations.

To ensure the crossing latency is
bounded.

To analyze whether the specified
net delay requirement is fully
met. Clock paths are not taken
into consideration.

This is currently set
to be less than 1 latch
clock.(32)

set_min_

delay/set_
max_delay

To relax fitter effort by
mimicking the set_false_path
command but without overriding
other SDCs.(33)

To relax timing analysis for the
setup/hold checks to not fail.(34)

This is currently set
to 100ns/-100ns for
max/min.(35)

Related Information
Quartus Prime TimeQuest Timing Analyzer

Coding Example for Manual Instantiation
This section provides a Verilog HDL coding example to instantiate the DCFIFO IP core. It is not a
complete coding for you to compile, but it provides a guideline and some comments for the required
structure of the instantiation. You can use the same structure to instantiate other IP cores but only with
the ports and parameters that are applicable to the IP cores you instantiated.

Example 1: Verilog HDL Coding Example to Instantiate the DCFIFO IP Core

//module declaration
module dcfifo8x32 (aclr, data, …… ,wfull);
//Module's port declarations
input aclr;
input [31:0] data;

(31) It can have significant compilation time impact in older Quartus versions without TimeQuest 2.
(32) For advanced users, you can can fine-tune the value based on your design. For instance, if the designs are

able to tolerate longer crossing latency (full and empty status will be delayed), this can be relaxed.
(33) Without set_false_path (which has the highest precedence and may result in very long insertion delays),

Fitter will attempt to meet the default setup/hold which is extremely over constraint.
(34) Without set_false_path, the CDC paths will be analyzed for default setup/hold, which is extremely over

constraint.
(35) Expect an approximately 100ns delay when you observe CDC paths compared to set_false_path.

UG-MFNALT_FIFO
2016.08.29 SDC Commands 25

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/jbr1437428483891/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


.

.
output wrfull;
//Module’s data type declarations and assignments
wire rdempty_w;
.
.
wire wrfull = wrfull_w; wire [31:0] q = q_w;
/*Instantiates dcfifo megafunction. Must declare all the ports available 
from the megafunction and 
define the connection to the module's ports.
Refer to the ports specification from the user guide for more information 
about the megafunction's 
ports*/
//syntax: <megafunction's name> <given an instance name>
dcfifo inst1 (
//syntax: .<dcfifo's megafunction's port>(<module's port/wire>)
.wrclk (wrclk),
.rdclk (rdclk),
.
.
.wrusedw ()); //left the output open if it's not used
/*Start with the keyword “defparam”, defines the parameters and value 
assignments. Refer to 
parameters specifications from the user guide for more information about the 
megafunction's 
parameters*/
defparam
//syntax: <instance name>.<parameter> = <value>
inst1.intended_device_family = "Stratix III", 
inst1.lpm_numwords = 8,
.
.
inst1.wrsync_delaypipe = 4;
endmodule

Design Example
In this design example, the data from the ROM is required to be transferred to the RAM. Assuming the
ROM and RAM are driven by non-related clocks, you can use the DCFIFO to transfer the data between
the asynchronous clock domains effectively.

26 Design Example
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 9: Component Blocks and Signal Interaction

This figure shows the component blocks and their signal interactions.

ROM
256 x 256

trclk

trclk

256

256 fifo_in

fifo_wrreq

fifo_wrfull

trclk

8

rom_out

rom_addr

Write 
Control Logic

DCFIFO
8 x 256

Read
Control Logic

RAM
256 x 256fifo_out

ram_in
q

9
word_count

8
ram_addr

fifo_rdreq

fifo_rdempty

rvclk
rvclk rvclk

ram_wren

ram_rden

256 256

256

eccstatus[1:0]

Note: The DCFIFO IP cores are with ECC feature enabled and implemented using M20K.

Note: Both the DCFIFO IP cores are only capable of handling asynchronous data transferring issues
(metastable effects). You must have a controller to govern and monitor the data buffering process
between the ROM, DCFIFO, and RAM. This design example provides you the write control logic
(write_control_logic.v), and the read control logic (read_control_logic.v) which are compiled with
the DCFIFO specifications that control the valid write or read request to or from the DCFIFO.

Note: This design example is validated with its functional behavior, but without timing analysis and gate-
level simulation. The design coding such as the state machine for the write and read controllers may
not be optimized. The intention of this design example is to show the use of the IP core, particularly
on its control signal in data buffering application, rather than the design coding and verification
processes.

To obtain the DCFIFO settings in this design example, refer to the parameter settings from the design file
(dcfifo8x32.v).

The following sections include separate simulation waveforms to describe how the write and read control
logics generate the control signal with respect to the signal received from the DCFIFO.

Note: For better understanding, refer to the signal names in the above figure when you go through the
descriptions for the simulation waveforms.

Note: All signals in the following figures and table has the following numerical format:

• Signal values in binary format: reset, trclk, fifo_wrreq, fifo_wrfull
• Signal values in HEX format: rom_addr, rom_out, fifo_in

UG-MFNALT_FIFO
2016.08.29 Design Example 27

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 10: Initial Write Operation to the DCFIFO IP Core

Table 14: Initial Write Operation to the DCFIFO IP Core Waveform Description

State Description

IDLE Before reaching 10 ns, the reset signal is high and causes the write controller to be in the IDLE
state. In the IDLE state, the write controller drives the fifo_wrreq signal to low, and requests
the data to be read from rom_addr=00. The ROM is configured to have an unregistered output,
so that the rom_out signal immediately shows the data from the rom_addr signal regardless of
the reset. This shortens the latency because the rom_out signal is connected directly to the
fifo_in signal, which is a registered input port in the DCFIFO. In this case, the data
(0000000000000000000000000000000000000000000000000000000000000001) is always stable
and pending to be written into the DCFIFO when the fifo_wrreq signal is high during the
WRITE state.

WRITE The write controller transitions from the IDLE state to the WRITE state if the fifo_wrfull
signal is low after the reset signal is deasserted. In the WRITE state, the write controller drives
the fifo_wrreq signal to high, and requests for write operation to the DCFIFO. The data is
encoded through the embedded ECC block in the DCFIFO. The rom_addr signal is unchanged
(00) so the data is stable for at least one clock cycle before the DCFIFO actually writes in the
data at the next rising clock edge.

INCADR The write controller transitions from the WRITE state to the INCADR state, if the rom_addr signal
has not yet increased to ff (that is, the last data from the ROM has not been read out). In the
INDADR state, the write controller drives the fifo_wrreq signal to low, and increases the rom_
addr signal by 1 (00 to 01).

- The same state transition continues as stated in IDLE and WRITE states, if the fifo_wrfull
signal is low and the rom_addr signal not yet increased to ff.

28 Design Example
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 11: Initial Read Operation from the DCFIFO IP Core

Table 15: Initial Read Operation from the DCFIFO IP Core Waveform Description

State Description

IDLE Before reaching 35 ns, the read controller is in the IDLE state because the fifo_rdempty signal
is high even when the reset signal is low (not shown in the waveform). In the IDLE state, the
ram_addr = ff to accommodate the increment of the RAM address in the INCADR state, so that
the first data read is stored at ram_addr = 00 in the WRITE state.

INCADR The read controller transitions from the IDLE state to the INCADR state, if the fifo_rdempty
signal is low. In the INCADR state, the read controller drives the fifo_rdreq signal to high, and
requests for read operation from the DCFIFO. The data is decoded and the eccstatus shows
the status of the data as no error detected (00), single-bit error detected and corrected(10), or
uncorrectable error (11). The ram_addr signal is increased by one (ff to 00), so that the read
data can be written into the RAM at ram_addr = 00.

WRITE From the INCADR state, the read controller always transition to the WRITE state at the next rising
clock edge. In the WRITE state, it drives the ram_wren signal to high, and enables the data writing
into the RAM at ram_addr = 00. At the same time, the read controller drives the ram_rden
signal to high so that the newly written data is output at q at the next rising clock edge. Also, it
increases the word_count signal to 1 to indicate the number of words successfully read from the
DCFIFO.

-- The same state transition continues as stated in INCADR and WRITE states, if the fifo_rdempty
signal is low.

UG-MFNALT_FIFO
2016.08.29 Design Example 29

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 12: Write Operation when DCFIFO is FULL

Table 16: Write Operation when DCFIFO is FULL Waveform Description

State Description

INCADR When the write controller is in the INCADR state, and the fifo_wrfull signal is asserted, the
write controller transitions to the WAIT state in the next rising clock edge.

WAIT In the WAIT state, the write controller holds the rom_addr signal (08) so that the respective
data is written into the DCFIFO when the write controller transitions to the WRITE state.

The write controller stays in WAIT state if the fifo_wrfull signal is still high. When the fifo_
wrfull is low, the write controller always transitions from the WAIT state to the WRITE state at
the next rising clock edge.

WRITE In the WRITE state, then only the write controller drives the fifo_wrreq signal to high, and
requests for write operation to write the data from the previously held address (08) into the
DCFIFO. It always transitions to the INCADR state in the next rising clock edge, if the rom_addr
signal has not yet increased to ff.

-- The same state transition continues as stated in INCADR, WAIT, and WRITE states, if the fifo_
wrfull signal is high.

Figure 13: Completion of Data Transfer from ROM to DCFIFO

30 Design Example
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 17: Completion of Data Transfer from ROM to DCFIFO Waveform Description

State Description

WRITE When the write controller is in the WRITE state, and rom_addr = ff, the write controller drives
the fifo_wrreq signal to high to request for last write operation to DCFIFO. The data 100 is the
last data stored in the ROM to be written into the DCFIFO. In the next rising clock edge, the
write controller transitions to the DONE state.

DONE In the DONE state, the write controller drives the fifo_wrreq signal to low.

-- The fifo_wrfull signal is deasserted because the read controller in the receiving domain
continuously performs the read operation. However, the fifo_wrfull signal is only deasserted
sometime after the read request from the receiving domain. This is due to the latency in the
DCFIFO (rdreq signal to wrfull signal).

Figure 14: Completion of Data Transfer from DCFIFO to RAM

The fifo_rdempty signal is asserted to indicate that the DCFIFO is empty. The read controller drives the
fifo_rdreq signal to low, and enables the write of the last data 100 at ram_addr =ff. The word_count
signal is increased to 256 (in decimal) to indicate that all the 256 words of data from the ROM are success‐
fully transferred to the RAM.

The last data written into the RAM is shown at the q output.

Note: To verify the results, compare the q outputs with the data in rom_initdata.hex file provided in the
design example. Open the file in the Quartus Prime software and select the word size as 256 bit. The
q output must display the same data as in the file.

Related Information
DCFIFO Design Example
Provides all the design files including the testbench. The zip file also includes the .do script
(dcfifo_ecc_top.do) that automates functional simulation that you can use to run the simulation using the
ModelSim-Altera software .

Gray-Code Counter Transfer at the Clock Domain Crossing
This section describes the effect of the large skew between Gray-code counter bits transfers at the clock
domain crossing (CDC) with recommended solution. The gray-code counter is 1-bit transition occurs
while other bits remain stable when transferring data from the write domain to the read domain and vice

UG-MFNALT_FIFO
2016.08.29 Gray-Code Counter Transfer at the Clock Domain Crossing 31

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/dcfifo_design_example.zip
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


versa. If the destination domain latches on the data within the metastable range (violating setup or hold
time), only 1 bit is uncertain and destination domain reads the counter value as either an old counter or a
new counter. In this case, the DCFIFO still works, as long as the counter sequence is not corrupted.

The following section shows an example of how large skew between GNU C compiler (GCC) bits can
corrupt the counter sequence. Taking a counter width with 3-bit wide and assuming it is transferred from
write clock domain to read clock domain. Assume all the counter bits have 0 delay relative to the destina‐
tion clock, excluding the bit[0] that has delay of 1 clock period of source clock. That is, the skew of the
counter bits will be 1 clock period of the source clock when they arrived at the destination registers.

The following shows the correct gray-code counter sequence:

000,
001,
011,
010,
110....

which then transfers the data to the read domain, and on to the destination bus registers.

Because of the skew for bit[0], the destination bus registers receive the following sequence:

000,
000,
011,
011,
110....

Because of the skew, a 2-bit transition occurs. This sequence is acceptable if the timing is met. If the 2-bit
transition occurs and both bits violate timing, it may result in the counter bus settled at a future or
previous counter value, which will corrupt the DCFIFO.

Therefore, the skew must be within a certain skew to ensure that the sequence is not corrupted.

Note: Use the report_max_skew and report_net_delay reports in the TimeQuest Timing Analyzer for
timing verification if you use the User Configurable Timing Constraint. For Embedded Timing
Constraint, use the skew_report.tcl to analyze the actual skew and required skew in your design.

Related Information
skew_report.tcl

Guidelines for Embedded Memory ECC Feature
The Arria 10 SCFIFO and DCFIFO supports embedded memory ECC for M20K memory blocks. The
built-in ECC feature in Arria 10 can perform:

• Single-error detection and correction
• Double-adjacent-error detection and correction
• Triple-adjacent-error detection

You can turn on FIFO Embedded ECC feature by enabling enable_ecc parameter in the FIFO IP core
GUI.

Note: Embedded ECC feature is only available for M20K memory block type.

32 Guidelines for Embedded Memory ECC Feature
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/scripts/literature/ug/skew_report.tcl
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Note: The embedded memory ECC supports variable data width. When ECC is enabled, RAM combines
multiple M20K blocks in the configuration of 32(width) x 512 (depth) to fulfill your instantiation.
The unused data width will be tied to the VCC internally.

Figure 15: ECC Option in FIFO GUI

When you enable the ECC feature, a 2-bit wide error correction status port (eccstatus[1:0]) will be
created in the generated FIFO entity. These status bits indicate whether the data that is read from the
memory has an error in single-bit with correction, fatal error with no correction, or no error bit.

• 00: No error
• 01: Illegal
• 10: A correctable error occurred and the error has been corrected at the outputs; however, the memory

array has not been updated.
• 11: An uncorrectable error occurred and uncorrectable data appears at the output

Related Information
Error Correction Code in Embedded Memory User Guide

SCFIFO and DCFIFO IP Cores User Guide Archives
If an IP core version is not listed, the user guide for the previous IP core version applies.

IP Core Version User Guide

15.1 SCFIFO and DCFIFO IP Cores User Guide

14.1 SCFIFO and DCFIFO IP Cores User Guide

UG-MFNALT_FIFO
2016.08.29 SCFIFO and DCFIFO IP Cores User Guide Archives 33

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/eis1413425716965/eis1413271026005/en-us
https://www.altera.com/en_US/pdfs/literature/ug/archives/ug-fifo-15.1.pdf
https://www.altera.com/en_US/pdfs/literature/ug/archives/ug-fifo-14.1.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Revision History
Date Version Changes

August 2016 2016.08.29 • Added note to Configuration Methods stating that scfifo
and dcfifo cannot ne used for FIFO Qsys entity name.

• Added note to almost_empty in SCFIFO and DCFIFO
Signals table

• Added SCFIFO ALMOST_EMPTY Functional Timing
section.

May 2016 2016.05.30 Added note about using skew_report.tcl if Embedded
Timing Constraint is used and report_max_skew.

May 2016 2016.05.02 • Added list of user configurable constraint commands and
descriptions in Constrain Commands.

• Added timing constraints for mixed-width DCFIFO.
• Upgraded design example with ECC feature enabled.
• Added Guidelines for Embedded Memory ECC Feature

section.
• Removed 32-bit width FIFO limitation for eccstatus

signal and enable_ecc paramenter..
• Added FIFO IP core parameter editor directory in IP

catalog in Configuration Methods section.

November 2015 2015.11.02 • Added User Configurable Timing Constraint.
• Added DCFIFO Timing Constraint Setting.
• Renamed Constraint Settings to Embedded Constraint

Settings.
• Moved normal and show-ahead description from

parameter table to SCFIFO and DCFIFO Show-Ahead
Mode subsection.

• Added normal and show-ahead waveform for
comparison.

• Added eccstatus port in block diagram and port table
list available in Quartus II 15.1 release.

• Added enable_ecc parameter in SCFIFO and DCFIFO
Parameters.

• Updated Verilog HDL prototype directory.
• Corrected lpm_numwords register equation.
• Updated Example 1: Verilog HDL Coding Example to

Instantiate the DCFIFO IP Core.

34 Document Revision History
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Date Version Changes

December 2014 2014.12.17 • Clarified that there are no minimum number of clock
cycles for aclr signals that must remain active.

• Added Recovery and Removal Timing Violation
Warnings when Compiling a DCFIFO Megafunction
section.

• Removed a note about ignoring any recovery and
removal violation reported in the TimeQuest timing
analyzer that represent transfers from the aclr to the read
side clock domain in Synchronous Clear and Asynchro‐
nous Clear Effect section.

May 2013 8.2 • Updated Table 8 on page 20 to state that both the read
and write pointers reset to zero upon assertion of either
the sclr or aclr signal.

• Updated Table 1 on page 7 to note that the wrusedw,
rdusedw, wrfull, rdfull wrempty and rdempty values
are subject to the latencies listed in Table 5 on page 18.

August 2012 8.1 • Included a link to skew_report.tcl “Gray-Code Counter
Transfer at the Clock Domain Crossing” on page 29.

August 2012 8.0 • Updated “DCFIFO” on page 3, “Ports Specifications” on
page 6, “Functional Timing Requirements” on page 14,
“Synchronous Clear and Asynchronous Clear Effect” on
page 20.

• Updated Table 1 on page 7, Table 2 on page 10, Table 9
on page 21.

• Added Table 4 on page 16.
• Renamed and updated “DCFIFO Clock Domain

Crossing Timing Violation” to “Gray-Code Counter
Transfer at the Clock Domain Crossing” on page 29.

February 2012 7.0 • Updated the notes for Table 4 on page 16.
• Added the “DCFIFO Clock Domain Crossing Timing

Violation” section.

September 2010 6.2 Added prototype and component declarations.

January 2010 6.1 • Updated “Functional Timing Requirements” section.
• Minor changes to the text.

UG-MFNALT_FIFO
2016.08.29 Document Revision History 35

SCFIFO and DCFIFO IP Cores User Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Date Version Changes

September 2009 6.0 • Replaced “FIFO Megafunction Features” section with
“Configuration Methods”.

• Updated “Input and Output Ports”.
• Added “Parameter Specifications”, “Output Status Flags

and Latency”, “Metastability Protection and Related
Options”, “Constraint Settings”, “Coding Example for
Manual Instantiation”, and “Design Example”.

February 2009 5.1 Minor update in Table 8 on page 17.

January 2009 5.0 Complete re-write of the user guide.

May 2007 4.0 • Added support for Arria GX devices.
• Updated for new GUI.
• Added six design examples in place of functional descrip‐

tion.
• Reorganized and updated Chapter 3 to have separate

tables for the SCFIFO and DCFIFO megafunctions.
• Added Referenced Documents section.

March 2007 3.3 • Minor content changes, including adding Stratix  III and
Cyclone III information

• Re-took screenshots for software version 7.0

September 2005 3.2 Minor content changes.

36 Document Revision History
UG-MFNALT_FIFO

2016.08.29

Altera Corporation SCFIFO and DCFIFO IP Cores User Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20SCFIFO%20and%20DCFIFO%20IP%20Cores%20User%20Guide%20(UG-MFNALT_FIFO%202016.08.29)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	SCFIFO and DCFIFO IP Cores User Guide
	Configuration Methods
	Specifications
	Verilog HDL Prototype
	VHDL Component Declaration
	VHDL LIBRARY-USE Declaration
	SCFIFO and DCFIFO Signals
	SCFIFO and DCFIFO Parameters

	SCFIFO and DCFIFO Functional Timing Requirements
	SCFIFO ALMOST_EMPTY Functional Timing
	SCFIFO and DCFIFO Output Status Flag and Latency
	SCFIFO and DCFIFO Metastability Protection and Related Options
	SCFIFO and DCFIFO Synchronous Clear and Asynchronous Clear Effect
	Recovery and Removal Timing Violation Warnings when Compiling a DCFIFO IP Core

	SCFIFO and DCFIFO Show-Ahead Mode
	Different Input and Output Width
	DCFIFO Timing Constraint Setting
	Embedded Timing Constraint
	User Configurable Timing Constraint
	SDC Commands


	Coding Example for Manual Instantiation
	Design Example
	Gray-Code Counter Transfer at the Clock Domain Crossing
	Guidelines for Embedded Memory ECC Feature
	SCFIFO and DCFIFO IP Cores User Guide Archives
	Document Revision History


