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Bare-Metal, RTOS, or Linux? Optimize Real-Time 
Performance with Altera SoCs

Abstract

This white paper examines various methods for optimizing real-time performance  
on Altera® SoCs, which integrate an FPGA and applications processor into a single 
chip. Standard software development models using high-level operating systems are 
compared to an ideal, hand-optimized, bare-metal solution running on the applications 
processor, while latency and interrupt jitter due to the interaction with the FPGA are 
explored. Given the system interaction complexities of a modern applications processor, 
it is shown that modern real-time high-level operating systems can provide the same 
level of real-time performance as a hand-optimized solution, but with the system 
stability and design reuse benefits of modern software development methodologies 
over hand-optimized bare-metal applications.

Introduction

Real-time systems may offer uncompromising hard real-time requirements where  
the jitter on deadline absolutely has to be within a certain bound. In some cases, 
failure to do so could result in serious injury or death. Others present soft real-time 
requirements, such as optimized energy efficiency, which will not introduce  
catastrophic failure, but are still very important over a long period of operation.  
Either way, it is important to understand the exact real-time response of a given 
system architecture in terms of real-time loop latency, jitter, and other requirements. 
Many system designers initially think that implementing a “no-OS” or “bare-metal” 
system will inherently be lighter and, therefore, faster and less intrusive than a full 
operating system (OS). With the advent of high-performance applications processors 
in today’s systems, however, this is not necessarily true. Running an application on a 
very high speed and capable application processor running a rich RTOS may actually 
give better response time than a bare-metal implementation. Which one to choose? 
This white paper examines the response time of different OS implementations.  
A real-time “DataMover” application example is created to test the different 
implementations and yields some insightful results.
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Real-Time System Requirements and Challenges

Industrial control applications offer an exemplary case study for real-time application 
requirements. A typical industrial control application contains both real-time tasks 
and non-real-time tasks. The real-time tasks handle external interrupts, either via 
register polling or interrupt servicing, that occur on the order of 10’s of microseconds, 
i.e., to respond to the interrupt, to move the necessary data associated with each 
interrupt, to do computation and return the results before the next interrupt occurs. 
To ensure real-time response, the jitter cannot exceed a few microseconds. Often 
times, users wish to group all the real-time processing to one core for more direct 
control, and in the hope of obtaining higher performance. The non-real-time tasks 
typically include housekeeping tasks, networking and user interface. In most of  
these systems, there is little to no sharing of peripherals between the processor cores,  
but it is necessary to share some common memory buffers for synchronization, 
communication, or data to be displayed. 

Implicitly, there are other requirements to ensure the success of any electronics 
product. These requirements begin with ease of programming. Being able to  
program a multicore processor using simple, documented, and proven solutions  
is key for productivity and the project schedule. Minimizing risk is also important.  
Risk can come in the form of known risks and unknown risks. It is important to  
adopt engineering practices that remove known risks and minimize unknown  
risks. Ecosystem support is essential to increase both ease of programming and  
for minimizing risks. The ecosystem implicitly enables users to benefit from the 
collective wisdom of the whole, in this case ARM, development community.  
Lastly, to make sure that a design can move to the next more powerful, more  
core processor quickly, and to benefit from new innovations in software from  
the worldwide developer community, it is critically important to have a design  
that is portable in hardware and software, which often means programming  
above an OS abstraction.

Measuring Real-Time Performance
Real-time response time and jitter tolerance requirements dominate most real-time 
design decisions. Real-time response time is typically expressed in terms of a real-time 
loop during which the system has to handle an interrupt and perform all the requisite 
computing before the next interrupt arrives. This is shown in Figure 1.

Figure 1. Real-Time Loop 
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The real-time loop time can vary from ~1 microsecond (ms) in a software real-time 
system, to 10’s of microseconds in a real-time system or in single microseconds in a 
very high-performance hard real-time system. Because real-time requirements dictate 
most design decisions, real-time loop time is employed as the metric for performance 
in evaluating different system architectures.

Introducing the Altera SoC

Semiconductor integration capabilities have reached the point where high-performance 
application processors, such as the ARM® Cortex®-A9 processor, are cost-effectively 
integrated with varying FPGA sizes. 

The Altera® Cyclone® V SoC brings together an integrated high-performance  
application processor with integrated FPGA fabric. See Figure 2.

Figure 2. Altera Cyclone V SoC Block Diagram 
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run on the integrated application processor, an instantiated soft processor in the 
FPGA array, or a state machine in the FPGA fabric. However, this increased flexibility 
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to achieve the maximum capability of the silicon, in both a time and engineering 
resource efficient manner. 
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SMP and AMP on the Altera SoC
The dual-core ARM Cortex-A9 processor present in the SoC hard processor system 
(HPS) shown in Figure 3 is tightly coupled using the ARM MPCore™ technology,  
in a classical symmetric multiprocessing (SMP) hardware configuration. Mature, 
proven software solutions exist today from many ARM ecosystem software providers 
to enable asymmetric multiprocessing (AMP) on this platform, including methods  
such as SMP with Core Affinity or Core Reservation, making programming an  
AMP system as simple as programming a single-core CPU. Empirical data for 
symmetric multicore systems presented later in this paper (Figures 5, 6, 7, and 8) 
shows that employing well-defined programming methods, such as Core-Affinity  
and Thread-Lock, generally outperforms programming each core independently.  
By adopting standard, proven solutions, users can get the best combination of 
performance, productivity, system reliability, and future scalability.

Figure 3. SMP Dual-A9 Cluster 
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Real-Time Application Example

To have the data for an objective evaluation of different real-time OS configurations, 
an example of real-time application was constructed. This benchmark application is 
designed to embody the characteristics of real-time applications. The system runs on 
an Altera Cyclone V SoC development board, utilizing both the dual-A9 cluster and 
the FPGA. There is a small direct memory access (DMA) design that runs on the 
FPGA and works in tandem with the A9 cluster to move the data to and from the 
FPGA. This design is referred to as the “DataMover” design.

The system receives interrupts from the FPGA. With each interrupt, some data is  
sent from the FPGA to the HPS for handling, which involves a small amount of 
computation, after which some results are written back to the FPGA. The tasks that 
simulate the interrupt handling, the data moving, and the return of the data to the 
FPGA are collectively referred to as the “real-time tasks”. The round-trip loop time 
and jitter are measured as an indication of the system’s real-time responsiveness. 
Interrupts are handled both as interrupt service routines, and via interrupt polling. 
The system also has a number of non-real-time tasks which are simulated by an  
OS continuously generating Fibonacci series.

This application software is implemented in the following ways to compare results 
between three different software configurations:

• Software Architecture 1: Linux SMP

º Running over Linux in SMP with core affinity mode, on both cores of the  
dual-A9 cluster

º Core 1: Utilizes the DataMover for data movement and interrupt handling 

º Core 0: Idle or busy running a continuous Fibonacci series to simulate  
non-real-time tasks

º  Interrupts are handled in polling or interrupt service routine 

• Software Architecture 2: VxWorks SMP

º Running over VxWorks in SMP core affinity mode, on both cores of the  
dual-A9 cluster

º Core 1: Utilizes the DataMover for data movement and interrupt handling

º Core 0: Idle or busy running a continuous Fibonacci series to simulate  
non-real-time tasks 

º Interrupts are handled in polling or interrupt service routine

• Software Architecture 3: Bare-Metal Single-Core

º Running in bare-metal mode on one core only

º Core 1: Utilizes the DataMover for data movement and interrupt handling

º Core 0: Not utilized to represent a “best case” environment (no overhead or  
buffer management) 

º Interrupts are handled in polling or interrupt service routine
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System Architecture
Figure 4 shows the reference design hardware design. 

Figure 4. Real-Time Application System Architecture Example 
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Software Application Example
The reference hardware design uses the following OS versions:

• Linux LTSI v3.10

• VxWorks v6.9

• Bare-metal using hardware libraries in SoC Embedded Design Suite 14.0 as  
the foundation

The example application basically runs a loop of continuous real-time data request, 
processing and return. The input data is sent from the FPGA via the FPGA-to-HPS 
bridge with cache coherent access to the A9 processor. The pseudo code of the 
application is shown below.

While(1){

  Real_input = Request_a_data(); // Request a new data from FPGA

  While(keytoken(real_input) != expected_token); // Wait for the new data to be valid. 
We embed a token in every data to know the validity of the new data

  Request_data_back(real_out); // Request to get the result sent back to the FPGA

 
Test Results

Standard performance counters were used to capture the total loop time. Due to 
nanosecond-level measurements being taken, in order to account for the variance  
in the counter granularity, each result is an average of 100 measurements taken.  
No special IP was required to be built in order to achieve this level of measurement.
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Software Architecture 1: Linux SMP
The results for an idle Linux system, where Core 1 is handling the real-time 
tasks in a polling or ISR method, while Core 0 is idle, are shown in Figure 5.

Figure 5. Linux SMP with Core 0 Idle

The results for a busy Linux system, where Core 1 is handling the real-time 
tasks in a polling or ISR method, while Core 0 is calculating a Fibonacci series, 
are shown in Figure 6.

Figure 6. Linux SMP with Core 0 Busy

The results are predictable, with no discernible difference in a busy or idle 
Linux system. Polling does yield a slightly better overall response, while jitter 
in both polling and ISR are relatively high (< 10 microseconds). In a system 
where interrupt jitter of 10 microseconds or higher is acceptable, a standard 
Linux SMP system is sufficient.
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Software Architecture 2: VxWorks (RTOS) SMP
The results for an idle VxWorks system, where Core 1 is handling the real-time tasks 
in a polling or ISR method, while Core 0 is idle, are shown in Figure 7.

Figure 7. VxWorks SMP with Core 0 Idle

The results for a busy VxWorks system, where Core 1 is handling the real-time tasks in 
a polling or interrupt service routine method, while Core 0 is calculating a Fibonacci 
series, are shown in Figure 8.

Figure 8. VxWorks SMP with Core 0 Busy

The results here are also predictable. There is no significant difference in a busy or idle 
VxWorks system in terms of loop time in a busy or idle system. There is less variation 
in overall jitter however, in a busy VxWorks system at a 1k data size.
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Software Architecture 3: Bare-Metal Single-Core
A bare-metal system was created to run on one core; this core does nothing else 
except handling interrupts, in a polling or ISR method. Since the other core is not 
used, there is no idle or busy system comparison. This would represent a “best case” 
scenario in terms of response, as any overhead or managing of the common buffers 
between CPUs is not taken into account. It would be expected that such a system 
could see significant increases in jitter based on how active the communication 
between cores would be. The results are shown in Figure 9.

Figure 9. Bare-Metal Single Core

As expected, jitter is less than a microsecond in both the polling and ISR methods,  
as nothing else is occurring in the system. Overall loop time is on-par with both 
Linux and VxWorks for a polling method, however, the ISR response is noticeably 
higher. This can be attributed to the fact that no scheduling or pre-emption of events 
is present in a bare-metal system. Thus, there is no performance advantage from 
programming in bare-metal. 

Besides the difficulties in creating a bare-metal application for an A9-class multicore 
processor, the resulting product is hardware specific, and therefore not readily 
portable to future, more-core or different-core processors. Bare-metal applications  
are therefore not future proof. By comparison, applications that run on top of an 
operating system are abstracted away from hardware differences and therefore are 
readily portable to future devices.
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Key Findings from Measuring Real-Time Loop Time
The top most contributing factors to lowering interrupt response time and 
minimizing jitter are:

• Configuring the system to run in SMP mode with core affinity and dedicate  
Core 1 to real-time processing. This conclusion holds true for both VxWorks  
and Linux. Configuring the processor to run in core affinity mode dramatically 
increased the real-time processing performance on Core 1. While it is also true  
that this approach decreases the processor’s ability to load balance between the  
two cores, and therefore reduces Core 0’s ability to do its work, if real-time 
responsiveness is the single most important requirement to meet, then this is  
the easiest and safest way to accomplish that goal.

• Core 1 is used to poll for interrupt instead of using the processor’s native interrupt 
handling mechanism. Detractors can point out that polling causes a system to run 
all the time, consuming more power, but if microsecond response time is needed, 
then the processor is already running all the time. Therefore, polling is a very good 
way to remove the non-determinism of the A9-MPCore interrupt handling process.

• Using the DataMover DMA design in the FPGA to deliver data to the on-chip  
RAM where Core 1 can find and use with least overhead. Depending on the actual 
requirement, defines how sophisticated you make the DMA design. A simple  
DMA was employed, using Core 1 to start and stop it. Alternatively, you can  
design a DMA or DMA with a Nios II processor to take more load off Core 1.

Design Best Practices for Programming a Multicore SoC
Taking into consideration all the design requirements of real-time responsiveness at 
the microsecond level, the desire to separate real-time task and non-real-time tasks 
and to balance those requirements with the need to minimize design risk and increase 
design portability, a summary of all the best design practices to consider are:

• Use all available hardware resources to increase system performance. This is 
illustrated by the DataMover application system architecture (figure 4) that utilized 
a FPGA-based DMA to move data in real-time and in parallel with the processing 
of the data. To overcome the non-deterministic characters of the Cortex-A9 
processor interrupt polling was employed. Used in aggregate, this simple system 
produced microsecond level real-time responsiveness with minimal jitter.

• Pair the default SMP hardware architecture with an SMP operating system for best 
balance between performance and development time. This point is supported by  
the examples where standard configurations of VxWorks and Linux were employed 
to create two similarly high-performance systems, with the only variance being in 
interrupt response jitter. 

• Choose the right RTOS as the easiest way to ensure real-time performance and 
determinism – VxWorks was employed to prove that getting deterministic 
performance is very simple, in fact, right out of the box. 
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• Adopt multicore programming techniques to achieve concurrency, load balancing, 
and future-proof scalability. The DataMover design (figure 4) shows how the  
FPGA can be used to increase overall system concurrency, in a way that a fixed  
SoC cannot do. The system uses standard off-the-shelf SMP operating systems,  
this design can scale easily to future more-core processors.

• Use SMP/Core Affinity to separate real-time and non real-time tasks on different 
cores to achieve application level AMP when necessary. Even though a SMP 
operating system was paired with a SMP processor core, core affinity feature was 
employed to effectively accomplish asymmetric processing of the application, giving 
users what is desired – being able to separate real-time tasks from non-real-time 
tasks, and most importantly, to reduce jitter in order to produce deterministic 
real-time responsiveness.

• Benefit from ARM software ecosystem by adopting proven, widely accepted solutions 
– employing Linux and VxWorks in the most standard configurations, the design  
is easily supported by software and software partners. As these operating systems 
evolve and improve, the system will take advantage of it, right out of the box.

Conclusion
The most significant driver for hand-creating run-time software is for its perceived 
performance benefit and cost. Given the complexities of modern applications 
processors, it is very difficult to create a stable, hand-optimized solution without  
the use of a modern OS. As shown by the test results in this white paper, even if  
such a system can be created, it performs no better than an OS-based solution given 
the system interactions both at the processor level, and with the FPGA. There are 
numerous free or low-cost OS solutions available. In terms of performance, with the 
scheduling demands of modern applications processors, most OS have already been 
fully tuned to take advantage of the processor architecture, which would have to be 
re-developed in a hand-crafted bare-metal solution. By using a proven OS as the 
run-time software, application developers can focus on system-level optimizations. 
When true hard real-time performance is required, the FPGA provides an excellent 
target. If a soft processor-based hard real-time solution is desired, a Nios II soft 
processor core instantiated within the FPGA provides the most optimal path.
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