
White Paper

December 2014 Altera Corporation

101 Innovation Drive
San Jose, CA 95134
www.altera.com

ISO
9001:2008
Registered

WP-01245-1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS,
QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and
Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the
property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of
its semiconductor products to current specifications in accordance with Altera’s standard warranty, but reserves the right to
make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising
out of the application or use of any information, product, or service described herein except as expressly agreed to in writing
by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCs

Abstract

This white paper examines various methods for optimizing real-time performance
on Altera® SoCs, which integrate an FPGA and applications processor into a single
chip. Standard software development models using high-level operating systems are
compared to an ideal, hand-optimized, bare-metal solution running on the applications
processor, while latency and interrupt jitter due to the interaction with the FPGA are
explored. Given the system interaction complexities of a modern applications processor,
it is shown that modern real-time high-level operating systems can provide the same
level of real-time performance as a hand-optimized solution, but with the system
stability and design reuse benefits of modern software development methodologies
over hand-optimized bare-metal applications.

Introduction

Real-time systems may offer uncompromising hard real-time requirements where
the jitter on deadline absolutely has to be within a certain bound. In some cases,
failure to do so could result in serious injury or death. Others present soft real-time
requirements, such as optimized energy efficiency, which will not introduce
catastrophic failure, but are still very important over a long period of operation.
Either way, it is important to understand the exact real-time response of a given
system architecture in terms of real-time loop latency, jitter, and other requirements.
Many system designers initially think that implementing a “no-OS” or “bare-metal”
system will inherently be lighter and, therefore, faster and less intrusive than a full
operating system (OS). With the advent of high-performance applications processors
in today’s systems, however, this is not necessarily true. Running an application on a
very high speed and capable application processor running a rich RTOS may actually
give better response time than a bare-metal implementation. Which one to choose?
This white paper examines the response time of different OS implementations.
A real-time “DataMover” application example is created to test the different
implementations and yields some insightful results.

mailto:whitepapers%40altera.com?subject=Feedback%20on%20WP-01245
https://www.altera.com/servlets/subscriptions/alert?utm_source=altera&utm_medium=link&utm_campaign=Powering%20FPGAs&utm_content=_WP-01234

White PaperPage 2

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCsDecember 2014 Altera Corporation

Real-Time System Requirements and Challenges

Industrial control applications offer an exemplary case study for real-time application
requirements. A typical industrial control application contains both real-time tasks
and non-real-time tasks. The real-time tasks handle external interrupts, either via
register polling or interrupt servicing, that occur on the order of 10’s of microseconds,
i.e., to respond to the interrupt, to move the necessary data associated with each
interrupt, to do computation and return the results before the next interrupt occurs.
To ensure real-time response, the jitter cannot exceed a few microseconds. Often
times, users wish to group all the real-time processing to one core for more direct
control, and in the hope of obtaining higher performance. The non-real-time tasks
typically include housekeeping tasks, networking and user interface. In most of
these systems, there is little to no sharing of peripherals between the processor cores,
but it is necessary to share some common memory buffers for synchronization,
communication, or data to be displayed.

Implicitly, there are other requirements to ensure the success of any electronics
product. These requirements begin with ease of programming. Being able to
program a multicore processor using simple, documented, and proven solutions
is key for productivity and the project schedule. Minimizing risk is also important.
Risk can come in the form of known risks and unknown risks. It is important to
adopt engineering practices that remove known risks and minimize unknown
risks. Ecosystem support is essential to increase both ease of programming and
for minimizing risks. The ecosystem implicitly enables users to benefit from the
collective wisdom of the whole, in this case ARM, development community.
Lastly, to make sure that a design can move to the next more powerful, more
core processor quickly, and to benefit from new innovations in software from
the worldwide developer community, it is critically important to have a design
that is portable in hardware and software, which often means programming
above an OS abstraction.

Measuring Real-Time Performance
Real-time response time and jitter tolerance requirements dominate most real-time
design decisions. Real-time response time is typically expressed in terms of a real-time
loop during which the system has to handle an interrupt and perform all the requisite
computing before the next interrupt arrives. This is shown in Figure 1.

Figure 1. Real-Time Loop

Interrupt 0 Interrupt 1

Margin for Jitter

Interrupt Latency

Move Data

Move Data

Compute

Interrupt 2

White Paper Page 3

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCs December 2014 Altera Corporation

The real-time loop time can vary from ~1 microsecond (ms) in a software real-time
system, to 10’s of microseconds in a real-time system or in single microseconds in a
very high-performance hard real-time system. Because real-time requirements dictate
most design decisions, real-time loop time is employed as the metric for performance
in evaluating different system architectures.

Introducing the Altera SoC

Semiconductor integration capabilities have reached the point where high-performance
application processors, such as the ARM® Cortex®-A9 processor, are cost-effectively
integrated with varying FPGA sizes.

The Altera® Cyclone® V SoC brings together an integrated high-performance
application processor with integrated FPGA fabric. See Figure 2.

Figure 2. Altera Cyclone V SoC Block Diagram

This combination provides users with a wide range of flexibility. Functions can be
run on the integrated application processor, an instantiated soft processor in the
FPGA array, or a state machine in the FPGA fabric. However, this increased flexibility
comes with a challeng—how to take advantage of this increased capability while
managing the increased complexity —putting more pressure on system partitioning
to achieve the maximum capability of the silicon, in both a time and engineering
resource efficient manner.

ARM Cortex-A9
NEON™ / FPU

L1 Cache

ARM Cortex-A9
NEON / FPU

L1 Cache

USB
OTG
(x2)

GPIO

Ethernet
(x2)

PC
(x2)

CAN
(x2)

UART
(x2)

FPGA
Con�g

FPGA
to HPS

FPG
A

 G
eneral Purpose I/O

s
H

PS I/O
sSPI

(x2)

Timers
(x11)

FPGA

JTAG
Debug/

Trace

DMA
(x8)

HPS tp
FPGA

Shared Multiport DDR
SDRAM Controller

64-KB
RAM

NAND
Flash

Quad SPI
Flash

Control

SD/
SDIO/
MMC

L2 Cache

Hard Processor System (HPS)

• 28LP process
• 8-Input ALMs
• Variable-precision DSP
• M10K memory and
 640 bit MLABs
• Fractional PLLs

Hard PCI
Express®
(PCIe®)

Hard Multiport DDR
SDRAM Controller (2)

3, 5, 6, and
10 Gbps

Transceivers

White PaperPage 4

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCsDecember 2014 Altera Corporation

SMP and AMP on the Altera SoC
The dual-core ARM Cortex-A9 processor present in the SoC hard processor system
(HPS) shown in Figure 3 is tightly coupled using the ARM MPCore™ technology,
in a classical symmetric multiprocessing (SMP) hardware configuration. Mature,
proven software solutions exist today from many ARM ecosystem software providers
to enable asymmetric multiprocessing (AMP) on this platform, including methods
such as SMP with Core Affinity or Core Reservation, making programming an
AMP system as simple as programming a single-core CPU. Empirical data for
symmetric multicore systems presented later in this paper (Figures 5, 6, 7, and 8)
shows that employing well-defined programming methods, such as Core-Affinity
and Thread-Lock, generally outperforms programming each core independently.
By adopting standard, proven solutions, users can get the best combination of
performance, productivity, system reliability, and future scalability.

Figure 3. SMP Dual-A9 Cluster

At the chip-level, an SoC presents a heterogeneous multicore system that is AMP
in hardware configuration by definition. Implementations of one or more soft core
processors, hardware accelerators or other custom computing units in the FPGA
makes asymmetric multiprocessing “at will”, thereby enabling greater flexibility with
Altera’s SoCs compared to fixed SoCs. A very practical use of the FPGA is to augment
the dual-A9 cluster in terms of real-time processing.

Core 0
Cortex-A9

Dual-A9 Cluster

L1
SP

AMBA® 3 64 bit Bus Interface

512 Kb L2

AXI™ Interface

DDR Memory InterfaceL3 Interconnect

L1
SD

Core 1
Cortex-A9

L1
SP

L1
SD

Interrupt
Control

Unit

Snoop
Control

Unit
ACP

White Paper Page 5

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCs December 2014 Altera Corporation

Real-Time Application Example

To have the data for an objective evaluation of different real-time OS configurations,
an example of real-time application was constructed. This benchmark application is
designed to embody the characteristics of real-time applications. The system runs on
an Altera Cyclone V SoC development board, utilizing both the dual-A9 cluster and
the FPGA. There is a small direct memory access (DMA) design that runs on the
FPGA and works in tandem with the A9 cluster to move the data to and from the
FPGA. This design is referred to as the “DataMover” design.

The system receives interrupts from the FPGA. With each interrupt, some data is
sent from the FPGA to the HPS for handling, which involves a small amount of
computation, after which some results are written back to the FPGA. The tasks that
simulate the interrupt handling, the data moving, and the return of the data to the
FPGA are collectively referred to as the “real-time tasks”. The round-trip loop time
and jitter are measured as an indication of the system’s real-time responsiveness.
Interrupts are handled both as interrupt service routines, and via interrupt polling.
The system also has a number of non-real-time tasks which are simulated by an
OS continuously generating Fibonacci series.

This application software is implemented in the following ways to compare results
between three different software configurations:

• Software Architecture 1: Linux SMP

º Running over Linux in SMP with core affinity mode, on both cores of the
dual-A9 cluster

º Core 1: Utilizes the DataMover for data movement and interrupt handling

º Core 0: Idle or busy running a continuous Fibonacci series to simulate
non-real-time tasks

º Interrupts are handled in polling or interrupt service routine

• Software Architecture 2: VxWorks SMP

º Running over VxWorks in SMP core affinity mode, on both cores of the
dual-A9 cluster

º Core 1: Utilizes the DataMover for data movement and interrupt handling

º Core 0: Idle or busy running a continuous Fibonacci series to simulate
non-real-time tasks

º Interrupts are handled in polling or interrupt service routine

• Software Architecture 3: Bare-Metal Single-Core

º Running in bare-metal mode on one core only

º Core 1: Utilizes the DataMover for data movement and interrupt handling

º Core 0: Not utilized to represent a “best case” environment (no overhead or
buffer management)

º Interrupts are handled in polling or interrupt service routine

White PaperPage 6

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCsDecember 2014 Altera Corporation

System Architecture
Figure 4 shows the reference design hardware design.

Figure 4. Real-Time Application System Architecture Example

In this system, external interrupts are simulated by data stored on an on-chip RAM
implemented in the FPGA. The size of the data can be changed easily to study the
relationship between data size and efficiency of DMA operations.

Simulated interrupt handling begins with a DMA operation, which can be initiated
by the DMA controller itself, the Cortex-A9 processor, or the real-time control unit
(in this case, utilizing a Nios® II soft core processor). Data is moved by the DMA
from FPGA to the HPS on-chip RAM.

Core 1 of the dual-A9 cluster is configured to poll the on-chip RAM to see if
new data has appeared and if so, it will copy the data to a private storage, and
copy the result back to memory. Polling mode operation, in a system that requires
microsecond real-time response, is both appropriate and optimal because it is
more deterministic and takes a fraction of the time of interrupt handing. Data is
also handled via an interrupt service routine (ISR) as a comparison as well.

The real-time control unit can be as simple as a custom DMA dispatcher intellectual
property (IP), or as sophisticated as a soft processor-based system. This can be a
fixed-function hardware state machine that simply knows how to sequence and
orchestrate the DMA logic that captures and generates the data in the FPGA.
This could also be something like a soft core processor that is implemented in
the FPGA to run software algorithms that determine how the data flow to and
from the FPGA must be orchestrated. The data collected in this paper makes use
of a soft-core Nios II processor-based design.

The simulated real-time loop is completed by the DMA moving the data from
HPS memory back to the FPGA.

Core 0
ARM Cortex-A9
(non real-time)

HPS
On Chip RAM

MailBox
Nios2HPS

MailBox
HPS2Nios

Lig
ht

we
igh

t H
PS

-to
-

FP
GA

 br
idg

e (
LW

-H
2F

)

Real-time Control Unit
(Nios II)

mSGDMA
(Egress)

FPGA
On Chip RAM

FP
GA

-to
-H

PS
 br

idg
e

(F
2H

)

mSGDMA
(Ingress)

Core 1
ARM Cortex-A9

(real-time)

White Paper Page 7

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCs December 2014 Altera Corporation

Software Application Example
The reference hardware design uses the following OS versions:

• Linux LTSI v3.10

• VxWorks v6.9

• Bare-metal using hardware libraries in SoC Embedded Design Suite 14.0 as
the foundation

The example application basically runs a loop of continuous real-time data request,
processing and return. The input data is sent from the FPGA via the FPGA-to-HPS
bridge with cache coherent access to the A9 processor. The pseudo code of the
application is shown below.

While(1){

 Real_input = Request_a_data(); // Request a new data from FPGA

 While(keytoken(real_input) != expected_token); // Wait for the new data to be valid.
We embed a token in every data to know the validity of the new data

 Request_data_back(real_out); // Request to get the result sent back to the FPGA

Test Results

Standard performance counters were used to capture the total loop time. Due to
nanosecond-level measurements being taken, in order to account for the variance
in the counter granularity, each result is an average of 100 measurements taken.
No special IP was required to be built in order to achieve this level of measurement.

White PaperPage 8

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCsDecember 2014 Altera Corporation

Software Architecture 1: Linux SMP
The results for an idle Linux system, where Core 1 is handling the real-time
tasks in a polling or ISR method, while Core 0 is idle, are shown in Figure 5.

Figure 5. Linux SMP with Core 0 Idle

The results for a busy Linux system, where Core 1 is handling the real-time
tasks in a polling or ISR method, while Core 0 is calculating a Fibonacci series,
are shown in Figure 6.

Figure 6. Linux SMP with Core 0 Busy

The results are predictable, with no discernible difference in a busy or idle
Linux system. Polling does yield a slightly better overall response, while jitter
in both polling and ISR are relatively high (< 10 microseconds). In a system
where interrupt jitter of 10 microseconds or higher is acceptable, a standard
Linux SMP system is sufficient.

Poll

0
32

bytes bytes bytes bytes bytes bytes bytes
64 128 256 512 1,024 2,048

1

2

3

4

5

6

7

8

9
M

icr
os

ec
on

ds

Interrupt

Poll (Jitter)

Interrupt (Jitter)

Poll

0
32

bytes bytes bytes bytes bytes bytes bytes
64 128 256 512 1,024 2,048

1

2

3

4

5

6

7

8

9

M
icr

os
ec

on
ds

Interrupt

Poll (Jitter)

Interrupt (Jitter)

White Paper Page 9

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCs December 2014 Altera Corporation

Software Architecture 2: VxWorks (RTOS) SMP
The results for an idle VxWorks system, where Core 1 is handling the real-time tasks
in a polling or ISR method, while Core 0 is idle, are shown in Figure 7.

Figure 7. VxWorks SMP with Core 0 Idle

The results for a busy VxWorks system, where Core 1 is handling the real-time tasks in
a polling or interrupt service routine method, while Core 0 is calculating a Fibonacci
series, are shown in Figure 8.

Figure 8. VxWorks SMP with Core 0 Busy

The results here are also predictable. There is no significant difference in a busy or idle
VxWorks system in terms of loop time in a busy or idle system. There is less variation
in overall jitter however, in a busy VxWorks system at a 1k data size.

Poll

0
32

bytes bytes bytes bytes bytes bytes bytes
64 128 256 512 1,024 2,048

1

2

3

4

5

6

7

8

9
M

icr
os

ec
on

ds

Interrupt

Poll (Jitter)

Interrupt (Jitter)

Poll

0
32

bytes bytes bytes bytes bytes bytes bytes
64 128 256 512 1,024 2,048

1

2

3

4

5

6

7

8

9

M
icr

os
ec

on
ds

Interrupt

Poll (Jitter)

Interrupt (Jitter)

White PaperPage 10

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCsDecember 2014 Altera Corporation

Software Architecture 3: Bare-Metal Single-Core
A bare-metal system was created to run on one core; this core does nothing else
except handling interrupts, in a polling or ISR method. Since the other core is not
used, there is no idle or busy system comparison. This would represent a “best case”
scenario in terms of response, as any overhead or managing of the common buffers
between CPUs is not taken into account. It would be expected that such a system
could see significant increases in jitter based on how active the communication
between cores would be. The results are shown in Figure 9.

Figure 9. Bare-Metal Single Core

As expected, jitter is less than a microsecond in both the polling and ISR methods,
as nothing else is occurring in the system. Overall loop time is on-par with both
Linux and VxWorks for a polling method, however, the ISR response is noticeably
higher. This can be attributed to the fact that no scheduling or pre-emption of events
is present in a bare-metal system. Thus, there is no performance advantage from
programming in bare-metal.

Besides the difficulties in creating a bare-metal application for an A9-class multicore
processor, the resulting product is hardware specific, and therefore not readily
portable to future, more-core or different-core processors. Bare-metal applications
are therefore not future proof. By comparison, applications that run on top of an
operating system are abstracted away from hardware differences and therefore are
readily portable to future devices.

Poll

0
32

bytes bytes bytes bytes bytes bytes bytes
64 128 256 512 1,024 2,048

1

2

3

4

5

6

7

8

9

M
icr

os
ec

on
ds

Interrupt

Poll (Jitter)

Interrupt (Jitter)

White Paper Page 11

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCs December 2014 Altera Corporation

Key Findings from Measuring Real-Time Loop Time
The top most contributing factors to lowering interrupt response time and
minimizing jitter are:

• Configuring the system to run in SMP mode with core affinity and dedicate
Core 1 to real-time processing. This conclusion holds true for both VxWorks
and Linux. Configuring the processor to run in core affinity mode dramatically
increased the real-time processing performance on Core 1. While it is also true
that this approach decreases the processor’s ability to load balance between the
two cores, and therefore reduces Core 0’s ability to do its work, if real-time
responsiveness is the single most important requirement to meet, then this is
the easiest and safest way to accomplish that goal.

• Core 1 is used to poll for interrupt instead of using the processor’s native interrupt
handling mechanism. Detractors can point out that polling causes a system to run
all the time, consuming more power, but if microsecond response time is needed,
then the processor is already running all the time. Therefore, polling is a very good
way to remove the non-determinism of the A9-MPCore interrupt handling process.

• Using the DataMover DMA design in the FPGA to deliver data to the on-chip
RAM where Core 1 can find and use with least overhead. Depending on the actual
requirement, defines how sophisticated you make the DMA design. A simple
DMA was employed, using Core 1 to start and stop it. Alternatively, you can
design a DMA or DMA with a Nios II processor to take more load off Core 1.

Design Best Practices for Programming a Multicore SoC
Taking into consideration all the design requirements of real-time responsiveness at
the microsecond level, the desire to separate real-time task and non-real-time tasks
and to balance those requirements with the need to minimize design risk and increase
design portability, a summary of all the best design practices to consider are:

• Use all available hardware resources to increase system performance. This is
illustrated by the DataMover application system architecture (figure 4) that utilized
a FPGA-based DMA to move data in real-time and in parallel with the processing
of the data. To overcome the non-deterministic characters of the Cortex-A9
processor interrupt polling was employed. Used in aggregate, this simple system
produced microsecond level real-time responsiveness with minimal jitter.

• Pair the default SMP hardware architecture with an SMP operating system for best
balance between performance and development time. This point is supported by
the examples where standard configurations of VxWorks and Linux were employed
to create two similarly high-performance systems, with the only variance being in
interrupt response jitter.

• Choose the right RTOS as the easiest way to ensure real-time performance and
determinism – VxWorks was employed to prove that getting deterministic
performance is very simple, in fact, right out of the box.

White PaperPage 12

Bare-Metal, RTOS, or Linux? Optimize Real-Time
Performance with Altera SoCsDecember 2014 Altera Corporation

• Adopt multicore programming techniques to achieve concurrency, load balancing,
and future-proof scalability. The DataMover design (figure 4) shows how the
FPGA can be used to increase overall system concurrency, in a way that a fixed
SoC cannot do. The system uses standard off-the-shelf SMP operating systems,
this design can scale easily to future more-core processors.

• Use SMP/Core Affinity to separate real-time and non real-time tasks on different
cores to achieve application level AMP when necessary. Even though a SMP
operating system was paired with a SMP processor core, core affinity feature was
employed to effectively accomplish asymmetric processing of the application, giving
users what is desired – being able to separate real-time tasks from non-real-time
tasks, and most importantly, to reduce jitter in order to produce deterministic
real-time responsiveness.

• Benefit from ARM software ecosystem by adopting proven, widely accepted solutions
– employing Linux and VxWorks in the most standard configurations, the design
is easily supported by software and software partners. As these operating systems
evolve and improve, the system will take advantage of it, right out of the box.

Conclusion
The most significant driver for hand-creating run-time software is for its perceived
performance benefit and cost. Given the complexities of modern applications
processors, it is very difficult to create a stable, hand-optimized solution without
the use of a modern OS. As shown by the test results in this white paper, even if
such a system can be created, it performs no better than an OS-based solution given
the system interactions both at the processor level, and with the FPGA. There are
numerous free or low-cost OS solutions available. In terms of performance, with the
scheduling demands of modern applications processors, most OS have already been
fully tuned to take advantage of the processor architecture, which would have to be
re-developed in a hand-crafted bare-metal solution. By using a proven OS as the
run-time software, application developers can focus on system-level optimizations.
When true hard real-time performance is required, the FPGA provides an excellent
target. If a soft processor-based hard real-time solution is desired, a Nios II soft
processor core instantiated within the FPGA provides the most optimal path.

Acknowledgements
Chee Nouk Phoon, Embedded Software Engineer, Altera Corporation

Chei Siang Ng, Embedded Applications Engineer, Altera Corporation

Steve Jahnke, Embedded Software Product Planning, Altera Corporation

Findlay Shearer, Linux Marketing Manager, Altera Corporation

