
Introduction to the Altera Nios II Soft Processor

This tutorial presents an introduction to Altera’s NiosR© II processor, which is a soft processor that can be in-
stantiated on an Altera FPGA device. It describes the basic architecture of Nios II and its instruction set. The Nios
II processor and its associated memory and peripheral components are easily instantiated by using Altera’s SOPC
Builder in conjuction with the QuartusR© II software.

A full desciption of the Nios II processor is provided in theNios II Processor Reference Handbook, which
is available in the literature section of the Altera web site. An introduction to the SOPC Builder is given in the
tutorial Introduction to the Altera SOPC Builder, which can be found in the University Program section of the web
site.

Contents:
Nios II System
Overview of Nios II Processor Features
Register Structure
Accessing Memory and I/O Devices
Addressing
Instruction Set
Assembler Directives
Example Program
Exception Processing
Cache Memory
Tightly Coupled Memory

1

Altera’s Nios II is a soft processor, defined in a hardware description language, which can be implemented in
Altera’s FPGA devices by using the QuartusR© II CAD system. This tutorial provides a basic introduction to the
Nios II processor, intended for a user who wishes to implement a Nios II based system on the Altera DE2 board.

1 Nios II System

The Nios II processor can be used with a variety of other components to form a complete system. These compo-
nents include a number of standard peripherals, but it is also possible to define custom peripherals. Altera’s DE2
Development and Education board contains several components that can be integrated into a Nios II system. An
example of such a system is shown in Figure 1.

On-chip
memory

interface

SDRAM
interface

Flash
memory

Parallel I/O

interface

Serial I/O

interface

SRAM
interface

SRAM

chip

SDRAM
chip

chip

Flash
memory

Avalon switch fabric

Nios II processor
JTAG UART

interface

USB-Blaster

interface

Host computer

lines

Parallel

I/O port

lines

Serial

I/O port

Cyclone II

FPGA chipJTAG Debug

module

Figure 1. A Nios II system implemented on the DE2 board.

2

The Nios II processor and the interfaces needed to connect toother chips on the DE2 board are implemented in
the Cyclone II FPGA chip. These components are interconnected by means of the interconnection network called
the Avalon Switch Fabric. Memory blocks in the Cyclone II device can be used to provide an on-chip memory for
the Nios II processor. They can be connected to the processoreither directly or through the Avalon network. The
SRAM and SDRAM memory chips on the DE2 board are accessed through the appropriate interfaces. Input/output
interfaces are instantiated to provide connection to the I/O devices used in the system. A special JTAG UART
interface is used to connect to the circuitry that provides aUniversal Serial Bus (USB) link to the host computer to
which the DE2 board is connected. This circuitry and the associated software is called theUSB-Blaster. Another
module, called the JTAG Debug module, is provided to allow the host computer to control the Nios II processor.
It makes it possible to perform operations such as downloading programs into memory, starting and stopping
execution, setting program breakpoints, and collecting real-time execution trace data.

Since all parts of the Nios II system implemented on the FPGA chip are defined by using a hardware description
language, a knowledgeable user could write such code to implement any part of the system. This would be an
onnerous and time consuming task. Instead, one can use the SOPC Builder tool in the Quartus II software to
implement a desired system simply by choosing the required components and specifying the parameters needed
to make each component fit the overall requirements of the system.

2 Overview of Nios II Processor Features

The Nios II processor has a number of features that can be configured by the user to meet the demands of a desired
system. The processor can be implemented in three differentconfigurations:

• Nios II/f is a "fast" version designed for superior performance. It has the widest scope of configuration
options that can be used to optimize the processor for performance.

• Nios II/s is a "standard" version that requires less resources in an FPGA device as a trade-off for reduced
performance.

• Nios II/e is an "economy" version which requires the least amount of FPGA resources, but also has the most
limited set of user-configurable features.

The Nios II processor has a Reduced Instruction Set Computer(RISC) architecture. Its arithmetic and logic
operations are performed on operands in the general purposeregisters. The data is moved between the memory
and these registers by means of Load and Store instructions.

The wordlength of the Nios II processor is 32 bits. All registers are 32 bits long. Byte addresses in a 32-bit
word can be assigned in eitherlittle-endianor big-endianstyle. The assignment style is one of the options that the
user may select at configuration time. In this tutorial, we will use the little-endian assignment in which the lower
byte addresses are used for the less significant bytes (the rightmost bytes) of the word.

The Nios II architecture uses separate instruction and databuses, which is often referred to as theHarvard
architecture.

A Nios II processor may operate in the following three modes:

• Supervisor mode– allows the processor to execute all instructions and perform all available functions. When
the processor is reset, it enters this mode.

• User mode– the intent of this mode is to prevent execution of some instructions that shoud be used for
systems purposes only. Some processor features are not accessible in this mode.

• Debug mode– is used by software debugging tools to implement features such as breakpoints and watch-
points.

Application programs can be run in either the User or Supervisor modes. Presently available versions of the Nios
II processor do not support the User mode.

3

3 Register Structure

The Nios II processor has thirty two 32-bit general purpose registers, as shown in Figure 2. Some of these registers
are intended for a specific purpose and have special names that are recognized by the Assembler.

• Registerr0 is referred to as thezeroregister. It always contains the constant 0. Thus, reading this register
returns the value 0, while writing to it has no effect.

• Registerr1 is used by the Assembler as a temporary register; it should not be referenced in user programs

• Registersr24 andr29 are used for processing of exceptions; they are not available in User mode

• Registersr25 andr30 are used exclusively by the JTAG Debug module

• Registersr27 andr28 are used to control the stack used by the Nios II processor

• Registerr31 is used to hold the return address when a subroutine is called

Register Name Function
r0 zero 0x00000000
r1 at Assembler Temporary
r2
r3
· · ·

· · ·

· · ·

r23
r24 et Exception Temporary(1)
r25 bt Breakpoint Temporary(2)
r26 gp Global Pointer
r27 sp Stack Pointer
r28 fp Frame Pointer
r29 ea Exception Return Address(1)
r30 ba Breakpoint Return Address(2)
r31 ra Return Address
(1) The register is not available in User mode
(2) The register is used exclusively by the JTAG Debug module

Figure 2. General Purpose registers.

There are six 32-bit control registers, as indicated in Figure 3. The names given in the figure are recognized
by the Assembler. These registers are used automatically for control purposes. They can be read and written to by
special instructionsrdctl andwrctl, which can be executed only in the supervisor mode. The registers are used as
follows:

• Registerctl0 reflects the operating status of the processor. Only two bitsof this register are meaningful:

– U is the User/Supervisor mode bit;U = 1 for User mode, whileU = 0 for Supervisor mode.

– PIE is the processor interrupt-enable bit. WhenPIE = 1, the processor may accept external interrupts.
WhenPIE = 0, the processor ignores external interrupts.

• Registerctl1 holds a saved copy of the status register during exception processing. The bitsEU andEPIE
are the saved values of the status bitsU andPIE.

4

• Registerctl2 holds a saved copy of the status register during debug break processing. The bitsBU andBPIE
are the saved values of the status bitsU andPIE.

• Registerctl3 is used to enable individual external interrupts. Each bit corresponds to one of the interrupts
irq0 to irq31. The value of 1 means that the interrupt is enabled, while 0 means that it is disabled.

• Registerctl4 indicates which interrupts are pending. The value of a givenbit, ctl4k, is set to 1 if the interrupt
irqk is both active and enabled by having the interrupt-enable bit, ctl3k, set to 1.

• Registerctl5 holds a value that uniquely identifies the processor in a multiprocessor system.

Register Name b31 · · · b2 b1 b0

ctl0 status Reserved U PIE
ctl1 estatus Reserved EU EPIE
ctl2 bstatus Reserved BU BPIE
ctl3 ienable Interrupt-enable bits
ctl4 ipending Pending-interrupt bits
ctl5 cpuid Unique processor identifier

Figure 3. Control registers.

4 Accessing Memory and I/O Devices

Figure 4 shows how a Nios II processor can access memory and I/O devices. For best performance, the Nios II/f
processor can include both instruction and data caches. Thecaches are implemented in the FPGA memory blocks.
Their usage is optional and they are specified (including their size) at the system generation time by using the
SOPC Builder. The Nios II/s version can have the instructioncache but not the data cache. The Nios II/e version
has neither instruction nor data cache.

Another way to give the processor fast access to the on-chip memory is by using thetightly coupledmemory
arrangement, in which case the processor accesses the memory via a direct path rather than through the Avalon
network. Accesses to a tightly coupled memory bypass the cache memory. There can be one or more tightly
coupled instruction and data memories. If the instruction cache is not included in a system, then there must be at
least one tightly coupled memory provided for Nios II/f and Nios II/s processors. On-chip memory can also be
accessed via the Avalon network.

Off-chip memory devices, such as SRAM, SDRAM, and Flash memory chips are accessed by instantiating the
appropriate interfaces. The input/output devices are memory mapped and can be accessed as memory locations.

Data accesses to memory locations and I/O interfaces are performed by means of Load and Store instructions,
which cause data to be transferred between the memory and general purpose registers.

5

Tightly coupled
instruction memory

I/O

interface

Tightly coupled

data memory

Memory
interface

Memory

device

Avalon switch fabric

Data

cache

Cyclone II

FPGA chip

Instruction

cache

I/O

device

Instruction bus selector logic Data bus selector logic

General purpose

registersProgram counter

Figure 4. Memory and I/O organization.

5 Addressing

The Nios II processor issues 32-bit addresses. The memory space is byte-addressable. Instructions can read and
write words(32 bits),halfwords(16 bits), orbytes(8 bits) of data. Reading or writing to an address that does not
correspond to an existing memory or I/O location produces anundefined result.

There are five addressing modes provided:

• Immediate mode– a 16-bit operand is given explicitly in the instruction. This value may be sign extended
to produce a 32-bit operand in instructions that perform arithmetic operations.

• Register mode– the operand is in a processor register

• Displacement mode– the effective address of the operand is the sum of the contents of a register and a
signed 16-bit displacement value given in the instruction

• Register indirect mode– the effective address of the operand is the contents of a register specified in the
instruction. This is equivalent to the displacement mode where the displacement value is equal to 0.

6

• Absolute mode– a 16-bit absolute address of an operand can be specified by using the displacement mode
with registerr0 which always contains the value 0.

6 Instructions

All Nios II instructions are 32-bits long. In addition to machine instructions that are executed directly by the pro-
cessor, the Nios II instruction set includes a number ofpseudoinstructionsthat can be used in assembly language
programs. The Assembler replaces each pseudoinstruction by one or more machine instructions.

Figure 5 depicts the three possible instruction formats: I-type, R-type and J-type. In all cases the six bitsb5−0

denote the OP code. The remaining bits are used to specify registers, immediate operands, or extended OP codes.

• I-type – Five-bit fields A and B are used to specify general purpose registers. A 16-bit field IMMED16
provides immediate data which can be sign extended to provide a 32-bit operand.

• R-type – Five-bit fields A, B and C are used to specify general purpose registers. An 11-bit field OPX is
used to extend the OP code.

• J-type – A 26-bit field IMMED26 contains an unsigned immediate value. This format is used only in the
Call instruction.

0562122262731

OPIMMED16BA

0562122262731

OPBA

(a) I-type

05631

OPIMMED26

(b) R-type

(c) J-type

1617

OPXC

Figure 5. Formats of Nios II instructions.

The following subsections discuss briefly the main featuresof the Nios II instruction set. For a complete
description of the instruction set, including the details of how each instruction is encoded, the reader should
consult theNios II Processor Reference Handbook.

6.1 Load and Store Instructions

Load and Store instructions are used to move data between memory (and I/0 interfaces) and the general purpose
registers. They are of I-type. For example, the Load Word instruction

ldw rB, byte_offset(rA)

7

determines the effective address of a memory location as thesum of a byte_offset value and the contents of register
A. The 16-bit byte_offset value is sign extended to 32 bits. The 32-bit memory operand is loaded into registerB.

For instance, assume that the contents of registerr4 are126010 and the byte_offset value is8010. Then, the
instruction

ldw r3, 80(r4)

loads the 32-bit operand at memory address134010 into registerr3.

The Store Word instruction has the format

stw rB, byte_offset(rA)

It stores the contents of registerB into the memory location at the address computed as the sum ofthe byte_offset
value and the contents of registerA.

There are Load and Store instructions that use operands thatare only 8 or 16 bits long. They are referred to as
Load/Store Byte and Load/Store Halfword instructions, respectively. Such Load instructions are:

• ldb (Load Byte)

• ldbu (Load Byte Unsigned)

• ldh (Load Halfword)

• ldhu (Load Halfword Unsigned)

When a shorter operand is loaded into a 32-bit register, its value has to be adjusted to fit into the register. This
is done by sign extending the 8- or 16-bit value to 32 bits in the ldb and ldh instructions. In theldbu and ldhu
instructions the operand is zero extended.

The corresponding Store instructions are:

• stb (Store Byte)

• sth (Store Halfword)

Thestb instruction stores the low byte of registerB into the memory byte specified by the effective address. The
sth instruction stores the low halfword of registerB. In this case the effective address must be halfword aligned.

Each Load and Store instruction has a version intended for accessing locations in I/O device interfaces. These
instructions are:

• ldwio (Load Word I/O)

• ldbio (Load Byte I/O)

• ldbuio (Load Byte Unsigned I/O)

• ldhio (Load Halfword I/O)

• ldhuio (Load Halfword Unsigned I/O)

• stwio (Store Word I/O)

• stbio (Store Byte I/O)

• sthio (Store Halfword I/O)

The difference is that these instructions bypass the cache,if one exists.

8

6.2 Arithmetic Instructions

The arithmetic instructions operate on the data that is either in the general purpose registers or given as an imme-
diate value in the instruction. These instructions are of R-type or I-type, respectively. They include:

• add (Add Registers)

• addi (Add Immediate)

• sub (Subtract Registers)

• subi (Subtract Immediate)

• mul (Multiply)

• muli (Multiply Immediate)

• div (Divide)

• divu (Divide Unsigned)

The Add instruction

add rC, rA, rB

adds the contents of registersA andB, and places the sum into registerC.

The Add Immediate instruction

addi rB, rA, IMMED16

adds the contents of registerA and the sign-extended 16-bit operand given in the instruction, and places the result
into registerB. The addition operation in these instructions is the same for both signed and unsigned operands;
there are no condition flags that are set by the operation. This means that when unsigned operands are added, the
carry from the most significant bit position has to be detected by executing a separate instruction. Similarly, when
signed operands are added, the arithmetic overflow has to be detected separately. The detection of these conditions
is dicussed in section 6.11.

The Subtract instruction

sub rC, rA, rB

subtracts the contents of registerB from registerA, and places the result into registerC. Again, the carry and
overflow detection has to be done by using additional instructions, as explained in section 6.11.

The immediate version,subi, is a pseudoinstruction implemented as

addi rB, rA, -IMMED16

The Multiply instruction

mul rC, rA, rB

multiplies the contents of registersA andB, and places the low-order 32 bits of the product into register C. The
operands are treated as unsigned numbers. The carry and overflow detection has to be done by using additional
instructions. In the immediate version

muli rB, rA, IMMED16

the 16-bit immediate operand is sign extended to 32 bits.

9

The Divide instruction

div rC, rA, rB

divides the contents of registerA by the contents of registerB and places the integer portion of the quotient into
registerC. The operands are treated as signed integers. Thedivu instruction is performed in the same way except
that the operands are treated as unsigned integers.

6.3 Logic Instructions

The logic instructions provide the AND, OR, XOR, and NOR operations. They operate on data that is either in
the general purpose registers or given as an immediate valuein the instruction. These instructions are of R-type or
I-type, respectively.

The AND instruction

and rC, rA, rB

performs a bitwise logical AND of the contents of registersA andB, and stores the result in registerC. Similarly,
the instructionsor, xor andnor perform the OR, XOR and NOR operations, respectively.

The AND Immediate instruction

andi rB, rA, IMMED16

performs a bitwise logical AND of the contents of registerA and the IMMED16 operand which is zero-extended
to 32 bits, and stores the result in registerB. Similarly, the instructionsori, xori andnori perform the OR, XOR
and NOR operations, respectively.

It is also possible to use the 16-bit immediate operand as the16 high-order bits in the logic operations, in which
case the low-order 16 bits of the operand are zeros. This is accomplished with the instructions:

• andhi (AND High Immediate)

• orhi (OR High Immediate)

• xorhi (XOR High Immediate)

6.4 Move Instructions

The Move instructions copy the contents of one register intoanother, or they place an immediate value into a
register. They are pseudoinstructions implemented by using other instructions. The instruction

mov rC, rA

copies the contents of registerA into registerC. It is implemented as

add rC, rA, r0

The Move Immediate instruction

movi rB, IMMED16

sign extends the IMMED16 value to 32 bits and loads it into registerB. It is implemented as

addi rB, r0, IMMED16

The Move Unsigned Immediate instruction

10

movui rB, IMMED16

zero extends the IMMED16 value to 32 bits and loads it into registerB. It is implemented as

ori rB, r0, IMMED16

The Move Immediate Address instruction

movia rB, LABEL

loads a 32-bit value that corresponds to the addressLABEL into registerB. It is implemented as:

orhi rB, r0, %hi(LABEL)
ori rB, rB, %lo(LABEL)

The%hi(LABEL) and%lo(LABEL) are the Assembler macros which extract the high-order 16 bits and the low-
order 16 bits, respectively, of a 32-bit valueLABEL. Theorhi instruction sets the high-order bits of registerB,
followed by theori instruction which sets the low-order bits ofB. Note that two instructions are used because the
I-type format provides for only a 16-bit immediate operand.

6.5 Comparison Instructions

The Comparison instructions compare the contents of two registers or the contents of a register and an immediate
value, and write either 1 (if true) or 0 (if false) into the result register. They are of R-type or I-type, respectively.
These instructions correspond to the equality and relational operators in the C programming language.

The Compare Less Than Signed instruction

cmplt rC, rA, rB

performs the comparison of signed numbers in registersA andB, rA < rB, and writes a 1 into registerC if the
result is true; otherwise, it writes a 0.

The Compare Less Than Unsigned instruction

cmpltu rC, rA, rB

performs the same function as thecmplt instruction, but it treats the operands as unsigned numbers.

Other instructions of this type are:

• cmpeq rC, rA, rB (Comparison rA == rB)

• cmpne rC, rA, rB (Comparison rA != rB)

• cmpge rC, rA, rB (Signed comparison rA>= rB)

• cmpgeu rC, rA, rB (Unsigned comparison rA>= rB)

• cmpgt rC, rA, rB (Signed comparison rA> rB)
This is a pseudoinstruction implemented as thecmplt instruction by swapping its rA and rB operands.

• cmpgtu rC, rA, rB (Unsigned comparison rA> rB)
This is a pseudoinstruction implemented as thecmpltu instruction by swapping its rA and rB operands.

• cmple rC, rA, rB (Signed comparison rA<= rB)
This is a pseudoinstruction implemented as thecmpge instruction by swapping its rA and rB operands.

• cmpleu rC, rA, rB (Unsigned comparison rA<= rB)
This is a pseudoinstruction implemented as thecmpgeu instruction by swapping its rA and rB operands.

11

The immediate versions of the Comparison instructions involve an immediate operand. For example, the
Compare Less Than Signed Immediate instruction

cmplti rB, rA, IMMED16

compares the signed number in registerA with the sign-extended immediate operand. It writes a 1 intoregisterB
if rA < IMMED16; otherwise, it writes a 0.

The Compare Less Than Unsigned Immediate instruction

cmpltui rB, rA, IMMED16

compares the unsigned number in registerA with the zero-extended immediate operand. It writes a 1 intoregister
B if rA < IMMED16; otherwise, it writes a 0.

Other instructions of this type are:

• cmpeqi rB, rA, IMMED16 (Comparison rA == IMMED16)

• cmpnei rB, rA, IMMED16 (Comparison rA != IMMED16)

• cmpgei rB, rA, IMMED16 (Signed comparison rA>= IMMED16)

• cmpgeui rB, rA, IMMED16 (Unsigned comparison rA>= IMMED16)

• cmpgti rB, rA, IMMED16 (Signed comparison rA> IMMED16)
This is a pseudoinstruction implemented using thecmpgei instruction with an immediate value IMMED16
+ 1.

• cmpgtui rB, rA, IMMED16 (Unsigned comparison rA> IMMED16)
This is a pseudoinstruction implemented using thecmpgeui instruction with an immediate value IMMED16
+ 1.

• cmplei rB, rA, IMMED16 (Signed comparison rA<= IMMED16)
This is a pseudoinstruction implemented as thecmplti instruction with an immediate value IMMED16 + 1.

• cmpleui rB, rA, IMMED16 (Unsigned comparison rA<= IMMED16)
This is a pseudoinstruction implemented as thecmpltui instruction with an immediate value IMMED16 +
1.

6.6 Shift Instructions

The Shift instructions shift the contents of a register either to the right or to the left. They are of R-type. They
correspond to the shift operators,>> and<<, in the C programming language. These instructions are:

• srl rC, rA, rB (Shift Right Logical)

• srli rC, rA, IMMED5 (Shift Right Logical Immediate)

• sra rC, rA, rB (Shift Right Arithmetic)

• srai rC, rA, IMMED5 (Shift Right Arithmetic Immediate)

• sll rC, rA, rB (Shift Left Logical)

• slli rC, rA, IMMED5 (Shift Left Logical Immediate)

12

Thesrl instruction shifts the contents of registerA to the right by the number of bit positions specified by the five
least-significant bits (number in the range 0 to 31) in register B, and stores the result in registerC. The vacated
bits on the left side of the shifted operand are filled with 0s.

The srli instruction shifts the contents of registerA to the right by the number of bit positions specified by the
five-bit unsigned value, IMMED5, given in the instruction.

The sra andsrai instructions perform the same actions as thesrl andsrli instructions, except that the sign bit,
rA31, is replicated into the vacated bits on the left side of the shifted operand.

Thesll andslli instructions are similar to thesrl andsrli instructions, but they shift the operand in registerA to the
left and fill the vacated bits on the right side with 0s.

6.7 Rotate Instructions

There are three Rotate instructions, which use the R-type format:

• ror rC, rA, rB (Rotate Right)

• rol rC, rA, rB (Rotate Left)

• roli rC, rA, IMMED5 (Rotate Left Immediate)

Theror instruction rotates the bits of registerA in the left-to-right direction by the number of bit positions spec-
ified by the five least-significant bits (number in the range 0 to 31) in registerB, and stores the result in registerC.

Therol instruction is similar to theror instruction, but it rotates the operand in the right-to-left direction.

Theroli instruction rotates the bits of registerA in the right-to-left direction by the number of bit positions specified
by the five-bit unsigned value, IMMED5, given in the instruction, and stores the result in registerC.

6.8 Branch and Jump Instructions

The flow of execution of a program can be changed by executing Branch or Jump instructions. It may be changed
either unconditionally or conditionally.

The Jump instruction

jmp rA

transfers execution unconditionally to the address contained in registerA.

The Unconditional Branch instruction

br LABEL

transfers execution unconditionally to the instruction ataddressLABEL. This is an instruction of I-type, in which
a 16-bit immediate value (interpreted as a signed number) specifies the offset to the branch target instruction. The
offset is the distance in bytes from the instruction that immediately followsbr to the addressLABEL.

Conditional transfer of execution is achieved with the Conditional Branch instructions, which compare the
contents of two registers and cause a branch if the result is true. These instructions are of I-type and the offset is
determined as explained above for thebr instruction.

The Branch if Less Than Signed instruction

blt rA, rB, LABEL

13

performs the comparisonrA < rB, treating the contents of the registers as signed numbers.

The Branch if Less Than Unsigned instruction

bltu rA, rB, LABEL

performs the comparisonrA < rB, treating the contents of the registers as unsigned numbers.

The other Conditional Branch instructions are:

• beq rA, rB, LABEL (Comparison rA == rB)

• bne rA, rB, LABEL (Comparison rA != rB)

• bge rA, rB, LABEL (Signed comparison rA>= rB)

• bgeu rA, rB, LABEL (Unsigned comparison rA>= rB)

• bgt rA, rB, LABEL (Signed comparison rA> rB)
This is a pseudoinstruction implemented as theblt instruction by swapping the register operands.

• bgtu rA, rB, LABEL (Unsigned comparison rA> rB)
This is a pseudoinstruction implemented as thebltu instruction by swapping the register operands.

• ble rA, rB, LABEL (Signed comparison rA<= rB)
This is a pseudoinstruction implemented as thebge instruction by swapping the register operands.

• bleu rA, rB, LABEL (Unsigned comparison rA<= rB)
This is a pseudoinstruction implemented as thebgeu instruction by swapping the register operands.

6.9 Subroutine Linkage Instructions

Nios II has two instructions for calling subroutines. The Call Subroutine instruction

call LABEL

is of J-type, which includes a 26-bit unsigned immediate value (IMMED26). The instruction saves the return
address (which is the address of the next instruction) in registerr31. Then, it transfers control to the instruction
at addressLABEL. This address is determined by concatenating the four high-order bits of the Program Counter
with the IMMED26 value as follows

Jump address = PC31−28 : IMMED26 : 00

Note that the two least-significant bits are 0 because Nios IIinstructions must be aligned on word boundaries.

The Call Subroutine in Register instruction

callr rA

is of R-type. It saves the return address in registerr31 and then transfers control to the instruction at the address
contained in registerA.

Return from a subroutine is performed with the instruction

ret

This instruction transfers execution to the address contained in registerr31.

14

6.10 Control Instructions

The Nios II control registers can be read and written by special instructions. The Read Control Register instruction

rdctl rC, ctlN

copies the contents of control registerctlN into registerC.

The Write Control Register instruction

wrctl ctlN, rA

copies the contents of register A into the control registerctlN.

There are two instructions provided for dealing with exceptions: trap anderet. They are similar to thecall
andret instructions, but they are used for exceptions. Their use isdiscussed in section 8.2.

The instructionsbreak andbret generate breaks and return from breaks. They are used exclusively by the
software debugging tools.

The Nios II cache memories are managed with the instructions: flushd (Flush Data Cache Line),flushi (Flush
Instruction Cache Line),initd (Initialize Data Cache Line), andiniti (Initialize Instruction Cache Line). These
instructions are discussed in section 9.1.

6.11 Carry and Overflow Detection

As pointed out in section 6.2, the Add and Subtract instructions perform the corresponding operations in the same
way for both signed and unsigned operands. The possible carry and arithmetic overflow conditions are not de-
tected, because Nios II does not contain condition flags thatmight be set as a result. These conditions can be
detected by using additional instructions.

Consider the Add instruction

add rC, rA, rB

Having executed this instruction, a possible occurrence ofa carry out of the most-significant bit (C31) can be
detected by checking whether the unsigned sum (in registerC) is less than one of the unsigned operands. For
example, if this instruction is followed by the instruction

cmpltu rD, rC, rA

then the carry bit will be written into registerD.

Similarly, if a branch is required when a carry occurs, this can be accomplished as follows:

add rC, rA, rB
bltu rC, rA, LABEL

A test for arithmetic overflow can be done by checking the signs of the summands and the resulting sum. An
overflow occurs if two positive numbers produce a negative sum, or if two negative numbers produce a positive
sum. Using this approach, the overflow condition can controla conditional branch as follows:

add rC, rA, rB /* The required Add operation */
xor rD, rC, rA /* Compare signs of sum and rA */
xor rE, rC, rB /* Compare signs of sum and rB */
and rD, rD, rE /* SetD31 = 1 if ((A31 == B31) ! = C31) */
blt rD, r0, LABEL /* Branch if overflow occurred */

15

A similar approach can be used to detect the carry and overflowconditions in Subtract operations. A carry out
of the most-significant bit of the resulting difference can be detected by checking whether the first operand is less
than the second operand. Thus, the carry can be used to control a conditional branch as follows:

sub rC, rA, rB
bltu rA, rB, LABEL

The arithmetic overflow in a Subtract operation is detected by comparing the sign of the generated difference with
the signs of the operands. Overflow occurs if the operands in registersA andB have different signs, and the sign
of the difference in registerC is different than the sign ofA. Thus, a conditional branch based on the arithmetic
overflow can be achieved as follows:

sub rC, rA, rB /* The required Subtract operation */
xor rD, rA, rB /* Compare signs of rA and rB */
xor rE, rA, rC /* Compare signs of rA and rC */
and rD, rD, rE /* SetD31 = 1 if ((A31 ! = B31) && (A31 ! = C31)) */
blt rD, r0, LABEL /* Branch if overflow occurred */

7 Assembler Directives

The Nios II Assembler conforms to the widely used GNU Assembler, which is software available in the public
domain. Thus, the GNU Assembler directives can be used in Nios II programs. Assembler directives begin with a
period. We describe some of the more frequently used assembler directives below.

.ascii "string"...

A string of ASCII characters is loaded into consecutive byteaddresses in the memory. Multiple strings, separated
by commas, can be specified.

.asciz "string"...

This directive is the same as.ascii, except that each string is followed (terminated) by a zero byte.

.byte expressions

Expressions separated by commas are specified. Each expression is assembled into the next byte. Examples of
expressions are: 8, 5 + LABEL, and K− 6.

.end

Marks the end of the source code file; everything after this directive is ignored by the assembler.

.equ symbol, expression

Sets the value ofsymbolto expression.

.global symbol

Makessymbolvisible outside the assembled object file.

.hword expressions

Expressions separated by commas are specified. Each expression is assembled into a 16-bit number.

16

.include "file"

Provides a mechanism for including supporting files in a source program.

.org new-lc

Advances the location counter tonew-lc. The .org directive may only increase the location counter, or leave it
unchanged; it cannot move the location counter backwards.

.word expressions

Expressions separated by commas are specified. Each expression is assembled into a 32-bit number.

8 Example Program

As an illustration of Nios II instructions and assembler directives, Figure 6 gives an assembly language program
that computes a dot product of two vectors,A andB. The vectors haven elements. The required computation is

Dot product=
∑

n−1

i=0
A(i) × B(i)

The vectors are stored in memory locations at addressesAVECTORandBVECTOR, respectively. The number of el-
ements,n, is stored in memory locationN . The computed result is written into memory locationDOT_PRODUCT.
Each vector element is assumed to be a signed 32-bit number.

.include "nios_macros.s"

.equ AVECTOR, 0xe00

.equ BVECTOR, 0xf00

.equ N, 0xdf0

.equ DOT_PRODUCT, 0xdf4

.global _start
_start:

movia r2, AVECTOR /* Registerr2 is a pointer to vectorA */
movia r3, BVECTOR /* Registerr3 is a pointer to vectorB */
movia r4, N
ldw r4, 0(r4) /* Registerr4 is used as the counter for loop iterations */
add r5, r0, r0 /* Registerr5 is used to accumulate the product */

LOOP: ldw r6, 0(r2) /* Load the next element of vectorA */
ldw r7, 0(r3) /* Load the next element of vectorB */
mul r8, r6, r7 /* Compute the product of next pair of elements */
add r5, r5, r8 /* Add to the sum */
addi r2, r2, 4 /* Increment the pointer to vectorA */
addi r3, r3, 4 /* Increment the pointer to vectorB */
subi r4, r4, 1 /* Decrement the counter */
bgt r4, r0, LOOP /* Loop again if not finished */
stw r5, DOT_PRODUCT(r0) /* Store the result in memory */

STOP: br STOP
.org 0xdf0
.word 6 /* Specify the number of elements */
.org 0xe00
.word 5, 3,−6, 19, 8, 12 /* Specify the elements of vector A */
.org 0xf00
.word 2, 14,−3, 2,−5, 36 /* Specify the elements of vector B */

Figure 6. A program that computes the dot product of two vectors.

17

In this program, we assumed that the memory addresses of the first elements of vectorsA andB are e00 and
f00, respectively, while the valuen and the final dot product are at df0 and df4. Note that the program ends by
continuously looping on the last Branch instruction. If instead we wanted to pass control to debugging software,
we could replace thisbr instruction with thebreak instruction.

The program includes the assembler directive

.include "nios_macros.s"

which informs the Assembler to use some macro commands that have been created for the Nios II processor. In
this program, the macro used converts themovia pseudoinstruction into two OR instructions as explained insec-
tion 6.4.

The directive

.global _start

indicates to the Assembler that the label_start is accessible outside the assembled object file. This label is the
default label we use to indicate to the Linker program the beginning of the application program.

The program illustrates how the.org and.word assembler directives can be used to load data items into specific
memory locations. Also, note that we have not used a.org directive to specify the starting address of the program
itself; hence, the assembled code will be loaded in memory starting at address 0.

To execute the program in Figure 6 on Altera’s DE2 board, it isnecessary to implement a Nios II processor
and its memory (which can be just the on-chip memory of the Cyclone II FPGA). Since the program includes the
Multiply instruction, it cannot be executed on the economy version of the processor, because Nios II/e does not
support themul instruction. Either Nios II/s or Nios II/f processors can beused.

The tutorialIntroduction to the Altera SOPC Builderexplains how a Nios II system can be implemented. The
tutorialAltera Debug Clientexplains how an application program can be assembled, downloaded and executed on
the DE2 board.

9 Exception Processing

An exceptionin the normal flow of program execution can be caused by:

• Software trap

• Hardware interrupt

• Unimplemented instruction

In response to an exception the Nios II processor performs the following actions:

1. Saves the existing processor status information by copying the contents of thestatusregister (ctl0) into the
estatusregister (ctl1)

2. Clears theU bit in thestatusregister, to ensure that the processor is in the Supervisor mode

3. Clears thePIE bit in thestatusregister, thus disabling the additional external processor interrupts

4. Writes the address of the instruction after the exceptioninto theearegister (r29)

5. Transfers execution to the address of theexception handlerwhich determines the cause of the exception and
dispatches an appropriateexception routineto respond to the exception

The address of the exception handler is specified at system generation time using the SOPC Builder, and it cannot
be changed by software at run time. This address can be provided by the designer; otherwise, the default address
is 2016 from the starting address of the main memory. For example, ifthe memory starts at address 0, then the
default address of the exception handler is 0x00000020.

18

9.1 Software Trap

A software exception occurs when atrap instruction is encountered in a program. This instruction saves the
address of the next instruction in theea register (r29). Then, it disables interrupts and transfers execution to the
exception handler.

In the exception-service routine the last instruction iseret (Exception Return), which returns execution control
to the instruction that follows thetrap instruction that caused the exception. The return address is given by the
contents of registerea. Theeret instruction restores the previous status of the processor by copying the contents
of theestatusregister into thestatusregister.

A common use of the software trap is to transfer control to a different program, such as an operating system.

9.2 Hardware Interrupts

Hardware interrupts can be raised by external sources, suchas I/O devices, by asserting one of the processor’s 32
interrupt-request inputs,irq0 throughirq31. An interrupt is generated only if the following three conditions are
true:

• ThePIE bit in thestatusregister is set to 1

• An interrupt-request input,irqk, is asserted

• The corresponding interrupt-enable bit,ctl3k, is set to 1

The contents of theipendingregister (ctl4) indicate which interrupt requests are pending. An exception routine
determines which of the pending interrupts has the highest priority, and transfers control to the corresponding
interrupt-service routine.

Upon completion of the interrupt-service routine, the execution control is returned to the interrupted program
by means of theeret instruction, as explained above. However, since an external interrupt request is handled
without first completing the instruction that is being executed when the interrupt occurs, the interrupted instruction
must be re-executed upon return from the interrupt-serviceroutine. To achieve this, the interrupt-service routine
has to adjust the contents of theearegister which are at this time pointing to the next instruction of the interrupted
program. Hence, the value in theearegister has to be decremented by 4 prior to executing theeret instruction.

9.3 Unimplemented Instructions

This exception occurs when the processor encounters a validinstruction that is not implemented in hardware. This
may be the case with instructions such asmul anddiv. The exception handler may call a routine that emulates the
required operation in software.

9.4 Determining the Type of Exception

When an exception occurs, the exception-handling routine has to determine what type of exception has occurred.
The order in which the exceptions should be checked is:

1. Read theipendingregister to see if a hardware interrupt has occurred; if so, then go to the appropriate
interrupt-service routine.

2. Read the instruction that was being executed when the exception occurred. The address of this instruction
is the value in theea register minus 4. If this is thetrap instruction, then go to the software-trap-handling
routine.

3. Otherwise, the exception is due to an unimplemented instruction.

19

10 Cache Memory

As shown in Figure 4, a Nios II system can include instructionand data caches, which are implemented in the
memory blocks in the FPGA chip. The caches can be specified when a system is being designed by using the
SOPC Builder software. Inclusion of caches improves the performance of a Nios II system significantly, particu-
larly when most of the main memory is provided by an external SDRAM chip, as is the case with Altera’s DE2
board. Both instruction and data caches are direct-mapped.

The instruction cache can be implemented in the fast and standard versions of the Nios II processor systems.
It is organized in 8 words per cache line, and its size is a user-selectable design parameter.

The data cache can be implemented only with the Nios II/f processor. It has a configurable line size of 4, 16
or 32 bytes per cache line. Its overall size is also a user-selectable design parameter.

10.1 Cache Management

Cache management is handled by software. For this purpose the Nios II instruction set includes the following
instructions:

• initd IMMED16(rA) (Initialize data-cache line)
Invalidates the line in the data cache that is associated with the address determined by adding the sign-
extended value IMMED16 and the contents of registerrA.

• initi rA (Initialize instruction-cache line)
Invalidates the line in the instruction cache that is associated with the address contained in registerrA.

• flushd IMMED16(rA) (Flush data-cache line)
Computes the effective address by adding the sign-extendedvalue IMMED16 and the contents of register
rA. Then, it identifies the cache line associated with this effective address, writes any dirty data in the cache
line back to memory, and invalidates the cache line.

• flushi rA (Flush instruction-cache line)
Invalidates the line in the instruction cache that is associated with the address contained in registerrA.

10.2 Cache Bypass Methods

A Nios II processor uses its data cache in the standard manner. But, it also allows the cache to be bypassed in
two ways. As mentioned in section 6.1, the Load and Store instructions have a version intended for accessing I/O
devices, where the effective address specifies a location inan I/O device interface. These instructions are:ldwio,
ldbio, lduio, ldhio, ldhuio, stwio, stbio, andsthio. They bypass the data cache.

Another way of bypassing the data cache is by using bit 31 of anaddress as a tag that indicates whether the
processor should transfer the data to/from the cache, or bypass it. This feature is available only in the Nios II/f
processor.

Mixing cached and uncached accesses has to be done with care.Otherwise, the coherence of the cached data
may be compromised.

11 Tightly Coupled Memory

As explained in section 4, a Nios II processor can access the memory blocks in the FPGA chip as atightly coupled
memory. This arrangement does not use the Avalon network. Instead,the tightly coupled memory is connected
directly to the processor.

Data in the tightly coupled memory is accessed using the normal Load and Store instructions, such asldw or
stw. The Nios II control circuits determine if the address of a memory location is in the tightly coupled memory.
Accesses to the tightly coupled memory bypass the caches. For the address span of the tightly coupled memory,
the processor operates as if caches were not present.

20

Copyright c©2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and allother words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in
the U.S. and other countries. All other product or service names are the property of their respective holders.
Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of itssemiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest version ofdevice specifications before relying on any published
information and before placing orders for products or services.
This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

21

