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Introduction 

 

This project implemented a simple video production unit which could provide green screen effects, title 

overlays, fades, and display background images. 

 

In this project we turned a Altera Cyclone II FGPA into a simple video production unit with the help of a 

Sony Handicam and a PC for serial communication.  The main focus of the project is the ability to 

provide a green screen effect, most commonly seen with weather news.  We would extract the green 

regions of the video based on a threshold and display a background image, such as a weather map.  This 

image is able to be transferred to the FPGA over RS-232 serial communication in as fast as 1 second for a 

black and white image.  Other production effects including interfacing a PS/2 keyboard to write titles on 

top of the image, fade in and outs, and a reverse green screen method.  The output of the produced 

video image is displayed on a VGA compatible monitor at 640x480 resolution. 

 

We chose to implement a simple video production module as our final project because we wanted to do 

something involving image processing in real time on a video stream.  A first thought was to improve on 

a real time edge detector that was done in a previous year, but instead we decided to try something 

new and the green screen effect seemed like a fun idea for a project, combined with that no project to 

date had created a RS-232 hardware interface. 

 

 

High Level Design 

 

Our project idea is ubiquitous in special effects used in many TV shows, movies, and weather 

broadcasting. 

 

The project can be divided into four main components.  These include RS-232 transfer of background 

image, video acquisition, effects generation, and effects multiplexing out to VGA. 

 

 
Figure 1: High level schematic showing the general process of editing the video. 



 

We decided to implement and test each of the effects (green screen, reverse green screen, image 

transfer, etc.) separately, and then integrate them on top of each other in the main module. The fading 

in and out effect took precedence over all of the other effects since it controls whether or not the other 

effects would be displayed at all. Writing text to the screen took precedence over the green screen and 

reverse green screen effects because text should be written over all video regardless of whether or not 

the video is straight from the camera or from an image stored in SRAM. Green screen and reverse green 

screen effects have the same precedence since they are never used at the same time. 

 

Part of our specification was to have an image displayed in the green portion of the video, such as when 

a weatherman has a map in the background.  We decided to store this image in SRAM and load 

appropriately when creating the green screen effect.  To store the image in SRAM we used RS-232 serial 

communication to transfer the image from a PC to the FPGA.  On the FPGA we implemented both a 

UART receiver and transmitter module.  These modules were capable of sending at varying baud rates, 

error checking, and issuing a timeout error on packet reception.  Five different image transfer modes 

were implemented: 640x480 8-bit bitmap, 320x240 8-bit bitmap stretched in the x-axis and y-axis, 

320x240 8-bit bitmap stretched in x-axis only, direct draw mode, and 320x240 black and white image 

stretched in both x and y axes. 

 

Switches, push buttons, a PS/2 keyboard and PC executables were used to enable different types of 

produced effects.  The final image after all effects processed was a 640x480 color image on a VGA 

capable monitor. 

 

Usage 

 

 
Figure 2: Hardware setup 



Download our design to the DE2 board and make sure everything in the diagram above is properly 

hooked up. Initially all effects are turned off and video feed from the Sony Handicam is directly 

displayed to the VGA monitor. 

- To turn on/off in effects, press KEY 2. (To check if effects are turned on, point to Handicam at the green 

screen) 

- To use the green screen effect, set switch 16 up. 

- To use the reverse screen effect, set switch 16 down. 

- To transfer 320x240 images, set switch 0 up, and switches 1 and 2 down; then run im.exe <image 

name> (located in the ImageTransfer folder). 

- To transfer 320x240 images in black and white mode, set switch 2 up, and switches 1 and 0 down, then 

run bw.exe <image name>. 

- To transfer 640x480 images, set switch 2 down, and switches 1 and 0 up; then run im.exe <image 

name>. 

- To write text to the screen, start typing on the keyboard; text should appear in the middle of the 

screen. 

 

Hardware Design 

 

We used a Sony Handicam to capture and send video to SDRAM and an RS-232 serial port to send 

images to SRAM.  The stored images are combined accordingly and sent to a VGA display. 

 
Figure 3. Overview of Signals 

 

Figure 2 shows how signals propagate from the camera and RS-232 serial port to the VGA display. Each 

line carries the value of a pixel and the modules know the current horizontal and vertical position of that 

pixel. Mux-A is used for the green screen effect. If the pixel from the SDRAM video feed is considered 



green, mux-A outputs the pixel from the SRAM image instead of the SDRAM video feed. Mux-B is used 

for the reverse green screen effect. If the pixel from the SRAM image is green, mux-B outputs the pixel 

from the SDRAM video feed instead of the SRAM image. Mux-C is used to choose whether to output the 

green screen or reverse green screen. Mux-D is used for writing text to the screen. If the current pixel's 

position is within the bitmap of a letter that's supposed to be written to the screen, mux-D outputs the 

color of text displayed on the screen instead of the output from the green screen/reverse green screen 

effects. Finally, mux-E is used to fade in the effect. If the effects are supposed to be faded in, mux-E 

outputs the combination of all the other effects. If the effects are not supposed to be faded in, mux-E 

outputs the SDRAM video feed with no effects added in. 

 

Video Camera 

 

The video camera interfacing was handled by the DE2_TV provided by Terasic Technologies in a CD that 

came with the DE2 board. The video camera RCA video output is connected to the DE2 board. The signal 

is in ITU656 format. The signal gets converted to YUV 4:2:2 format, down-sampled from 720 to 420 

horizontal pixels, and then stored in SDRAM. When the image is read out from SDRAM, the pixels get 

converted from YUV 4:2:2 to YUV 4:4:4, and then to RGB format. In the DE2_TV module, the RGB signal 

is sent to the VGA output. We intercept this signal and add effects before feeding it to the VGA output. 

 

Serial Image Transfer 

There were two possible ways for us to implement the RS-232 communication.  We could choose to 

instantiate a NIOS II microprocessor and have it include a UART module or we could create our own 

hardware receiver and transmitter UART modules from scratch.  While it would have been easier to go 

the NIOS II route the problem was that the NIOS II microprocessor needs the SDRAM as its memory, and 

we were currently using that memory for holding the video image data.  In order to avoid any conflicts 

we decided it would be best to develop our own hardware receiver and transmitter. 

 

RS-232 Protocol Description 

 

In order to develop these modules one has to understand how RS-232 protocol works.  There are a lot of 

different options that one can choose, but we decided on the following, fairly standard, options for 

communication – 8 data bits, 1 stop bit, 1 start bit, no flow control, no parity bit.  The baudrate that we 

used changed throughout development, but initially we started with a fairly slow and safe baudrate of 

9600 baud.  The end product runs at a baudrate of 115200 baud. 

 

To receive a byte of data you have to first listen for the start bit.  The start bit is a logical zero on the 

UART receiver and you recognize it as the start bit because when the UART receiver is idle it has a logical 

one outputted.  Once the start bit is received the following eight clock ticks will posses the data portion 

with the least significant bit being passed in first.  After all 8 data bits are received you listen for a stop 

bit which will be a logical one.  If a logical one is not received then you know that an error has occurred 

and you have probably lost sync or connection with what you are receiving from.  The image below 

illustrates the protocol. 



 
Figure 4: RS-232 protocol. 

 

There is one intricacy in designing a receiver that isn’t initially noticeable by simply following the 

protocol.  We initially ran into problems that we were getting more bit errors that we typically should 

have gotten.  This was thought to be a problem that we could not generate a baud rate exactly equal to 

9600 baud.  Since our baud rate was slightly off this meant that every now and then the receiving clock 

would lose sync with the transmitting clock (which is why error detection was implemented to correct 

this) however we were receiving possibly too many errors.  After reading a bunch of literature on RS-232 

error detection we found out that most modules sample the idle line at 16 * BaudRate.  An example we 

found showed how to do it at 8 * BaudRate and suggested that this should be fairly sufficient and we 

implemented the examples suggestion.  This greatly reduced the amount of bit errors received.  The 

reason for this is that when you sample at 8 times the baudrate you ensure that you do not miss a 

potential start bit due to clock error.  Then once your 8 times fast baud clock finds the start bit it resets 

the normal baud clock.  Then you are almost guaranteed no error in the normal baud clock since it is 

always starting in sync with the transmitted data. 

 

To transmit a byte of data this same protocol is followed.  The transmitter constantly outputs a logical 

one, and then when it wants to begin transmitting it changes to logical zero, followed by the 8 data bits, 

and then back to logical one for the stop bit.  It is up to the receiver to make sure that data is received 

correctly provided that the transmitter follows protocol.  You do not need a fast baud clock for 

transmitting since it is the receivers job for staying in sync. 

 

Receiver and Transmitter Module Design 

 

Both the transmitter and receiver were designed to follow the protocol above.  The receiver works by 

sampling the idle line at 8 times the baud rate and once a start bit is detected it enters a state machine 

that collects the data.  Once the 8 data bits are collected it listens for the stop bit.  If a stop bit is not 

detected it enters its error correcting mode.  In error correcting it checks for one of two things to occur.  

The first is that it receives 10 logical ones in a row which would signal all idle bits.  The second is that it 

finds a bit spacing equivalent to a start bit followed by 8 bits followed by a stop bit which would signal 



data and it knows its back in sync.  Any data received during error correcting is lost, but the main point is 

that the receiver is now back in sync with the transmitter. 

 

The transmitter works by following the aforementioned protocol and writing back whatever data is 

issued to it at the time of a transmit request. 

 

Packaging the Data 

 

To send the image data it became apparent to us that we needed a way to ensure that what was being 

transmitted was what was actually received.  Initially we had just assumed/hoped that the serial 

communication would be accurate enough that we could just send the data and let a FPGA state 

machine choose where to output the data.  However, when data was lost this caused the image to skew 

itself and some pixel colors would be wrong.  In an effort to fix this problem we needed to implement 

some form of bitwise error detection.  Research showed that generally a CRC is done on packets of data 

or you could do a parity check.  We felt that a one bit parity check would probably not be enough to 

ensure accuracy of the data so the packaging and CRC route was chosen. 

 

When data comes into the receiver it is outputted to a PacketManager module.  This module packages 

the incoming bytes into a packet of length 16 bytes.  The format of the packet is 15 bytes of data 

followed by 1 byte of CRC.  Now, we didn’t implement an actual CRC check, but rather a very quick yet 

suitable XOR.  All 15 bytes of data were XOR’ed and this result was the 16 byte in the package.  Once a 

packet is assembled the data bits are sent to our CRC module which performs the XOR.  The result of 

this XOR is then compared to the 16
th

 byte of our packet.  If the CRC matches the 16
th

 byte the 

transmitter is told to send a byte valued at 255 indicating a success, but if it does not match it sends a 

byte valued of 0.  Then retransmission can take place if needed. 

 

Dealing with loss of synchronization – Timeouts 

A previous problem which was mentioned was a loss of synchronization with the transmitting and 

receiving module.  It could happen that the receiving module enters a state that it can’t get out of 

because the transmitter keeps sending data and the receiver can never fix its error.  If this happens then 

the transmitter will never have a finished packet and thus cannot send back either an ACK or NACK of 

successful receipt.  Because of this potential problem we implemented a method to detect timeouts. 

 

Whenever a new packet is started it is given a start time based on the FPGA run time.  This start time is 

128 bits long and should never overflow during the course of execution as it increments on the 50MHz 

clock (unless you run your FPGA for about 2^23 years).  Then each clock cycle the packet manager 

checks to see if the time between the receipt of the first byte in the packet and the current byte is 

greater than 0.2 seconds.  If it is greater than we believe that some error has occurred and we need to 

issue a timeout error.  The packet manager then resets the receiver and tells the transmitter to issue a 

timeout NACK to the host receiver.  This NACK is byte valued at 128 to indicate a timeout has occurred. 

 

Baudrate Generation 

 

To generate the baud rate we used the 50 MHz clock and found an appropriate integer divider and 

incremented an accumulator.  One the accumulator was equal to the divider we new that a baud clock 

tick was appropriate.  The error rate depending on the desired baud rate was generally less than .001%. 

 

Writing the Image to SRAM 



 

Once a packet is fully received and checked that it contains no errors we “unpack” the data and write it 

appropriately to SRAM.  There are five methods that we created for unpacking the data and writing to 

SRAM – each is used for a different application of displaying the image. 

 

Displaying 640x480 images: 

The first three bytes in this type of image contain a start X and Y coordinate.  The reason that three 

bytes are needed is that 640 maximum value requires 10 bits and 480 maximum value requires 9 bits for 

a total of 19 bits which can only be held in 3 bytes or 24 bits.  The following 12 bytes of the packet hold 

color values for the 12 pixels that immediately follow the start X and Y coordinate inclusive of start X and 

Y.  The drawing state machine then cycles through these 12 bytes of data and increments the draw X by 

one for each subsequent data byte.  If it gets to a point where X > 640 it just does not draw it to avoid 

drawing out of bounds.  On each cycle the SRAM address and data registers are set to indicate the pixel 

position via the address register and color value via the data register. 

 

Displaying 320x240 images stretched to 640x480: 

Again the first three bytes specify the start X and start Y values.  Again, the next 12 bytes represent color 

data.  This time the data register duplicates the color data in order to stretch out the image in the X 

direction.  The reason why this stretches it is because we store the image as 320 16-bit color values for 

each row.  So essentially, each data block holds two pixel values that are adjacent to each other.  When 

we duplicate the 8 high bits and low bits of the data this stretches the image.  To stretch in the Y 

direction we write to SRAM by shifting the start Y value by 1 (doubling it) and adding either 0 or 1 

depending on if it is the first row or second row to be saved to SRAM. 

 

Displaying 320x240 images stretched to 640x240: 

This works the same exact way as stretching to 640x480 except that we do not stretch in the Y direction.  

This means that the start Y value is not shifted right by 1 and instead is used directly in the SRAM 

destination address. 

 

Displaying 320x240 black and white images stretched to 640x480: 

In this mode we stretch a 320x240 black and white (binary) image to 640x480.  To do this we again 

specify the first 3 bytes as start X and start Y values.  Then, the next 12 bytes of 96 bits represent 96 

pixels.  The state machine loops through each of these 96 pixels and stores to SRAM either the color 

white or black depending on the pixel value.  It stretches in the X and Y direction the same way as in the 

other stretch routine.  Because we can write 96 pixels at once this method of image transfer is very 

quick. 

 

Direct Draw Method: 

One other method that was implemented was that in each packet we specified 3 direct locations and 

color values to be drawn to.  In this method the packet was set up as 3 bytes for image location followed 

by 1 byte for image color data.  Since this took four bytes we could hold 3 of these pixels in a packet and 

2 bytes were wasted.  This method is very slow compared to the other methods but has the advantage 

of being able to draw directly to any pixel value instead of sequentially.  You could imaging this method 

being used to draw a title overlay instead of an actual image.  This method only worked for 320x240 

image resolutions. 

 

VGA Interface 

 



Getting 640x480 resolution out of SRAM 

 

SRAM is not big enough to store 640x480 16-bit pixel information.  However, it can accommodate 

320x480 16-bit pixel information.  Therefore to get a resolution of 640x480 we need to limit the amount 

of color information for each pixel.  The logical approach is to have each pixel have a color depth of only 

8 bits instead of 16 bits.  We divided up the RGB values into 3-bits for red and green and 2-bits for blue. 

When it came time to read from SRAM and display on the VGA these 16 bits were read and if the least 

significant bit of the X part of the SRAM address was a 0 then we would output the left pixel or data bits 

7:0 and if it was a 1 then the right pixel or data bits 15:8.  The red, green, and blue components are 

required to be 10 bits according to the VGA parameters.  To get 10 bits for each we used the following 

code: 
 

assign  mVGA_R = Coord_X[0] ? {SRAM_DQ[15:13], SRAM_DQ[15:13],SRAM_DQ[15:13],1'b1} : 

{SRAM_DQ[7:5], SRAM_DQ[7:5],SRAM_DQ[7:5],1'b1} ; 

 

assign  mVGA_G = Coord_X[0] ? {SRAM_DQ[12:10], SRAM_DQ[12:10],SRAM_DQ[12:10],1'b1} : 

{SRAM_DQ[4:2], SRAM_DQ[4:2],SRAM_DQ[4:2],1'b1}; 

 

assign mVGA_B = Coord_X[0] ? {SRAM_DQ[9:8], SRAM_DQ[9:8], SRAM_DQ[9:8], SRAM_DQ[9:8], 

SRAM_DQ[9:8]}  : {SRAM_DQ[1:0], SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0]}; 

 

Green Detection in Video for Green Screen 

 

The VGA output receives one pixel at a time. Each pixel goes through green detection. A pixel is 

determined to be green if its green is above a certain threshold, its red is below a certain threshold, and 

its blue is below a certain threshold. There is a tradeoff between having green artifacts at the borders of 

green areas and detecting green in areas that are not part of the green screen. 

 

If the green threshold is set too high, and red and blue thresholds are set too low, the green screen 

might not be green enough to be classified as green, and any reflections or slight deviations from green 

on the green screen will not be classified as green. Green threshold being too low also results in large 

green borders between the green screen and anything that appears in front of it. 

 

If the green threshold is set too low, and the red and blue thresholds are set too high, areas that are not 

part of the green screen will be classified as green. During testing, areas that were green were set as 

white; setting the green threshold too low made objects appear as if electricity were surging through 

them. 

 

To match the thresholds to the green screen, we set the thresholds with switches. We tuned the 

thresholds until the green screen was considered green and there was no green in all of the other 

objects in the video. 

 

Green Detection in an Image for Reverse Green Screen 

 

Since we know the exact green value that we are drawing into the image that we are using for reverse 

green screen, we can look for an exact green value rather than setting thresholds. Other than image and 

video quality, reverse green screen works perfectly with no artifacts for all of the images that we tested 

since we do not have to worry about false green detections. If any part of an image happens to be the 

exact value that is considered green, we could tweak one of its bits, which would be unnoticeable 

except to the green detection. 



 

Fading Effects In and Out 

 

This effect doesn't make sense for green screen, but it is useful for reverse green screen effects and text. 

A 25 bit counter is used for this effect. When a button is pressed, the counter, which runs off of the 27 

MHz clock, starts counting until it maxes out. If the counter starts at 0 it counts up; if the counter starts 

at its maximum, it counts down. The top 10 bits of the counter are bitwise &'d with the effects output. 

The complement of the top 10 bits of the counter are bitwise &'d with the regular video input. The 

counter length was chosen so that it would take 1.24 seconds to fade in and out so that the duration is 

long enough for a human viewer to notice. This scheme allows the regular video feed to fade out and 

video feed with effects to fade in at the same time, and vice versa. 

 

Writing Text to the Screen 

 

A keyboard is connected to the PS/2 port of the DE2 board. When keys are pressed, they are displayed 

at the center of the screen if effects are faded in. A 16 keystroke buffer is used to store the message 

displayed. When the first key is struck, it is displayed at the left most position of the 16 keystroke buffer. 

When the next key is struck, it is displayed 8 pixels to the right of the first keystroke; and so forth. When 

the end of the buffer is reached, the keystrokes wrap around and start writing over the first keys struck. 

The keyboard interface was obtained from http://www.johnloomis.org/digitallab/ps2lab1/ps2lab1.html. 

These modules read in the serial stream sent from the keyboard to the PS/2 port. A simple state 

machine is used to determine which keys are struck: 

 
Figure 5: Key pressing state machine. 

 

There are two states for releasing a key because two bytes are sent when a key is released. When a key 

is initially pressed, the byte that corresponds to it is sent. If a key is pressed and held, the byte that 

corresponds to the key is sent over and over again. The mapping between the byte sent from the 

keyboard and the character the byte represents was obtained from 

http://www.sm.luth.se/csee/courses/smd/098/lab31.pdf. 
 

: 

 



 
Figure 6: Writing text to the screen 

 

The image of text on the screen is not stored in RAM. Writing text to the screen is implemented using 

each pixel's coordinates. A module called screenWriter determines whether or not to color in a pixel 

because the pixel is part of a letter. If a pixel's coordinates are in the white area in Figure 3, screenWriter 

tells higher level modules to output regular video for that coordinate because the pixel definitely cannot 

be part of the text. If a pixel's coordinates are in the yellow "Sentence Buffer" area, screenWriter looks 

up the bitmap that represents the character in that area. If a pixel's coordinates are in the grey area of 

the bitmap, then screenWriter once again tells higher level modules to output regular video for that 

coordinate. If a pixel's coordinates are in the blue area, then screenWriter tells higher level modules to 

output text color for that pixel. 

 

Software Design 

 

In order to send an image to the FPGA we had to design software to run on a PC.  Initial prototype of the 

software was developed in MATLAB.  However when we increased the baud rate substantially we 

noticed that the execution time offered almost zero increase and we thus believed that MATLAB was 

limiting our peak performance.  This caused us to switch into developing a C executable. 

 

While we developed all the MATLAB serial communication code ourselves we had to research and find 

source files for reading a bitmap image in C and for writing to a serial port in C.  We have referenced the 

sources for these in the appendix.  The actual executable that sends the data and implements these 

functions were written by us and the source code is included for both C and MATLAB. 

 

Because the MATLAB code is more easily debuggable since you can step through it as opposed to 

creating an executable if you were to recreate this project we suggest you start with MATLAB as 

opposed to the C programs. 

 

The way this software works is that you specify a bitmap image which you would like to send (either 

640x480 or 320x240) and then the program packages the data appropriately, opens a serial 

communication, and sends the data to the FPGA for it to read.  The user is responsible for making sure 

that the FPGA is in the right kind of data reading method (one of the five methods mentioned above). 



 

Results of the Design 

 

The green screen is very stable. There is no noticeable flickering in it. When testing the green detection 

using a green image on a VGA monitor, there was a one or two pixel green border around the edge of 

objects in front of the green screen. We tried to fix this by adjusting thresholds; the border was reduced 

from what we had originally, but we could not completely get rid of the border. However, when we ran 

our implementation on the actual green screen we ended up using, the green border was completely 

gone except when shadows were cast on the green screen. 

 

Reverse Green Screen works perfectly since we know the exact color of the green in our uploaded 

image, but the video quality and image quality are not as high as they can be due to limits in upload 

speed. We attempted to transfer video instead of just images to SRAM but could not get frame rate to 

exceed a few frames per second, even with only black and white video. 

 

The fading effect works but looks strange. Text starts fading in as strange colors before settling in as 

their final text color. We had originally wanted to implement more features with writing text to the 

screen but ran out of time. Once text is on the screen, it appears completely stable. Keystroke 

recognition works well immediately after uploading our design to the DE2 board but starts to 

malfunction if random keys are spammed. 

 

Serial Interface Result 

The result of this part of the project are two modules that can be configured at any baudrate to work 

with another serial receiver and transmitter pair that follow RS-232 protocol and have specified 8 data 

bits, 1 start bit, 1 stop bit, no flow control, and no parity bits. 

 

It packages data into packets of 16 bytes that have a CRC type check performed on them to ensure 

accuracy of delivery and can also detect timeout failures and send a timeout NACK to the other receiver. 

 

Sample tests of the transmission indicated that we get on average a single bit error every 1 million bits 

sent approximately.  From research we have found that “acceptable” error rates for RS-232 at a baud 

around 9600 should be from every 1 billion bits to every 1 trillion bits.  However because we are running 

at an extremely high baud rate and our module has the ability to perform error detection this is not 

really a problem because we can always resend the data. 

 

Transmission of the data for a 640x480 image took approximately 36 seconds to perform, and 

transmission of a 320x240 black and white image took approximately 1 second to perform.  Theoretical 

results at a baud of 115200 indicate that we should expect it to take 35.6 seconds and 1.1 seconds 

respectively.  Therefore it appears that our serial transfer incurs almost no lag and is performing almost 

as fast as theoretically possible. 

 

The C executables that we created are very easy to use and the user only has to specify an image name 

following the executable name.  Transmission will take place immediately and accurately. 

 

Conclusions 

 



Compile time was the main bottleneck to our progress. We should have left our project broken up in 

small parts even after testing. Each part was developed on its own in a separate module; however, after 

a part's integration into the main project, we deleted or lost the individual modules and were unable to 

easily backtrack. Initially we were very satisfied with our green screen threshold, so we hard coded it 

into the main module. 

 

If we'd had more time we would've worked more on refining keystroke recognition and switching to an 

Ethernet port so we could possibly stream in video to replace the green screen instead of just a still 

image. 

 

The green detection seems to be almost as good as those used by weathermen. If the image quality 

were better, the reverse green screen would be up to standards since green detection is perfect. If we 

were tuning this effect for photography, we would lower the frame rate and increase image quality for 

the input from the camera. 

 

We were satisfied with our green screen results. It is obviously not up to production standards, but it is 

good enough for recreational special effects. 

 

We were very satisfied with the results of the serial communication.  Although initially we struggled very 

much with getting accurate delivery of information we remained persistent in researching and find 

better ways to implement the receiving module.  Eventually through research and much testing we 

implemented what we believe to be a very robust and reliable method of sending data following RS-232 

protocol standards.  The fact that we implemented hardware error detection and timeout errors was a 

great success for the project. 

 

Specific Tasks 

 

Green Screen – James Du 

PS/2 Interface – James Du 

Fades – James Du 

RS-232 Communication – Peter Greczner 

SRAM Image Writing – Peter Greczner 
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References and Sources 

 

RS-232 Protocol Resources: 

http://en.wikibooks.org/wiki/Serial_Programming/Error_Correction_Methods 

http://www.fpga4fun.com/SerialInterface2.html 

http://www.taltech.com/TALtech_web/resources/intro-sc.html 

http://www.lammertbies.nl/comm/info/RS-232_specs.html 

http://controls.ame.nd.edu/microcontroller/main/node24.html 

 

RS-232 C Programming Resource: 

http://www.teuniz.net/RS-232/ 

 

Bitmap Image Reading C Programming Resource: 

http://www.cs.ucdavis.edu/~amenta/s06/proj4/readBMP.c 



http://www.cs.ucdavis.edu/~amenta/s06/proj4/readBMP.h 

 

PS/2 Keyboard Resources: 

http://www.johnloomis.org/digitallab/ps2lab1/ps2lab1.html 

http://www.sm.luth.se/csee/courses/smd/098/lab31.pdf 
 

Character bitmap Resource: 

http://users.ece.gatech.edu/~hamblen/book/instruct_se.htm 

 

Datasheets: 

SRAM: http://instruct1.cit.cornell.edu/Courses/ece576/DE2_Datasheets/Memory/61LV25616.pdf 

 

 


