
Floating point for DSP on an Altera CycloneII FPGA – Bruce Land 
 
Introduction 
 
I teach a course at Cornell University in which students learn how to use Verilog 
and FPGAs to build processors and custom hardware. The goal is to build 
interesting devices such as robots, games, and lab instruments. What 
distinguishes the projects from general microcontroller projects is the high 
parallel throughput possible using parallel hardware on the FPGA. There is a 
definite need for a light weight floating point format in this class. Floating point 
arithmetic is very handy for designing filters and for other image and sound 
related computations.  You can concentrate on the algorithm at hand without 
worrying about fixed-point scaling or overflow. Numerical dynamic range is 
hugely increased, although algorithm accuracy is always an issue. Also, 
numerical tools such as Matlab or Octave produce filter design results in floating 
format, so conversion of the design results to hardware is easier. 
 
There are several dozen formats for floating point numbers (see Munafo)  
ranging from the high-accuracy 32-bit IEEE-754 standard to lowly 8-bit formats 
used in speech and video compression and for lecture examples.  So why would 
I want to invent another format?  There are several reasons. The basic reason 
follows from a quote from physicist Richard Feynman: “What I cannot create, I do 
not understand.” Building floating point hardware from scratch helps my 
understanding and teaching. Also, I was able to fit the algorithms more closely to 
the architecture of the CycloneII FPGAs we use at Cornell to teach ECE5760, 
Advanced microcontroller design. The close fit to the architecture makes it 
possible to instantiate up to 70 floating point multipliers on the CycloneII which 
ships with the Altera/Terasic educational DE2 prototype board. When we use the 
full IEEE floating point multiplier from Altera, we can fit only three multipliers on 
the FPGA we use. Finally, narrow floating point formats have been shown to be 
quite useful for DSP applications where IEEE-754 is overkill (Fang, et.al., Tong, 
et.al., Ehliar, et.al.). 
 
To implement a floating point system, you need to pick a floating point 
representation and implement five basic operations necessary to use floating 
point for DSP and other fine-grained parallel operations. You need to be able to 
add, multiply, negate, and because audio and video codecs require fixed point 
integers, you need to convert integer-to-float and float-to-integer.  
 
Floating point implementation 
 
I decided to use 18-bit numbers because 18 bits is a native width for Altera’s 
M4K memory blocks and can be read or written in one clock cycle. Of those 18 
bits, 9 are were used for the mantissa, one for the sign and 8 for the exponent. 
This format gives a numerical range of about  +/-1038. Any number smaller than 
about 10-38 underflows to zero. The resolution of the mantissa is only about 



0.002, but this relatively low resolution is high enough for a range of DSP 
applications.  Also, a 9-bit mantissa allowed me to use just one hardware 
multiplier. The mantissa is an unsigned fraction with the radix point just to the left 
of the top digit, so the maximum fraction is 1-2-9. I made the decision not to 
support denormalized fractions, so the minimum fraction is 0.5, with just the high-
order bit of the mantissa set. If the number underflows, then the mantissa is set 
to zero. The sign bit is zero if the number is positive. The exponent is 
represented in 8-bit, offset binary, form. For example 20 is represented as 0h80, 
22 as 0h82, and 2-1 as 0h7f. The Verilog representation for the 18-bit format is 

{sign,exp[7:0],mantissa[8:0]}.   I did not implement the special 

numerical values available in IEEE-754 (NANs, infinities, denorms), so no bit 
patterns were allocated for these values. A few examples of decimal values and 
their floating format equivalents are shown below. 

 
 
Of the five operations which need to be implemented, negation is very easy, you  
just complement the sign bit. The other operations are more involved and are 
best understood as outlines. The first is multiplication: 

1. If either input number has a mantissa high-order bit of zero, then that input 
is zero and the product is zero. This follows from the disallowing denorms. 

2. If the sums of the input exponents is less than 128 then the exponent will 
underflow and the product is zero. This follows because  the sum of 
exponents  includes the 128 offset twice and therefore 128 must be 
subtracted from the input exponent sum. 

3. If both inputs are nonzero and the exponents don't underflow then the 
product of the mantissas will be in the range from just less than one down 
to 0.25:  

0 0h80 0h100 

sign exp mantissa 

0.5 

value 

1 0h80 0h100 -0.5 

0 0h82 0h100 2.0 

0 0h84 0h140 10.0 

0 0h7d 0h199 0.1 



1. If the simple product (mantissa1)x(mantissa2) has the high order-

bit set (result>=0.5), then the top 9-bits of the product are the output 

mantissa and the output exponent is exp1+exp2-128. 

2. Otherwise the second bit of the product will be set (since the product of 
the mantissas must be greater than or equal to 0.25), and the output 
mantissa is the top 9-bits of the product shifted left one bit.  The output 

exponent is exp1+exp2-129  to account for the left shift of the 

mantissa. 

4. The sign of the product is (sign1)xor(sign2)  

 
Addition is actually a little more complicated than multiplication: 

1. If both inputs are zero, the sum is zero. 
2. Determine which input is bigger, which smaller (absolute value) by first 

comparing the exponents, then the mantissas if necessary.  
3. Determine the difference in the exponents and shift the smaller input 

mantissa right by the difference.  
1. If the exponent difference is greater than 8 then just output the 

bigger input. The smaller number does not contribute significant 
bits. 

2. If the signs of the inputs are the same, add the bigger and (shifted) 
smaller mantissas. The result must be 0.5<sum<2.0. If the result is 
greater than one, shift the mantissa sum right one bit and increment 
the bigger input exponent, to become the output exponent. The 
sign is the sign of either input. 

3. If the signs of the inputs are different, subtract the bigger and 
(shifted) smaller mantissas so that the result is always positive. The 
result must be 0.0<difference<0.5. Shift the mantissa left until the 
high bit is set, while decrementing the bigger exponent once per 
shift, to become the output exponent. The sign is the sign of the 
bigger input. 

It turns out that converting from integer to float is fairly simple. I assumed 10-bit, 
2’s complement, integers since the mantissa is only 9 bits, but the process 
generalizes to more bits. 

1. Save the sign bit of the input and take the absolute value of the input. 
2. Shift the input left until the high order bit is set and count the number of 

shifts required. This forms the floating mantissa. 
3. Form the floating exponent by subtracting the number of shifts from step 

2 from the constant 137 or  (0h89-(#of shifts)).  
4. Assemble the float from the sign, mantissa, and exponent. 

Converting back to integer is similarly simple, but no overflow is detected, so 
scale carefully. 



1. If the float exponent is less than 0h81, then the output is zero because 
the input is less than one. 

2. Otherwise shift the floating mantissa to the right by (0h89-(floating 
exponent)) to form the absolute value of the output integer. 

3.  Form the 2’s complement signed integer. 

 
I coded the above outlines into Verilog for conversion to hardware on the FPGA. I 
wanted to see how fast I could make  purely combinatorial floating point execute, 
so there is no pipelining or clocking of the arithmetic modules. Remember that 
every statement in Verilog represents the signal on a wire or bus and therefore 
every statement can change value simultaneously!  
 
The code for the floating multiplier is shown below. The low level, unsigned, 
integer multiply of the mantissas is performed by a small module which gives the 
Altera QuartusII software a hint that a hardware multiplier should be used. The 9-
bit by 9-bit multiply yields 18-bits of which 9 are selected for output in the 

asynchronous always @(*) statement.  All of the modules are available for 

download from Circuit Cellar or from the course site (see references). The Altera 
QuartusII design software converted this multiplier code to about 60 logic 
elements plus one hardware multiplier on the CycloneII FPGA (out of 33,000 
logic elements and 70 multipliers), while the adder takes about 220 logic 
elements. The timing analyzer suggests that the purely combinatorial multiplier 
should be able to run at 50 MHz and the adder at 30 MHz, and in fact run fine at 
27 MHz. 
 
////////////////////////////////////////////////////////// 
// floating point multiply  
// -- sign bit -- 8-bit exponent -- 9-bit mantissa 
// NO denorms, no flags, no NAN, no infinity, no rounding! 
////////////////////////////////////////////////////////// 
// f1 = {s1, e1, m1), f2 = {s2, e2, m2) 
// If either is zero (zero MSB of mantissa) then output is zero 
// If e1+e2<129 the result is zero (underflow) 
///////////////////////////////////////////////////////////  
module fpmult (fout, f1, f2); 
 
 input [17:0] f1, f2 ; //the two floating inputs 
 output [17:0] fout ; // the floating product 
  
 wire [17:0] fout ; 
 reg sout ; // the output sign 
 reg [8:0] mout ; // the output mantissa 
 reg [8:0] eout ; // the output exponent extended to 9-bits for overflow 
  
 wire s1, s2; // the two input signs 
 wire [8:0] m1, m2 ; // the two input mantissas 
 wire [8:0] e1, e2, sum_e1_e2 ; // extend to 9 bits to avoid overflow 
 wire [17:0] mult_out ; // raw multiplier output 
  
 // parse f1 
 assign s1 = f1[17];  // sign 
 assign e1 = {1'b0, f1[16:9]}; // exponent extended one bit 
 assign m1 = f1[8:0] ; // mantissa 



 // parse f2 
 assign s2 = f2[17]; 
 assign e2 = {1'b0, f2[16:9]}; 
 assign m2 = f2[8:0] ; 
  
 // first step in mult is to add extended exponents 
 assign sum_e1_e2 = e1 + e2 ; 
  
 // build output 
 // raw integer multiply 
 unsigned_mult mm(mult_out, m1, m2); 
   
 // assemble output bits 
 assign fout = {sout, eout[7:0], mout} ; 
  
 always @(*) 
 begin 
  // if either is denormed or exponents are too small 
  // the the output is zero 
  if ((m1[8]==1'd0) || (m2[8]==1'd0) || (sum_e1_e2 < 9'h82))  
  begin  
   mout = 0; 
   eout = 0; 
   sout = 0; // output sign 
  end 
  else // both inputs are nonzero and no exponent underflow 
  begin 
   sout = s1 ^ s2 ; // output sign 
   if (mult_out[17]==1) 

   begin //MSB of product==1 normalized: result >=0.5 
    eout = sum_e1_e2 - 9'h80; 
    mout = mult_out[17:9] ; 
   end 
   else //MSB of product==0 result <0.5, so shift left  
   begin 
    eout = sum_e1_e2 - 9'h81; 
    mout = mult_out[16:8] ; 
   end  
  end // nonzero mult logic 
 end // always @(*)  
endmodule 

 
DSP application and testing. 
 
To test the floating point modules I wrote a DSP application to filter an incoming 
audio signal through a 2, 4, or 6 pole, infinite impulse response filter.  I figured 
that the actual audio input, plus the dynamics of the filters themselves would 
produce a large range of different floats. When the output of the filters had the 
correct frequency response and were free of artifacts, I could be reasonably sure 
that the modules were working correctly.  At first, I tried to match the frequency 
response of the three filter types using a naïve, "Direct Form II Transposed" form 
similar to the Matlab filter function. It worked for the second order filters, but 
failed for the higher order filters because the 9-bit mantissa did not carry enough 
precision to represent the filter coefficients.  
 
The solution was to factor the filters into second order sections (SOS). SOSs 
typically have coefficients which require lower accuracy, but more dynamic 



range, perfect for this floating point. Once rewritten as SOSs, the filter cutoff 
frequencies and phase shifts were close to the calculated values, implying that 
the floating point was working.  The following figure shows a 4th order Butterworth 
response computed by Matlab in blue and the actual response of the FPGA 
implemented filter in red. The red points follow the exact solution fairly well, but 
diverge a little at low frequency. 
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It became tedious to use Matlab to generate the filter coefficients, then convert 
the coefficients into custom floating format, then write the Verilog, so I wrote a 
Matlab script to convert the filter specification to Verilog, given the order of the 
filter, the filter type (Butterworth, etc)  and the cutoff frequencies. The script uses 

a Matlab signal processing toolbox function (tf2sos) to convert the filter to 

SOSs. The Matlab script output for a fourth order filter is shown below in Verilog 
source. The a’s and b’s and gain are the SOS filter constants.  
 
//Filter: cutoff=0.100000 
//Filter: cutoff=0.200000 
IIR4sos filter4( 
     .audio_out (filter4_out), 
     .audio_in (audio_inR), 
     .b11 (18'h10300), 
     .b12 (18'h10500), 
     .b13 (18'h10300), 
     .a12 (18'h1037A), 
     .a13 (18'h30185), 
     .b21 (18'h10300), 



     .b22 (18'h30500), 
     .b23 (18'h10300), 
     .a22 (18'h103BC), 
     .a23 (18'h301B0), 
     .gain(18'hF749), 
     .state_clk(AUD_CTRL_CLK), 
     .lr_clk(AUD_DACLRCK), 
     .reset(reset) 
) ; //end filter 

 

The IIr4sos module is a state machine running at about 27 MHz which 

sequentially performs all the floating point filter operations in less than 2 
microseconds, easily fast enough to keep up with a 48 kHz audio sample rate. 
The code is shown below and is summarized as follows: 

1. Convert the 16-bit integer audio codec input to floating point. 
2. Wait for the next 48 kHz audio clock edge to start the state machine 
3. Compute the first floating point SOS as:  

y1(n) = b11*x(n) + b12*x(n-1) + b13*x(n-2) – a12*y1(n-1) – a13*y1(n-2) 
Where x(n) is the input at time n and y1(n) is the output at time n. 

4. Update the filter state for the next time step 
5. Compute the second floating point SOS  as:  

y2(n) = b21*y1(n) + b22*y1(n-1) + b23*y1(n-2) – a22*y2(n-1) – a23*y2(n-2) 
6. Update the filter state for the next time step 
7. Multiply y2(n) by the gain input to form the filter output. 
8. Convert the filter output back to 16-bit fixed point for the audio output 

codec. 
 
In the code below, the floating point multiply-and-accumulate (MAC) operation 

sequentially takes its inputs from two registers f_coeff and f_value and 

places the result in f_mac_new. Most of the state machine consists of five MAC 

operations for each of the two SOS. State 15 stops the execution of the filter until 
the next audio sample becomes available. States 1 to 5 compute the MAC 
operations for SOS one, state 5 updates the history registers for SOS one and 
couples SOS one to SOS 2. State 8 to 12  compute the MAC operations for SOS 
two, state 13 updates the history registers for SOS two and couples SOS two to 
the output register. 
 
 
/////////////////////////////////////////////////////////////////// 
/// Fourth order IIR filter -- written as two SOS ///////////////// 
/////////////////////////////////////////////////////////////////// 
module IIR4sos (audio_out, audio_in,   
   b11, b12, b13,  
   a12, a13,  
   b21, b22, b23,  
   a22, a23,  
   gain,  
   state_clk, lr_clk, reset) ; 
// 
// one audio sample, 16 bit, 2's complement 



output wire signed [15:0] audio_out ; 
// one audio sample, 16 bit, 2's complement 
input wire signed [15:0] audio_in ; 
 
// filter coefficients 
input wire [17:0] b11, b12, b13, a12, a13, b21, b22, b23, a22, a23, 
gain ; 
input wire state_clk, lr_clk, reset ; 
 
/// filter vars ////////////////////////////////////////////////// 
wire [17:0] f_mac_new, f_coeff_x_value ; 
reg [17:0] f_coeff, f_mac_old, f_value ; 
 
// input to the two SOS filters 
reg [17:0] x1_n, x2_n ; 
// input history x(n-1), x(n-2) 
reg [17:0] x1_n1, x1_n2, x2_n1, x2_n2 ;  
 
// output history: y_n is the new filter output, BUT it is 
// immediately stored in f1_y_n1 for the next loop through  
// the filter state machine 
reg [17:0] f1_y_n1, f1_y_n2, f2_y_n1, f2_y_n2 ;  
 
// i/o conversion 
// int output of FP calc 
wire [9:0] audio_out_int ; 
reg [17:0] audio_out_FP ; 
wire [17:0] audio_in_FP ; 
int2fp f_input(audio_in_FP, audio_in[15:6], 0) ; 
fp2int f_output(audio_out_int, audio_out_FP, 0) ; 
assign audio_out = {audio_out_int, 6'h0} ; 
 
// MAC operation 
fpmult f_c_x_v (f_coeff_x_value, f_coeff, f_value); 
fpadd f_mac_add (f_mac_new, f_mac_old, f_coeff_x_value) ; 
 
// state variable  
reg [3:0] state ; 
//oneshot gen to sync to audio clock 
reg last_clk ;  
/////////////////////////////////////////////////////////////////// 
 
//Run the filter state machine FAST so that it completes in one  
//audio cycle 
always @ (posedge state_clk)  
begin 
 if (reset) 
 begin 
  state <= 4'd15 ; //turn off the state machine  
 end 
  
 else begin 
  case (state) 
  
   1:  
   begin 
    // set up b11*x(n) 



    f_mac_old <= 18'd0 ; 
    f_coeff <= b11 ; 
    f_value <= audio_in_FP ;     
    //register input 
    x1_n <= audio_in_FP ;     
    // next state 
    state <= 4'd2; 
   end 
  
   2:  
   begin 
    // set up b12*x(n-1)  
    f_mac_old <= f_mac_new ; 
    f_coeff <= b12 ; 
    f_value <= x1_n1 ;     
    // next state 
    state <= 4'd3; 
   end 
    
   3: 
   begin 
    // set up b13*x(n-2)  
    f_mac_old <= f_mac_new ; 
    f_coeff <= b13 ; 
    f_value <= x1_n2 ; 
    // next state 
    state <= 4'd4; 
   end 
    
   4: 
   begin 
    // set up a12*y(n-1)  
    f_mac_old <= f_mac_new ; 
    f_coeff <= a12 ; 
    f_value <= f1_y_n1 ; 
    // next state 
    state <= 4'd5; 
   end 
    
   5: 
   begin 
    // set up a13*y(n-2)  
    f_mac_old <= f_mac_new ; 
    f_coeff <= a13 ; 
    f_value <= f1_y_n2 ; 
    // next state 
    state <= 4'd6; 
   end 
    
   6:  
   begin 
    // get the output of the first SOS 
    // and put it in the LAST output var 
    // for the next pass thru the state 
machine 
    f1_y_n1 <= f_mac_new ;  
    // link first SOS to second SOS 



    x2_n <= f_mac_new ;     
    // update output history 
    f1_y_n2 <= f1_y_n1 ;    
    // update input history 
    x1_n1 <= x1_n ; 
    x1_n2 <= x1_n1 ; 
    //next state  
    state <= 4'd8; 
   end 
    
   8:  
   begin 
    // set up b21*x(n) 
    f_mac_old <= 18'd0 ; 
    f_coeff <= b21 ; 
    f_value <= x2_n ;      
    // next state 
    state <= 4'd9; 
   end 
  
   9:  
   begin 
    // set up b22*x(n-1)  
    f_mac_old <= f_mac_new ; 
    f_coeff <= b22 ; 
    f_value <= x2_n1 ;     
    // next state 
    state <= 4'd10; 
   end 
    
   10: 
   begin 
    // set up b23*x(n-2)  
    f_mac_old <= f_mac_new ; 
    f_coeff <= b23 ; 
    f_value <= x2_n2 ; 
    // next state 
    state <= 4'd11; 
   end 
    
   11: 
   begin 
    // set up a22*y(n-1)  
    f_mac_old <= f_mac_new ; 
    f_coeff <= a22 ; 
    f_value <= f2_y_n1 ; 
    // next state 
    state <= 4'd12; 
   end 
    
   12: 
   begin 
    // set up a23*y(n-2)  
    f_mac_old <= f_mac_new ; 
    f_coeff <= a23 ; 
    f_value <= f2_y_n2 ; 
    // next state 



    state <= 4'd13; 
   end 
    
   13:  
   begin 
    // get the output  
    // and put it in the LAST output var 
    // for the next pass thru the state 
machine 
    f2_y_n1 <= f_mac_new ;  
    // apply the final gain mult 
    f_value <= f_mac_new ; 
    f_coeff <= gain ;     
    // update output history 
    f2_y_n2 <= f2_y_n1 ;    
    // update input history 
    x2_n1 <= x2_n ; 
    x2_n2 <= x2_n1 ; 
    //next state  
    state <= 4'd14; 
   end 
    
   14: 
   begin 
    audio_out_FP <= f_coeff_x_value ; 
    //next state  
    state <= 4'd15; 
   end 
    
   15: 
   begin 
    // wait for the audio clock and one-shot 
it 
    if (lr_clk && last_clk==1) 
    begin 
     state <= 4'd1 ; 
     last_clk <= 1'h0 ; 
    end 
    // reset the one-shot memory 
    else if (~lr_clk && last_clk==0) 
    begin 
     last_clk <= 1'h1 ;     
    end  
   end 
    
   default: 
   begin 
    // default state is end state 
    state <= 4'd15 ; 
   end 
  endcase 
 end 
end  
 
endmodule 

 



Conclusions 
 
The 18-bit floating point described here is allows up to 70 floating point 
multipliers and around 150 floating point adders to be placed on the 33,000 logic 
element CycloneII FPGA which is standard on the the Altera DE2 educational 
development board. At a 30 MHz clock rate this would allow around 6 billion 
floating point operations/second, enough for serious audio processing and even 
some video processing.  
 
One student project from last semester used the floating point routines to 
implement a polygon rendering pipeline on the FPGA (Penmetcha and Pryor).  
The pipeline worked, another good test for the floating point routines, although 9 
bit resolution on the mantissa is a little low for good z-buffering. 
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