

®

fp_add_sub

Floating-Point Adder/Subtractor

January 1996, ver. 1 Functional Specification 2

■

fp_add_sub

 reference design implementing a floating-point

Altera Corporation 1

Features
adder/subtractor

■ Parameterized mantissa and exponent widths
■ Optimized for FLEX 10K and FLEX 8000 device families
■ High-speed operation
■ Supported by schematic and text design entry methods, including

VHDL, Verilog HDL, and the Altera Hardware Description
Language (AHDL)

General
Description

The fp_add_sub reference design implements a floating-point
adder/subtractor with parameterized input widths. This function uses
sign-mantissa-exponent notation with parameterized mantissa and
exponent widths. See Figure 1.

Figure 1. fp_add_sub Symbol

Function Prototype

The AHDL Function Prototype for the fp_add_sub function is shown
below:

FUNCTION fp_add_sub (sa, ma[mantissa_width..1], ea[exponent_width..1],
sb, mb[mantissa_width..1], eb[exponent_width..1], add_sub)

 WITH (mantissa_width, exponent_width)
 RETURNS (m_out[mantissa_width..1], e_out[exponent_width..1],

s_out);

SA
MA[MANTISSA_WIDTH..1]
EA[EXPONENT_WIDTH..1]
SB
MB[MANTISSA_WIDTH..1]
EB[EXPONENT_WIDTH..1]
ADD_SUB

M_OUT[MANTISSA_WIDTH..1]
E_OUT[EXPONENT_WIDTH..1]

S_OUT

FP_ADD_SUB

EXPONENT_WIDTH=
MANTISSA_WIDTH=
A-FS-02-01

FS 2: fp_add_sub Floating-Point Adder/Subtractor

Parameters

2 Altera Corporation

Parameters for the fp_add_sub function are provided in Table 1.

Ports

Input and output ports for the fp_add_sub function are described in
Table 2.

Functional
Description

Addition and subtraction are complex operations for floating-point
numbers. With floating-point multiplication and division, the mantissa
must be post-normalized. With floating-point addition and subtraction,
however, the mantissas must be preprocessed so that the exponents are
equal. For more information, go to “Floating-Point Addition &
Subtraction” on page 4 of this functional specification.

In floating-point functions, the sign bit represents the sign of the mantissa:
1 for positive and 0 for negative. The mantissa is a positive number less
than 1. A 0 is implied to the left of the binary point. After normalization,
the most significant bit (MSB) is always 1. The exponent is in excess 2(n-1)
notation, where n is the number of bits in the exponent.

Table 1. fp_add_sub Parameters

Name Default Value Description

exponent_width 7 Integers only Width of all exponents (in bits)

mantissa_width 8 Integers only Width of all mantissas (in bits)

Table 2. Input & Output Ports

Port Type Name Description

Input sa Sign bit for the a input: 1 = positive, 0 = negative

Input ma[mantissa_width..1] Mantissa for the a input

Input ea[exponent_width..1] Exponent for the a input

Input sb Sign bit for the b input: 1 = positive, 0 = negative

Input mb[mantissa_width..1] Mantissa for the b input

Input eb[exponent_width..1] Exponent for the b input

Input add_sub Operation: 1 = add, 0 = subtract

Output m_out[mantissa_width..1] Mantissa for the output

Output e_out[exponent_width..1] Exponent for the output

Output s_out Sign bit for the output: 1 = positive, 0 = negative

FS 2: fp_add_sub Floating-Point Adder/Subtractor

For example, the binary representation of the number 0.75

×

 2

1

 is shown

Altera Corporation 3

below. This example assumes 8 bits for the mantissa (M) and 7 bits for the
exponent (E). S represents the sign bit.

S = 1, M = 11000000, E = 1000001

Similarly, the binary representation of the number 0.625 × 2–1 is:

S = 1, M = 10100000, E = 0111111

Figure 2 shows the block diagram of the fp_add_sub floating-point
adder.

Figure 2. fp_add_sub Block Diagram

Programmable
Inversion

Exponent Decision
Logic

SHIFT_A_B COUNT

1

0

GND

LPM_CLSHIFT

DISTANCE

A

1

0
GND

LPM_CLSHIFT

DISTANCE

B

Post-
Normalizer

Sign Decision
Logic

MSB

EA EB

1

0

ADD_SUB SA SB

MA MB

MA_NORM MB_NORM

S_OUT

M_OUTE_OUT

ADD/
SUBTRACT

+––+

FS 2: fp_add_sub Floating-Point Adder/Subtractor

To add or subtract two floating-point numbers, the mantissas must be

4 Altera Corporation

Floating-Point
Addition &
Subtraction

aligned. Then, the exponents must be compared to determine which
number is larger. If the difference between the exponents is slight, the
number with the smaller exponent may be larger if mantissas MA and MB
are not normalized, which reduces the function’s precision. To avoid this
problem, designers should ensure that all inputs are normalized by
making sure that the MSB of each mantissa is 1.

The relative values of the exponents are checked by subtracting one
exponent from the other. The mantissa with the larger exponent is
retained, and the mantissa with the smaller exponent is right-shifted until
the radix point is properly aligned (i.e., until the exponents are equal). If
the exponents differ by more than the number of bits in the mantissa, the
smaller number becomes insignificant. The shifting is performed by the
LPM function lpm_clshift.

After the mantissas pass through the shifters, an unsigned integer
adder/subtractor performs an operation that is determined by the sign of
the inputs (sa and sb) and the add_sub port. The result of the adder is
then passed through a programmable inverter, which is controlled by the
sign decision logic. This process ensures that the mantissa has the proper
sign. After the addition or subtraction has taken place, the post-
normalizer normalizes the result, if necessary, by adjusting the mantissa
and exponent of the result so that the MSB of the mantissa is 1.

Examples of floating-point addition and subtraction for 8-bit mantissa,
7-bit exponent floating-point numbers are provided below.

Example 1: Positive Number Plus Positive Number

 0.3046875 × 245 + +0.34375 × 244

= +0.01001110 × 245 + +0.01011000 × 244
= +0.01001110 × 245 + +0.00101100 × 245

= +0.01111010 × 245

= +0.11110100 × 244

= +0.953125 × 244 = +1.677 × 1013

Example 2: Negative Number Plus Positive Number

–0.82421875 × 276 + +0.25390625 × 275

= –0.11010011 × 276 + +0.01000001 × 275

= –0.11010011 × 276 + +0.00100000 × 276

= –0.10110011 × 276

= –0.69921875 × 276 = –5.2831 × 1022

In example 2, the mantissa shift causes a loss of precision.

FS 2: fp_add_sub Floating-Point Adder/Subtractor

Example 3: Negative Number Plus Insignificant Positive Number

Altera Corporation 5

–0.5 × 289 + +0.5 × 268

= –0.10000000 × 289 + +0.10000000 × 268

= –0.10000000 × 289 + +0.00000000 × 289

= –0.10000000 × 289

= –0.5 × 289

In example 3, the result is the same as the larger input value because
0.5 × 268 is insignificant compared to –0.5 × 289.

Floating-Point
Representation

Floating-point numbers can be represented by many different notations.
The fp_add_sub function uses an implied leading zero for the mantissa,
with an unsigned, m-bit mantissa and n-bit exponent, where
m = mantissa_width and n = exponent_width. A separate sign bit is
used to represent the sign of the mantissa.

The following examples of an 8-bit positive mantissa and a 7-bit exponent
assume mantissa_width = 8 and exponent_width = 7. The numbers
shown in Table 3 below should be adjusted accordingly if different
parameter values are used.

An 8-bit positive mantissa allows fractions with numerators between 0
and 255. The implied leading zero limits the range of the mantissa
between 0 and 0.9961, and the separate sign bit allows the mantissa to
have a value between –0.9961 and +0.9961. Because the mantissa is in
fractional form, a greater number of bits in the mantissa does not result in
a larger mantissa, but offers greater precision. Table 3 lists examples of
8-bit mantissas with implied leading zeros.

Table 3. 8-Bit Mantissa Examples

Mantissa Implied Zero Binary Fraction Decimal
Fraction

Decimal

11001110 0.11001110 11001110 / 100000000 206 / 256 0.80469

00001100 0.00001100 00001100 / 100000000 12 / 256 0.04688

10100001 0.10100001 10100001 / 100000000 161 / 256 0.62891

FS 2: fp_add_sub Floating-Point Adder/Subtractor

For a 7-bit exponent, the exponent is represented in excess 64 format, i.e.,
6 Altera Corporation

for an n-bit exponent, the representation is excess 2(n – 1). Excess (offset)
format allows both negative and positive exponents to be represented
with positive numbers, which results in simpler calculations for exponent
handling. To represent an exponent in excess 2(n – 1) format, add 2(n – 1) to
the value of the exponent. For example, in excess 64 format, 64 is added to
the actual exponent; thus, the maximum value for the exponent is +63,
and the minimum value is –64. An exponent of 10 is represented as 74, and
an exponent of –10 is represented as 54. The exponent 0 is represented as
64.

The following examples represent 8-bit mantissa, 7-bit exponent floating-
point numbers. In this section, the subscripts “b” and “d” indicate that the
number is a binary or a decimal number, respectively.

Example 1: Largest Positive Number

+11111111b 1111111b

= +0.11111111b × 2(1111111b – 1000000b)

= +0.11111111b × 20111111b

= +0.11111111b × 263d

= +11111111.0b × 255d

= +255d × 255d

= +9.187343239836e × 1018

Example 2: Largest Negative Number

–11111111b 1111111b

= –9.187343239836e × 1018

Example 3: Smallest Number (Closest to Zero)

±10000000b 0000000b

= ±0.10000000b × 2(0000000b – 1000000b)

= ±0.10000000b × 2(0d– 64d)

= ±0.10000000b × 2–64d

= ±10000000.0b × 2–72d

= ±128d × 2–72d

= ±2.710505431214e × 10–20

FS 2: fp_add_sub Floating-Point Adder/Subtractor

Example 4: Typical Value
Altera Corporation 7

–11000111 1001001
= –0.11000111b × 2(1001001b– 1000000b)

= –0.11000111b × 21001b

= –0.11000111b × 29d

= –11000111.0b × 21d

= –199d × 2
= –398

FS 2: fp_add_sub Floating-Point Adder/Subtractor
Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: MAX+PLUS II, AHDL, and FLEX 10K. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document,
specifically: Verilog and Verilog-XL are registered trademarks of Cadence Design Systems, Inc. Mentor
Graphics is a registered trademark of Mentor Graphics Corporation. Synopsys is a registered trademark of
Synopsys, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera
warrants performance of its semiconductor products to current specifications in accordance with Altera’s
standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in
writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing
orders for products or services.

Copyright  1996 Altera Corporation. All rights reserved.

2610 Orchard Parkway
San Jose, CA 95134-2020
(408) 894-7000
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 894-7104
Literature Services:
(408) 894-7144

®

8 Altera Corporation
Printed on Recycled Paper.

	Contents
	FS 2: fp_add_sub Floating-Point Adder/Subtractor
	Features
	General Description
	Function Prototype
	Parameters
	Ports

	Functional Description
	Floating-Point Addition & Subtraction
	Example 1: Positive Number Plus Positive Number
	Example 2: Negative Number Plus Positive Number
	Example 3: Negative Number Plus Insignificant Posi...

	Floating-Point Representation
	Example 1: Largest Positive Number
	Example 2: Largest Negative Number
	Example 3: Smallest Number (Closest to Zero)
	Example 4: Typical Value

