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Features
adder/subtractor

■ Parameterized mantissa and exponent widths
■ Optimized for FLEX 10K and FLEX 8000 device families
■ High-speed operation
■ Supported by schematic and text design entry methods, including 

VHDL, Verilog HDL, and the Altera Hardware Description 
Language (AHDL)

General 
Description

The fp_add_sub reference design implements a floating-point 
adder/subtractor with parameterized input widths. This function uses 
sign-mantissa-exponent notation with parameterized mantissa and 
exponent widths. See Figure 1.

Figure 1. fp_add_sub Symbol

Function Prototype

The AHDL Function Prototype for the fp_add_sub function is shown 
below:

FUNCTION fp_add_sub (sa, ma[mantissa_width..1], ea[exponent_width..1],
sb, mb[mantissa_width..1], eb[exponent_width..1], add_sub)

  WITH (mantissa_width, exponent_width)
  RETURNS (m_out[mantissa_width..1], e_out[exponent_width..1],

s_out);

SA
MA[MANTISSA_WIDTH..1]
EA[EXPONENT_WIDTH..1]
SB
MB[MANTISSA_WIDTH..1]
EB[EXPONENT_WIDTH..1]
ADD_SUB

M_OUT[MANTISSA_WIDTH..1]
E_OUT[EXPONENT_WIDTH..1]

S_OUT

FP_ADD_SUB

EXPONENT_WIDTH=
MANTISSA_WIDTH=
A-FS-02-01
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Parameters for the fp_add_sub function are provided in Table 1.

Ports

Input and output ports for the fp_add_sub function are described in 
Table 2.

Functional 
Description

Addition and subtraction are complex operations for floating-point 
numbers. With floating-point multiplication and division, the mantissa 
must be post-normalized. With floating-point addition and subtraction, 
however, the mantissas must be preprocessed so that the exponents are 
equal. For more information, go to “Floating-Point Addition & 
Subtraction” on page 4 of this functional specification.

In floating-point functions, the sign bit represents the sign of the mantissa: 
1 for positive and 0 for negative. The mantissa is a positive number less 
than 1. A 0 is implied to the left of the binary point. After normalization, 
the most significant bit (MSB) is always 1. The exponent is in excess 2(n-1) 
notation, where n is the number of bits in the exponent. 

Table 1. fp_add_sub Parameters

Name Default Value Description

exponent_width 7 Integers only Width of all exponents (in bits)

mantissa_width 8 Integers only Width of all mantissas (in bits)

Table 2. Input & Output Ports

Port Type Name Description

Input sa Sign bit for the a input: 1 = positive, 0 = negative

Input ma[mantissa_width..1] Mantissa for the a input

Input ea[exponent_width..1] Exponent for the a input

Input sb Sign bit for the b input: 1 = positive, 0 = negative

Input mb[mantissa_width..1] Mantissa for the b input

Input eb[exponent_width..1] Exponent for the b input

Input add_sub Operation: 1 = add, 0 = subtract

Output m_out[mantissa_width..1] Mantissa for the output

Output e_out[exponent_width..1] Exponent for the output

Output s_out Sign bit for the output: 1 = positive, 0 = negative
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For example, the binary representation of the number 0.75 

 

×

 

 2

 

1

 

 is shown 
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below. This example assumes 8 bits for the mantissa (M) and 7 bits for the 
exponent (E). S represents the sign bit.

S = 1, M = 11000000, E = 1000001

Similarly, the binary representation of the number 0.625 × 2–1 is:

S = 1, M = 10100000, E = 0111111

Figure 2 shows the block diagram of the fp_add_sub floating-point 
adder.

Figure 2. fp_add_sub Block Diagram
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Floating-Point 
Addition & 
Subtraction

aligned. Then, the exponents must be compared to determine which 
number is larger. If the difference between the exponents is slight, the 
number with the smaller exponent may be larger if mantissas MA and MB 
are not normalized, which reduces the function’s precision. To avoid this 
problem, designers should ensure that all inputs are normalized by 
making sure that the MSB of each mantissa is 1. 

The relative values of the exponents are checked by subtracting one 
exponent from the other. The mantissa with the larger exponent is 
retained, and the mantissa with the smaller exponent is right-shifted until 
the radix point is properly aligned (i.e., until the exponents are equal). If 
the exponents differ by more than the number of bits in the mantissa, the 
smaller number becomes insignificant. The shifting is performed by the 
LPM function lpm_clshift.

After the mantissas pass through the shifters, an unsigned integer 
adder/subtractor performs an operation that is determined by the sign of 
the inputs (sa and sb) and the add_sub port. The result of the adder is 
then passed through a programmable inverter, which is controlled by the 
sign decision logic. This process ensures that the mantissa has the proper 
sign. After the addition or subtraction has taken place, the post-
normalizer normalizes the result, if necessary, by adjusting the mantissa 
and exponent of the result so that the MSB of the mantissa is 1.

Examples of floating-point addition and subtraction for 8-bit mantissa, 
7-bit exponent floating-point numbers are provided below.

Example 1: Positive Number Plus Positive Number

 0.3046875 × 245 +    +0.34375 × 244

= +0.01001110 × 245 +    +0.01011000 × 244 
= +0.01001110 × 245 +    +0.00101100 × 245

= +0.01111010 × 245

= +0.11110100 × 244

= +0.953125 × 244 =    +1.677 × 1013

Example 2: Negative Number Plus Positive Number

–0.82421875 × 276 +    +0.25390625 × 275

= –0.11010011 × 276 +    +0.01000001 × 275

= –0.11010011 × 276 +    +0.00100000 × 276

= –0.10110011 × 276

= –0.69921875 × 276 =    –5.2831 × 1022

In example 2, the mantissa shift causes a loss of precision. 
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Example 3: Negative Number Plus Insignificant Positive Number
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–0.5 × 289 +    +0.5 × 268

= –0.10000000 × 289 +    +0.10000000 × 268

= –0.10000000 × 289 +    +0.00000000 × 289

= –0.10000000 × 289

= –0.5 × 289

In example 3, the result is the same as the larger input value because 
0.5 × 268 is insignificant compared to –0.5 × 289.

Floating-Point 
Representation

Floating-point numbers can be represented by many different notations. 
The fp_add_sub function uses an implied leading zero for the mantissa, 
with an unsigned, m-bit mantissa and n-bit exponent, where 
m = mantissa_width and n = exponent_width. A separate sign bit is 
used to represent the sign of the mantissa.

The following examples of an 8-bit positive mantissa and a 7-bit exponent 
assume mantissa_width = 8 and exponent_width = 7. The numbers 
shown in Table 3 below should be adjusted accordingly if different 
parameter values are used.

An 8-bit positive mantissa allows fractions with numerators between 0 
and 255. The implied leading zero limits the range of the mantissa 
between 0 and 0.9961, and the separate sign bit allows the mantissa to 
have a value between –0.9961 and +0.9961. Because the mantissa is in 
fractional form, a greater number of bits in the mantissa does not result in 
a larger mantissa, but offers greater precision. Table 3 lists examples of 
8-bit mantissas with implied leading zeros.    

Table 3. 8-Bit Mantissa Examples

Mantissa Implied Zero Binary Fraction Decimal 
Fraction

Decimal

11001110 0.11001110 11001110 / 100000000 206 / 256 0.80469

00001100 0.00001100 00001100 / 100000000 12 / 256 0.04688

10100001 0.10100001 10100001 / 100000000 161 / 256 0.62891
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for an n-bit exponent, the representation is excess 2(n – 1). Excess (offset) 
format allows both negative and positive exponents to be represented 
with positive numbers, which results in simpler calculations for exponent 
handling. To represent an exponent in excess 2(n – 1) format, add 2(n – 1) to 
the value of the exponent. For example, in excess 64 format, 64 is added to 
the actual exponent; thus, the maximum value for the exponent is +63, 
and the minimum value is –64. An exponent of 10 is represented as 74, and 
an exponent of –10 is represented as 54. The exponent 0 is represented as 
64.

The following examples represent 8-bit mantissa, 7-bit exponent floating-
point numbers. In this section, the subscripts “b” and “d” indicate that the 
number is a binary or a decimal number, respectively.

Example 1: Largest Positive Number

+11111111b 1111111b

= +0.11111111b × 2(1111111b – 1000000b)

= +0.11111111b × 20111111b

= +0.11111111b × 263d

= +11111111.0b × 255d

= +255d × 255d

= +9.187343239836e × 1018

Example 2: Largest Negative Number

–11111111b 1111111b

= –9.187343239836e × 1018

Example 3: Smallest Number (Closest to Zero)

±10000000b 0000000b

= ±0.10000000b × 2(0000000b – 1000000b)

= ±0.10000000b × 2(0d– 64d)

= ±0.10000000b × 2–64d

= ±10000000.0b × 2–72d

= ±128d × 2–72d

= ±2.710505431214e × 10–20
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–11000111 1001001
= –0.11000111b × 2(1001001b– 1000000b)

= –0.11000111b × 21001b

= –0.11000111b × 29d

= –11000111.0b × 21d

= –199d × 2
= –398
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