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ABSTRACT
The computational complexity of the finite difference (FD)
schemes for the solution of the plate equation prevents them
from being used in musical applications. The explicit FD
schemes can be parallelized to run on multi-processor ar-
rays for achieving real-time performance. Field Program-
mable Gate Arrays (FPGAs) provide an ideal platform for
implementing these architectures with the advantages of low-
power and small form factor. The paper presents a design
for implementing FD schemes for the plate equation on a
multi-processor architecture on a FPGA device. The results
show that 64 processing elements can be accommodated on
a Xilinx X2VP50 device, achieving 487 kHz throughput for
a square FD grid of 50x50 points.

1. INTRODUCTION

Among the methods for the digital synthesis of sound, phys-
ical modelling approaches involve modelling of the sound
production mechanism rather than the actual sound. This
brings advantages of greater expressivity and wider ranges
of sounds. Sound production mechanisms are described by
partial differential equations (PDEs). Finite difference (FD)
methods are the most obvious way to solve PDEs iteratively
on a computer. The methods involve discretization of time
and space to transform the PDEs to difference equations that
can be implemented digitally. However, the major drawback
of these methods is the massive computational requirements
arising from the high space and time sampling rates due to
the conditions on stability and convergence of the finite dif-
ference schemes. The computational complexity exceeds the
capabilities of a single computer implementation and as a re-
sult parallel implementations should be sought.
A particular class of FD schemes, named explicit

schemes, naturally lend themselves to parallel execution. As
a result explicit FD schemes have traditionally been imple-
mented on parallel computer networks or massively parallel
computers for various applications involving the solution of
PDEs. In the sound synthesis context, using parallel com-
puter networks can be impractical due to the trend towards
smaller audio hardware devices. Field Programmable Gate
Arrays (FPGAs) are programmable logic devices having a
large number of logic gates and dedicated units for signal
processing such as RAMs andmultipliers on chip. With these
properties these devices are suitable for implementing mas-
sively parallel processing element (PE) networks for parallel
implementation of FD schemes. With the added advantages
of low-power and small form-factor, they can be used as
hardware accelerators for computationally demanding phys-
ical modelling sound synthesis applications.

The sound production mechanism in plates can be de-
scribed by the classical Kirchoff plate model which gov-
erns the small transverse displacements of a thin plate. This
model can be used for synthesizing plate-based instrument
sounds such as gongs and guitar bodies [2] and for digitally
implementing plate reverberation. The PDE can be solved
numerically by a number of explicit FD schemes.
In this paper we will describe the implementation of an

FD scheme for the solution of the plate equation on an array
multi-processor designed on a Xilinx Virtex II FPGA device.
This implementation can be connected to a host device or
a computer to provide the acceleration needed for real-time
musical performance. In a previous paper [1], we have de-
scribed FPGA implementation of wave equation. The FD
schemes for the plate equation differ from those of the wave
equation in terms of computation and communication pat-
terns which will be explained in Sections 2 and 3. In addi-
tion, in this paper we discuss the aspects of boundary condi-
tions and excitation of the scheme and their implications for
hardware implementation.

2. A FINITE DIFFERENCE SCHEME FOR THE
PLATE EQUATION

The plate model that can be used for sound synthesis is the
classical Kirchoff model with added simple linear damping
[2].
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In this equation, u(x,y, t) is the transverse plate deflection,
and x,y, t are the space coordinates and time respectively.
f (x,y, t) represents a time varying driving term. κ2 denotes
the stiffness parameter, and σ is the coefficient that controls
the decay rate of plate oscillation.

2.1 Algorithm
In order to solve equation (1) by a FD method, a grid func-
tion, uni, j that represents an approximation to u(x,y, t) is de-
fined. The space coordinates are discretized as x = i∆x ,and
y = j∆y , and time is sampled as t = n∆t, where 1/∆t is the
sampling rate. We take ∆x = ∆y. The differential operators
are approximated by centered and second-order accurate op-
erators as
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The Laplacian and the biharmonic operators are approxi-
mated by ∇2 ≈ δ 2+ = δ 2x0+δ 2y0 , and ∇4 ≈ δ 2+δ 2+.
When the above operators are substituted in equation (1),

the following FD scheme is obtained

δ 2t0u= −κ2δ 2+δ 2+u−2σδt0u+ f (2)

Writing equation (2) as an explicit recursion we get the
formula below

un+1i, j = η ∑
|k|+|l|≤2

β|k|,|l|uni+k, j+l+η(σ∆t−1)un−1i, j +∆t2 f ni, j

(3)
where η = 1/1+σ∆t, µ = κ∆t/∆x2, and

β0,0 = 2−20µ2

β0,1 = β1,0 = 8µ2

β1,1 = −2µ2

β0,2 = β2,0 = −µ2

The stability condition below for this FD scheme can be ob-
tained from von Neumann analysis [3].

∆x2 ≥ 4κ∆t (4)

2.2 Boundary Conditions and Excitation
For the boundary conditions of the equation (1) we took the
clamped conditions where u = ∂u

∂xn = 0 on the boundaries,
where xn is a coordinate normal to the boundary.
For the FD scheme this translates to uni, j = 0 for the grid

points on the boundary. As the FD scheme involves access to
the values of the grid function at a previous time step at most
two spatial steps away in x and y directions, for the grid
points adjacent to the boundary, such as i, j = 1, the values
of the points outside the grid can be found from, uni,1 = uni,−1,
and un1, j = un−1, j.
In order to excite the plate, the driving function f (x,y, t)

in the equation (1) is used. In the FD scheme this function is
discretized as f ni, j = f (i∆x, j∆y,n∆t), and applied as an adder
term for updating a particular grid point.

2.3 Computational Requirements
The computational requirements of the FD scheme can be
calculated from equation (3). In order to update a particular
grid point, 5 multiplication, and 13 addition operations are
needed. For the excitation one extra addition is needed. Tak-
ing the operation count for updating a grid point as 18, the to-
tal number of operations per second (OPS) is 18LxLy/∆x2∆t.
The stability condition in equation (4) puts constraints on

the ∆x according to the sampling rate, 1/∆t chosen. Assum-
ing equality in equation (4), 18LxLy/4κ∆t2 OPS is needed
for the plate update. For a square steel plate of side length 2
m and thickness 2mm with 1/∆t = 44.1 kHz, the computa-
tional requirement is approximately 12x109 OPS. In addition
to the high operation count, handling the boundary condi-
tions and memory accesses puts the FD scheme above the
capabilities of a single processor implementation.
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Figure 1: The network configuration
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Figure 2: Partitioning by domain decomposition

3. PARALLEL IMPLEMENTATION

The explicit FD schemes have properties that can be ex-
ploited for a parallel implementation to tackle the high com-
putational complexity. The most important one is the tempo-
ral independence in a certain iteration period, that is updating
a grid point only involves neighbouring grid points previous
values. Thus, all the grid points can be updated concurrently
in an iteration period, and the order of the update does not
matter. In addition to this, same operations are applied to
different data in the problem domain, implying data paral-
lelism.
Implementation of the FD scheme in parallel requires

a network of processing elements (PEs) operating concur-
rently, and a main controller responsible from connection to
the host device to output the results and to receive excitation.
This configuration is shown in Fig. 1. Each PE in the net-
work has its own memory to hold the values associated to
the grid points in its sub-domain. The following subsections
explains the steps toward a parallel implementation on such
a configuration.

3.1 Partitioning the Grid for Parallel Implementation

In order to parallellize the computation, the domain of the FD
scheme is partitioned into blocks through domain decompo-
sition [4]. As a result of this, individual sub-domains can
be mapped onto the PEs. When applying domain decom-
position, the major issues are balancing the computational
workload among the PEs, and reducing the communication
links in between. Since the domain we apply domain decom-
position is regular and rectangular, the method is to divide
the problem domain into N rectangular blocks, where N is
the number of PEs, each sub-domain having equal number
of nodes. Fig. 2 shows block partitioning of a rectangular
domain and mapping the sub-domains to the PEs.



3.2 Communication and Computation
For the particular difference scheme in equation (3), a grid
point update requires access to the previous iteration values
of the grid function up to two spatial steps away in verti-
cal and horizontal directions, and one step away in diagonal
direction as shown in Fig. 3a. Thus, when the domain of
the FD scheme is block partitioned, each sub-domain has to
be augmented with the boundary points (ghost points) which
are originally mapped to the neighbouring sub-domains [5]
as shown in Fig. 3b. This forces the transfer of the ghost
points between neighbouring sub-domains in each iteration
period.
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Figure 3: (a) Spatial dependencies for a grid point , (b)
Ghost points corresponding to a sub-domain

In order to exploit this locality of the communication,
neighbouring sub-domains are mapped on to neighbouring
PEs. In this way the communication will be mostly local.
The global communication is between the main controller
and the PEs which involves taking the output from the grid,
the excitation of the grid, and initialization of the PE net-
work.
For a PE in which the computation and communication

are not interleaved, in each iteration period of the FD scheme
the computation can only start after all the ghost point values
are transferred. Computation to communication ratio repre-
sents the efficiency of the parallel algorithm

3.3 Taking the Output and Excitation
The main controller in the multi-processor array is responsi-
ble from sending the output value to the host upon receiving
a request from the host. In addition to the output request, the
host also sends the output location information. In turn, the
main controller creates a request signal, and address to the
corresponding PE. The output is read from the PE’s memory.
For the excitation of the scheme, the host sends the main

controller a control signal, the location information and the
excitation value. The main controller creates a control sig-
nal and an address signal for the corresponding PE, and also
transfers the excitation value. In the PE the excitation value
is added to the final sum of the excited node as previously
explained in Section 2.

3.4 Parallel Algorithm
The resulting parallel algorithm that will be implemented on
each PE in the network is stated below
- Do one time initialization

Receive initialization parameters from the main controller

INP.

MEMORY

constants

EXCITE

OUT2

CONTROLLER

COMP.

UNIT

MEMORY

++

X

B

B

B

B

B

B

B

B
COMM.

SIG.

COMM.

SIG.

OUT1

Figure 4: Architecture of a PE

- For n(iteration period no.)=1 to nmax do
Start communication:
Transfer/Receive ghost point values

Start computation:
For i=1 to last point do
Fetch data from memories for computation
Update grid points
If excitation then
Add excitation value to the point excited

End
End

4. HARDWARE DESIGN

4.1 Design of the Processing Elements
Fig. 4 shows the architecture of a PE in the network. The
main part of the PE is the controller, which is responsible
for local and global communication, address generation to
access the grid point values stored in the memories, and pro-
viding start signals to the computation units. The controller
also generates the memory addresses and control signals to
write and read from the local memories for taking the output
and excitation upon receiving such commands from the main
controller.
Local communication consists of a simple handshaking

protocol between neighbouring PEs, and transferring of val-
ues from one memory to the other. The memories in the PEs
are augmented such that they also have locations for the grid
points in the neighbouring sub-domains, which are called
ghost points. The simple handshaking protocol is made up
of receive and transfer signals which are produced by the
controller for each neighbouring PE at the beginning of the
iteration period.
The computation unit consists of two adders and a mul-

tiplier each having input and output buffers. The computa-
tional units have states inside, and they get data from their in-
put buffers after receiving start signal from the controller, and
send signals to the controller when they output their results
to their output buffer. This configuration comes from the
representation of the algorithm in dataflow networks model
of computation which is explained in [1]. The multiplier
has two multiplexers (MUXs) connected to its input buffers
which are controlled by the controller. The first MUX selects
among the different coefficients, and the second one selects
between the ouput of the first adder and data coming from the
memory blocks. The MUX connected to the input buffer of
the second adder selects between the output of the multiplier
and the excitation input.



The memory block that holds the grid point values con-
sists of two separate blocks of RAM, each having one input
and two output ports. One memory block holds the values
corresponding to the previous iteration (uni, j), and the second
one holds the values corresponding to two previous iteration
(un−1i, j ) as dictated by the FD scheme. The newly calculated
values are written over the two previous iteration values after
these values are used. The inputs and outputs of the mem-
ories are interchanged in each iteration period to avoid the
overhead of transferring values between them.
The overall design of a PE is parameterized, so that a

whole network can be built from one design template. This,
in addition to the locality of the communication, provides
the scalability of the network. New processors can be added
without additional design effort and the design of the PE does
not change when the geometry of the problem, or partitioning
of the domain changes.

4.2 Design of the Main Controller
For the initialization of the PE network, the main controller
employs a state machine to send initialization values step by
step to the PEs. These values denote the number of nodes
assigned to PEs and the communication sequence between
neighbours. After the initialization period a start signal is
sent to all PEs in the network. The initialization time does
not affect the computation performance. The main controller
also has conditional routines to respond to the request from
the host for excitation and taking the output. These routines
create the signals and shape the data coming from the host to
be sent to the corresponding PE.

5. PERFORMANCE RESULTS
The main controller and the PEs are coded in VHDL hard-
ware design language, and functional simulation is done us-
ing ModelSIM 5.8a. The network is synthesized for Xilinx
X2VP50 FPGA [6] using SynplifyPro 7.6. The multipliers
and Block RAM memories on the device are used in PEs.
The size of the PE network that can be implemented on

a FPGA device depends on the size of the device. From the
logic synthesis results, the number of logic slices used for a
PE is 454. This constitutes 4% of logic slices on X2VP50.
Computation of a grid point value takes 7 clock cycles, and
the transferring takes 1 clock cycle. The total number of
clock cycles Ntotal for an iteration period can be found by
the formula, Ntotal = ns×7+ lcomp. +ng+ lcomm., where ns is
the number of points in the sub-domain (excluding boundary
points), and ng is the number of ghost points. lcomp. and lcomm.

are the computation and communication latencies respec-
tively. lcomp. is equal to 13 and lcomm. depends on the granu-
larity of the partitioning. Table 1 lists the number of commu-
nication and computation clock cycles (Ncomm.,Ncomp.), total
number of clock cycles for an iteration period, communi-
cation to computation ratio (CCR), and percentage of logic
slices used corresponding to different PE network configura-
tions for implementing a 50x50 square grid.
When the FPGA device is clocked at 170 MHz (accord-

ing to synthesis results), table 2 lists the data output rate at-
tainable ( fout), and the time it takes to produce 1 s of sound
sampled at 44.1 kHz (t1s) for each of the configurations also
listed in table 2.
From the results we see that the output rate is faster than

the real-time audio rate in most of the configurations. When

the number of PEs in the network increases, in addition to the
increase in output rate, there is an increase in the communi-
cation to computation ratio. Although this situation does not
reduce the performance much in the example, it can do so
when the number of ghost points and the partitioning gran-
ularity are higher as in the case for bigger domains. The
solution to this is interleaving the communication and com-
putation which we are currently working on.
The maximum size of a network that can be implemented

on a X2VP50 device is approximately 64 PEs and a main
controller. This puts a limit on the size of domains that can
be implemented in real-time. In order to implement bigger
domains larger FPGA devices can be chosen.

Table 1. Results for different network configurations
Network
Conf. Ncomm. Ncomp. Ntotal CCR Logic

Slices
4x4 132 1021 1153 0.13 24%
2x8 130 1021 1151 0.13 24%
4x8 108 517 625 0.20 48%
6x6 100 461 561 0.22 54%
8x6 92 349 441 0.26 72%
8x8 84 265 349 0.32 96%

Table 2. Throughput Results
Network Conf. fout(kHz) t1s

4x4 147.4 0.3
2x8 147.7 0.3
4x8 272.0 0.16
6x6 303.0 0.14
8x6 385.5 0.11
8x8 487.1 0.09

6. CONCLUSION
In this paper, we presented the design of a hardware platform
for accelerating physical modelling of plates by FD schemes.
The performance results show that we can achieve real-time
performance, which is not possible in the case of software
implementation on a single computer. Parallel implemen-
tation on a multi-processor architecture on FPGA is more
preferable to computer networks for its advantages of low-
power and much smaller form factor.
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