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ABSTRACT 

The computational requirements of finite difference 

schemes for the solution of the wave equation for physical 

modelling can be huge. Field programmable gate arrays 

(FPGAs) provide an ideal platform for performing highly 

parallel DSP computations but the challenge is to be able 

to quickly and efficiently implement complex systems on 

FPGA platforms. The paper presents a system level design 

approach based on dataflow model of computation using a 

particular finite difference scheme for the solution of 2+1-

D wave equation. The results suggest that 84000 nodes 

could be accommodated on a single Virtex II FPGA. 

1. INTRODUCTION 

Physical modelling based sound synthesis and acoustical 

simulation deals with the solution of partial differential 

equations representing physical phenomena of sound

production and propagation. The wave equation is an N+1 

dimensional hyperbolic partial differential equation 

having N space and 1 time dimensions. It describes 

displacement on a membrane in 2+1-D and sound 

propagation in spaces in 3+1-D form. Finite difference 

(FD) schemes transform the partial differential equation 

into a difference equation by discretizing time and space 

on an N+1 dimensional grid. For accurate and stable 

approximations, these schemes employ high sampling 

rates resulting in high computation. Parallel processors 

have been used to speed up the computation [1], but they 

are expensive. Field programmable gate arrays (FPGAs) 

provide enormous potential as it is possible to derive the 

architecture to best match the computational requirements. 

However, realisation is largely a hardware design process 

and can be very tedious and time-consuming and it is clear 

that a good high-level design approach is needed. 

In this paper, an approach based on the data flow 

graph (DFG) model of computation is proposed. The 

particular focus is to realise the explicit FD scheme for the 

2+1-D wave equation. Some custom FPGA hardware for 

FD including FDTD algorithms for solving Maxwell’s 

equations in 2-D or 3-D cases has been reported [2, 3]. 

The paper is organised as follows. Background on FD 

schemes is given in section II and the system level design 

methodology is presented in Section III. Section IV 

presents the DFG specification and partitioning of the FD 

algorithm using GEDAE. Section VI outlines the FPGA 

implementation. Section VII gives an analysis of the FD 

mesh implementation on the Xilinx Virtex II FPGA.  

2. FD SCHEMES FOR 2+1-D WAVE EQUATION 

Numerous two-step explicit FD schemes exist, which use 

discretization of time and space on a structured 

rectangular grid for the solution of 2+1-D wave equation 

given below, with certain initial and boundary conditions.  
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When the variable u(x,y,t) is approximated by a grid 

function n

jiu ,
, where the grid points are defined as x=i x,

y=j y, and t=n t with x = y, and two-step central 

differences are substituted for the second derivatives, we 

obtain the explicit FD form, which is also called centred in 

time and space (CTCS) scheme [4].  
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where xtv . From the von Neumann analysis, the 

Courant-Friedrichs-Lewy condition is derived, which 

places a restriction, 21 for the stability of the FD 

scheme [5]. For the particular case where 21 , the 

equation 2 reduces to the simple scheme, 
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In this case, the FD scheme becomes identical to the 2-

D rectangular waveguide mesh representation of the wave 
motion, which is composed of a network of bi-directional 

delay elements and 4-port scattering junctions [6]. Fig. 1 

shows the graphical representation of the FD scheme in 

eqn. 3. 

From the von Neumann analysis, it can be shown that 

for the FD scheme corresponding to a rectangular mesh, 

the speed of propagation of the numerical solution 
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depends on the frequency and the direction - called the 

dispersion error [4]. This can be compensated for by 

increasing the density of the grid points. From the 

waveguide mesh point of view, interpolated and frequency 
warped rectangular meshes provide reduction of 

dispersion error at the expense of increased number of 

operations per grid point [7]. Triangular waveguide 
meshes, which are based on a topology of junctions 

connected to their 6 neighbours, provide better directional 

dispersion characteristics than rectangular meshes, but this 

is not the subject of this paper.  
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Fig. 1. FD scheme graphical representation 

3. IMPLEMENTATION OF FD SCHEMES 

The computational requirements of a FD scheme depend 

on o, the number of operations per grid point, the size of 

the grid and the update rate, f. For a two dimensional 

medium of size (LXM), the number of operations per 

second, is 2xLMof , where x is the grid spacing. 

From the sampling theorem, the FD update rate 

determines the frequency bandwidth of the wave to be 

propagated, and as a result, the stability condition. When 

21 , the update rate is xvtf 21 , and 

therefore the grid has to be denser for higher bandwidths. 

For the FD scheme in equation (3), 5 operations namely 1 

multiplication, 3 additions and 1 subtraction are needed to 

update the grid point. In order to solve the wave equation 

by the FD scheme (eqn. 3) for a two-dimensional 

representation of a room with the audio sampling rate of 

44.1 kHz and a grid spacing, x, of 0.0109m 

( 441002343 / where v=343m/s), the total number of 

operations per second for a room (4mx5m) for a real-time 

application is 36.5x109. In addition, the different boundary 

conditions and oversampling the mesh to reduce 

dispersion error result in increased computation.  

The explicit FD schemes naturally lend themselves to 
parallel implementations as the same operations are being 

applied to different data in the problem domain, and there 

is no limiting temporal dependencies, and FPGAs would 

be appear to be an ideal platform. A system level design 

flow based on dataflow computational model would 

appear to offer an ideal design flow [9] as outlined in Fig. 

2.

4. HIGH LEVEL REPRESENTATION BY DATA 

FLOW NETWORKS 

For data parallel algorithms, dataflow graph (DFg) 

representations allow high-level specification that is 

independent of the underlying hardware. It utilizes data 
dependencies to fully exploit parallelism in an algorithm. 

The communication mechanism in data flow networks is 

asynchronous message passing [10], which is suited for 

algorithms having locality of communication like FDs. 

The model also allows the use of a visual syntax based on 

block diagrams for specifying the algorithms, which 

simplifies the design process.
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Fig. 2. System level design flow 

Actor Actor
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Fig. 3. Simple data flow example 

In DFG, the algorithm is specified by a directed 

dataflow graph where the nodes (actors) represent 

computations and the arcs represent totally ordered 
sequences (streams) of events (tokens) [11]. The nodes are 

hierarchical structures that may represent other directed 

graphs and can also be implemented as either high level 

language or behavioural HDL code. The tokens are data 

structures that can range from scalars to matrices. 

Whenever a specific set of input arc of a node has data 

then the node is able to fire. Firing of a node is the 

computation of the function associated with that node and 

involves consuming tokens from its inputs and producing 

tokens on its outputs (Fig. 3).  

GEDAE is a block based graphical development 

platform based on DFG for rapidly implementing DSP 

algorithms onto multiple processors [12]. In GEDAE, each 

node can be associated with a point in the FD grid (see 

Fig. 1) allowing the update equation associated with each 
grid to be computed. The arcs connect the nodes 
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representing the neighbouring grids to each other in order 

to exchange values needed for the update as data streams. 

Fig. 4 shows the GEDAE DFG that represents a 3X3 

square mesh for the implementation of the FD scheme in 
equation 3. Fig. 4 also shows the inner DFG of a grid 

point. According to equation (3), a grid point requires the

previous iteration values of 4 neighbouring points and its 
own two previous iteration value to calculate its current 

iteration value. In DFG representation, this is 

implemented by the use of two delay boxes where the 

input to the first is the calculated value and the input to the 

second is the previous iteration value. This value is also 

put on the arcs that connect the node to its neighbours. 

Excitation of the mesh is done by changing the stored 

previous iteration value of the node that is to be excited. 
When represented as a DFG, this requires the use of a 

control stream and a merge box that selects between the 

excitation value and the previous iteration value of the 
node to be transferred to the neighbouring nodes and the 

second delay box, thus realising conditional data flow. 

Fig. 4. GEDAE DFG of a 3X3 mesh 

Domain decomposition method is the parallelism 

strategy which involves partitioning the domain into sub-

domains [13] as shown in Fig. 5 for a 2-D rectangular 

grid. Sub-domains are mapped onto the processing 

elements (PEs) in mesh connectivity. According to the FD 

scheme formulation, updating the value of a grid point 

requires the values of the neighbouring grid points, 

therefore values on the sub-domain boundaries have to be 

transferred between the neighbouring sub-domains in each 
iteration period. Therefore, this communication locality is 

exploited by the block partitioning method.  

5. FPGA IMPLEMENTATION 

Each PE realizes the operations related to a grid point in 

the mesh according to the data flow shown in Fig. 4. The 

communication between the PEs is handled automatically 

by GEDAE provided that there are hardware structures 

supporting the token based point-to-point communication 

structure. Therefore, each PE is equipped with send and 

receive signals for the transfer of data values as tokens. 

The communication between the PEs is point-to-point and 

buffers are implemented as registers to hold the token 

values. Fig. 6 shows the PE in block form and the 
hardware structure inside. The PE has 4 inputs and an 

output to be connected to its neighbours. The control input 

accepts the control tokens from the host to know whether 
the node is excited by the value at the excite input. 

Fig. 5. Example of domain decomposition 

In the inner structure of the PE, the interface unit is 

responsible for communication between PEs and has 

buffers. The memory is implemented as registers to store 

the values of the previous and two previous iterations. The 

update operation is pipelined. The control unit generates 

the signals for the timing and flow of data between the 

units. The PE is coded in VHDL and synthesized for 

Xilinx VirtexII FPGAs using the Synplify synthesis tool. 
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Fig. 6. Details of the PE 

Depending on the partitioning, mapping of the nodes 

to the PEs can either be on a one-to-one or many-to-one 

basis. The first of the two factors that determine the 

mapping is the level of parallelism required for real-time 

execution of the algorithm taking into consideration the 

communication overhead. The second factor is the FPGA 

size which determines the number of PEs. When more 

than one node in the DFG is mapped onto a PE, the 

communication buffers and registers that store the 

previous iteration values can be scaled, and they are 

implemented in the FPGA in either block or distributed 

form. Distributed memory uses up FPGA slices and is 

suitable for small memory structures, whereas block 

memory can be used for larger memory blocks. Therefore, 

when a large number of nodes are to be mapped on to a 

single PE, the storage memory should be implemented as 
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block RAM. The communication buffers in the interface 

unit can be implemented as distributed memory.

6. PERFORMANCE ANALYSIS 

Table-1 shows the synthesis results for a single PE and 

gives clock cycles for computation and communication. 
This means that 400PEs can fit onto the largest Xilinx 

Virtex (XC2V8000 device) and would take 11 clock 

cycles to complete one iteration of the FD calculation. 

This gives a maximum iteration frequency of the FD 

scheme of 16.6 MHz which indicates that to produce 1s of 

sound sampled at 44.1 kHz, the computation will take 

0.0026 seconds which is much faster than the real-time. 

Table 1. Xilinx Virtex-II FPGA results for a single PE 
No. of clock cycles  Slices Max. Freq. 

(MHz) (Computation) (Communication) 

111 182.7 5 6 

As the PE can execute much faster than the sampling 

rate of the algorithm, mapping many nodes to a PE is a 

feasible option to implement larger meshes. This changes 
the size of PE’s communication buffer, internal memory, 

and controller unit. Table II gives details when a block 

partition of size 15x15 is mapped onto one PE.  

Table 2. 15x15 node mapping to a single PE  
No. of clock cycles  Storage

memory 

locations 

Interface 

memory 

locations (Computation) (Communication) 

450 120 2025 1140 

The storage memory locations are double the total 

number of nodes and interface memory locations is double 

the nodes on the partition boundary. As the operation unit 

is pipelined, ideally it should take 1 clock cycle per node 

to calculate the next iteration value. However, 4 memory 

reads to supply the pipeline and 2 memory writes at the 
end to update the stored values increase the number of 

clock cycles per node to 9. The number of clock cycles for 

communication is determined by the number of boundary 
nodes, and to increase the throughput the communication 

and the computation can be interleaved. Without 

interleaving, it takes 3165 clock cycles to complete one 

iteration period, and when the PE is run at 180 MHz, the 

iteration rate is 56.87 kHz. In this case it will take 0.775 

seconds to produce 1s of sound sampled at 44.1 kHz.  

The limiting factor that determines the number of PEs 

will be the total amount of memory on the device, rather 

than the number of logic slices. The total amount of 

memory on a XC2V8000 device is 3 Mbits arranged as 

168 18Kbit blocks. When each 18Kbit memory block is 

dedicated to a PE, 168 PEs can be accommodated which 

means 500 nodes to be mapped onto a single 16-bit PE. 

This gives a mesh size of 168x500 or 84000 nodes. 

However, in this case, the current throughput rate will not 

be able to satisfy the real-time constraint. Better PE design 

should increase the running frequency, and interleave 

communication and computation, thus increasing the 

throughput. 

7. CONCLUSIONS 

In this paper, a system level DFG-based design 

methodology for implementing FD schemes involving the 

use of data flow networks has been presented. The work 

suggests that a mesh with 84,000 nodes can be 

implemented on a single FPGA. The advantage of the 

approach means that this system will be easily extended to 

a heterogeneous platform comprising processor and 

FPGAs which has not been possible before.  
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