
Using HAL Device Drivers
with the Altera Monitor Program

1 Introduction

This tutorial shows how to develop C programs that use device driver functions for the I/O devices in a Nios II
hardware system. The device driver functions used in the tutorial are provided as part of the Altera University
Program IP cores, which are available from the University Program section of Altera’s website. These functions are
implemented using Altera’s Hardware Abstraction Layer (HAL). In addition to providing support for device drivers,
the HAL simplifies many programming tasks, such as the development of programs that use interrupts. A detailed
description of the features provided by the HAL can be found in the Nios II Software Developer’s Handbook, which
is available from Altera.

The Nios II software programs shown in the tutorial are implemented by using the Altera Monitor Program develop-
ment environment. This tutorial includes screen captures obtained using version 11.0 of the Altera Monitor Program;
if other versions of the software are used, some of the images may be slightly different. The device driver functions
used in the example programs in the tutorial are from version 11.0 of the University Program IP Cores.

We assume that the reader has access to the Altera DE2 Development and Education board (including DE2-70 and
DE2-115), or the DE1 board. If other boards are used, then the design examples for the tutorial may be not usable,
as they require the presence of specific I/O devices.

Contents:

• Examining the HAL device driver functions that are provided for University Program IP cores

• Writing C programs that use HAL device driver functions

• Compiling HAL code with the Monitor Program

• Running and debugging HAL code using the Monitor Program

• Finding HAL device driver source code

• Using Nios II interrupts in HAL code

Altera Corporation - University Program
May 2011

1

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

2 Writing Programs that use HAL Device Drivers

For this tutorial, we assume that the reader is already familiar with the Altera Monitor Program. It is described in
the tutorial Introduction to the Altera Monitor Program, which is available from the University Program section of
Altera’s website.

To see an example of using HAL device drivers, create a new Monitor Program project for the DE2 board called
HAL_tutorial. Store the project in a directory of your choice. When creating the project, specify the hardware system
to be the prebuilt DE2 Media Computer, specify the program type as Program with Device Driver Support, and
select the sample program named Getting Started HAL. This sample program makes use of two types of I/O devices
in the DE2 Media Computer: parallel ports, and an audio device.

The HAL device drivers for I/O devices consist of collections of functions that allow software programs to ac-
cess hardware devices. To use these functions, it is first necessary to examine the documentation provided for
the IP core that connects to each I/O device, to determine the names of its device driver functions, the num-
ber and types of arguments, and the specified use of the functions. The documentation for the IP cores that
are included in the DE2 Media Computer can be found on the University Program section of Altera’s website
under the heading Educational Materials > Computer Organization > IP Cores. As an example, the doc-
umentation file for the parallel ports provides a section called Programming with the Parallel Ports. A small
part of this section is displayed in Figure 1. A number of device driver functions are listed in the figure, in-
cluding alt_up_parallel_port_open_dev(. . .), which is used in C code to open a parallel port device, as well as
alt_up_parallel_port_read_data(. . .) and alt_up_parallel_port_write_data(. . .), which can be used to read/write data
from/to a parallel port. For each function, the documentation specifies the data types of arguments and return values.

A complete example of C code that uses HAL device drivers is given in Figure 3. This code uses two parallel ports,
connected to switches and LEDs on the DE2 board, and an audio port. The code performs the following operations:

1. When the switch KEY1 is pressed on the DE2 board, audio input from the microphone jack is recorded for
about 10 seconds. LEDG0 is illuminated while recording.

2. When the switch KEY2 is pressed, the recorded audio is played back on the line-out jack. LEDG1 is illuminated
during playback.

As shown in Figure 3(a), the C code first includes the necessary header files for the parallel port and audio devices.
In lines 7− 9 a pointer is declared for each of the three I/O devices to be used in the code. The pointers have a
special type, which is the type of return value for the device driver function that opens the device–for example, in
Figure 1 the data type of the function alt_up_parallel_port_open_dev(. . .) is alt_up_parallel_port_dev. Lines 10−12
of the code open the two parallel ports and the audio device needed in the program. As shown, each I/O device is
referenced using a unique name. The names of the two parallel port devices are Pushbuttons and Green_LEDs, and
the audio device is named Audio. These names are prefixed with the string /dev, and then passed to the device driver
function. The unique name of each device is assigned by the designer when the Nios II hardware system is created
by using Altera’s SOPC Builder tool. Figure 2 shows part of the Systems Contents that can be displayed in the SOPC
Builder tool for the DE2 Media Computer, with the module names (without the /dev/ prefix) displayed in the column
labeled Module Name.

2 Altera Corporation - University Program
May 2011

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

Figure 1. A part of the documentation file for the parallel port.

Figure 2. Module names for the DE2 Media Computer shown in the SOPC Builder.

Altera Corporation - University Program
May 2011

3

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

1 #include "altera_up_avalon_parallel_port.h"
2 #include "altera_up_avalon_audio.h"

/* globals */
3 #define BUF_SIZE 500000 // about 10 seconds of buffer (@ 48K samples/sec)
4 #define BUF_THRESHOLD 96 // 75% of 128 word buffer

/* function prototypes */
5 void check_KEYs(int *, int *, int *, alt_up_parallel_port_dev *, alt_up_audio_dev *);

/**
* This program demonstrates use of the media ports in the DE2 Media Computer
*
* It performs the following:
* 1. records audio for about 10 seconds when KEY[1] is pressed. LEDG[0] is
* lit while recording
* 2. plays the recorded audio when KEY[2] is pressed. LEDG[1] is lit while
* playing

**/
6 int main(void)

{
/* declare variables to point to devices that are opened */

7 alt_up_parallel_port_dev *KEY_dev;
8 alt_up_parallel_port_dev *green_LEDs_dev;
9 alt_up_audio_dev *audio_dev;

// open the pushbutton KEY parallel port
10 KEY_dev = alt_up_parallel_port_open_dev ("/dev/Pushbuttons");

// open the green LEDs parallel port
11 green_LEDs_dev = alt_up_parallel_port_open_dev ("/dev/Green_LEDs");

// open the audio port
12 audio_dev = alt_up_audio_open_dev ("/dev/Audio");

/* used for audio record/playback */
13 int record = 0, play = 0, buffer_index = 0;
14 unsigned int l_buf[BUF_SIZE];
15 unsigned int r_buf[BUF_SIZE];
16 int num_read; int num_written;

Figure 3. An example of C code that uses HAL device drivers (Part a).

4 Altera Corporation - University Program
May 2011

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

/* read and echo audio data */
17 record = 0;
18 play = 0;
19 while(1)

{
20 check_KEYs (&record, &play, &buffer_index, KEY_dev, audio_dev);
21 if (record)

{
22 alt_up_parallel_port_write_data (green_LEDs_dev, 0x1); // set LEDG[0] on

// record data until the buffer is full
23 if (buffer_index < BUF_SIZE)

{
24 num_read = alt_up_audio_record_r (audio_dev, &(r_buf[buffer_index]),

BUF_SIZE − buffer_index);
/* assume we can read same # words from the left and right */

25 (void) alt_up_audio_record_l (audio_dev, &(l_buf[buffer_index]), num_read);
26 buffer_index += num_read;
27 if (buffer_index == BUF_SIZE)

{
// done recording

28 record = 0;
29 alt_up_parallel_port_write_data (green_LEDs_dev, 0x0); // turn off LEDG

}
}

}
Figure 3. An example of C code that uses HAL device drivers (Part b).

The rest of the code in Figure 3 performs the recording and playback of audio, and controls the pushbutton and green
lights parallel ports. Device driver functions are called in the main program in lines 22, 24−25, 29, 31, 33−34, and
38, and in the function check_KEYs, which examines the values of the pushbutton switches, in lines 41−42, 45, and
49. The operation of each of these functions is described in the documentation file for the corresponding IP core, as
discussed previously for Figure 1.

3 Compiling Programs that use Device Drivers

The HAL_tutorial project can be compiled in the normal way by using the Monitor Program commands Actions
> Compile, or Actions > Compile & Load. The first time this is done, the Monitor Program compiles not only
the file getting_started_HAL.c, but also a number of C library functions that are a part of the HAL system, and
all of the device driver functions that are provided for every device in the Nios II hardware system. Although
this process is somewhat time consuming, it is only done once, and subsequent compilations only compile the
source file getting_started_HAL.c. If it is necessary to recompile all of the HAL functions at a later time, this can
be accomplished by using the command Actions > Regenerate Device Drivers (BSP). This action might be
necessary, for example, if a new version of IP cores is installed at a later time.

Altera Corporation - University Program
May 2011

5

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

30 else if (play)
{

31 alt_up_parallel_port_write_data(green_LEDs_dev, 0x2); // set LEDG[1] on
// output data until the buffer is empty

32 if (buffer_index < BUF_SIZE)
{

33 num_written = alt_up_audio_play_r (audio_dev, &(r_buf[buffer_index]),
BUF_SIZE − buffer_index);

/* assume that we can write the same # words to the left and right */
34 (void) alt_up_audio_play_l (audio_dev, &(l_buf[buffer_index]), num_written);
35 buffer_index += num_written;

36 if (buffer_index == BUF_SIZE) // done playback
{

37 play = 0;
38 alt_up_parallel_port_write_data(green_LEDs_dev, 0x0); // turn off LEDG

}
}

}
}

}
Figure 3. An example of C code that uses HAL device drivers (Part c).

3.1 Running the Program

Programs that use HAL device drivers can be run and debugged in the Monitor Program in the same way as other C
or assembly language programs. Figure 4 shows an example of a breakpoint set in the code of Figure 3. The figure
shows the value read from the pushbutton parallel port by the device driver function alt_up_parallel_port_read_data(. . .).
This particular device driver is executed without using a call assembly language instruction, which means that it is
implemented as a macro, rather than a subroutine. The value returned by the function is shown in the Nios II register
r5. The value is 0x00000002, which means that KEY1 on the DE2 board was pressed when the function was
called. Other device drivers are implemented as subroutines, such as alt_up_audio_read_fifo_avail(. . .), as indicated
in Figure 5. In the figure, a breakpoint has been set at this function call. The subroutine can be executed in a debug-
ging session either by using Actions > Step Over Subroutine or by single-stepping into the device driver code if
desired.

4 Examining the HAL Device Driver Source Code

It is possible to examine the source code of the device driver functions used in the HAL. These functions are installed
in the same filesystem directory as the Quartus II software, as illustrated on the left side of Figure 6. In this figure,
QUARTUS_ROOTDIR 1 represents the installation directory of the Quartus II software. The device driver code is

1In Windows operating systems, the environment variable QUARTUS_ROOTDIR points to the folder where Quartus II software is installed.

6 Altera Corporation - University Program
May 2011

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

/***
* Subroutine to read KEYs

**/
39 void check_KEYs(int *KEY1, int *KEY2, int *counter, alt_up_parallel_port_dev *KEY_dev,

alt_up_audio_dev *audio_dev)
{

40 int KEY_value;
41 KEY_value = alt_up_parallel_port_read_data (KEY_dev); // read the pushbutton KEY values
42 while (alt_up_parallel_port_read_data (KEY_dev)); // wait for pushbutton KEY release
43 if (KEY_value == 0x2) // check KEY1

{
44 *counter = 0; // reset counter to start recording
45 alt_up_audio_reset_audio_core (audio_dev); // reset audio port
46 *KEY1 = 1;

}
47 else if (KEY_value == 0x4) // check KEY2

{
48 *counter = 0; // reset counter to start playback
49 alt_up_audio_reset_audio_core (audio_dev); // reset audio port
50 *KEY2 = 1;

}
}

Figure 3. An example of C code that uses HAL device drivers (Part d).

stored in two directories: the inc directory contains device driver subroutine prototypes and device driver macros,
and the src directory contains subroutine definitions. During the process of compiling a project in the Monitor
Program, the inc and src directories for all IP cores are copied into the project’s directory. As shown on the right side
of Figure 6, the directories are copied into a folder called drivers, which is a subfolder of the folder called BSP (the
acronym stands for Board Support Package). The figure shows the directory structure of the parallel port and audio
IP cores as an example, but the source files for all of the IP cores in the hardware system are copied in this way.

Altera Corporation - University Program
May 2011

7

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

Figure 4. An example of a HAL device driver function that is implemented as a macro.

Figure 5. An example of a HAL device driver function implemented as a subroutine.

8 Altera Corporation - University Program
May 2011

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

QUARTUS_ROOTDIR

ip

University_Program

Input_Output Audio_Video

altera_up_avalon_parallel_port altera_up_avalon_audio

HAL

inc src

HAL

inc src

Project_dir

BSP

drivers

inc src

Copied

Figure 6. Finding the HAL device driver source code files.

Altera Corporation - University Program
May 2011

9

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

5 Using Nios II Interrupts in the HAL

The HAL provides a simple interface for using Nios II interrupts in C programs. To use interrupts programs must
specify the statement #include "sys/alt_irq.h". This include file provides a function named alt_irq_register (. . .),
which is used to specify the hardware interrupt levels and associated interrupt service routines for any Nios II
interrupts that are being used. To see an example that uses interrupts, create a new Monitor Program project for
the DE2 board called HAL_tutorial_int. Store the project in a directory of your choice. When creating the project,
specify the hardware system to be the DE2 Media Computer, specify the program type as Program with Device
Driver Support, and select the sample program provided in the Monitor Program named interrupts_HAL. This
sample program has the exact same functionality as the code in Figure 3, except that the pushbutton KEY parallel port
and audio device are handled using interrupts. There are three source files in this program: interrupts_HAL.c contains
the main program, and the interrupt service routines are found in the files pushbutton_ISR.c and audio_ISR.c.

Figure 7 shows the C code for the main program. It first includes the file globals.h, which, as illustrated in Figure 8,
includes the parallel port and audio HAL header files altera_up_avalon_parallel_port.h and altera_up_avalon_audio.h.
The globals.h file also includes sys/alt_stdio.h and alt_irq.h. As mentioned above, alt_irq.h is needed to use inter-
rupts with the HAL. The file alt_stdio.h defines some simplified versions of the functions in the standard C library
stdio.h. The purpose of alt_stdio.h is to conserve memory space in the hardware system by providing functions that
have limited capability but also produce less machine code when compiled. In this example, we will use a function
called alt_printf, which is a simplified version of printf. The use of such functions is not necessary for the example
program, and is provided only for illustrative purposes. The alt_stdio.h library, and other C libraries provided by
Altera, is described in the Nios II Software Developer’s Handbook, available from Altera’s website.

The last few lines of code in Figure 8 declare a C structure named alt_up_dev. As indicated in the code, this structure
is used to hold a pointer to the I/O devices for the two parallel ports and audio port. We will explain the purpose
of this structure shortly. Referring back to the main program in Figure 7, line 2 defines an instance, named up_dev,
of the alt_up_dev structure. Line 3 defines two variables used with the audio device. These variables have to be
declared using the keyword volatile, because their values are written by interrupt service routines. If this keyword is
not used, then the C compiler may choose to save the value of the variable in a Nios II general-purpose register and
to retrieve the value of this variable, when needed in a program, from this register, rather than from memory. In this
case, changes to the variable’s value that are written into memory by an interrupt service routine would not be seen
in the main program. Using the volatile keyword prohibits the C compiler from saving the value of the variable in a
CPU register, and causes the Nios II processor to access the variable using load I/O and store I/O instructions 2.

2 Even if a version of the Nios II processor that has a data cache is being used, the load I/O instruction causes the processor to bypass this
cache and access the associated variable at its address in memory.

10 Altera Corporation - University Program
May 2011

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

1 #include "globals.h"
/* global variables */

2 struct alt_up_dev up_dev; // holds a pointer to each open I/O device
/* The globals below are written by interrupt service routines, so we have to declare
* them as volatile to avoid the compiler caching their values in registers */

3 volatile int buf_index_record, buf_index_play; // audio variables
/* function prototypes */

4 void pushbutton_ISR(void *, unsigned int);
5 void audio_ISR(void *, unsigned int);

/**
* This program demonstrates use of HAL functions and interrupts
*
* It performs the following:
* 1. records audio for about 10 seconds when an interrupt is generated by
* pressing KEY[1]. LEDG[0] is lit while recording. Audio recording is
* controlled by using interrupts
* 2. plays the recorded audio when an interrupt is generated by pressing
* KEY[2]. LEDG[1] is lit while playing. Audio playback is controlled by
* using interrupts

**/
6 int main(void)

{
/* declare device driver pointers for devices */

7 alt_up_parallel_port_dev *KEY_dev;
8 alt_up_parallel_port_dev *green_LEDs_dev;
9 alt_up_audio_dev *audio_dev;

// open the pushbutton KEY parallel port
10 KEY_dev = alt_up_parallel_port_open_dev ("/dev/Pushbuttons");
11 if (KEY_dev == NULL)

{
12 alt_printf ("Error: could not open pushbutton KEY device\n");
13 return -1;

}
14 else

{
15 alt_printf ("Opened pushbutton KEY device\n");
16 up_dev.KEY_dev = KEY_dev; // store for use by ISRs

}

Figure 7. An example of C code that uses interrupts (Part a).

Altera Corporation - University Program
May 2011

11

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

/* write to the pushbutton interrupt mask register, and set 3 mask bits to 1
* (we can’t use pushbutton 0; it is the Nios II reset button) */

17 alt_up_parallel_port_set_interrupt_mask (KEY_dev, 0xE);
// open the green LEDs parallel port

18 green_LEDs_dev = alt_up_parallel_port_open_dev ("/dev/Green_LEDs");
19 if (green_LEDs_dev == NULL)

{
20 alt_printf ("Error: could not open green LEDs device\n");
21 return -1;

}
22 else

{
23 alt_printf ("Opened green LEDs device\n");
24 up_dev.green_LEDs_dev = green_LEDs_dev; // store for use by ISRs

}
// open the audio port

25 audio_dev = alt_up_audio_open_dev ("/dev/Audio");
26 if (audio_dev == NULL)

{
27 alt_printf ("Error: could not open audio device\n");
28 return -1;

}
29 else

{
30 alt_printf ("Opened audio device\n");
31 up_dev.audio_dev = audio_dev; // store for use by ISRs

}
/* use the HAL facility for registering interrupt service routines. */
/* Note: we are passing a pointer to up_dev to each ISR (using the HAL context argument) as
* a way of giving the ISR a pointer to every open device. This is useful because some of the
* ISRs need to access more than just one device (e.g. the pushbutton ISR accesses both
* the pushbutton device and the audio device) */

32 alt_irq_register (1, (void *) &up_dev, (void *) pushbutton_ISR);
33 alt_irq_register (6, (void *) &up_dev, (void *) audio_ISR);

/* the main program can now exit; further program actions are handled by interrupts */
}

Figure 7. An example of C code that uses interrupts (Part b).

Lines 7−31 of Figure 7 open the three I/O devices needed in the program, and use alt_printf to display an appropriate
error if a device cannot be properly opened. Although this check is not strictly needed in our example, it is a good
practice to check the return value of functions for any errors that may occur. The pushbutton KEYs parallel port is
configured to generate hardware interrupts by using the HAL function shown in line 17 of the code. Lines 16, 24,
and 31 store the pointer to each opened I/O device in the up_dev structure. This structure is used in lines 32 and
33, which call the alt_irq_register function. The first argument to this function is the level of the hardware interrupt

12 Altera Corporation - University Program
May 2011

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

being used. In the DE2 Media Computer hardware system, the pushbutton KEYs parallel port is assigned interrupt
level 1 and the audio port has interrupt level 6. The second argument of alt_irq_register is a pointer of type void *
called the context pointer. This pointer is simply passed on to the associated interrupt service routine (ISR) when
the interrupt occurs; it can point to any type of object and can be used for any purpose needed in the ISR. In this
case, we pass a pointer to the up_dev structure to the ISR for both the pushbutton parallel port and audio port. Since
up_dev holds a pointer to all of the open I/O devices, it allows an ISR to execute device driver functions for any
of the devices. The last argument to alt_irq_register is a pointer to the associated ISR. Each ISR has to have two
arguments, as illustrated in lines 4 and 5 of Figure 7. The first of these arguments is used for the context pointer, and
the second argument gives the interrupt level.

The interrupt service routine for the pushbutton parallel port is given in Figure 9. As shown in the code, it uses the
up_dev context pointer to access both the pushbutton parallel port and audio port. Line 8 uses a device driver function
to determine which pushbutton KEY caused the interrupt, and line 9 clears this interrupt. If KEY1 is pressed, then
read interrupts are enabled for the audio device to begin recording, and if KEY2 is pressed, then write interrupts are
enabled for the audio device to perform playback.

Figure 10 shows the ISR for the audio device. It is very similar to the code in Figure 3, except that line 8 checks
for audio read interrupts, and line 16 disables audio read interrupts when the recording buffer is full. Also, line 17
checks for audio write interrupts, and line 25 disables these interrupts when the playback buffer is empty.

/* include HAL device driver functions for the parallel port and audio device */
#include "altera_up_avalon_parallel_port.h"
#include "altera_up_avalon_audio.h"

#include "sys/alt_stdio.h"
#include "sys/alt_irq.h"

/* This structure holds a pointer to each open I/O device */
struct alt_up_dev {

alt_up_parallel_port_dev *KEY_dev;
alt_up_parallel_port_dev *green_LEDs_dev;
alt_up_audio_dev *audio_dev;

};

Figure 8. Include files and a structure to hold pointers.

Altera Corporation - University Program
May 2011

13

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

1 #include "globals.h"
/* indices for audio record and playback; we reset them when pushbuttons are pressed */

2 extern volatile int buf_index_record;
3 extern volatile int buf_index_play;

/***
* Pushbutton - Interrupt Service Routine
*
* This ISR checks which KEY has been pressed. If KEY1, then it enables audio-in
* interrupts (recording). If KEY2, it enables audio-out interrupts (playback).
**/

4 void pushbutton_ISR(struct alt_up_dev *up_dev, unsigned int id)
{

5 alt_up_audio_dev *audio_dev;
6 audio_dev = up_dev->audio_dev;
7 int KEY_value;

/* read the pushbutton interrupt register */
8 KEY_value = alt_up_parallel_port_read_edge_capture (up_dev->KEY_dev);
9 alt_up_parallel_port_clear_edge_capture (up_dev->KEY_dev); // clear the interrupt
10 if (KEY_value == 0x2) // check KEY1

{
// reset the buffer index for recording

11 buf_index_record = 0;
// clear audio FIFOs

12 alt_up_audio_reset_audio_core (audio_dev);
// enable audio-in interrupts

13 alt_up_audio_enable_read_interrupt (audio_dev);
}

14 else if (KEY_value == 0x4) // check KEY2
{

// reset counter to start playback
15 buf_index_play = 0;

// clear audio FIFOs
16 alt_up_audio_reset_audio_core (audio_dev);

// enable audio-out interrupts
17 alt_up_audio_enable_write_interrupt (audio_dev);

}
18 return;

}
Figure 9. The pushbutton KEY interrupt service routine.

14 Altera Corporation - University Program
May 2011

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

1 #include "globals.h"
2 #define BUF_SIZE 500000 // about 10 seconds of audio buffer (@ 48K samples/sec)

/* globals used for audio record/playback */
3 extern volatile int buf_index_record, buf_index_play;
4 unsigned int l_buf[BUF_SIZE]; // audio buffer
5 unsigned int r_buf[BUF_SIZE]; // audio buffer

/***
* Audio - Interrupt Service Routine
* This interrupt service routine records or plays back audio, depending on which type
* interrupt (read or write) is pending in the audio device.
**/

6 void audio_ISR(struct alt_up_dev *up_dev, unsigned int id)
{

7 int num_read, num_written;
8 if (alt_up_audio_read_interrupt_pending(up_dev->audio_dev)) // check for read interrupt

{
9 alt_up_parallel_port_write_data (up_dev->green_LEDs_dev, 0x1); // set LEDG[0] on

// store data until the buffer is full
10 if (buf_index_record < BUF_SIZE)

{
11 num_read = alt_up_audio_record_r (up_dev->audio_dev, &(r_buf[buf_index_record]),

BUF_SIZE − buf_index_record);
/* assume we can read same # words from the left and right */

12 (void) alt_up_audio_record_l (up_dev->audio_dev, &(l_buf[buf_index_record]), num_read);
13 buf_index_record += num_read;
14 if (buf_index_record == BUF_SIZE) // done recording

{
15 alt_up_parallel_port_write_data (up_dev->green_LEDs_dev, 0); // turn off LEDG
16 alt_up_audio_disable_read_interrupt(up_dev->audio_dev);

}
}

}

Figure 10. The audio device interrupt service routine (Part a).

Altera Corporation - University Program
May 2011

15

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

17 if (alt_up_audio_write_interrupt_pending(up_dev->audio_dev)) // check for write interrupt
{

18 alt_up_parallel_port_write_data (up_dev->green_LEDs_dev, 0x2); // set LEDG[1] on
// output data until the buffer is empty

19 if (buf_index_play < BUF_SIZE)
{

20 num_written = alt_up_audio_play_r (up_dev->audio_dev, &(r_buf[buf_index_play]),
BUF_SIZE − buf_index_play);

/* assume that we can write the same # words to the left and right */
21 (void) alt_up_audio_play_l (up_dev->audio_dev, &(l_buf[buf_index_play]), num_written);
22 buf_index_play += num_written;
23 if (buf_index_play == BUF_SIZE) // done playback

{
24 alt_up_parallel_port_write_data (up_dev->green_LEDs_dev, 0); // turn off LEDG
25 alt_up_audio_disable_write_interrupt(up_dev->audio_dev);

}
}

}
26 return;

} Figure 10. The audio device interrupt service routine (Part b).

6 Final Remarks

In this tutorial we have introduced the use of HAL device drivers with C programs. We have shown that C code
using device driver functions can be developed by following the steps below:

1. Obtain a Nios II hardware system for which the IP cores in the system include HAL device drivers. In this
tutorial we used the DE2 Media Computer hardware system. It uses the University Program IP cores that are
available from the University Program section of Altera’s website.

2. Examine the documentation provided for the IP cores in the hardware system. This documentation includes a
section that describes the available HAL device driver functions for the IP core.

3. Create an Altera Monitor Program project for the hardware system, with the program type set to Program
with Device Driver Support.

4. Based on the functionality needed, write a program that calls the necessary HAL device driver functions. The
include files that define the device driver functions must be included in the program. If interrupts are needed,
then an interrupt service for each interrupt can be registered by using the alt_irq_register library function.
Other mechanisms for dealing with interrupts are also available, and are described in the document Nios II
Software Developer’s Handbook, which is provided by Altera.

5. Compile the program in the normal way by using the provided commands in the Monitor Program. Debug the
program by setting breakpoints, single-stepping, examining memory, and so on, using the provided features
of the Monitor Program.

16 Altera Corporation - University Program
May 2011

http://university.altera.com/

USING HAL DEVICE DRIVERS WITH THE ALTERA MONITOR PROGRAM

Copyright ©1991-2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before
placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

Altera Corporation - University Program
May 2011

17

http://university.altera.com/

	1 Introduction
	2 Writing Programs that use HAL Device Drivers
	3 Compiling Programs that use Device Drivers
	3.1 Running the Program

	4 Examining the HAL Device Driver Source Code
	5 Using Nios II Interrupts in the HAL
	6 Final Remarks

