THEREMIN PROJECT
A Design Project Report
Presented to the Engineering Division of the Graduate School

Of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

By:
Catherine Kung

Project Advisor: Dr. Bruce R Land

May 2006

Table of Contents:

Abstract
1

Executive Summary
2

Project Goal
3

Traditional Theremin
3

This Project Description
5

The PCB Description
7

The E-field Sensor Description
9
The Electrode Design
10

The Code
11
The Analog-to-Digital Converter
12
Direct Digital Synthesis
14
Results
20
Conclusions
20
Appendix
21
Bibliography
24
Abstract:

This project is the construction of a Theremin instrument. This instrument consists of two sensors, with one controlling the pitch and the other controlling the volume. One plays a Theremin by moving their hand near the two sensors. The way that the pitch and volume are controlled is by the electrodes sensing the changing electric field caused by the moving hand. The original Theremin design used RF field detuning to sense position. In this project, capacitance sensing will be used to determine position using Motorola’s MC33794 E-field sensor. The sensor data will be processed using an ATMEL Mega32 microcontroller which will produce the output sounds, which will have 8 different volumes and a 2 octave frequency range.
Executive Summary:

In this project, a Theremin was constructed. The original Theremin is an electronic instrument that is played by the musician moving his hand around in the field between two antennas. There is one arranged horizontally, and one arranged vertically. The closer the musician’s hand is to the vertical antenna, the lower the frequency of the output signal. A hand that is close to the horizontal antenna creates a lower volume output signal.
In this project, the antennas were replaced by electrodes connected to an IC that detected the capacitance change in the field between the electrode and ground, due to the movement of the musician’s hand. The data from the chip was sent to a MCU that performed calculations and the scaled that data, and created an output sine wave signal that was sent through a filter to the speakers.
This project works well, and its frequency range is from 260 to 1300 Hz (roughly two and a third octaves—from C, up two octaves, and then to E). The output voltage range (which directly corresponds to the output volume) is from 0.16 to 2.6 V. Both of these ranges occur as the user’s hand moves about 10”.
The goal of this project:
This project should work like a Theremin, where two antennas control the pitch and amplitude of an output sine wave, which is sent out through a set of computer speakers. The desired setup is to have two 10” antennas set up perpendicular to each other, and the musician will be able to move his hand around in the 10”x10” area, and varying pitches (roughly two octaves’ worth) at varying volumes (roughly 8-10 distinct volumes) will come out of the speaker at the output.
Traditional Theremin:
The Theremin is a musical instrument created by Lev Termen (also spelled Leon Theremin) in 1917, with two antennas—one vertical and one horizontal. It is played by the musician placing his hand in the area between the two antennas. The closer the musician’s hand is to the vertical antenna, the frequency increases, and the closer the hand is to the horizontal antenna, the lower the volume becomes. The Theremin produces two high frequency radio waves of similar but slightly different frequencies, and they combined to create a lower (“beat”) frequency radio wave. As the musician comes closer to the vertical antenna, the capacitance of his body affects the frequency of one of the two oscillators, and the other oscillator stays at a constant frequency. The beat between these two frequencies would be between 0 and 2 kHz, which was then amplified and fed out to a speaker. The beat occurs because as the two high frequency sine waves move in and out of phase with each other, they add to each other, resulting in a signal that has a much lower frequency sine wave enveloping it. This signal with a beat frequency is shown as the wave with the triangle markers below, and with the varying amplitude. The signal that is that wave’s envelope is the one with x-shaped markers and has the slowest frequency.
[image: image1.png]25

15

05

—+—Sin(5°X) —=— SIN(6X) ——SIn(5"X)* SIN(6'%) ——2°SIn(0.5%+1.6;

Figure 1: Beat wave created by addition of different frequency sine waves, adapted from figure 2.3 in [http://www.theremin.rwi.org.uk/dload/REPORT.PDF]
The frequency of the beat can be seen by looking at how many cycles of sin(5x) and how many cycles of sin(6x) pass during the time it takes the summed signal to go from 1.5 to 1.5 (which is half of the beat frequency’s period). It takes the sin (5x) signal 5 cycles to go through half the beat frequency’s period, and six cycles for the sin(6x) signal to do the same. So, ½*x is the frequency of the envelope of the summed signal.
The addition of sines that states: Sin(f1) + Sin(f2) = 2*Cos[(f1- f2)/2]*Sin[(f1+f2)/2]. The following proves this statement:

[image: image2.wmf]÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

+

=

÷

ø

ö

ç

è

æ

+

+

+

=

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

+

=

÷

ø

ö

ç

è

æ

+

=

+

2

f

f

sin

2

f

-

f

cos

2

2

f

sin

2

f

cos

2

f

cos

2

f

sin

2

f

sin

2

f

sin

2

f

cos

2

f

cos

2

2

f

cos

2

f

sin

2

f

sin²

2

f

cos

2

f

sin

2

f

sin²

2

f

sin

2

f

cos

2

f

cos²

2

f

sin

2

f

cos

2

f

cos²

2

2

f

cos

2

f

sin

2

f

sin²

2

f

cos²

2

f

sin

2

f

cos

2

f

sin²

2

f

cos²

2

2

f

cos

2

f

sin

2

f

sin

2

f

cos

2

)

sin(f

)

sin(f

2

1

2

1

2

1

2

1

2

1

2

1

1

1

2

2

2

1

2

2

1

1

1

2

2

2

1

1

1

1

2

2

2

2

1

1

2

1

This computation shows that the envelope is a cosine signal, at frequency
[image: image3.wmf]2

f

-

f

2

1

, which is
[image: image4.wmf]2

x

 in the above example, and the oscillation within the envelope is a sine signal at frequency
[image: image5.wmf]2

f

f

2

1

+

, which is
[image: image6.wmf]2

x

11

×

in the above example. The reason the enveloping sine wave was
[image: image7.wmf]÷

ø

ö

ç

è

æ

+

1.6

2

x

sin

 is because of another trigonometric identity that states
[image: image8.wmf]÷

ø

ö

ç

è

æ

+

2

sin

p

x

=cos(x). And,
[image: image9.wmf]2

p

is roughly equal to 1.6. So, when two sine waves are added, a sine wave at the frequency
[image: image10.wmf]2

f

f

2

1

+

 results, and its magnitude oscillates at the frequency
[image: image11.wmf]2

f

-

f

2

1

.
This project:
For this project, a digital Theremin was designed. The Motorola E-field sensor chip was chosen for this project because of the ease of use. It is set up so it can interface easily with a microcontroller (it has pins for a watchdog timer, Reset’, electrode selection, and shield disabling, along with the standard pins for clock, Vcc, and ground). The E-field sensor also allows the circuit to toggle quickly between two different input electrodes. It is an “all-in-one” chip, since it includes everything needed to detect differing capacitances (other than a few reference capacitors and resistors. The Atmel Mega32 was chosen as a microcontroller because of the familiarity from using it in past projects. It allows both C and assembly programming, and it has an on-board analog-to-digital converter, as well as a pulse-width modulator (both which are very useful for this project). It has Flash, EEPROM, and SRAM all on the same chip, so it is easy to program.
For this project, the closer the musician’s hand gets to the first antenna, the lower the pitch, and the closer the hand gets to the second antenna, the softer the volume.
The setup of this project can be seen both in the diagram below:

[image: image12.jpg]apos3os|g

apos3os|g

E-Field|"

Sensor

Microcontroller

Low-Pass Filter

LAY

2kQ

0.1uF

Figure 2: Theremin setup
The electrodes feed their signals into the E-field sensor chip, which is controlled by the Microcontroller, and it sends its data out to the Microcontroller which processes the data and creates a pulse-width modulated square wave, which is then fed into a low-pass filter, and then the signal is fed out to a speaker. The output sinusoidal signal was not from a beat frequency between two high frequency signals, but rather a pulse-width modulated signal charging and discharging a capacitor at different rates. Thus, a pure sine wave was created.
The actual physical setup can be seen in the photo below, with two computer speakers, the sensors under the triangular strips of paper, and the rest of the project on the circuit board:
[image: image13.jpg]

Figure 3: The Theremin built in this project
The PCB:
The Printed Circuit Board (PCB) was created using ExpressPCB. The section of the board dealing with the ATMEL Mega32 microcontroller (MCU) was adapted from a PCB layout previously done by Professor Bruce Land.

The location of the Motorola E-field chip is in the upper left of the figure below. To the left of the chip, the electrodes are connected to the board via a header whose pins are spaced 0.1” apart. To protect the integrity of the signals sent to this header, there is a shield on the bottom side of the PCB. The only ones that were needed for this project were Ground, Vcc, Vpower, and some of the control pins. The useful control pins were the ones that reset the device, control which electrodes are active, and enable the shield. The only output from this chip is “Level,” which is the analog signal proportional to the E-field near the active electrode.
[image: image14.png]

Figure 4: PCB Layout
The MCU is the large chip laid horizontally in the middle of the board. The pins of the MCU are laid out in the following way: pins PA0-7 are in the upper left, PB0-7 are in the lower left, PC0-7 are in the upper right, and PD0-6 are in the lower right, and PD7 is at the end of the upper right. Pins PB1-4 are used as control signals for the E-field sensor. Pin PB0 is used to control the dis_shield pin of the E-field sensor. Pin PA0 is used to read level from the E-field sensor. Pin D5 (which is the output OC1A) is connected through a Low Pass Filter to the speaker jack, which was mounted in the upper right corner of the PCB.

Pins 6-13 of the MCU are used for programming the chip, connecting it to Vcc and to Gnd, and to the crystal oscillator, which is used for generating clock signals. Pins 30-32 are also used, to connect Analog Vcc, Gnd, and AREF, which is the reference pin for the Analog-to-Digital Converter.

E-field sensor:
The Motorola 33794 E-field sensor chip was used to detect the change in capacitance as the user’s hand moves through the field around the two electrodes. The chip generates a sine wave at 120 kHz, which is fed through an internal resistor, and then through a mux to the appropriate electrode, which was chosen by the inputs ABCD. The ABCD signals are created and sent by the microcontroller. The chosen electrode is also connected to an input mux, which takes the input sine wave, and then sends it to the detector. The detector creates a DC voltage, proportional to the change in the sine wave at the electrode when the capacitance between the electrode and ground changes. This change is due to the movement of the user’s hand. The user grounds himself, and then uses his hand to change the capacitance between the electrode and ground. The circuit can sense capacitances between the chosen electrode and ground in the range between 10 and 100 pF.

[image: image15.png]CLK 5.0v plepk —

Q
- ! 120 kHz 22kQ
Oscillator|—~ - W
i\; SN
1 S
= g
— Q
@
Mux ||
DC voltage «— Detector ¢ In
(to MCU's ADC)

Figure 5: Electrode setup with E-field sensor, adapted from figure 1 of the Motorola E-field sensor datasheet
The detector is actually made up of three parts: the rectifier, the LPF, and the gain and offset. The rectifier shifts the middle of the sine wave input to 0V, and then reflects the negative portion of the wave up to be a positive voltage. The next part of the detector is the LPF, which uses an internal resistance (50kΩ) along with an external capacitance (10nF). Then, the last stage of the detector is the gain and offset stage. This is the stage where the signal is scaled by a multiplier, and then is offset by a DC level. It sends out a signal between 1.0 and 4.0V to the microcontroller, which then performs an analog to digital conversion, and then uses this digital signal to control the output. The reason a steady DC signal was not used on the electrode was that capacitors do not pass DC.
Electrode Design:
To add protection from grounding the electrodes if the player accidentally touches them, sheets of paper are used to cover the sensors, so there will always be some minimal capacitance, which provides for a smoother output sound (since without the paper, there is a sudden jump down in frequency or volume if the user accidentally touches the sensor). The electrodes were designed in a triangular shape so the user can play the Theremin by moving their hands either horizontally or vertically (or both). This works because as the musician moves their hand across a triangular shaped object, the overlapping area changes, as opposed to with a square object. This can be seen in the figure below:
[image: image16.jpg]

Figure 6: Overlap of triangular vs. rectangular shaped sensors
As can be seen in the figure above, as the same sized hand (starburst) moves right across a triangular shaped sensor, the area in common shrinks considerably, whereas with the rectangular shaped sensor, the area in common remains the same. This affects the capacitance reading of the sensor, because capacitance depends on area.
The Code:
In this project, the code was written in C. It sets up the pins on the microcontroller as inputs and outputs. It sets the bits to have an analog-to-digital converter that has the following properties. It uses the voltage reference of AVcc with an external capacitor (which reduces the unwanted noise) at the AREF pin. It left-adjusts the result of the conversion, so that the most significant 8 bits of data are in register ADCH and the least significant 2 bits of data are in ADCL. The appropriate channel (ADC2) is selected for analog input. The ADC is enabled, and the conversion pin is set to 1 when the conversions are to be started, and they are cleared by the processor when the conversions are completed (this is used as a test condition to see if the data is ready to be used from the ADC).

The timer1 interrupts are set up so that OC1A is cleared on compare match, there is no prescalar to the clock, and the mode for the interrupts is fast pulse-width modulated. This way, when the counter reaches 255 (0xff), the OC1A pin is cleared, and then when the counter reaches the value stored into OCR1A, the OC1A output is set high, as is discussed in the next section.
The main program creates the sine table, so there are pre-computed sine values available for the OCR1A to use. This makes the program faster, since it does not require real-time multiplication and division, which would significantly burden the microcontroller. Then, there is a while loop that runs infinitely and it has 2 stages. The first stage is when the horizontal electrode is enabled, and the ADC is read (once it is ready), and then this value is used to write to the variable “amp,” which is used in the timer1 interrupt. The other stage is when the vertical electrode is enabled, and the ADC is read once ready, and this value is used to compute the value of the variable “increment,” which is used in the timer1 interrupt as well. After the ADC is read in each of these two stages, the bit for the next conversion is set high.
When the timer1 overflows, an interrupt occurs. This is when OCR1A is set, using the data from amp, increment, and the sine table. OCR1A then controls the duty cycle (ratio of time when a square wave is high, compared to the entire signal’s period), as is discussed in the PWM section of this report.
Analog-to-Digital Conversion:
In the Atmel Mega32 microcontroller, there is a 10-bit analog-to-digital converter. The analog input can handle 0-Vcc (5V) input. To remove excess noise (any signals above 10 Hz, since a human cannot voluntarily move their hand faster than this), a low pass filter was added before the analog input. Then, the signal sent to the Mega32 is much cleaner.
[image: image17.png]ADC
input pin

AVCC=Vref

|
I0OO0>»

Successive

Approximation
Style ADC

— 00>

Figure 7: ADC block diagram, adapted from figure 98 of the ATmega32 datasheet
The sample & hold section of the ADC makes sure the input is held long enough for the conversion to complete.

Successive approximation is the method used to convert the signal from analog to digital. This is the method where many analog voltages are run through and compared to the input voltage. It is a fairly exhaustive method. The first voltage tried is 0b1000000000, where the most significant bit (MSB) is high and the rest are low. If this voltage is higher than the input voltage, then the MSB is decided to be low, and if not, then the MSB is high. Then the next most significant bit is flipped high and checked. This continues until the least significant bit (LSB) is set either low or high, and then the digital representation of the analog input voltage is complete. This process follows the block diagram in the figure below:

[image: image18.png]vdd vdd
DAC
SAR s
> >l< [E § §
(A
vdd
SRG

Binal
" outpi

1

Figure 8: Illustration of successive approximation method of ADC, courtesy of [http://www.allaboutcircuits.com/vol_4/chpt_13/6.html]

Direct Digital Synthesis:
In direct digital synthesis, a sine wave is constructed by table lookup. This sine wave is created by a square wave with a changing duty cycle which is sent into a low-pass filter. The changes in the duty cycle of the square wave cause the output of the low pass filter to be a variable sine wave.

To create the pulse-width modulated signal, the period of the square wave is set to a constant value, and the duty cycle varies, depending on what value is stored to the compare register. The constant maximum value of a continually-running counter, TCNT1, is named TOP, and it is set to 0xFF, which creates a 256-bit fast PWM. This leads to a fundamental frequency of CLK/256 = 62.5kHz. Then, since the accumulator is type long, it is 32 bits, and the output’s resolution is:
[image: image19.wmf]Hz

kHz

F

x

s

0.00001455

2

5

.

62

2

32

=

=

. The next calculation to be done is phase increment, which controls the output frequency. Increment is the value added to the accumulator every time the timer1 interrupt occurs. This is equal to the desired frequency desired divided by the frequency resolution:
increment=
[image: image20.wmf]16

16

32

32

2

2

05

.

1

5

.

62

2

2

5

.

62

2

×

»

×

×

=

×

=

=

f

f

kHz

f

kHz

f

F

f

x

s

.

For this project, the 16-bit Timer/Counter 1 was chosen to be in control of the interrupts, due to the fact that OC1A was closer to the upper right corner of the board than OC0, and this matters because that is where the output speaker jack is located. The variable length pulse is created by setting the timer interrupt mode to Fast 8-bit PWM. There is a counter that continually runs, and it is called TCNT1. The interrupt is set up to occur every time the counter reaches 0xFF (the value TOP is set to). The signal OC1A changes to high every time the TCNT1 matches the value written to OCR1A. When the interrupt occurs (the counter equals TOP), TCNT1 is cleared to 0, and the counter starts counting again.

As shown in the figure below, the pulse widths of the signal OC1A depend on when TCNT1 reaches the value set into OCR1A (which is shown with the T-marks along the TCNT1 signal).

[image: image21.emf]
Figure 9: Timing diagram for the fast PWM mode, from figure 46 of the Mega32 data sheet
Once TCNT1 reaches the value pre-set into OCR1A, the OC1A flag is set, and then it gets cleared at the top of TCNT1. This creates a square wave, with variable pulse width, depending on what value OCR1A is set to, which is what is desired. Increment is the value added to the accumulator every time the timer1 interrupt occurs. Then, the high byte of the accumulator is used to pull that value out of the sine table, and then this value’s amplitude is manipulated using amp. This value is then stored into OCR1A, which then controls the next pulse’s width.

The changing width of the pulses is what is used to generate the output sine wave at the output pin OC1A. This is done by charging and discharging the capacitor in the LPF. The capacitor and resistor used to create the Low Pass Filter were chosen so that their RC time constant had a lower period than the input signal. This way the capacitor does not fully charge and discharge in every cycle of the signal, because then the overall signal would stay right at 0V, rather than oscillating as a sine wave. The resistor chosen was 2kΩ, and then the capacitor paired with it was 0.1uF, and these two have a frequency of
[image: image22.wmf]Hz

RC

f

796

0.0002

2

1

2

1

=

×

=

=

p

p

, whereas the input square wave had a frequency of 62.5kHz. They are set up in the following way: the signal from OC1A is fed into the 2k resistor, and then the output of the resistor is connected to both the speaker and the 0.1uF capacitor to ground. This can be seen in the figure below:

[image: image23.png]octA |

Figure 10: Low Pass Filter (LPF) setup

If the duty cycle of the signal from OC1A is large, the pulse width is a large fraction of the entire pulse period (16 us), and this will charge the capacitor in the LPF. Then, when the signal is low, the capacitor begins to discharge, but it does not have enough time to fully do so. So, the charge on the capacitor increases over many cycles. In the other scenario, when the duty cycle is low, the capacitor has more time to discharge than to charge, so the voltage across it decreases. This can be seen in the screenshot below.

[image: image24.jpg][Tek e

. MTos oss

ATIET

Gy R

Figure 11: Close-up of output to the speaker

In this figure, the individual charge/discharge cycles, with periods of 16us, can be seen. As the pulse width increases, more time is spent charging the capacitor, which can be seen in the upper left, as compared to the lower right. Also when comparing the lower right of the figure with the upper left, one can also see that less time is spent discharging the capacitor. The resulting signal looks like the one shown below:

[image: image25.jpg]M 100y " 500 1 W 71N
asnee

Figure 12: Output to the speaker

This sine wave is heard as a pure tone, at 419 Hz. This is slightly off from the accumulator’s increment value of 440 Hz (which was hard-coded at the time of this photo), but that is due to the 1.05≈1 approximation during calculations (440/1.05=419.05).

The calculations supporting this explanation of how the sine wave is generated are as follows. After the high portion of the OC1A pulse, the charge on the capacitor is
[image: image26.wmf]c

(-t/200)

c

V

)

e

-

(1

)

V

-

(5

+

×

, where Vc is the voltage across the capacitor and t is the duration of the pulse, in us. After the low portion of the pulse, the charge on the capacitor is
[image: image27.wmf])

(e

)

(V

(-t/200)

c

×

, where Vc again is the capacitor voltage, and t is the length time the pulse is low. An example of this calculation is shown below:

	time charge
	time discharge
	voltage after charge
	voltage after discharge
	cycle number

	7.985333333
	8.014666667
	0.195700502
	0.188013187
	1

	8.146666667
	7.853333333
	0.380083071
	0.365447697
	2

	8.308
	7.692
	0.554023171
	0.533119985
	3

etc…

The reason the changes in time are 0.1613 us is as follows. The period of the charge/discharge cycle is 16 us, and the period of the overall sine wave is 2.38 ms. Thus, in the overall sine wave, there are roughly 150 cycles of charging/discharging. The pulses from OC1A change in size from 2us to 14.6 us, and then return back to 2 us, all in the time of one whole sine period. Thus, for the OC1A signal to change from 2us to 14.6 us, half a period of the output sine wave goes by, which is ½ * 150 cycles = 75 cycles. Thus, there are 75 cycles to get the pulse to change from 2us to 14.6 us, so the change in pulse width per cycle is 12.6/75=0.1613 us. After repeating the calculations in the table above for 300 cycles, the output voltages after discharges create a sine wave as shown in the figure below:

[image: image28.emf]Cycle Number vs. Output Voltage

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350

Cycle number (each cycle is 16us long)

Volts

Figure 13: Cycle Number vs. Output Voltage

The period of this sine wave can be computed as follows. The valley around 100 occurs at cycle 126, and the next valley occurs at cycle 276, which is 150 cycles later, which is what was predicted.
[image: image29.wmf]416.7Hz

0.0024s

6

16

150

=>

=

-

E

×

s

, which is very close to the actual output value of 419 Hz.
The above calculations were done with the frequency and amplitude hard coded into the program, to make the measurements easier to take. The actual project has varying frequency and amplitude, dependent on the musician’s hand placement, near the electrodes. The varying frequency can be seen in the following screenshot:

[image: image30.jpg]

Figure 14: Varying frequency output signal

Results:
The Theremin was as sensitive as originally desired. There is a 2 octave frequency range, and there are 8 distinct volumes. The original idea was to have two antenna-shaped sensors perpendicular to each other so that the Theremin could be played with one hand, like a traditional one. But, the long thin electrodes had poor sensitivity to changes in capacitance, so the electrodes here were designed to be roughly hand-sized (area-wise). So then, with the larger electrodes, it seemed to work better if the player uses two hands, because it makes it easier for them to control both the pitch and the volume.
Conclusions:

This project was a very compact way to implement a Theremin. It was pretty simple in that it mostly consisted of programming. The drawbacks were that the final version was not set up in the traditional sense, since the player must use two hands to control the instrument, but this is outweighed by the sensitivity improvements created by having this altered setup.

Appendix:
C code for Mega32:

#include <Mega32.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <delay.h>

#define begin {

#define end }

unsigned char sineTable[256] @0x300; //need loc to avoid glitch

unsigned int i;

char cycler, amp;

unsigned long accumulator @0x2f0;

unsigned char highbyte @0x2f3; //the high byte of the accumulator
unsigned long increment;

interrupt [TIM1_OVF] void signalgen(void)

begin

//the DDR code and scaling

accumulator = accumulator + increment ;

OCR1A = 128 + (((char)sineTable[highbyte])*((char)amp));

end

void initialize(void)

begin

 DDRA=0x00; // A is an input (takes in the

//"level" signal)

 DDRB=0x1f; // B.0-4 is output (controls the

//sensor), B.5-7 is input (programming)

 DDRD=0xff; // D is an output (controls the LED)

 DDRC=0xff; // C is an output (controls the s&h)

 PORTB=0x10; // set B to activate pin1's electrode

 cycler=0; //start in state 0

 accumulator = 0;

 //set up A-to-D converter

 ADMUX = 0b01100010; //avcc w/ext cap at aref pin, and results

//left adjusted, channel 2

 ADCSR = 0b11000110; //adc enable, start conversion, and 64-

//bit adc prescalar.

 MCUCR = 0b10010000; //enable sleep, and sleep mode is adc

//noise reduction

 PORTB=0x10;

//turn on src ch 1

 //set up timer1 interrupts

 TCCR0 = 0; //making sure timer0 interrupts are off

 TCCR1A = 0b10000001; //clear oc1a on compare match,

//prescalar=1, fast pwm (wgm)

 TCCR1B = 0b00001001; //no input capture noise canceller,

//nor input capture edge select,

//clock sel at no prescaling

 TIMSK = 0b00000100; // turn on timer 1 overflow isr

 OCR1A = 250; //set compare to 250 time ticks

 //set up serial comm

 UCSRB = 0b00011000 ;
//hex 0x18

 UBRRL = 103 ;

//using 16 MHz crystal (9600 baud)

 //enable iterrupts
 #asm

 sei

 #endasm

end

void main(void)

begin

 initialize();

 //init sine table

 for (i=0; i<256; i++)

 begin

 //amp here is 17, so max amplitude (outputted) is 17*7=119

 sineTable[i]=(char)(17.0*sin(6.283*((float)i)/256.0));

 end

 increment = 440*0x10000;
 //trying for 440Hz frequency
 amp=0;

 while(1)

 begin

 if (cycler==0)

 begin

if (ADCSRA.6==0)

begin

amp = ((0b111)&(ADCH>>3));
//bitwise and, divide

//by 8 to ensure 0<=amp<=7

printf("amplitude = %u\r\n OCR1A = %u\r\n", amp, OCR1A);

cycler=1;

 ADCSRA.6=1; //start next adc conversion

PORTB=0x08;

//turn on src ch 2

end

else //ADCSRA.6 == 1

begin

cycler = cycler; //waiting for adc to
end

end

else if (cycler==1)

begin

if (ADCSRA.6==0)

begin

//phase increment = frequency * 0x10000

increment = (((long)ADCH)*20+150)*0x10000;

printf("freq %u\r\n incr %u\r\n", ADCH, increment);

cycler=0;

 ADCSRA.6=1;

//start next adc conversion

PORTB=0x10;

//turn on src ch 1

end

else

// ADCSRA.6 == 1

begin

cycler = cycler; //waiting for adc to finish

end

end

else

begin

PORTB=0x00;

//turn off src (intrnl src now)

cycler=0; //ret to 1st state, using sensor 1

end

 end

end
Schematic:
[image: image31.png]+12v
27

+3u
28

Vpur Vee
cLk |24
RS 19
Lp_cap [18 R
30| SHIELD 1enF S or
35| TEST —=
VY e ¢
1o c
20 37|E2 5 LEVEL|16 v =
slEs o alia +Su| e 1uF
Electrode Header 39 |E4 3 Bl13 18 \vd
405 * cliz vee
alee Nm - 48 paa.ance
il 39
42|E7 dis_shield| 10 leak o PALlsADCL
43|e8 up_IN [2 o1 gy FPe/ADC2 pcasscL (22
44|E9 ~RsT[1 = 16| PR3/ADC3 pcissha 23
45| REF_A “yg | FA4/ADCS pca Tek 24
46 |REF_B v 2 PAS/ADCS RN P
— —H PA6,ADCE pca,TDO 26~
AGND__ GND PA7/ADC? pcs/ToI 22
29 32 PBa-Ta 3 recestosci (28
PBL/TL @ pc7-Tosce B2
sy PBR2/AING g pnaRxD L4
o PBR3/AINI R P01 TxD LS
Leak PB4/SS PD2/INTa L6~
1 PBS/MOSI P03/ INT1L L2 50
c PB6/MISO ppasocip 18 L
= PB7/SCK 19 =
PDS/QCIA
LF |60 I JRESET 20 1| T2in vee | [@-1uF
i oo poe-1cP 22 v
XTALL po7s0c2 2L 15]ca+
40 o
xTAL2 o 1 carccas RO o
3o AREF T2out [1g
2o 22 avee R pvsy 18] (V-2CS- pain |19
Lo GND GND 300 =z
22pF 3
< 11 |at 17| v- %
+5u 6|ca- &
R
| $1ee 12| y-ccae
T I
0T s GND_ GND
B 6

Theremin schematic

Cornell University

Catherine Kung

Rev 1.0

3/26,2006

Page #1

Bibliography:
Lev Sergeivitch Termen & “The Theremin” (1917). 2005. 7 Sept 2005

<http://www.obsolete.com/120_years/machines/theremin/>.

Atmel 8-bit AVR Microcontroller datasheet. 2003. 27 Aug 2005.

<http://instruct1.cit.cornell.edu/courses/ee476/AtmelStuff/full32.pdf>.
Motorola Electric Field Imaging Device datasheet. 2004. 27 Aug 2005.

<http://www.freescale.com/files/analog/doc/data_sheet/MC33794.pdf>.
Cornell University ECE 476 Designing with Microcontrollers. 2005. 15 Dec 2005.

< http://instruct1.cit.cornell.edu/courses/ee476/>.
Development and Construction of a Theremin. 15 Dec 2005.

<http://www.theremin.rwi.org.uk/dload/REPORT.PDF>.
Successive Approximation ADC. 2003. 15 Dec 2005.

< http://www.allaboutcircuits.com/vol_4/chpt_13/6.html>.

Physics of Music: Notes. 18 Feb 2006.

< http://www.phy.mtu.edu/~suits/notefreqs.html>.
_1204534297.unknown

_1204534374.unknown

_1204534389.unknown

_1204534479.unknown

_1204534228.unknown

_1204534273.unknown

_1196196160.unknown

_1196353755.unknown

_1204534174.unknown

_1196332954.unknown

_1196197087.unknown

_1195921238.unknown

_1196196156.unknown

_1195921144.unknown

