
A MIPS R10000-LIKE OUT-OF-ORDER MICROPROCESSOR
IMPLEMENTATION IN VERILOG HDL

A Design Project Report

Presented to the Engineering Division of the Graduate School

Of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

By

Scott Thomas Bingham

Project Advisor: Dr. Bruce R Land

Degree Date: May, 2007

 2

Abstract

Master of Electrical Engineering Program
Cornell University

Design Project Report

Project Title: A MIPS R10000-Like Out-Of-Order Microprocessor Implementation in
 Verilog HDL

Author: Scott Thomas Bingham

Abstract:

Microprocessors have evolved greatly over the past few decades from single cycle state
machines, to pipelined architectures, to wide issue superscalar processors to out of order
execution engines. This project implements one such out-of-order processor using the MIPS
instruction set architecture taught in ECE314 and ECE475. Because each of those classes
culminates in a microprocessor design in Verilog HDL, those implementations provide a good
performance baseline for comparison of this design. This microprocessor was designed to
exploit instruction level parallelism as much as possible while still maintaining reasonable
amount of logic per clock cycle. Ultimately the design implemented is capable of fetching,
decoding, renaming, issuing, executing, and retiring up to four instructions per clock cycle with
speculative execution; this results in a performance improvement of almost 3x over the two-way
superscalar MIPS processor implemented in ECE475. Upon successful implementation, the
processor was variably configured to try and gauge the effects of each component on
performance.

Report Approved by
Project Advisor: __Date:_______________

 3

Executive Summary
A major breakthrough in microprocessor architecture was the realization that independent
instructions can be executed in parallel and that there exists a significant amount of parallelism
in most code. The first step to exploiting this is to pipeline a datapath so that multiple
instructions can execute at a time. However, there is further parallelism that can be exploited by
replicating the datapath and executing independent instructions in parallel. Even this does not
take advantage of all the parallelism, however. Taking this a step further, we can fetch a large
number of instructions and analyze them at once and execute those for which we already have
the operands, regardless of their actual ordering in the program.

However, this executing based purely on real data flow introduces several design issues. First,
we must be able to supply the execution engine with a sufficiently large number of instructions
so that parallelism can be extracted. Once these instructions have been fetched, we next need to
decode them to see what operations they actually perform and where data flow hazards exist.
Next, these instructions must be renamed to eliminate hazards where the register names are
reused but no data flows between the instructions. These instructions can then be placed in a
queue that issues instructions for execution as their operands become available. To maximize
throughput, dependant instructions need to be executed immediately subsequent to their operands
becoming available. Even when this is achieved, there exist further problems. Almost one in
five instructions is a control flow instruction that can change the execution path of the program.
Without knowing which way to go, we would have to stall until the data is available. This goes
contrary to the desire to achieve high throughput and so we make an educated guess based on the
past behavior of the program as to which way to actually go. However, our guesses may not be
good enough all the time and so mechanisms must be provided to check the guesses and recover
before we irreversibly alter the execution of the program.

This project implements a processor in Verilog HDL that does the aforementioned steps and
attempts to improve performance as much as possible under the constraints of the instruction set
architecture and program semantics. In ideal conditions, the microprocessor implemented is
capable of sustaining the execution of four instructions per cycle. While these conditions are
rare in all but trivial programs meant to exploit this scheduling, this implementation still yields a
nearly 3x improvement over a two-way superscalar processor previously implemented in
ECE475. The major components implemented in this design are:

• instruction and data cache interfaces
• an instruction decoder which removes the now unnecessary branch delay slot

imposed by the ISA for backwards compatibility
• register allocation tables and a register renamer
• a 64 entry physical register file, a free register list, and ready operand tracking
• four execution units (2 general purpose ALU’s, one dedicated branch/jump resolver

and one address calculation unit) and issue queues for these execution units
• a load store queue used to track memory dependencies and forward data when

possible to avoid a cache access
• forwarding units to maintain back to back execution of dependant instructions
• a reorder buffer to maintain the sequential consistency of a program

The resulting design is described by over six thousand lines of Verilog code and was verified
using the ncverilog simulator and compiled C micro-benchmarks.

 4

Table of Contents

I. Design Problem Overview
 I.A. Project Goals
 I.B. Canonical Five Stage Pipelined Processor
 I.C. Two-way Superscalar Processor
 I.D. MIPS Instruction Set Architecture
II. Design Details
 II.A. Front End
 II.A.1. Program Counter (PC) / Instruction Cache (I$)
 II.A.2. Instruction Decode
 II.A.2.a. Multiply / Divide Expansion
 II.A.2.b. Control Flow Reordering
 II.A.3. Branch Prediction
 II.A.4. Return Address Stack (RAS)
 II.A.5. Register Rename
 II.A.6. Free Register List
 II.B. Back End
 II.B.1. Issue Queues
 II.B.2. Physical Register File
 II.B.3. Ready Register List
 II.B.4. Execution Units
 II.B.4.a. Arithmetic Logic (ALU) Units
 II.B.4.b. Branch / Jump Register Resolution Unit
 II.B.4.c. Load-Store Address Resolution Unit
 II.B.5. Data Forwarding
 II.B.6. Load-Store Queue / Data Cache (D$)
 II.B.7. Reorder Buffer (ROB)
 II.B.8. Commit / Pipeline Flushing
III. Differences with MIPS R10000
IV. Results
 IV.A. Test Cases
 IV.B. Comparison with Five Stage Pipeline & Two-Way Superscalar
 IV.C. Reorder Buffer Size
 IV.D. Branch Predictors
 IV.E. Retirement Rate
V. Conclusion
 V.A. Design Difficulties
 V.B. Possible Improvements
 V.C. Final Remarks
VI. References
VII. Appendix

5
6
7
9
10
13
13
13
14
14
15
15
16
17
17
17
18
18
19
19
19
19
20
20
20
21
21
22
22
22
23
24
24
25
26
26
26
26
26
27

 5

I. Design Problem Overview
The first microprocessors evaluated one instruction at a time, where each instruction could take
one or many cycles for the state machine to complete. The next step in CPU design came when
researchers realized that different pieces of the state machine were needed at different points of
the instructions execution and that it was possible to pipeline these components such that many
instructions could be executed at a time in different parts of the state machine provided that they
were independent of each other. While the latency of each individual instruction increases due to
pipelining for various reasons, such as the overhead associated with registers separating each
stage and the clock speed being determined by the slowest stage, this realization of instruction
level parallelism (ILP) has driven massive performance improvements over the past few decades.

Exploiting ILP has some serious limitations. Very rarely is code written where each instruction
is independent of those around it. It is almost always the case that one calculation feeds another
which feeds another creating a string of data dependencies. Coupled with a limited number of
registers in an instruction set architecture (ISA), four types of data hazards arrive: read-after-
write (RAW), write-after-read (WAR), write-after-write (WAW), and read-after-read (RAR).
The RAW dependency is the only real dependency in that data flows. The middle two after
merely dependencies in name only. With a sufficiently large number of registers, they can be
resolved. These WAR and WAW dependencies are not of concern to a pipelined processor that
performs each instruction in order because any reader will have read the value before the writer
overwrites it and subsequent writes will happen in order. The final dependency represents no
dependency at all because reading a register does not modify its contents; however it is included
for completeness.

Other hazards arise from pipelining the CPU. Structural hazards arise from the fact that multiple
instructions in the pipeline may need to perform an addition, for example. This hazard is
typically resolved through duplication of hardware or through scheduling of resource usage. The
final hazard that arises from pipelining is control flow hazards. Approximately 20% of a
program (1 in 5 instructions) is an instruction that alters the control flow of the program
execution. These conditional branches and jumps often need the results of previously executed
instructions to determine which path to take. The resulting problem is quite serious: you must
wait until the condition has been resolved or guess. Early pipelined microprocessors either
waited or made a static guess, typically that the branch was not taken because if so, you already
know where to fetch instructions from next. This lead to the creation of the branch delay slot,
where the instruction following the branch is always executed regardless of the path the branch
takes. Essentially, you can execute this instruction “for free” because you would have been
waiting otherwise. This delay slot becomes a serious issue in future hardware improvements
where it is no longer needed but must be supported for backwards compatibility with legacy
code.

If we consider pipelining the CPU to be parallelism in time, the next exploitation of ILP may be
considered parallelism in space. To further exploit ILP, the next generation of CPU’s executed
several instructions in parallel in each stage of the execution. These superscalar CPU’s could
execute 2, 4, or more instructions in parallel as well as pipelining the execution. Once again,
however, there is only so much parallelism that can be realized through this method because the
instructions executed simultaneously must be independent of each other and only neighboring

 6

instructions are considered for execution. To avoid structural hazards, the execution engine (the
back-end of the CPU; fetching and decoding are considered the front-end), is replicated, though
sometimes not completely, to provide parallelism in instructions. Somewhat sophisticated
scheduling is needed to selectively issue instructions to execute or to wait until the instructions
they depend on have produced results.

The current state of the microprocessor is what this project addresses: out of order execution. To
further exploit ILP, a large number of instructions are fetched and considered for execution.
Those that have their operands ready are issued for execution even if they were fetched after the
other instructions. This allows execution of instructions based purely on data dependencies and
not on adjacency, although limited by the size of the window of instructions considered for
execution. This project implements such an out of order processor in Verilog HDL using a
subset of the MIPS ISA, particularly the majority of the integer instructions. These are sufficient
to execute most non-floating point programs, compiled from C source code in my case.
Execution correctness and performance was evaluated in the ncverilog Cadence Simulator on
the Linuxpool/AMDPool. ECE314 implements the canonical five stage pipeline for the same
MIPS ISA subset. ECE475 implements a two-way superscalar processor, again using MIPS.
However, no subsequent computer architecture class at Cornell University implements an out of
order processor. This “gap” in the implementation knowledge is the motivation for this project
which implements an R10000-like MIPS CPU. The subsequent sections give a brief overview of
the goals of the project and how each of the previously implemented processor works or differs
from the others. The implementations from previous ECE classes provide a baseline benchmark
for the out of order processor.

I.A. Project Goals
Initially, the goal of the project was to implement an out-of-order CPU on the DE2 FPGA board
used in ECE576. However, due to the immense complexity of the design (over 6,000 lines of
Verilog code, not including header files), the limited debugging capabilities of the FPGA, and
the limited size of the FPGA, it was determined that the functionality of the design would be
better verified using the ncverilog simulator rather than scaling down the design to fit on an
FPGA. This allows for a wider range of benchmarks to be tested and functionality to be verified
for real world applications. Ultimately, the goal of this project is to implement an R10000-like
out of order MIPS CPU in Verilog HDL with the following capabilities:

• Execute same subset of MIPS ISA implemented by ECE314 and ECE475 CPU’s
• Achieve significantly higher IPC throughput than ECE314 and ECE475 CPU’s
• Execute instructions out-of-order but commit in program order to exploit ILP but

maintain sequential consistency
• Execute instructions as fast as structural, data, and control hazards permit
• Schedule instruction execution for at least 2 execution units
• Predict control flow direction and speculatively execute until control flow resolved and

recover if prediction incorrect
• Fetch, decode, rename, execute, and retire up to 4 instructions per cycle

The processor implementation should minimally have the following structures:

• Separate Instruction and Data Memory
• Instruction Decoder

 7

• Branch Predictor / Return Address Stack
• Register Renaming / Register Allocation Table
• Issue Queues
• Reorder Buffer
• Physical Register File with Size Greater than Logical Register File
• 2 Arithmetic Logic Units with Data Forwarding

Upon successful implementation of the above, additional structures were added to improve
performance, such as a load-store queue. Performance tweaks were made to various structures to
squeeze as much performance as possible out of the CPU while maintaining realistic workloads
per cycle. Several branch predictors are also implemented to measure their accuracy and its
effect on performance. Structure sizes and throughputs are varied as well to measure their effect
on performance. Finally, micro-benchmarks were written in C to measure performance to run
along with benchmarks from other ECE computer architecture courses to measure correctness
and performance.

I.B. Canonical Five Stage Pipelined Processor
The standard MIPS pipeline is divided into five stages: instruction fetch (IF), instruction decode
(ID), execution (EX), memory (MEM), and write back (WB). The functionality of each stage
and its components will be described briefly so that a comparison can be made to the out of order
implementation. The interface to memory is uniform to all three processors, although heavily
modified to suit the needs of each processor. This yields a more accurate comparison as to the
performance of each core by keeping the memory system consistent.

Instruction Fetch
The instruction fetch stage is responsible for retrieving instructions from memory or an
instruction cache. Where to fetch is determined by the program counter (PC) which maintains
the memory address of the current instruction. For straight-line code execution, the PC is
incremented by four (4 byte instruction words, 32 bit PC) every cycle. However, when a branch
is determined to be taken or a jump is taken, the target of these control flow instructions is
loaded into the PC instead. Because the control flow instructions are not evaluated until the first
half of the EX stage, the processor increments the PC after a control flow instruction to fetch the
delay slot. The PC is negative edge triggered so that the target can be calculated in the first half
of the cycle resulting in a single delay slot. The instruction memory has to fetch the target
instruction and pass it to the next stage where it is decoded before the next falling edge of the
clock. To stall this processor, all that must be done is to freeze the PC and pass a NOP to the ID
stage. If a physically addressed or tagged instruction cache is used, this stage will also contain a
translation look-aside buffer (TLB). However, in my simulation, there is no operating system
(O/S); hence, there is only one process running on the processor at a time. For this reason,
virtually addressed and tagged caches are used, and there is no need for a TLB. An instruction
cache miss need not stall the processor. Since it will have no useful work to do other than finish
the current instructions while it waits, it is simpler to stall until the miss is resolved.

Instruction Decode
The instruction decode stage contains a control unit that decodes instructions depending on their
type to determine what operations the rest of the processor should perform as the instruction

 8

enters each stage. The source and destination registers are determined, and any immediate
instructions have their immediate values extracted from the instruction and sign extended if
needed. On the first half of the cycle, the register file that resides in this stage is updated with
previously calculated values. In the second half of the cycle, the instruction reads its operands
from the register file. This ordering eliminates any RAW hazards that may have been present
between the current instruction and the one three previous. The fetch and decode stages are
collectively the front end of the processor. When a system call enters this stage, the front end
stalls so that the back end of the processor (EX, MEM, and WB) can write all values back to the
register file before the system call is allowed to proceed so that the register file is fully updated
before jumping to the O/S to handle the system call. Because our simulator does not run an O/S,
system calls are emulated with function calls to C libraries. This emulation requires the register
file be completely updated with the values from all instructions ahead of the system call. The
system call is then performed when the system call enters the EX stage, and the return values are
immediately written into the register file.

Execution
The execution stage contains the ALU which performs arithmetic and logical operations and
calculates effective addresses for loads and stores. Also in the EX stage is a branch comparator
that evaluates branch conditions to determine the direction that the processor should take. The
target of PC relative jumps and branches is calculated at the same time. Depending on the
direction of the branch (always taken for jumps), the PC is then updated to fetch from the branch
target or the fall through path next. In the MIPS ISA, multiplies and divides do not write to the
regular register file, rather to two dedicated registers HI and LO which can only be accessed with
special instructions MFHI and MFLO, move from high and move from low, respectively.
Because multiplies and divides can take multiple cycles to complete and their results can only be
retrieved with special instructions, the processor can continue to execute while the
multiply/divide happens off the path and only needs to stall if MFHI or MFLO are seen before
the calculation is completed. The infrequency of multiplies and divides and the fact that they
write to the same registers means that they share the same block and only one of either can occur
at a time. However, because they always write to HI and LO registers, when a new multiply or
divide comes upon the execution unit while it is busy, it simply starts the next multiply/divide
because there is guaranteed to be no consumers of the value being currently calculated. To
resolve RAW hazards, data forwarding or bypassing is used. If the operands to the current
instruction were calculated in either of the two previous instructions, they were not in the register
file when the current instruction read it. Therefore, these values are passed back to the execution
stage so that stalling is not needed. The newest value (MEM before WB, WB before register
file) is used if there is a dependency. Because loads do not evaluate until the next stage, their
value can not be passed back in time for the execution stage. Therefore, the MIPS ISA
introduces a load delay slot similar to the branch delay slot in which the instruction following a
load cannot consume its result.

Memory
The memory stage contains a data cache (and another TLB if physical tags or indexes are used).
All three implementations discussed here use the same basic memory interface. Separate L1
caches are present for instructions and data but share a main memory (there is no L2). Accesses
and tag checks to the L1 caches are emulated in a C library. The interface to the cache is

 9

responsible for checking the tag and valid bit of accesses. If there is a miss, a memory state
machine stalls the processor, retrieves the data values from main memory, updates the cache, and
retries the access before proceeding. Because stores can happen on the word, half word, and
byte levels, input store values must be properly masked to only modify the desired addresses.
Similarly, loads can happen on the word, half word, and bytes levels, and can be either signed or
unsigned. All loads are therefore treated as word accesses to the cache and the result is masked,
shifted, and sign extended as required by the instruction. The load value or the ALU result if the
instruction was not a load, are then passed to the WB stage. Because of the assembly line nature
of this processor, a data cache miss stops the entire pipeline until it is resolved. If both the data
cache and the instruction cache misses occur “at the same time,” the instruction cache fill is
performed first because it happens just after the negative edge and will be triggered before data
access which comes shortly after the positive edge. If a data cache miss was to occur first, there
could be no instruction cache miss because the PC would have been stalled before it could
update to a new address.

Write-back
In the final stage, there is very little to do other than forward data values back to the register file
and execution stage. The resulting value can either be from the ALU, memory, or a link address
for branches and jumps that link. Linking saves the point in the program which should be saved
to the return address register. This is mostly used for function calls so the program knows where
to return upon exiting the function. In the MIPS ISA, the link address is the instruction after the
delay slot or PC+8 from the control flow instruction.

I.C. Two-way Superscalar Processor
Because the superscalar processor is similar in most respects to the simple five-stage pipelined
CPU, only the differences involved with duplicating pipeline will be discussed. There are two
execution pipelines (A and B), both of which can execute ALU instructions. However, the A
pipeline is responsible for processing control flow instructions and system calls. The B pipe
handles all data memory accesses. This division of labor is instituted because only one control
flow and only one data memory access can happen at a time.

Instruction Fetch
The instruction memory now must fetch two instructions per cycle, the current PC and the
subsequent instruction. The simplest implementation requires that accesses be double word
aligned; this limitation can lead to wasted fetch slots when a branch or jump targets the second
word of a double word block or if only one instruction of the pair could be issued at a time.
Therefore, logic is added to the memory interface to access both PC and PC+4 across two cache
lines if needed. This could require handling two cache misses before being able to proceed as a
side effect. The next PC to fetch is still determined by control flow instructions (in the EX stage
of pipe A) but can also be determined by the superscalar issue logic in the ID stage.

Instruction Decode
The majority of the changes to make the processor superscalar are instituted in this stage.
Superscalar issue logic determines which instruction to issue down which pipe. The restrictions
of control flow down pipe A and data accesses down pipe B are handled here. Data hazards such
as RAW and WAW now must be scheduled to be avoided. Because there is no active

 10

forwarding between EX stages, a dependent instruction cannot be issued with its producer.
Similarly, if both instructions write to the same register, they cannot issue at the same time. This
implementation holds the B instruction for the next cycle rather than trying to resolve whether or
not it was necessary to issue the A instruction in the first place if they both write to the same
register. System calls now require both pipes to be drained before issuing by themselves to the
EX stage. The superscalar logic is also responsible for ensuring that branch delay slots get
fetched in the next cycle if not fetched with the branch. Any subsequent instructions need to be
squashed in the event of a jump or branch being taken. The simplest implementation would
issue the second instruction alone if it could not be issued with the first instruction. This
implementation, however, saves the instruction that was not issued and takes a new one from the
next fetch block. The first instruction need not go down pipe A if swapping the two instructions
allows the both to issue together. The load delay slot must be still respected in the scheduling of
consumers even though they may be fetched on the next cycle. The occurrence of a MFHI or
MFLO instruction while the multiply/divide block is busy causes a stall. Finally, the number of
read and write ports on the register file are doubled to allow for two instructions reading and
writing simultaneously.

Execution / Memory / Write-back
The changes in these stages are fairly simple as the scheduling is handled in the ID stage. The
restrictions of what instructions can enter which pipeline have already been discussed. There is
still only one multiply/divide unit for the reason that any subsequent multiply/divide would
overwrite the first one or have to wait while the MFHI / MFLO instructions stall waiting for their
results. For greater flexibility in scheduling, multiplies / divides can be issued to either pipe.
While it is possible to continue executing around a data cache miss now, this was not
implemented due to the complexity of scheduling around dependencies. The final point about
the superscalar processor is that the number of forwarding paths has doubled, from MEM-A,
WB-A, MEM-B, or WB-B.

I.D. MIPS Instruction Set Architecture
MIPS is a reduced instruction set computer (RISC) meaning that it has fairly simple instructions
based on the assumption that it is faster to perform simple things this way and complex
operations can be constructed from the smallest logical parts. Code density, and therefore cache
hit rates, are worse with RISC computers due to more instructions being needed to describe an
operation. And typically instructions are fixed length (4 bytes) whereas CISC machines such as
x86 have variable length instructions. However, RISC machines tend to be easier to implement
and can be made faster. In fact, modern CISC processors often convert CISC instructions into
micro-ops to be executed by a RISC-like execution core. As with most RISC machines, there are
many registers, 32 integer registers, available to the programmer. One key feature is that there is
a hardcoded zero register which is useful in many operations such as logical comparisons or
clearing a value. MIPS uses big endian memory addressing, meaning that the most significant
byte (MSB) is stored at the memory address. The prescribed function of each register is briefly
described in Table 1, followed by a description of the subset of the ISA implemented by my out
of order processor (as well as the 5-stage and superscalar CPU’s) in Table 2, Table 3, and Table
4.

 11

Table 1 MIPS Register Usage

Name Number Register Usage
$zero $0 Hardcoded Zero
$at $1 Assembler Temporary
$v0-$v1 $2-$3 Return Values
$a0-$a3 $4-$7 Argument Registers (More Arguments Passed on Stack)
$t0-$t7 $8-$15 Temporary Registers (Not Saved Across Function Calls)
$s0-$s7 $16-$23 Saved Registers (Saved Across Function Calls)
$t8-$t9 $24-$25 Temporary Registers (Not Saved Across Function Calls)
$k0-$k1 $26-$27 OS Kernel Registers
$gp $28 Global Pointer
$sp $29 Stack Pointer
$fp $30 Frame Pointer
$ra $31 Return Address

Table 2 MIPS ALU Instructions

Instruction Operation Notes
ADD, ADDI rd <- rs + rt

rt <- rs + sext_imm
Generate Overflow Exception
Not Implemented, No O/S

ADDU, ADDIU rd <- rs + rt
rt <- rs + sext_imm

No Overflow Generated

SUB, SUBU rd <- rs - rt Overflow Not Implemented
SLT, SLTI rd <- (rs < rt)

rt <- (rs < sext_imm)
Set Less Than
Result 1 True, 0 False

SLTU, SLTIU rd <- (0||rs < 0||rt)
rt <- (0||rs < 0||sext_imm)

Set Less Than Unsigned
Result 1 True, 0 False

AND, ANDI rd <- rs & rt
rt <- rs & zext_imm

Immediate Zero Extended

OR, ORI rd <- rs | rt
rt <- rs | zext_imm

Immediate Zero Extended

LUI rt <- imm << 16 Load Upper Immediate
XOR, XORI rd <- rs xor rt

rt <- rs xor zext_imm
Immediate Zero Extended

NOR rd <- ~(rs | rt)
SLL, SLLV rd <- rt << sa

rd <- rt << rs
Shift Left Logical

SRL, SRLV rd <- rt >> sa
rd <- rt >> rs

Shift Right Logical
Zero Extend Shift

SRA, SRAV rd <- rt >>> sa
rd <- rt >>> rs

Shift Right Arithmetic
Sign Extend Shift

MULT, MULTU HI,LO <- rs * rt
HI,LO <- 0||rs * 0||rt

Upper 32 Bits of Product in
Hi, Lower 32 Bits in LO

DIV, DIVU HI <- rs / rt
LO <- rs % rt
HI <- 0||rs / 0||rt
LO <- 0||rs % 0||rt

HI Gets Division Result
LO Gets Remainder

MFHI, MFLO rd <- HI
rd <- LO

Move From HI
Move From LO

 12

Table 3 MIPS Memory Instructions

Instruction Operation Notes
LW rt <- mem[base+offset] Load Word
LH, LHU rt <- sext(mem[base+offset]&FFFF)

rt <- zext(mem[base+offset]&FFFF)
Load Half Word

LB, LBU rt <- sext(mem[base+offset]&FF)
rt <- zext(mem[base+offset]&FF)

Load Byte

SW mem[base+offset] <- rt Store Word
SH mem[base+offset] <- rt[15:0] Store Half Word
SB mem[base+offset] <- rt[7:0] Store Byte

Table 4 MIPS Control Flow Instructions

Instruction Operation Notes
J PC <- PC+4[31:28]||instr_index||00 Jump to Address, Has

Delay Slot
JAL $ra <- PC+8

PC <- PC+4[31:28]||instr_index||00
Jump to Address and
Link, Has Delay Slot

JR PC <- rs Jump to Address in
Register, Has Delay Slot

JALR

rd <- PC+8
PC <- rs

Jump to Address in
Register and Link, Has
Delay Slot

BNE

if(rs != rt) PC <- PC + 4 + offset Branch Not Equal, Has
Delay Slot

BEQ

if(rs == rt) PC <- PC + 4 + offset Branch Equal, Has Delay
Slot

BLTZ

if(rs < 0) PC <- PC + 4 + offset Branch Less Than Zero,
Has Delay Slot

BGEZ

if(rs >= 0) PC <- PC + 4 + offset Branch Greater Than or
Equal to Zero, Has Delay
Slot

BLEZ

if(rs <= 0) PC <- PC + 4 + offset Branch Less Than or
Equal to Zero, Has Delay
Slot

BGTZ

if(rs > 0) PC <- PC + 4 + offset Branch Greater Than
Zero, Has Delay Slot

BGEZAL

if(rs >= 0) PC <- PC + 4 + offset
ra <- PC + 8

Branch Greater Than or
Equal to Zero and Link,
Has Delay Slot

BLTZAL

if(rs > 0) PC <- PC + 4 + offset
ra <- PC + 8

Branch Less Than Zero
and Link, Has Delay Slot

SYSCALL

Perform System Call Exception Emulated in C Library,
Updates Register File,
Flushes Pipeline to
Emulate Exception Vector

 13

II. Design Details
The high-level data-path for the CPU is shown in Figure 1. Due to the extremely large number
of busses passing between modules, the exact names and widths are omitted to more clearly
show the functionality. Individually, each component is mostly straightforward. However, the
timing of interactions between each part and the many corner cases (several unfortunately
discovered during debugging) that arise yield significant complexity over the previously
described CPU’s. Module interactions are described in detail in their respective sections.

PC Instruction
Cache

Instruction
Decode

Branch
Predictor

Return
Address

Stack

Register
Rename

Free
Register

List
RAT

Front End Back End

ALU Issue
Queue

BRJR Issue
Queue

LDST Addr
Issue Queue

Reorder Buffer

LDST Queue

Data Cache

RAT

Physical
Register

File

ALU0

ALU1
Forwarding

QC

ADDR

Figure 1 High Level Datapath

II.A. Front End
The front end of the CPU is responsible for fetching instructions, decoding these instructions,
and renaming them such that the backend can issue them as dependencies allow. Speculative
control flow is done in the front end to provide a constant stream of instructions. Upon resolving
a speculated flow direction, the reorder buffer (ROB) can direct the front end to stop what it is
doing and redirect its fetching down the correct path. The front end of the processor will have to
stall if the back end runs out of space to buffer instructions, the free list runs out of registers to
provide to the renamer, or the instruction cache misses.

II.A.1. Program Counter (PC) / Instruction Cache (I$)
The program counter is still used to index into the instruction memory as before and maintain the
current state of the processor. However, the complexity of updating the PC has increased. The
instruction decoder provides the control as to how to get the next PC. It can either stay the same
on an instruction cache miss, be calculated based off of the type of instructions in the decoder, or
get updated from the ROB on a flush. If the decoder finds that a control flow instruction is being
decoded, it may update the PC with a jump target, a branch target or the fall through target
depending on the branch predictor’s prediction, or a return address stack prediction if a jump
register is decoded. Otherwise, the PC will be updated with the address of the instruction
following the last one decoded. If the processor has to stall because the renamer runs out of free
registers or the ROB is full, the design freezes the front end. However, the PC must still be
updated based of the instructions in the decoder and that target may change based on prediction
updates coming from retired branches in the ROB. This condition was discovered
experimentally when a branch predicted taken, updated the PC with the target, and stalled.

 14

When the stall was resolved, the prediction had changed to not taken and that prediction was
carried with the branch into the ROB, even though it had set the PC to the taken path.

The instruction cache interface remains similar to the previous implementations. Changes were
made to support fetching four instructions per cycle. Again, no requirement is made that the
instructions reside in the same cache line. With four addresses being accessed, the chance of a
miss increases. Despite fetching four instructions, we can only have at most two misses because
of the size of the cache line used. Both misses must be handled before fetching can continue.
Because data memory accesses and instruction memory accesses no longer stall each other, it is
possible to have an instruction cache miss come part way through a data cache miss. In this case,
the instruction cache miss is deferred until the data cache miss has been resolved. The design
uses a blocking cache interface that can only handle one miss of any type. When the processor
decides to flush because of a misprediction during an instruction cache miss, the flush has to be
deferred until the miss is resolved. Although this miss is clearly from the wrong path, there is
still a high probability that the code will be needed soon due to spatial locality. Small direct
mapped caches are used to re-align the comparison with the previous processors and maintain the
assumption of single cycle accesses. The assumption that two cache lines can be accessed
simultaneously can be easily supported by banking the caches, such that the addresses which
resolved to different lines also access different banks.

II.A.2. Instruction Decode
As its name suggests, the instruction decoder is responsible for interpreting the 4 byte instruction
word and extracting useful information for the instruction. In hardware, it is implemented as a
large lookup table. Four lookup tables proceed in parallel to set the proper control signals for
each instruction. Information extracted from decoding an instruction includes which registers it
uses, what type of instruction it is, which issue queue to place it in, what operand the
corresponding execution unit should perform, and calculating targets and immediates. Once the
four instructions have been decoded, they proceed to a mini-scheduling piece of logic that
determines which instructions can go to rename of those fetched. This mini-state machine also
makes the decision of where to fetch from next. Instructions that need special consideration are
discussed in the next two sections.

II.A.2.a. Multiply / Divide Expansion
Only multiplies will be discussed for brevity, though the discussion applies to both multiplies
and divides. In the previous two CPU’s, there existed two dedicated registers for storing the
results of multiplies. Also, subsequent multiplies could stop short and overwrite currently
executing multiplies. However, now that instructions are being executed out of order, we need a
mechanism for providing consumers with the proper multiply. This is handled by renaming the
HI and LO registers as if they were part of the normal 32 registers in the ISA. This creates the
issue of needing two registers for one instruction. The solution is to expand each multiply into
two instructions where one writes the HI register and the other writes the LO register. Because
of the limitation of renaming four instructions per cycle, the expansion of a multiply will force
another instruction out of the current block going to rename and that a multiply cannot be
decoded as the fourth instruction of the block. In either case, the dropped instruction (or more if
two multiplies are expanded) will be fetched again in the next cycle. While a multiply now takes

 15

up more buffer and queue space, instructions only wanting to read the result of HI or LO can
execute once that half of the multiply has completed.

II.A.2.b. Control Flow Reordering
This discussion applies to both branch and jump delay slots, but the term branch delay slot will
be used. While the branch delay slot was useful in boosting performance of a pipelined
processor, it now becomes a nuisance. There is no longer a need for it as we can predict the next
instruction and execute instructions out of order. Therefore, the last part of the decode logic
attempts to reverse the delay slot and have it execute ahead of the branch. This is legal because
the ISA specifies that logically the branch delay slot be executed before the effects of the branch
are seen. To minimize wasted ROB space and the number of ports needed to write link values,
only one control flow instruction will be renamed each cycle. Any subsequent instructions wait
until the next cycle if they still remain in the predicted path.

Swapping the delay slot and the branch simplifies flushing on a misprediction because the delay
slot will already have been committed when the branch reaches the ROB head. This requires
that the delay slot be fetched in the same block as the branch and so a branch cannot be the last
instruction in the block. However, this is a useful restriction even without reordering the
instructions because otherwise it would be possible for the branch to reach the ROB head while
the delay slot was still waiting on an instruction cache miss to be resolved, further complicating
flushing.

Due to compiler optimizations such as code boosting to fill the delay slot, we occasionally have
the situation where the delay slot instruction’s result will change the branch direction if allowed
to be renamed first as this will cause the branch to use its value that should have happened after
the branch evaluated. Therefore, we always rename the branch first, although the delay slot is
inserted ahead of it into the ROB. In the case where there is a data dependency, another problem
arrives. If the delay slot reaches the ROB head before branch evaluates, it will mark the branch’s
operands as unready, for reasons to be discussed in the commit description, and the branch will
wait at the ROB head forever. It must wait for the branch to be resolved before the delay slot
can commit when there is a dependency.

II.A.3. Branch Prediction
The performance of a processor that executes instructions speculatively is only as good as its
ability to predict the correct path to take. To this end, one static and three dynamic branch
predictors were implemented. Finally, a pseudo fifth predictor was implemented that simply
takes a vote among the three dynamic predictors. The static predictor always predicts backward
branching branches to be taken under the assumption that they are loops and loops are usually
‘taken’. Forward branching branches are predicted ‘not taken’ because they are typically if
statements, and there seems to be a slight tendency for them to be ‘not taken’ (ie. execute the “if”
not the “else”). This static prediction is based solely on the sign of the offset.

Figure 2 shows the dynamic branch predictors. Predictor ‘a’ is a bimodal predictor. Bit 11:2 of
the program counter of the branch are used to index a table of two bit saturating counters with
1024 entries (where the most significant bit of the counter corresponds to the prediction). A
count of 3 or 2 indicates ‘taken’, where 1 or 0 indicates ‘not taken’. The bimodal predictor is

 16

rather simple to in concept and implementation but has the lowest prediction accuracy of the
three. This is because it only considers the past history of the branch (or other branches that map
to the same entry) and makes the assumption that past behavior will dictate future behavior.
While in many cases this is correct, it has many serious flaws. For example, a branch that
toggles between ‘taken’ and ‘not taken’ can force this predictor to miss 100% of the time if it is
in a weakly taken (2) or not taken (1) state.

Figure 2 Branch Predictors

Predictor ‘b’ is a GAg predictor. A 10 bit global history register (GHR) is used to a table of the
same size with two bit saturating counters. The GHR is a shift register that is updated by every
branch. The assumption here is that branches correlate and the direction of the current branch
can be determined by the previous branches. Consider the following code segment:
 if(a){
 …
 b = 1;
 }
 else b = 0;
 …
 if(b){
 …
Clearly, the direction taken by the second “if” statement is controlled by that of the first. This is
where a correlating branch predictor will perform better than one that only considers its own past
history.

Predictor ‘c’ is a two level SAg predictor that exploits self-correlation. While it has the highest
accuracy, it is the slowest and consumes the most space. The lower bits of the PC are used to
index a table of 1024 entries, each of which is a 10 bit shift register. The value of the shift
register is used to index a table to 1024 2-bit saturating counters.

All branch predictors are updated upon retiring a branch so that only correct path branches
influence the predictor accuracy. This introduces a possibly large update latency but also
prevents mispath branches from influencing the prediction of other branches. All these
predictors are also vulnerable to aliasing so that other branches that happen to map to the same
entry will perturb the other predictions.

II.A.4. Return Address Stack (RAS)
The return address stack is used for predicting jump register instructions. The assumption is that
most jump register instructions use the return address register and most of the time the return

 17

register was previously set by a link instruction. Therefore, each link value is pushed onto the
stack and popped off when a jump register instruction is decoded. Typically function calls are
made with a jump and link instruction and returned from with a jump register instruction. This is
the type of sequence where the return address stack is most useful. To try to maintain accuracy
in the event of deep recursion, a counter is kept to track the number of missed link values and the
corresponding number of jump register instructions do not pop a value from the stack. Also,
since mispredicted path instructions will push and pop the stack before we realize they were
mispredicted, the reorder buffer tracks these at commit and informs the return address stack
whether its stack pointer is too high or too low. While this doesn’t solve all of the
mispredictions, it does help improve accuracy enough to warrant implementation.

II.A.5. Register Rename
Register renaming resolves the WAW and WAR hazards introduced by executing instructions
out of order. Each logical register is mapped to a physical register that is currently holding the
value for that logical register as stored in the register allocation table (RAT). Renaming works
because we have twice as many physical registers as logical registers (64 physical registers).
Each physical register is written to only once while it is live and the backend of the CPU works
solely with physical register until commit where the logical register is needed again. Therefore
there are no WAW or WAR hazards. Consumers do not read the register until it has been written
to, controlled by the ready register list discussed later. Every instruction is given a destination
register from the free list, provided one is available, and the RAT is updated with the new
mapping. Because instructions in the same fetch block can have any number of dependencies,
renaming happens in the order instructions were fetched. Because this RAT is working with
speculative values, it must be updated on a flush with the actual correct mappings as stored in the
retirement RAT. At reset, both RAT’s are mapped so that each logical register corresponds to
the physical register with the same number. An example renaming is as follows:
Free List: p10, p32, p27, p9
RAT Mappings: r1 : p3 , r2: p1, r3: p33, r4: p23
Instructions before Rename (Note the destination is the first register):
 add r5, r3, r1
 sub r6, r2, r4
 add r5, r5, r6
Instructions after Rename
 add p10, p33, p3
 sub p32, p1, p23
 add p27, p10, p32

II.A.6. Free Register List
The free register list is a ring buffer that gets freed registers from the reorder buffer and gives
them to the renamer. Because there are 64 physical registers in this implementation and 34
logical registers (32 + HI + LO), there are a maximum of 30 free registers. If a large enough
number of instructions write values and are given a register from the free list, the free list can run
out requiring the processor to stall until enough free registers have been recovered for renaming
to continue.

II.B. Back End
The back end of the CPU is responsible for taking the renamed instructions and issuing them to
be executed as their operands become available. The only dependency that remains is the RAW

 18

dependency which is ultimately the limiting factor in how fast we can execute a program. Other
independent instructions are issued to execute while we wait on other dependencies. The
sequential ordering of the program is maintained through the reorder buffer which commits
instructions in order as they complete execution. The major components of the back end are the
issue and load-store queues, the reorder buffer, the four execution units (2 ALUs, 1 Address
Calculation Unit, 1 Branch/Jump Register Resolver), forwarding muxes, the physical register
file, the retirement RAT, and the data cache.

II.B.1. Issue Queues
There are three issue queues in the processor: one for the two ALU’s and one for each of the
other execution units. The ALU queue can issue two instructions to be executed every cycle
whereas the other queues can only issue one. Each queue snoops on the bus of instructions
coming out of rename to see if their queue matches. If so, the instruction is inserted into the
issue queue at the first available entry. NOPS and syscalls do not require any execution unit, and
so they are placed only into the ROB and not an issue queue. The decision of which instruction
to issue next is made by searching the queue for the first instruction (or two for the ALU’s) that
has all of its operands ready. It is then issued to read from the register file.

After instructions are issued, there is now a hole in the issue queue that the issued instruction
previously occupied. Because we both insert and issue from the front of the queue, a newer
instruction may get inserted ahead of an older one and force it to wait, thereby also delaying all
dependant instructions. This will shortly be resolved because the instruction will eventually stall
at the ROB head and be the only instruction left in the queue that can be issued. However, to
give priority to older instructions, the issue queues are compacted after issuing an instruction.
Starting at the front of the queue, each instruction moves up a space if the entry in front of it is
no longer valid. For the ALU queue, this means that all possible gaps may not be filled because
two instructions can issue at once. In most cases, performance is improved greatly by giving
priority to older instructions. In the rare event that an issue queue fills, the processor would have
to stall. Because this stall would have identical results to an ROB full stall, the issue queues are
instead sized such that they will never fill completely.

II.B.2. Physical Register File
The physical register file works the same as the register file in the other processors except that it
contains double the number of registers and has more ports to support all of the execution units.
Two read ports and one write port is dedicated to each ALU. The branch/jump register
execution unit also has two read ports but does not need a write port. One write port is dedicated
to storing link values. One read port is dedicated to the address calculation unit and another to
producing values for stores to write. The final write port is used for load data. This totals to
eight read ports and four write ports. Writes are performed on the positive clock edge if an
enable signal is set for the corresponding write port. Reads are performed after instructions are
issued on the negative clock edge. As mentioned previously, there are 64 physical registers in
the register file, each 32 bits wide. As with the logical register file, one physical register is
hardcoded to zero for instructions that compare with zero or to cause an instruction to be a NOP
by setting its destination to the zero register.

 19

II.B.3. Ready Register List
To control the execution of instructions, we need to know which have their operands ready. This
is maintained through the ready register list, really a 64 bit bit-vector of ready registers. After
ALU operations are issued, the ready bit of their destination register is set. This allows
dependant instructions to issue in the following cycle, maintaining the back to back dependent
instruction execution of the other CPU’s. Link values are marked as ready as they enter the
ROB. Load values are marked as ready as they are performed, either through data forwarding or
cache accesses. As instructions retire, the physical register previously mapped to same
destination as the instruction retiring is now marked as unready and returned to the free list
because we are guaranteed no other instruction will need its value as it will be mapped to the
currently retiring instruction’s register. Flushed instructions return their register to the free list
and mark their destination as unready instead of the previous writer. Because an instruction may
be marked as ready and then flushed in the same cycle and marked as unready, clearing the ready
bit masks out setting the ready bit. The hardcoded zero is always marked as ready even if an
instruction tries to clear it by writing to the zero register as a NOP.

II.B.4. Execution Units
Each execution unit performs independently of the others because the issue logic guarantees
there are no RAW hazards between currently executing instructions. While it is possible to send
all instructions through the general purpose ALU’s with a few additions, the importance of
resolving control flow and memory accesses as quickly as possible results in them each having
their own execution unit and issue queue. The number of execution units dedicated to each type
of instruction roughly corresponds to the average occurrence of the instruction type in a typical
program.

II.B.4.a. Arithmetic Logic (ALU) Units
The two general purpose ALU’s perform all of the instructions indicated in Table 2. They are
essentially the same ALU’s used in the previous processors with the change that multiplies,
divides, and MFHI/MFLO are now performed in the ALU instead of in separate logic. The ALU
performs every operation every cycle and selects the result for the operation indicated by the
instruction currently executing. Which register to use and whether or not to use the immediate
value passed in were all determined previously in decode. The operands for ALU instructions
can come from either the register file or from forwarded values from the execution performed in
the previous cycle. The ALU result is written back to the register file on the next positive edge.
There are two ALU’s because the majority of instructions are processed by one of the ALU’s,
and there is usually sufficient parallelism to issue two independent instructions every cycle. A
third ALU is not added because control flow and memory access instructions are already
separated out, and a third ALU would add two more read and one more write ports to the register
file.

II.B.4.b. Branch / Jump Register Resolution Unit
The branch comparison unit, also referred to as the quick compare (QC) unit, tests expression
conditions between the two source operands of a branch or one operand and zero. The decision
to take a branch or not is written back to the reorder buffer entry corresponding to the branch.
When the branch gets to the ROB head and the predicted and actual decisions do not match, we
have to flush the pipeline and fetch the correct target. Jump register instructions also pass

 20

through this unit but no computation is performed. It is rather a convenient reuse of register file
ports that might otherwise sit idle. Jump register instructions are not frequent enough to warrant
their own ports in the already heavily loaded register file.

II.B.4.c. Load-Store Address Resolution Unit
Because memory accesses can incur a very high latency if they miss, it is important to resolve
their effective address as soon as possible. This is simply an addition of a base register and a
signed offset contained in the instruction. Once this value has been calculated, it is written to the
load-store queue. This allows stores to forward data and loads to issue before they reach the
ROB head as will be discussed shortly.

II.B.5. Data Forwarding
To allow dependent instructions to issue back to back, it is necessary to forward the data values
currently being written to the register file to the execution units because the values were not
present when the instruction read the register file. The notion of getting the newest value is no
longer a problem because the renamer already handled this by guaranteeing that each register is
only written once during its lifetime. Each of the eight read ports on the register file has a
corresponding forwarding unit. Each forwarding unit compares the register that was intended to
be read with each of the four write-back paths’ destination register. If the register number
matches, the value being currently written back is used instead of the one fetched from the
register file. Because write-backs happen a cycle earlier than in the pipelined or superscalar
processors, there is only one cycle worth of addresses to compare against but there are now four
sources of forwarding.

II.B.6. Load-Store Queue / Data Cache (D$)
The load store queue was not initially implemented in the processor. Loads were performed
when they reached the ROB head like stores are. However, performance suffered tremendously
by waiting that long to perform the load. There are typically many instructions dependant on the
load result --- the longer the load waits, the longer its consumers must wait. Furthermore, if the
load gets to the ROB head and then misses, the processor must wait even longer to execute the
dependant instructions.

This lead to the load-store queue being implemented. Unlike registers, memory dependencies
cannot be resolved in rename because their effective addresses are not yet known. It is therefore
essential that the load store queue ordering maintain sequential consistency semantics. As loads
and stores enter the back end from rename, they are added to the end of the load store queue in
program order. Each cycle, queue entries snoop the result of the address calculation unit to see if
their corresponding entry in the address queue has just calculated the effective address. If so, the
address is added to the queue entry. Also each cycle, we search the queue for a store that does
not yet have the data that it will write to memory. Because there is only one register read port
for store values, only one store can request its data per cycle. This store is always the one closest
to the head of the queue (the oldest store). Stores in the queue that have both their address and
data can search the rest of the queue for a load of the same size to the same address. If a match is
found, the data is forwarded to that load to save a cache access. This search is stopped when a
store to the same address or a store with an unresolved address is found. A conservative
forwarding policy of stopping the search when a store to the same word is found was

 21

implemented. A more aggressive policy would do per byte aliasing checks; however, the
assumption that words are typically accessed with word accesses and bytes accessed with byte
accesses is made. Significant speedups can be achieved even with this conservative forwarding
policy. Stores must still wait to write to the cache until they reach the head of the reorder buffer
to guarantee that they are not speculative because there is no easy way of undoing a store that
shouldn’t have happened.

Once a load has its address, it can issue a cache access or receive forwarded data. Priority of
cache accesses is given to the oldest loads. If no load or store cache access is performed because
the operation reached the ROB head without going to memory, then another load that has its
address but doesn’t have its data yet can use the cache for its access provided there isn’t an
outstanding miss. Forwarded data also needs to be written back to the register file. Waiting until
the load reaches the ROB head is as bad as not forwarding at all. Therefore, the queue is
searched for either a load with its data but not written back or a load with its address but no data.
The oldest one found is issued. Even while a store is using the data cache, we can write back a
load that had its data forwarded. In essence, this performs two memory operations
simultaneously despite having only a single cache port.

The data cache is essentially the same as in the previous processors. Dirty lines must be written
back on an eviction before the request line can be filled. While the load store queue speeds up
loads significantly, stores may still suffer long latency misses at the ROB head without
prefetching, which is not implemented. A data cache miss can be nearly twice as bad as an
instruction cache miss because of the possibility of having to wait to write back dirty data to the
next level of memory.

II.B.7. Reorder Buffer (ROB)
The reorder buffer is a 32 entry circular buffer responsible for maintaining instructions in
program order despite being executed out of order. Relevant information about each instruction
coming out of rename is inserted into the ROB at the tail. Instructions are retired in program
order when they reach the ROB head, or rather the ROB head reaches them. If the ROB fills up,
the processor must stall until entries are freed. Entries are marked as ready as their operations
complete elsewhere in the processor. Only instructions that are marked as either ready or flushed
can be retired or committed. This implementation has the capability of retiring four instructions
per cycle to match the fetch width and number of execution units.

II.B.8. Commit / Pipeline Flushing
Retiring or committing instructions in order is critical for proper program execution. When an
instruction reaches the ROB head, it is checked to see if it is marked as either ready or flushed.
If it is marked as neither, retirement must stall until the instruction can be retired. When an
instruction that writes to a register reaches the ROB head is ready and is not flushed, we must
reclaim the physical register of the previous instruction that wrote to the same logical register as
it is only at this point that we can guarantee that it will no longer be needed. The now free
register is sent to the free list, marked as unready, and the retirement RAT is updated to show the
new mapping. The retirement RAT contains the mappings of logical to physical registers of all
instructions so far and is guaranteed not to be speculative. When a branch or jump register
reaches the ROB head, we check to see if the predicted path was indeed the correct one. If so,

 22

the instruction is retired as normal. If not, the ROB, issue and load-store queues, and currently
decoding instructions are flushed, the rename RAT is replaced with the correct information from
the retirement RAT, and the PC is set to the correct target. As mentioned previously, if a delay
slot reaches the ROB head that overwrites an operand of its control flow instruction, it must wait
until both instructions are ready before committing.

Memory operations that have yet to access the cache or have gotten forwarded data but have yet
to write it to the register file are performed when they reach the ROB head. Because of resource
limitations, only one such instruction can be performed and retired each cycle. System calls that
reach the ROB head stall there for one cycle to allow any writers to the logical register file (as
determined by the retirement RAT) to complete before emulating the system call with C
libraries. The ROB is the flushed following this emulation because the values in the register file
previously read are now stale and this more accurately simulates jumping to O/S code and
returning to the user code following the system call. Finally, registers allocated to flushed
instructions must be reclaimed and added to the free list, and marked as unready.

III. Differences with MIPS R10000
While this processor design is based generally off the MIPS R10000, there are some design
differences that should be noted. The R10000 implements the full 64-bit MIPS 4 ISA including
floating point instructions which are absent from this implementation. While the fetch width is
the same, it issues instructions to five execution units (two of which are floating point) and
implements non-blocking, set associative caches. Because more than one process runs on the
CPU at a time, it implements TLB’s to cache the page table. To buffer against instruction cache
misses and to save instructions not able to be decoded in a given cycle, there is a fetch buffer to
store up to eight instructions. Mispredicted branches are allowed to selectively flush the pipeline
and queues as soon as they are determined to be mispredicted. This is done by tagging each
instruction with which branch of up to 4 speculated branches that the instruction depends on.
The rename RAT is placed on a branch stack as branches are predicted so that it can be easily
restored upon a flush. The branch predictor used is the bimodal predictor described previously.
Branches are resolved in the integer ALU whereas a separate comparison unit is used in my
implementation.

IV. Results
Performance results for the processor were collected to compare with the other processors and
different configurations of the out of order processor. Unless the test indicates that an item is
varying, the implementation discussed above is used. Both instruction and data caches are 16KB
direct mapped caches with 32 byte blocks. The SAg predictor is used in all cases unless
otherwise stated.
IV.A. Test Cases
The test cases presented here are a subset of those used to verify functionality. Many of those
tests tested very specific instructions and were too short for performance to be reasonable. This
is because short programs have a very large number of cold cache misses, and there is not
sufficient time to train branch predictors. All test cases presented here were written in C and
compile with a gcc cross compiler on the Linuxpool. Several other assembly language programs
were written to test functionality as well but they are not shown here. Table 5 describes the
mini-benchmarks used.

 23

Table 5 Performance Benchmarks

array_rewrite On even loop iterations the first array is copied to the second array,
On odd iterations the array is copied back from the second array

bigfib Calculates the Fibonacci sequence to 6765
hello Prints Hello World and then performs a tight nested loop sequence
msort Merge sort for an array of size 500
nested_branches A series of correlated branches in nested loops
nqueen Nqueens algorithm for board of size 7
recursion_loops Repeated recursive calls that have variable loop lengths
towers Towers of Hanoi for 6 disks

IV.B. Comparison with Five Stage Pipeline & Two-Way Superscalar

Normalized IPC

0

0.5

1

1.5

2

2.5

3

arr
ay

_re
write big

fib
he

llo
mso

rt

ne
ste

d_
bra

nc
he

s

nq
ue

en

rec
urs

ion
_lo

op
s

tow
ers

Pipelined

Superscalar

Out of Order

Figure 3 Three CPU Performance Comparison

As the above figure indicates, the out of order processor outperforms the other two processors for
all benchmarks tested. This is due largely in part to the predictability of the branches in these
benchmarks. Though not described in this graph, “towers” executes less than one instruction per
cycle for all implementations. This is because there are an extremely large number of instruction
cache misses and the program does not run for long enough to recover from the performance loss
of the stalls. Normalized IPC is used in these performance tests because the clock speed can be
set somewhat arbitrarily in the simulator and a better measure of relative performance is how
much work is done each cycle.

 24

IV.C. Reorder Buffer Size

Normalized IPC

0

0.5

1

1.5

2

2.5

3

big
fib

he
llo

mso
rt

rec
urs

ion
_lo

op
s

tow
ers

nq
ue

en

ROB Entries 8

ROB Entries 16

ROB Entries 32

Figure 4 Reorder Buffer Size Performance Comparison

Surprisingly, cutting down the ROB size did not affect some benchmarks very much. Again
using “towers” as an example, this is because the instruction cache could not supply enough
instructions to fill the ROB anyway. “Nqueen” and “bigfib” also show little improvement going
from 16 to 32 entries which would indicate that they empty the ROB fast enough to not stall
often due to the ROB being full. This could be due to a favorable instruction stream executing
on the processor or that the instruction memory again can’t supply enough instructions to keep
the back end busy. A third explanation may be that many branches are mispredicted and the
ROB does not have a chance to fill before getting flushed, which may be the case for “bigfib,”
which has relatively bad predictor accuracy as shown next. The most likely explanation is a
combination of not being able to fill the ROB due to instruction cache misses and flushes.
IV.D. Branch Predictors

Normalized IPC

0

0.5

1

1.5

2

2.5

3

arr
ay

_re
write big

fib
he

llo
mso

rt

ne
ste

d_
bra

nc
he

s

nq
ue

en

rec
urs

ion
_lo

op
s

tow
ers

Static Prediction

Bimodal

SAg

GAg

Vote

Figure 5 Branch Predictor Performance Comparison

 25

Prediction Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

arr
ay

_re
write big

fib
he

llo
mso

rt

ne
ste

d_
bra

nc
he

s

nq
ue

en

rec
urs

ion
_lo

op
s

tow
ers

Static Prediction

Bimodal

SAg

GAg

Vote

Figure 6 Branch Predictor Accuracy

As can be seen from the above graphs, using a static prediction scheme tends to perform pretty
poorly. Not surprisingly, the majority vote of the three dynamic predictors is near the top but
never really the best. As discussed previously, different branch predictors predict better for
different branch behaviors and so taking a vote smoothes out the bad predictions but can also
suppresses the predictor that best predicts a given branch. Also of concern in branch accuracy is
that only correct path branches are considered in accuracy calculations and updating the
predictors. Intuitively, it seems correct to suppress the results of a branch that you were never
supposed to reach, but doing so may prevent warming up a predictor to a branch that you will
soon reach.

IV.E. Retirement Rate

Normalized IPC

0

0.5

1

1.5

2

2.5

3

arr
ay

_re
write big

fib
he

llo
mso

rt

ne
ste

d_
bra

nc
he

s

rec
urs

ion
_lo

op
s

Retire Width 1

Retire Width 2

Retire Width 3

Retire Width 4

Figure 7 Retirement Width Performance Comparison

 26

The final performance test performed was to see the effect of varying the retirement width.
Retirement width one caps the maximum IPC at 1 and is slower than the superscalar processor in
most cases; it can be slower than the pipelined processor due to instruction cache misses and the
overhead involved in filling the ROB. As seen with varying the ROB size, often times the full
capabilities of the ROB are not needed. It would take a near optimal flow of instructions to keep
the entire busy at maximum performance for the length of the program. Cache limitations and
predictor accuracy prevent this for all but the most trivial programs.

V. Conclusion
V.A. Design Difficulties
The debugging stage for this processor was much more tedious than expected. While each
component has fairly predictable behavior in isolation, the interactions and timing between the
modules makes it difficult to predict all possible corner cases of events that may occur. Also, the
unexpected insertion of instructions that would affect a branch outcome by the compiler into the
delay slot caused much grief. Because of the massive number of signals in the processor, it was
nearly impossible to debug what was going wrong by looking at the waveforms only as was
possible in the previous processors. I found it easier to generate traces of instructions retired and
values written, and compare those to the pipelined implementation to find the point in time at
which the out of order processor goofed and then follow the relevant signals in the simulator
waveform. Such debugging would have been very difficult if not impossible if the
implementation was attempted on only hardware from the start.

V.B. Possible Improvements
There are four main improvements that could be applied. Increasing the fetch width, execution
width, or retire width would improve performance so they are not considered, nor is simply
increasing buffer/queue sizes. The first useful improvement would be to use a set associative
cache. This would greatly reduce all misses except cold misses which are unavoidable (but
could be reduced with bigger block size). The second improvement that could be implemented is
to implement a branch stack as the R10000 does. This would require much more flush logic to
selectively flush instructions but has the benefit of reducing the amount of time spent on the
wrong path which could pollute the cache. To this end, the third improvement would be to
implement a better branch predictor. While some programs designed to work well with the
branch predictors implemented worked very well, they also performed poorly on some more
realistic applications. Finally, non-blocking caches would improve memory throughput greatly
in the presence of a miss in both the instruction and data caches. This is especially useful when a
flush is required but the instruction cache is already servicing a miss and so the redirection of the
PC must wait.

V.C. Final Remarks
Overall, the out of order implementation satisfied the project goals quite well. I was able to
fetch, decode, rename, issue, execute, and retire up to four instructions per cycle and achieved a
much higher IPC than previous processors implemented in computer architecture classes. Last
minute changes, such as the inclusion of a load store queue, significantly boosted performance.

VI. References
[1] Yeager, Kenneth C. “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro 1996

 27

VII. Appendix
The appendix is organized as follows. First, the simulator output and source code for the
performance benchmarks shown above. Array_rewrite, hello, nested_branches, and
recursion_loops were written for this project. The other four came from ECE475 projects. Next,
the Verilog source code for the project is listed. The header files mips.h and cache.h were
heavily modified from ECE475; the source code was written from scratch with the exception of
mips.v and memory.v which were heavily modified from their ECE475 versions. ECE475
Verilog code bears the appropriate copyright notice.

+++

Loaded Executable `test/array_rewrite'

Boot code entry point: 0xbfc00000
User code entry point: 0x00400290
Stack pointer: 0x7fffefff

Testing Array Rewrite
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49

EXIT called, code: 0

Program Terminated.
Retired 172648 instructions, 195685 entered ROB
Number of flushes: 1007
Ran for 95731 cycles
ICache Accesses: 60509
ICache Misses: 430
DCache Accesses: 49185
DCache Misses: 55
Average Fullness:
ROB 23.9
ALUQ 0
CFQ 0
LDSTAQ 0
LDSTQ 6.9
Freelist(avg. free regs) 0
RAS 2.0
Max Fullness:
ALUQ 6
CFQ 2
LDSTAQ 5
LDSTQ 20
RAS 8
BR Predictions: 10384
Incorrect: 330
JR Predictions: 1139
Incorrect: 571
Correct Path:
Mem 52832
CF 16649
Sys 106
ALU & NOPS 103061
Retired 0 1 2 3 4: 32162 8337 12979 7587 34657
Renamed 0 1 2 3 4: 36864 0 14210 11331 33318
Cycles Stalled:
IStall 11701
Rename 115
ROB 23390
Forwarded Data: 5841
Wrote Forwards Early: 5789
Performed Early Loads: 26786
Forwarded Data But No Early Write: 0
ROB Head Loads: 5892

 28

Loads Already Written Before Retire: 30433

int q[50];

int main ()
{
 int i,j,t,z[50];
 printf("Testing Array Rewrite\n");

 for(i=0;i<50;i++){
 z[i] = 0;
 q[i] = i;
 }
 for(i=0;i<50;i++){
 for(j=0;j<50;j++){
 if(z[j]){
 t = z[j];
 z[j] = q[j];
 q[j]= t;
 }else{
 t = q[j];
 q[j] = z[j];
 z[j]= t;
 }
 }
 printf("%d ",i);
 }

 printf("\n");
 exit(0);
}

+++

Loaded Executable `test/bigfib'

Boot code entry point: 0xbfc00000
User code entry point: 0x00400420
Stack pointer: 0x7fffefff

Series: 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
EXIT called, code: 99

Program Terminated.
Retired 3715759 instructions, 5729728 entered ROB
Number of flushes: 74062
Ran for 2388991 cycles
ICache Accesses: 1877710
ICache Misses: 321
DCache Accesses: 1019551
DCache Misses: 64
Average Fullness:
ROB 26.1
ALUQ 0
CFQ 0
LDSTAQ 0
LDSTQ 9.2
Freelist(avg. free regs) 0
RAS 13.2
Max Fullness:
ALUQ 4
CFQ 2
LDSTAQ 3
LDSTQ 20
RAS 22
BR Predictions: 209709
Incorrect: 37495
JR Predictions: 115069
Incorrect: 36523

 29

Correct Path:
Mem 1418908
CF 554721
Sys 44
ALU & NOPS 1742086
Retired 0 1 2 3 4: 348541 520711 294758 280403 944569
Renamed 0 1 2 3 4: 656904 0 503665 191258 1037156
Cycles Stalled:
IStall 8882
Rename 29
ROB 500394
Forwarded Data: 461079
Wrote Forwards Early: 445431
Performed Early Loads: 115643
Forwarded Data But No Early Write: 119
ROB Head Loads: 327506
Loads Already Written Before Retire: 514881

int rfib (int x)
{
 if (x == 0 || x == 1) return x;
 else return rfib(x-1) + rfib(x-2);
}

int ifib (int n)
{
 int x, y, z, i;

 if (n == 0 || n == 1) return n;
 x = 0; y = 1;
 for (i=2; i <= n; i++) {
 z = x + y;
 x = y;
 y = z;
 }
 return y;
}

int main (void)
{
 int d;
 int i;
 d = 20;
 printf ("Series: ");
 for (i=1; i <= d; i++) {
 printf (" %d", rfib(i));
 if (ifib (i) != rfib (i)) {
 printf ("\n*** yow *** You're hosed\n");
 }
 }
 printf ("\n");
 exit(99);
}

+++

Loaded Executable `test/hello'

Boot code entry point: 0xbfc00000
User code entry point: 0x00400290
Stack pointer: 0x7fffefff

Hello World.
0 1 2 3 4 5 6 7 8 9
 r:100000
EXIT called, code: 0

Program Terminated.
Retired 1509920 instructions, 1516437 entered ROB

 30

Number of flushes: 316
Ran for 548540 cycles
ICache Accesses: 505587
ICache Misses: 262
DCache Accesses: 203961
DCache Misses: 80
Average Fullness:
ROB 28.5
ALUQ 0
CFQ 0
LDSTAQ 0
LDSTQ 9.4
Freelist(avg. free regs) 0
RAS 1.0
Max Fullness:
ALUQ 4
CFQ 2
LDSTAQ 3
LDSTQ 20
RAS 9
BR Predictions: 101283
Incorrect: 136
JR Predictions: 274
Incorrect: 152
Correct Path:
Mem 503563
CF 201880
Sys 28
ALU & NOPS 804449
Retired 0 1 2 3 4: 42720 101417 100945 682 302767
Renamed 0 1 2 3 4: 43440 0 201437 101057 202598
Cycles Stalled:
IStall 7345
Rename 3
ROB 35795
Forwarded Data: 300127
Wrote Forwards Early: 300098
Performed Early Loads: 1573
Forwarded Data But No Early Write: 6
ROB Head Loads: 872
Loads Already Written Before Retire: 301169

int main ()
{
 int i,j,r;
 printf("Hello World.\n");
 for(i=0;i<10;i++){
 for(j=0;j<10000;j++){
 r++;
 }
 printf("%d ",i);
 }
 printf("\n r:%d\n",r);

 exit(0);
}

+++

Loaded Executable `test/msort'

Boot code entry point: 0xbfc00000
User code entry point: 0x004008b8
Stack pointer: 0x7fffefff

Array sorted correctly.

EXIT called, code: 0

 31

Program Terminated.
Retired 378137 instructions, 457452 entered ROB
Number of flushes: 2760
Ran for 190350 cycles
ICache Accesses: 136264
ICache Misses: 190
DCache Accesses: 125980
DCache Misses: 164
Average Fullness:
ROB 28.0
ALUQ 0
CFQ 0
LDSTAQ 0
LDSTQ 8.7
Freelist(avg. free regs) 0
RAS 1.0
Max Fullness:
ALUQ 4
CFQ 2
LDSTAQ 3
LDSTQ 17
RAS 10
BR Predictions: 20580
Incorrect: 2744
JR Predictions: 25
Incorrect: 12
Correct Path:
Mem 125190
CF 31285
Sys 4
ALU & NOPS 221658
Retired 0 1 2 3 4: 44177 10892 30269 34006 70997
Renamed 0 1 2 3 4: 59539 0 23384 18992 88427
Cycles Stalled:
IStall 5432
Rename 0
ROB 48914
Forwarded Data: 11443
Wrote Forwards Early: 11299
Performed Early Loads: 94571
Forwarded Data But No Early Write: 139
ROB Head Loads: 11664
Loads Already Written Before Retire: 93642

#define TYPE int
#define SIZE 500

TYPE x[SIZE];
TYPE y[SIZE];

void init (void)
{
 int i;

 x[0] = 3;
 x[1] = 7;
 for (i=1; i < SIZE-1; i++) {
 x[i+1] = x[i]+(x[i-1]^128);
 }
}

void dumpoutput (void)
{
 int i;
 int flag = 0;

 for (i=1; i < SIZE; i++) {
 if (x[i] < x[i-1]) {
 flag = 1;
 printf ("Error at position %d\n", i);
 }

 32

 }
 if (!flag) printf ("Array sorted correctly.\n");
}

void mergesort (unsigned long n, TYPE *array, TYPE *array2)
{
 TYPE *p, *q, *r;
 unsigned long int i, j, k, l, m, t, k1;
 unsigned long log2;

 if (n==0) return;

 p = array; q = array2;
 for(log2=0,i=1; i < n; i*=2, log2++) ;
 for (i=1, k=2; i <= log2; i++, k*=2) {
 for (j=0; j < n; j += k) {
 l = j; m = j+(k>>1);
 if ((n-j) < k) k1 = n-j; else k1 = k;
 for (t=0; t < k1; t++)
 if (l < (j+(k>>1)))
 if (m < j+k1)
 if (p[l] < p[m]) q[j+t] = p[l++];
 else q[j+t] = p[m++];
 else
 q[j+t] = p[l++];
 else
 q[j+t] = p[m++];
 }
 r = p; p = q; q = r;
 }
 if (array != p) for (i=0; i < n; i++) *array++ = *p++;
}

int main (void)
{
 init ();
 mergesort (SIZE, x, y);
 dumpoutput ();
 exit(0);
}

+++

Loaded Executable `test/nested_branches'

Boot code entry point: 0xbfc00000
User code entry point: 0x00400290
Stack pointer: 0x7fffefff

Testing Nested Branches
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49

EXIT called, code: 0

Program Terminated.
Retired 1469454 instructions, 1573207 entered ROB
Number of flushes: 3894
Ran for 583748 cycles
ICache Accesses: 462081
ICache Misses: 424
DCache Accesses: 232784
DCache Misses: 141
Average Fullness:
ROB 28.5
ALUQ 0
CFQ 0
LDSTAQ 0

 33

LDSTQ 9.7
Freelist(avg. free regs) 0
RAS 1.1
Max Fullness:
ALUQ 4
CFQ 0
LDSTAQ 3
LDSTQ 20
RAS 8
BR Predictions: 111014
Incorrect: 3216
JR Predictions: 1139
Incorrect: 572
Correct Path:
Mem 517568
CF 212731
Sys 106
ALU & NOPS 739049
Retired 0 1 2 3 4: 27910 199412 17715 16444 322258
Renamed 0 1 2 3 4: 129153 0 115918 13305 325364
Cycles Stalled:
IStall 11530
Rename 114
ROB 110071
Forwarded Data: 295427
Wrote Forwards Early: 294436
Performed Early Loads: 24752
Forwarded Data But No Early Write: 23
ROB Head Loads: 3219
Loads Already Written Before Retire: 309513

int main ()
{
 int i,j,k,a,b,c;
 printf("Testing Nested Branches\n");

 a = 0;
 b = 0;
 c = 0;

 for(i=0;i<50;i++){
 for(j=0;j<i*3;j++){
 a++;
 if(a&1)b=0;
 else b=1;

 if(b)c++;
 else {
 for(k=i;k>0;k--)a++;
 }
 }
 printf("%d ",i);
 }
 printf("\n");
 exit(0);
}

+++

Loaded Executable `test/nqueen'

Boot code entry point: 0xbfc00000
User code entry point: 0x00400290
Stack pointer: 0x7fffefff

 0 | (0,0), (1,2), (2,4), (3,6), (4,1), (5,3), (6,5),
 1 | (0,0), (1,3), (2,6), (3,2), (4,5), (5,1), (6,4),
 2 | (0,0), (1,4), (2,1), (3,5), (4,2), (5,6), (6,3),
 3 | (0,0), (1,5), (2,3), (3,1), (4,6), (5,4), (6,2),
 4 | (0,1), (1,3), (2,0), (3,6), (4,4), (5,2), (6,5),

 34

 5 | (0,1), (1,3), (2,5), (3,0), (4,2), (5,4), (6,6),
 6 | (0,1), (1,4), (2,0), (3,3), (4,6), (5,2), (6,5),
 7 | (0,1), (1,4), (2,2), (3,0), (4,6), (5,3), (6,5),
 8 | (0,1), (1,4), (2,6), (3,3), (4,0), (5,2), (6,5),
 9 | (0,1), (1,5), (2,2), (3,6), (4,3), (5,0), (6,4),
 10 | (0,1), (1,6), (2,4), (3,2), (4,0), (5,5), (6,3),
 11 | (0,2), (1,0), (2,5), (3,1), (4,4), (5,6), (6,3),
 12 | (0,2), (1,0), (2,5), (3,3), (4,1), (5,6), (6,4),
 13 | (0,2), (1,4), (2,6), (3,1), (4,3), (5,5), (6,0),
 14 | (0,2), (1,5), (2,1), (3,4), (4,0), (5,3), (6,6),
 15 | (0,2), (1,6), (2,1), (3,3), (4,5), (5,0), (6,4),
 16 | (0,2), (1,6), (2,3), (3,0), (4,4), (5,1), (6,5),
 17 | (0,3), (1,0), (2,2), (3,5), (4,1), (5,6), (6,4),
 18 | (0,3), (1,0), (2,4), (3,1), (4,5), (5,2), (6,6),
 19 | (0,3), (1,1), (2,6), (3,4), (4,2), (5,0), (6,5),
 20 | (0,3), (1,5), (2,0), (3,2), (4,4), (5,6), (6,1),
 21 | (0,3), (1,6), (2,2), (3,5), (4,1), (5,4), (6,0),
 22 | (0,3), (1,6), (2,4), (3,1), (4,5), (5,0), (6,2),
 23 | (0,4), (1,0), (2,3), (3,6), (4,2), (5,5), (6,1),
 24 | (0,4), (1,0), (2,5), (3,3), (4,1), (5,6), (6,2),
 25 | (0,4), (1,1), (2,5), (3,2), (4,6), (5,3), (6,0),
 26 | (0,4), (1,2), (2,0), (3,5), (4,3), (5,1), (6,6),
 27 | (0,4), (1,6), (2,1), (3,3), (4,5), (5,0), (6,2),
 28 | (0,4), (1,6), (2,1), (3,5), (4,2), (5,0), (6,3),
 29 | (0,5), (1,0), (2,2), (3,4), (4,6), (5,1), (6,3),
 30 | (0,5), (1,1), (2,4), (3,0), (4,3), (5,6), (6,2),
 31 | (0,5), (1,2), (2,0), (3,3), (4,6), (5,4), (6,1),
 32 | (0,5), (1,2), (2,4), (3,6), (4,0), (5,3), (6,1),
 33 | (0,5), (1,2), (2,6), (3,3), (4,0), (5,4), (6,1),
 34 | (0,5), (1,3), (2,1), (3,6), (4,4), (5,2), (6,0),
 35 | (0,5), (1,3), (2,6), (3,0), (4,2), (5,4), (6,1),
 36 | (0,6), (1,1), (2,3), (3,5), (4,0), (5,2), (6,4),
 37 | (0,6), (1,2), (2,5), (3,1), (4,4), (5,0), (6,3),
 38 | (0,6), (1,3), (2,0), (3,4), (4,1), (5,5), (6,2),
 39 | (0,6), (1,4), (2,2), (3,0), (4,5), (5,3), (6,1),

40 solutions found, program terminated successfully.

EXIT called, code: 2

Program Terminated.
Retired 1360242 instructions, 1955796 entered ROB
Number of flushes: 23675
Ran for 913062 cycles
ICache Accesses: 629221
ICache Misses: 3325
DCache Accesses: 512470
DCache Misses: 84
Average Fullness:
ROB 23.9
ALUQ 0
CFQ 0
LDSTAQ 0
LDSTQ 8.0
Freelist(avg. free regs) 0
RAS 8.7
Max Fullness:
ALUQ 4
CFQ 0
LDSTAQ 3
LDSTQ 20
RAS 18
BR Predictions: 138551
Incorrect: 13760
JR Predictions: 19683
Incorrect: 8007
Correct Path:
Mem 501285
CF 203055
Sys 1908
ALU & NOPS 653994

 35

Retired 0 1 2 3 4: 260501 119256 116263 64119 352914
Renamed 0 1 2 3 4: 327381 0 149026 88844 347803
Cycles Stalled:
IStall 88242
Rename 21
ROB 193904
Forwarded Data: 57937
Wrote Forwards Early: 51432
Performed Early Loads: 300581
Forwarded Data But No Early Write: 5187
ROB Head Loads: 73951
Loads Already Written Before Retire: 284209

#define NUM_QUEENS 7
#define FALSE 0
#define TRUE 1

typedef int BoardPosition;

int Threatens(int x, int y, BoardPosition *board, int numPiecesPlaced);
void PrintSolution(BoardPosition *board, int numQueens, int solutionsFound);
void FindSolution(BoardPosition *board, int piecesPlaced, int *solutionsFound);

int main() {
 BoardPosition board[NUM_QUEENS];
 int piecesPlaced = 0;
 int solutionsFound = 0;

 FindSolution(board, piecesPlaced, &solutionsFound);
 printf("\n%d solutions found, program terminated successfully.\n", solutionsFound);

 exit(2);
}

int Threatens(int x, int y, BoardPosition *board, int numPiecesPlaced) {

 int i = 0;
 int threats = FALSE; /* set if threat detected */

 int temp;

 while ((i < numPiecesPlaced) && (threats == FALSE)) {
 if (board[i] == y) /* test rows */
 threats = TRUE;

 /* now test diagonals */
 temp = x-i;
 if ((y == (board[i]-temp)) || (y == (board[i]+temp)))
 threats = TRUE;

 ++i;
 }

 return threats;

}

void FindSolution(BoardPosition *board, int piecesPlaced, int *solutionsFound) {

 int i;

 for (i=0; i<NUM_QUEENS; ++i) {
 if (!Threatens(piecesPlaced, i, board, piecesPlaced)) {
 board[piecesPlaced] = i; /* record it */

 if (piecesPlaced == (NUM_QUEENS-1)) {
 PrintSolution(board, NUM_QUEENS, *solutionsFound);
 ++(*solutionsFound);
 }

 36

 FindSolution(board, piecesPlaced+1, solutionsFound);
 }
 }

 return;

}

void PrintSolution(BoardPosition *board, int numQueens, int solutionsFound) {

 int i;

 printf("%3d | ", solutionsFound);

 for (i = 0; i<numQueens; ++i) {
 printf("(%d,%d), ", i, board[i]);
 }

 printf("\n");
}

+++

Loaded Executable `test/recursion_loops'

Boot code entry point: 0xbfc00000
User code entry point: 0x00400354
Stack pointer: 0x7fffefff

Testing Recursion Loops
2:510 4:262652 6:67371514 8:67371512 10:67371510 12:67371508 14:67371506 16:67371504 18:67371502
20:67371500 22:67371498 24:67371496 26:67371494 28:67371492 30:67371490 32:67371488 34:67371486
36:67371484 38:67371482 40:67371480 42:67371478 44:67371476 46:67371474 48:67371472 50:67371470
52:67371468 54:67371466 56:67371464 58:67371462 60:67371460 62:67371458 64:67371456 66:67371454
68:67371452 70:67371450 72:67371448 74:67371446 76:67371444 78:67371442 80:67371440 82:67371438
84:67371436 86:67371434 88:67371432 90:67371430 92:67371428 94:67371426 96:67371424 98:67371422
100:67371420

EXIT called, code: 0

Program Terminated.
Retired 329630 instructions, 367972 entered ROB
Number of flushes: 1684
Ran for 153144 cycles
ICache Accesses: 111733
ICache Misses: 623
DCache Accesses: 102871
DCache Misses: 149
Average Fullness:
ROB 25.0
ALUQ 0
CFQ 0
LDSTAQ 0
LDSTQ 7.9
Freelist(avg. free regs) 0
RAS 3.6
Max Fullness:
ALUQ 4
CFQ 0
LDSTAQ 3
LDSTQ 20
RAS 9
BR Predictions: 20202
Incorrect: 454
JR Predictions: 1954
Incorrect: 1024
Correct Path:
Mem 110919
CF 34960

 37

Sys 206
ALU & NOPS 183545
Retired 0 1 2 3 4: 38849 9645 27802 4634 72205
Renamed 0 1 2 3 4: 44255 0 20072 27408 61401
Cycles Stalled:
IStall 16844
Rename 318
ROB 24351
Forwarded Data: 11372
Wrote Forwards Early: 11318
Performed Early Loads: 65004
Forwarded Data But No Early Write: 49
ROB Head Loads: 5566
Loads Already Written Before Retire: 73003

int q=0;
int rec(int i){
 int j,x;
 if(i<5)x = rec(i+1);
 for(j=0;j<q<<2;j++)x = x | q<<j;
 return x;
}

int main ()
{
 int i,z;
 printf("Testing Recursion Loops\n");

 for(i=0;i<50;i++){
 q++;
 q++;
 z += rec(i);
 printf("%d:%d ",q,z);
 }
 printf("\n");
 exit(0);
}

+++

Loaded Executable `test/towers'

Boot code entry point: 0xbfc00000
User code entry point: 0x004003a0
Stack pointer: 0x7fffefff

Move disk 1 from peg A to peg B
Move disk 2 from peg A to peg C
Move disk 1 from peg B to peg C
Move disk 3 from peg A to peg B
Move disk 1 from peg C to peg A
Move disk 2 from peg C to peg B
Move disk 1 from peg A to peg B
Move disk 4 from peg A to peg C
Move disk 1 from peg B to peg C
Move disk 2 from peg B to peg A
Move disk 1 from peg C to peg A
Move disk 3 from peg B to peg C
Move disk 1 from peg A to peg B
Move disk 2 from peg A to peg C
Move disk 1 from peg B to peg C
Move disk 5 from peg A to peg B
Move disk 1 from peg C to peg A
Move disk 2 from peg C to peg B
Move disk 1 from peg A to peg B
Move disk 3 from peg C to peg A
Move disk 1 from peg B to peg C
Move disk 2 from peg B to peg A
Move disk 1 from peg C to peg A

 38

Move disk 4 from peg C to peg B
Move disk 1 from peg A to peg B
Move disk 2 from peg A to peg C
Move disk 1 from peg B to peg C
Move disk 3 from peg A to peg B
Move disk 1 from peg C to peg A
Move disk 2 from peg C to peg B
Move disk 1 from peg A to peg B
Move disk 6 from peg A to peg C
Move disk 1 from peg B to peg C
Move disk 2 from peg B to peg A
Move disk 1 from peg C to peg A
Move disk 3 from peg B to peg C
Move disk 1 from peg A to peg B
Move disk 2 from peg A to peg C
Move disk 1 from peg B to peg C
Move disk 4 from peg B to peg A
Move disk 1 from peg C to peg A
Move disk 2 from peg C to peg B
Move disk 1 from peg A to peg B
Move disk 3 from peg C to peg A
Move disk 1 from peg B to peg C
Move disk 2 from peg B to peg A
Move disk 1 from peg C to peg A
Move disk 5 from peg B to peg C
Move disk 1 from peg A to peg B
Move disk 2 from peg A to peg C
Move disk 1 from peg B to peg C
Move disk 3 from peg A to peg B
Move disk 1 from peg C to peg A
Move disk 2 from peg C to peg B
Move disk 1 from peg A to peg B
Move disk 4 from peg A to peg C
Move disk 1 from peg B to peg C
Move disk 2 from peg B to peg A
Move disk 1 from peg C to peg A
Move disk 3 from peg B to peg C
Move disk 1 from peg A to peg B
Move disk 2 from peg A to peg C
Move disk 1 from peg B to peg C

EXIT called, code: 0

Program Terminated.
Retired 156503 instructions, 233348 entered ROB
Number of flushes: 3467
Ran for 164497 cycles
ICache Accesses: 79145
ICache Misses: 2313
DCache Accesses: 59867
DCache Misses: 331
Average Fullness:
ROB 16.9
ALUQ 0
CFQ 0
LDSTAQ 0
LDSTQ 5.2
Freelist(avg. free regs) 0
RAS 8.7
Max Fullness:
ALUQ 4
CFQ 0
LDSTAQ 3
LDSTQ 20
RAS 16
BR Predictions: 21491
Incorrect: 833
JR Predictions: 4163
Incorrect: 2128
Correct Path:
Mem 54237

 39

CF 31551
Sys 506
ALU & NOPS 70209
Retired 0 1 2 3 4: 81173 18837 16710 9982 37786
Renamed 0 1 2 3 4: 90822 0 23594 14132 35941
Cycles Stalled:
IStall 58667
Rename 0
ROB 27028
Forwarded Data: 1574
Wrote Forwards Early: 1571
Performed Early Loads: 26194
Forwarded Data But No Early Write: 0
ROB Head Loads: 11084
Loads Already Written Before Retire: 20564

char *A = "A";
char *B = "B";
char *C = "C";

char s[5];

#define TOWER_SIZE 6

void
printmessage(int n, char *from_peg, char *to_peg)
{
 printf("Move disk %d from peg %s to peg %s\n",
 n, from_peg, to_peg);
}

void
towers(int n, char *from_peg, char *to_peg, char *aux_peg)
{
 if (n == 1) {
 printmessage(n, from_peg, to_peg);
 return;
 };

 towers(n-1, from_peg, aux_peg, to_peg);

 printmessage(n, from_peg, to_peg);

 towers(n-1, aux_peg, to_peg, from_peg);
}

int
main(int argc, char **argv)
{
 towers(TOWER_SIZE, A, C, B);
 exit(0);
}
+++

**
cpu.v

`include "mips.h"

module cpu(CLK,RESET,Bus,Addr,Write,Read,Valid);
input CLK; // Clock
input RESET; // Master reset
input Valid; // Input from mem system on fills
inout [31:0] Bus; // Data Bus between cpu & memory
wire [31:0] Bus;
output [31:0] Addr; // Address Bus between cpu & memory
wire [31:0] Addr;
output Read; // Bus Read
wire Read;
output Write; // Bus Write
wire Write;

 40

// Stats
reg [31:0] numLoads;
reg [31:0] numStores;
reg [31:0] numDMisses;
reg [31:0] numIMisses;
reg [31:0] num_instructions_retired;
reg [31:0] num_instructions_inserted;
reg [31:0] num_flushes;
reg [31:0] num_instructions_fetched;
reg [31:0] num_instructions_decoded;
reg [31:0] num_branches;
reg [31:0] num_jrs;
reg [31:0] num_correct_br_pred;
reg [31:0] num_correct_jr_pred;
reg [31:0]
num_data_forwarded,num_data_forwarded_written_ahead_of_time,num_early_load_accesses,num_data_forw
arded_not_written,num_rob_head_loads,num_loads_written_before_retire;
reg [31:0] num_cycles_istall,num_cycles_renamestall,num_cycles_robstall;

//Control Regs
wire ROB_Full;
reg [31:0] PC,nextFetchAt,correctTarget;
wire [31:0] InAddrA,InAddrB,InAddrC,InAddrD;
reg [31:0] InstrA,InstrB,InstrC,InstrD;
wire [31:0] InInstA,InInstB,InInstC,InInstD;
reg [31:0] PCA,PCB,PCC,PCD;
reg [31:0] PC_inc,PC_same,PC_br,PC_jmp;
reg Istalled;
wire IStall,DStall;
wire renameStall;
reg fullFlush,fullFlushed,robFulled;
reg [5:0] MAP[33:0];//retirement rat, moved out of its own module for timing
wire [31:0] RAS_PC;
wire BR_Pred;

//PC Related Stuff
always @(negedge CLK)begin
 if(RESET)begin
 PC = 32'hbfc00000;
 end
 else begin
 if(IStall || (Istalled&&!fullFlush) /*|| (robFulled&&!fullFlush)*/ /*||
(ROB_Full&&!fullFlush) || (renameStall&&!fullFlush)*/)begin
 PC = PC;
 end
 else if(fullFlush)begin
 PC = correctTarget;
 end
 else begin
 PC = nextFetchAt;
 end
 end
end

//ICache
assign InAddrA = PC;
assign InAddrB = PC+4;
assign InAddrC = PC+8;
assign InAddrD = PC+12;

always @(posedge CLK)begin
 if(RESET)begin
 PCA = InAddrA;
 PCB = InAddrB;
 PCC = InAddrC;
 PCD = InAddrD;
 InstrA = InInstA;
 InstrB = InInstB;
 InstrC = InInstC;
 InstrD = InInstD;

 41

 Istalled = 1;
 num_cycles_istall = 0;
 num_cycles_renamestall = 0;
 num_cycles_robstall = 0;
 end
 else begin
 if(IStall)num_cycles_istall = num_cycles_istall + 1;
 if(renameStall)num_cycles_renamestall = num_cycles_renamestall+1;
 if(ROB_Full)num_cycles_robstall = num_cycles_robstall+1;

 if(IStall)begin
 if(fullFlush)begin
 PCA = 0;
 PCB = 0;
 PCC = 0;
 PCD = 0;
 InstrA = 0;
 InstrB = 0;
 InstrC = 0;
 InstrD = 0;
 end
 else begin
 if(ROB_Full||renameStall)begin
 PCA = PCA;
 PCB = PCB;
 PCC = PCC;
 PCD = PCD;
 InstrA = InstrA;
 InstrB = InstrB;
 InstrC = InstrC;
 InstrD = InstrD;
 end
 else begin
 PCA = InAddrA;
 PCB = InAddrB;
 PCC = InAddrC;
 PCD = InAddrD;
 InstrA = InInstA;
 InstrB = InInstB;
 InstrC = InInstC;
 InstrD = InInstD;
 end
 end
 Istalled = IStall;
 fullFlushed = fullFlush;
 robFulled = ROB_Full;
 end
 else begin
 if(fullFlush)begin
 PCA = 0;
 PCB = 0;
 PCC = 0;
 PCD = 0;
 InstrA = 0;
 InstrB = 0;
 InstrC = 0;
 InstrD = 0;
 end
 else begin
 if((ROB_Full||renameStall)&&!Istalled)begin
 PCA = PCA;
 PCB = PCB;
 PCC = PCC;
 PCD = PCD;
 InstrA = InstrA;
 InstrB = InstrB;
 InstrC = InstrC;
 InstrD = InstrD;
 end
 else begin
 PCA = InAddrA;

 42

 PCB = InAddrB;
 PCC = InAddrC;
 PCD = InAddrD;
 InstrA = InInstA;
 InstrB = InInstB;
 InstrC = InInstC;
 InstrD = InInstD;
 end
 end

 Istalled = IStall;
 fullFlushed = fullFlush;
 robFulled = ROB_Full;
 end
 end
end

reg [7:0] memOp;
reg isMemRetire;
reg [31:0] MAR;
reg [31:0] SMDR;
wire [31:0] cacheOut;
wire [31:0] store_value,pre_store_value;
wire isLoad;
mem i_cache_d_cache(
 .CLK(CLK),
 .memOperation(memOp),
 .isMem(isMemRetire),
 .RESET(RESET),
 .MAR(MAR),
 .Valid(Valid),
 .SMDR(SMDR),
 .IaddrA(InAddrA),
 .IaddrB(InAddrB),
 .IaddrC(InAddrC),
 .IaddrD(InAddrD),
 .Bus(Bus),
 .Read(Read),
 .Write(Write),
 .Addr(Addr),
 .cacheOut(cacheOut),
 .IinA(InInstA),
 .IinB(InInstB),
 .IinC(InInstC),
 .IinD(InInstD),
 .Istall(IStall),
 .Dstall(DStall),
 .isLoad(isLoad)
);

//Decode / rename / predict
reg [31:0] CF_PC,Link_PC;
reg push_link,pop_link,br_dir;
reg [2:0] numInstr,r_numInstr;
wire [2:0] numRenamed;
//Values coming out of decoder
wire [7:0] opA1,opA2,opB1,opB2,opC1,opC2,opD1,opD2;
wire [1:0] queueA,queueB,queueC,queueD;
wire [5:0] rsA,rsB,rsC,rsD,rtA,rtB,rtC,rtD;
wire [5:0] rdA1,rdA2,rdB1,rdB2,rdC1,rdC2,rdD1,rdD2;
wire usesImmA,usesImmB,usesImmC,usesImmD;
wire [31:0] immA,immB,immC,immD;
wire isSysA,isMemA,isMDA,isALUA,isSysB,isMemB,isMDB,isALUB;
wire isSysC,isMemC,isMDC,isALUC,isSysD,isMemD,isMDD,isALUD;
wire [2:0] isCFA,isCFB,isCFC,isCFD;
wire [31:0] targetA,targetB,targetC,targetD;
//Values going to rename
reg [7:0] d_opA,d_opB,d_opC,d_opD;
reg [1:0] d_queueA,d_queueB,d_queueC,d_queueD;
reg [5:0] d_rsA,d_rsB,d_rsC,d_rsD,d_rtA,d_rtB,d_rtC,d_rtD;
reg [5:0] d_rdA,d_rdB,d_rdC,d_rdD;

 43

reg d_usesImmA,d_usesImmB,d_usesImmC,d_usesImmD;
reg [31:0] d_immA,d_immB,d_immC,d_immD;
reg d_isSysA,d_isMemA,d_isMDA,d_isALUA,d_isSysB,d_isMemB,d_isMDB,d_isALUB;
reg d_isSysC,d_isMemC,d_isMDC,d_isALUC,d_isSysD,d_isMemD,d_isMDD,d_isALUD;
reg [2:0] d_isCFA,d_isCFB,d_isCFC,d_isCFD;
reg [31:0] d_targetA,d_targetB,d_targetC,d_targetD;
reg [31:0] d_PCA,d_PCB,d_PCC,d_PCD;
reg d_pred_A,d_pred_B,d_pred_C,d_pred_D;
reg [31:0] d_instrA,d_instrB,d_instrC,d_instrD;
reg [31:0] r_instrA,r_instrB,r_instrC,r_instrD;
//temporary swap values
reg [7:0] t_op;
reg [1:0] t_queue;
reg [5:0] t_rs;
reg [5:0] t_rt;
reg [5:0] t_rd;
reg t_usesImm;
reg [31:0] t_imm;
reg t_isSys,t_isMem,t_isMD,t_isALU;
reg [2:0] t_isCF;
reg [31:0] t_target;
reg [31:0] t_PC;
reg t_pred;
reg [31:0] t_instr;
reg ab_swap,bc_swap,cd_swap;
//Set up instructions from decode to go into rename and rest of cpu
//mult/div expanded to two instructions
//control flow ends decode unless untaken branch and no other branches in fetch group
//swap delay slot with CF to make it easier to flush after misprediction gets to ROB head
always @(*)begin
 numInstr = 4;
 nextFetchAt = PCD+4;
 //assign initial values
 d_opA = opA1; d_opB = opB1; d_opC = opC1;
 d_opD = opD1;
 d_queueA = queueA; d_queueB = queueB; d_queueC = queueC;
 d_queueD = queueD;
 d_rsA = rsA; d_rsB = rsB; d_rsC = rsC;
 d_rsD = rsD;
 d_rtA = rtA; d_rtB = rtB; d_rtC = rtC;
 d_rtD = rtD;
 d_rdA = rdA1; d_rdB = rdB1; d_rdC = rdC1;
 d_rdD = rdD1;
 d_usesImmA = usesImmA; d_usesImmB = usesImmB; d_usesImmC = usesImmC; d_usesImmD = usesImmD;
 d_immA = immA; d_immB = immB; d_immC = immC;
 d_immD = immD;
 d_isSysA = isSysA; d_isSysB = isSysB; d_isSysC = isSysC;
 d_isSysD = isSysD;
 d_isMemA = isMemA; d_isMemB = isMemB; d_isMemC = isMemC;
 d_isMemD = isMemD;
 d_isMDA = isMDA; d_isMDB = isMDB; d_isMDC = isMDC;
 d_isMDD = isMDD;
 d_isALUA = isALUA; d_isALUB = isALUB; d_isALUC = isALUC;
 d_isALUD = isALUD;
 d_isCFA = isCFA; d_isCFB = isCFB; d_isCFC = isCFC;
 d_isCFD = isCFD;
 d_targetA = targetA; d_targetB = targetB; d_targetC = targetC; d_targetD = targetD;
 d_PCA = PCA; d_PCB = PCB; d_PCC = PCC;
 d_PCD = PCD;
 d_pred_A = 0; d_pred_B = 0; d_pred_C = 0;
 d_pred_D = 0;
 d_instrA = InstrA; d_instrB = InstrB; d_instrC = InstrC; d_instrD = InstrD;
 ab_swap = 0; bc_swap = 0; cd_swap = 0;

 //expand multiplies/divides
 if(d_isMDA)begin
 if(d_isMDB)begin
 //mult/div back to back, expand both, a to a/b, b to c/d
 d_opB = opA2; d_opC = opB1; d_opD = opB2;
 d_queueB = queueA; d_queueC = queueB; d_queueD =
queueB;

 44

 d_rsB = rsA; d_rsC = rsB; d_rsD = rsB;
 d_rtB = rtA; d_rtC = rtB; d_rtD = rtB;
 d_rdB = rdA2; d_rdC = rdB1; d_rdD = rdB2;
 d_usesImmB = usesImmA; d_usesImmC = usesImmB; d_usesImmD = usesImmB;
 d_immB = immA; d_immC = immB; d_immD = immB;
 d_isSysB = isSysA; d_isSysC = isSysB; d_isSysD =
isSysB;
 d_isMemB = isMemA; d_isMemC = isMemB; d_isMemD =
isMemB;
 d_isMDB = isMDA; d_isMDC = isMDB; d_isMDD =
isMDB;
 d_isALUB = isALUA; d_isALUC = isALUB; d_isALUD =
isALUB;
 d_isCFB = isCFA; d_isCFC = isCFB; d_isCFD =
isCFB;
 d_targetB = targetA; d_targetC = targetB; d_targetD = targetB;
 d_PCB = PCA; d_PCC = PCB; d_PCD = PCB;
 d_instrB = InstrA; d_instrC = InstrB; d_instrD = InstrB;
 nextFetchAt = PCB+4;
 end
 else if(d_isMDC)begin
 //won't be room for both md's to be expanded
 //A expands to A and B, B to C, D empty because can't expand that mult
 d_opB = opA2; d_opC = opB1; d_opD = 0;
 d_queueB = queueA; d_queueC = queueB; d_queueD = 0;
 d_rsB = rsA; d_rsC = rsB; d_rsD = 0;
 d_rtB = rtA; d_rtC = rtB; d_rtD = 0;
 d_rdB = rdA2; d_rdC = rdB1; d_rdD = 0;
 d_usesImmB = usesImmA; d_usesImmC = usesImmB; d_usesImmD = 0;
 d_immB = immA; d_immC = immB; d_immD = 0;
 d_isSysB = isSysA; d_isSysC = isSysB; d_isSysD = 0;
 d_isMemB = isMemA; d_isMemC = isMemB; d_isMemD = 0;
 d_isMDB = isMDA; d_isMDC = isMDB; d_isMDD = 0;
 d_isALUB = isALUA; d_isALUC = isALUB; d_isALUD = 0;
 d_isCFB = isCFA; d_isCFC = isCFB; d_isCFD = 0;
 d_targetB = targetA; d_targetC = targetB; d_targetD = 0;
 d_PCB = PCA; d_PCC = PCB; d_PCD = 0;
 d_instrB = InstrA; d_instrC = InstrB; d_instrD = 0;
 nextFetchAt = PCB+4;
 numInstr = 3;
 end
 else begin
 //only one md, first slot, if there was one in last slot it got pushed out
 //A expands to A and B, B to C, C to D D pushed out
 d_opB = opA2; d_opC = opB1; d_opD = opC1;
 d_queueB = queueA; d_queueC = queueB; d_queueD =
queueC;
 d_rsB = rsA; d_rsC = rsB; d_rsD = rsC;
 d_rtB = rtA; d_rtC = rtB; d_rtD = rtC;
 d_rdB = rdA2; d_rdC = rdB1; d_rdD = rdC1;
 d_usesImmB = usesImmA; d_usesImmC = usesImmB; d_usesImmD = usesImmC;
 d_immB = immA; d_immC = immB; d_immD = immC;
 d_isSysB = isSysA; d_isSysC = isSysB; d_isSysD =
isSysC;
 d_isMemB = isMemA; d_isMemC = isMemB; d_isMemD =
isMemC;
 d_isMDB = isMDA; d_isMDC = isMDB; d_isMDD =
isMDC;
 d_isALUB = isALUA; d_isALUC = isALUB; d_isALUD =
isALUC;
 d_isCFB = isCFA; d_isCFC = isCFB; d_isCFD =
isCFC;
 d_targetB = targetA; d_targetC = targetB; d_targetD = targetC;
 d_PCB = PCA; d_PCC = PCB; d_PCD = PCC;
 d_instrB = InstrA; d_instrC = InstrB; d_instrD = InstrC;
 nextFetchAt = PCC+4;
 end
 end
 else if(d_isMDB)begin
 if(d_isMDC)begin

 45

 //Mult in 2nd spot takes B and C, pushes D out, C can't expand so D empty,
A same
 d_opC = opB2; d_opD = 0;
 d_queueC = queueB; d_queueD = 0;
 d_rsC = rsB; d_rsD = 0;
 d_rtC = rtB; d_rtD = 0;
 d_rdC = rdB2; d_rdD = 0;
 d_usesImmC = usesImmB; d_usesImmD = 0;
 d_immC = immB; d_immD = 0;
 d_isSysC = isSysB; d_isSysD = 0;
 d_isMemC = isMemB; d_isMemD = 0;
 d_isMDC = isMDB; d_isMDD = 0;
 d_isALUC = isALUB; d_isALUD = 0;
 d_isCFC = isCFB; d_isCFD = 0;
 d_targetC = targetB; d_targetD = 0;
 d_PCC = PCB; d_PCD = 0;
 d_instrC = InstrB; d_instrD = 0;
 nextFetchAt = PCB+4;
 numInstr = 3;
 end
 else begin
 //only B is mult, a same, b to b and c, c to d
 d_opC = opB2; d_opD = opC1;
 d_queueC = queueB; d_queueD = queueC;
 d_rsC = rsB; d_rsD = rsC;
 d_rtC = rtB; d_rtD = rtC;
 d_rdC = rdB2; d_rdD = rdC1;
 d_usesImmC = usesImmB; d_usesImmD = usesImmC;
 d_immC = immB; d_immD = immC;
 d_isSysC = isSysB; d_isSysD = isSysC;
 d_isMemC = isMemB; d_isMemD = isMemC;
 d_isMDC = isMDB; d_isMDD = isMDC;
 d_isALUC = isALUB; d_isALUD = isALUC;
 d_isCFC = isCFB; d_isCFD = isCFC;
 d_targetC = targetB; d_targetD = targetC;
 d_PCC = PCB; d_PCD = PCC;
 d_instrC = InstrB; d_instrD = InstrC;
 nextFetchAt = PCC+4;
 end
 end
 else if(d_isMDC)begin
 //a same, b same, c expands to c and d
 d_opD = opC2;
 d_queueD = queueC;
 d_rsD = rsC;
 d_rtD = rtC;
 d_rdD = rdC2;
 d_usesImmD = usesImmC;
 d_immD = immC;
 d_isSysD = isSysC;
 d_isMemD = isMemC;
 d_isMDD = isMDC;
 d_isALUD = isALUC;
 d_isCFD = isCFC;
 d_targetD = targetC;
 d_PCD = PCC;
 d_instrD = InstrC;
 nextFetchAt = PCC+4;
 end
 else if(d_isMDD)begin
 //can't expand a mult in slot d, defer to next cycle
 d_opD = 0;
 d_queueD = 0;
 d_rsD = 0;
 d_rtD = 0;
 d_rdD = 0;
 d_usesImmD = 0;
 d_immD = 0;
 d_isSysD = 0;
 d_isMemD = 0;
 d_isMDD = 0;

 46

 d_isALUD = 0;
 d_isCFD = 0;
 d_targetD = 0;
 d_PCD = 0;
 d_instrD = 0;
 numInstr = 3;
 nextFetchAt = PCC+4;

 if(d_isCFC[0])begin
 d_opC = 0;
 d_queueC =0;
 d_rsC =0;
 d_rtC =0;
 d_rdC =0;
 d_usesImmC =0;
 d_immC =0;
 d_isSysC =0;
 d_isMemC =0;
 d_isMDC =0;
 d_isALUC =0;
 d_isCFC =0;
 d_targetC =0;
 d_PCC =0;
 d_instrC = 0;
 numInstr = 2;
 nextFetchAt = PCB+4;
 end
 end

 //handle control flow instructions
 //swap with delay slot,no more instructions decoded if pred not taken
 //CF can't be last instruction fetched to make sure we get the delay slot

 push_link = 0;
 pop_link = 0;

 if(d_isCFA[0])begin
 if(d_isMDB)begin
 //Swap A and C
 t_op = d_opA;
 t_queue = d_queueA;
 t_rs = d_rsA;
 t_rt = d_rtA;
 t_rd = d_rdA;
 t_usesImm = d_usesImmA;
 t_imm = d_immA;
 t_isSys = d_isSysA;
 t_isMem = d_isMemA;
 t_isMD = d_isMDA;
 t_isALU = d_isALUA;
 t_isCF = d_isCFA;
 t_target = d_targetA;
 t_PC = d_PCA;
 t_pred = 0;
 t_instr = d_instrA;

 d_opA = d_opC; d_opC = t_op;
 d_queueA = d_queueC; d_queueC = t_queue;
 d_rsA = d_rsC; d_rsC = t_rs;
 d_rtA = d_rtC; d_rtC = t_rt;
 d_rdA = d_rdC; d_rdC = t_rd;
 d_usesImmA = d_usesImmC; d_usesImmC = t_usesImm;
 d_immA = d_immC; d_immC = t_imm;
 d_isSysA = d_isSysC; d_isSysC = t_isSys;
 d_isMemA = d_isMemC; d_isMemC = t_isMem;
 d_isMDA = d_isMDC; d_isMDC = t_isMD;
 d_isALUA = d_isALUC; d_isALUC = t_isALU;
 d_isCFA = d_isCFC; d_isCFC = t_isCF;
 d_targetA = d_targetC; d_targetC = t_target;
 d_PCA = d_PCC; d_PCC = t_PC;
 d_pred_A = 0; d_pred_C = t_pred;

 47

 d_instrA = d_instrC; d_instrC = t_instr;
 CF_PC = d_PCC;
 Link_PC = d_immC;
 if(d_isCFC[2] && d_rdC == 31)push_link = 1;
 if((d_opC == `select_qc_jr || d_opC ==
`select_qc_jalr)&&d_rsC==31)pop_link = 1;
 br_dir = d_isCFC[1];

 if(d_opC == `select_qc_jr || d_opC == `select_qc_jalr)begin
 nextFetchAt = RAS_PC;
 d_targetC = RAS_PC;
 end
 else if(d_opC == `select_qc_j || d_opC == `select_qc_jal)begin
 nextFetchAt = d_targetC;
 end
 else begin
 if(BR_Pred)begin
 nextFetchAt = d_targetC;
 d_pred_C = 1;
 end
 else begin
 nextFetchAt = d_PCC + 8;
 d_pred_C = 0;
 end
 end
 //wouldnt have to kill if predicted not taken and is not CF

 d_opD = 0;
 d_queueD = 0;
 d_rsD = 0;
 d_rtD = 0;
 d_rdD = 0;
 d_usesImmD = 0;
 d_immD = 0;
 d_isSysD = 0;
 d_isMemD = 0;
 d_isMDD = 0;
 d_isALUD = 0;
 d_isCFD = 0;
 d_targetD = 0;
 d_PCD = 0;
 d_instrD = 0;
 numInstr = 3;

 end
 else begin
 //Swap A and B
 t_op = d_opA;
 t_queue = d_queueA;
 t_rs = d_rsA;
 t_rt = d_rtA;
 t_rd = d_rdA;
 t_usesImm = d_usesImmA;
 t_imm = d_immA;
 t_isSys = d_isSysA;
 t_isMem = d_isMemA;
 t_isMD = d_isMDA;
 t_isALU = d_isALUA;
 t_isCF = d_isCFA;
 t_target = d_targetA;
 t_PC = d_PCA;
 t_pred = 0;
 t_instr = d_instrA;
 //Swap A and B
 ab_swap = 1;
 d_opA = d_opB; d_opB = t_op;
 d_queueA = d_queueB; d_queueB = t_queue;
 d_rsA = d_rsB; d_rsB = t_rs;
 d_rtA = d_rtB; d_rtB = t_rt;
 d_rdA = d_rdB; d_rdB = t_rd;
 d_usesImmA = d_usesImmB; d_usesImmB = t_usesImm;

 48

 d_immA = d_immB; d_immB = t_imm;
 d_isSysA = d_isSysB; d_isSysB = t_isSys;
 d_isMemA = d_isMemB; d_isMemB = t_isMem;
 d_isMDA = d_isMDB; d_isMDB = t_isMD;
 d_isALUA = d_isALUB; d_isALUB = t_isALU;
 d_isCFA = d_isCFB; d_isCFB = t_isCF;
 d_targetA = d_targetB; d_targetB = t_target;
 d_PCA = d_PCB; d_PCB = t_PC;
 d_pred_A = 0; d_pred_B = t_pred;
 d_instrA = d_instrB; d_instrB = t_instr;
 CF_PC = d_PCB;
 Link_PC = d_immB;
 if(d_isCFB[2] && d_rdB == 31)push_link = 1;
 if((d_opB == `select_qc_jr || d_opB ==
`select_qc_jalr)&&d_rsB==31)pop_link = 1;
 br_dir = d_isCFB[1];

 if(d_opB == `select_qc_jr || d_opB == `select_qc_jalr)begin
 nextFetchAt = RAS_PC;
 d_targetB = RAS_PC;
 d_pred_B = 1;
 end
 else if(d_opB == `select_qc_j || d_opB == `select_qc_jal)begin
 nextFetchAt = d_targetB;
 d_pred_B = 1;
 end
 else begin
 if(BR_Pred)begin
 nextFetchAt = d_targetB;
 d_pred_B = 1;
 end
 else begin
 nextFetchAt = d_PCB + 8;
 d_pred_B = 0;
 end
 end
 //wouldnt have to kill if predicted not taken and is not CF

 d_opC = 0;
 d_queueC =0;
 d_rsC =0;
 d_rtC =0;
 d_rdC =0;
 d_usesImmC =0;
 d_immC =0;
 d_isSysC =0;
 d_isMemC =0;
 d_isMDC =0;
 d_isALUC =0;
 d_isCFC =0;
 d_targetC =0;
 d_PCC =0;
 d_instrC = 0;
 d_opD = 0;
 d_queueD = 0;
 d_rsD = 0;
 d_rtD = 0;
 d_rdD = 0;
 d_usesImmD = 0;
 d_immD = 0;
 d_isSysD = 0;
 d_isMemD = 0;
 d_isMDD = 0;
 d_isALUD = 0;
 d_isCFD = 0;
 d_targetD = 0;
 d_PCD = 0;
 d_instrD = 0;
 numInstr = 2;

 end

 49

 end
 else if(d_isCFB[0])begin
 if(d_isMDC)begin
 //swap b and d
 t_op = d_opB;
 t_queue = d_queueB;
 t_rs = d_rsB;
 t_rt = d_rtB;
 t_rd = d_rdB;
 t_usesImm = d_usesImmB;
 t_imm = d_immB;
 t_isSys = d_isSysB;
 t_isMem = d_isMemB;
 t_isMD = d_isMDB;
 t_isALU = d_isALUB;
 t_isCF = d_isCFB;
 t_target = d_targetB;
 t_PC = d_PCB;
 t_pred = 0;
 t_instr = d_instrB;

 d_opB = d_opD; d_opD = t_op;
 d_queueB = d_queueD; d_queueD = t_queue;
 d_rsB = d_rsD; d_rsD = t_rs;
 d_rtB = d_rtD; d_rtD = t_rt;
 d_rdB = d_rdD; d_rdD = t_rd;
 d_usesImmB = d_usesImmD; d_usesImmD = t_usesImm;
 d_immB = d_immD; d_immD = t_imm;
 d_isSysB = d_isSysD; d_isSysD = t_isSys;
 d_isMemB = d_isMemD; d_isMemD = t_isMem;
 d_isMDB = d_isMDD; d_isMDD = t_isMD;
 d_isALUB = d_isALUD; d_isALUD = t_isALU;
 d_isCFB = d_isCFD; d_isCFD = t_isCF;
 d_targetB = d_targetD; d_targetD = t_target;
 d_PCB = d_PCD; d_PCD = t_PC;
 d_pred_B = 0; d_pred_D = t_pred;
 d_instrB = d_instrD; d_instrD = t_instr;
 CF_PC = d_PCD;
 Link_PC = d_immD;
 if(d_isCFD[2] && d_rdD == 31)push_link = 1;
 if((d_opD == `select_qc_jr || d_opD ==
`select_qc_jalr)&&d_rsD==31)pop_link = 1;
 br_dir = d_isCFD[1];

 if(d_opD == `select_qc_jr || d_opD == `select_qc_jalr)begin
 nextFetchAt = RAS_PC;
 d_targetD = RAS_PC;
 end
 else if(d_opD == `select_qc_j || d_opD == `select_qc_jal)begin
 nextFetchAt = d_targetD;
 end
 else begin
 if(BR_Pred)begin
 nextFetchAt = d_targetD;
 d_pred_D = 1;
 end
 else begin
 nextFetchAt = d_PCD + 8;
 end
 end
 numInstr = 4;
 end
 else begin
 t_op = d_opB;
 t_queue = d_queueB;
 t_rs = d_rsB;
 t_rt = d_rtB;
 t_rd = d_rdB;
 t_usesImm = d_usesImmB;
 t_imm = d_immB;
 t_isSys = d_isSysB;

 50

 t_isMem = d_isMemB;
 t_isMD = d_isMDB;
 t_isALU = d_isALUB;
 t_isCF = d_isCFB;
 t_target = d_targetB;
 t_PC = d_PCB;
 t_pred = 0;
 t_instr = d_instrB;
 //Swap B and C
 bc_swap = 1;
 d_opB = d_opC; d_opC = t_op;
 d_queueB = d_queueC; d_queueC = t_queue;
 d_rsB = d_rsC; d_rsC = t_rs;
 d_rtB = d_rtC; d_rtC = t_rt;
 d_rdB = d_rdC; d_rdC = t_rd;
 d_usesImmB = d_usesImmC; d_usesImmC = t_usesImm;
 d_immB = d_immC; d_immC = t_imm;
 d_isSysB = d_isSysC; d_isSysC = t_isSys;
 d_isMemB = d_isMemC; d_isMemC = t_isMem;
 d_isMDB = d_isMDC; d_isMDC = t_isMD;
 d_isALUB = d_isALUC; d_isALUC = t_isALU;
 d_isCFB = d_isCFC; d_isCFC = t_isCF;
 d_targetB = d_targetC; d_targetC = t_target;
 d_PCB = d_PCC; d_PCC = t_PC;
 d_pred_B = 0; d_pred_C = t_pred;
 d_instrB = d_instrC; d_instrC = t_instr;
 CF_PC = d_PCC;
 Link_PC = d_immC;
 if(d_isCFC[2] && d_rdC == 31)push_link = 1;
 if((d_opC == `select_qc_jr || d_opC ==
`select_qc_jalr)&&d_rsC==31)pop_link = 1;
 br_dir = d_isCFC[1];

 if(d_opC == `select_qc_jr || d_opC == `select_qc_jalr)begin
 nextFetchAt = RAS_PC;
 d_targetC = RAS_PC;
 d_pred_C = 1;
 end
 else if(d_opC == `select_qc_j || d_opC == `select_qc_jal)begin
 nextFetchAt = d_targetC;
 d_pred_C = 1;
 end
 else begin
 if(BR_Pred)begin
 nextFetchAt = d_targetC;
 d_pred_C = 1;
 end
 else begin
 d_pred_C = 0;
 nextFetchAt = d_PCC + 8;
 end
 end
 //wouldnt have to kill if predicted not taken and is not CF

 d_opD = 0;
 d_queueD = 0;
 d_rsD = 0;
 d_rtD = 0;
 d_rdD = 0;
 d_usesImmD = 0;
 d_immD = 0;
 d_isSysD = 0;
 d_isMemD = 0;
 d_isMDD = 0;
 d_isALUD = 0;
 d_isCFD = 0;
 d_targetD = 0;
 d_PCD = 0;
 d_instrD = 0;

 numInstr = 3;

 51

 end
 end
 else if(d_isCFC[0])begin
 t_op = d_opC;
 t_queue = d_queueC;
 t_rs = d_rsC;
 t_rt = d_rtC;
 t_rd = d_rdC;
 t_usesImm = d_usesImmC;
 t_imm = d_immC;
 t_isSys = d_isSysC;
 t_isMem = d_isMemC;
 t_isMD = d_isMDC;
 t_isALU = d_isALUC;
 t_isCF = d_isCFC;
 t_target = d_targetC;
 t_PC = d_PCC;
 t_pred = 0;
 t_instr = d_instrC;
 //Swap C and D
 cd_swap = 1;
 d_opC = d_opD; d_opD = t_op;
 d_queueC = d_queueD; d_queueD = t_queue;
 d_rsC = d_rsD; d_rsD = t_rs;
 d_rtC = d_rtD; d_rtD = t_rt;
 d_rdC = d_rdD; d_rdD = t_rd;
 d_usesImmC = d_usesImmD; d_usesImmD = t_usesImm;
 d_immC = d_immD; d_immD = t_imm;
 d_isSysC = d_isSysD; d_isSysD = t_isSys;
 d_isMemC = d_isMemD; d_isMemD = t_isMem;
 d_isMDC = d_isMDD; d_isMDD = t_isMD;
 d_isALUC = d_isALUD; d_isALUD = t_isALU;
 d_isCFC = d_isCFD; d_isCFD = t_isCF;
 d_targetC = d_targetD; d_targetD = t_target;
 d_PCC = d_PCD; d_PCD = t_PC;
 d_pred_C = 0; d_pred_D = t_pred;
 d_instrC = d_instrD; d_instrD = t_instr;
 CF_PC = d_PCD;
 Link_PC = d_immD;
 if(d_isCFD[2] && d_rdD == 31)push_link = 1;
 if((d_opD == `select_qc_jr || d_opD == `select_qc_jalr)&&d_rsD==31)pop_link = 1;
 br_dir = d_isCFD[1];

 if(d_opD == `select_qc_jr || d_opD == `select_qc_jalr)begin
 nextFetchAt = RAS_PC;
 d_targetD = RAS_PC;
 end
 else if(d_opD == `select_qc_j || d_opD == `select_qc_jal)begin
 nextFetchAt = d_targetD;
 end
 else begin
 if(BR_Pred)begin
 nextFetchAt = d_targetD;
 d_pred_D = 1;
 end
 else begin
 nextFetchAt = d_PCD + 8;
 end
 end
 end
 else if(d_isCFD[0])begin
 //defer til next cycle so we can get delay slot at same time
 d_opD = 0;
 d_queueD = 0;
 d_rsD = 0;
 d_rtD = 0;
 d_rdD = 0;
 d_usesImmD = 0;
 d_immD = 0;
 d_isSysD = 0;

 52

 d_isMemD = 0;
 d_isMDD = 0;
 d_isALUD = 0;
 d_isCFD = 0;
 d_targetD = 0;
 d_PCD = 0;
 d_instrD = 0;
 numInstr = 3;
 nextFetchAt = PCC+4;
 end
 if((Istalled || ROB_Full || fullFlush || fullFlushed ||
renameStall)&&!(IStall&&robFulled&&!ROB_Full))begin
 if(!renameStall)numInstr = 0;
 d_queueA = 0;
 d_queueB = 0;
 d_queueC = 0;
 d_queueD = 0;
 pop_link = 0;
 push_link = 0;
 end
end

//Values after the register separating rename from rob/queue/execute
reg [7:0] r_opA,r_opB,r_opC,r_opD;
reg [1:0] r_queueA,r_queueB,r_queueC,r_queueD;
wire [5:0] r_rsA,r_rsB,r_rsC,r_rsD,r_rtA,r_rtB,r_rtC,r_rtD;
wire [5:0] r_rdA,r_rdB,r_rdC,r_rdD;
reg [5:0] r_lrdA,r_lrdB,r_lrdC,r_lrdD;
reg r_usesImmA,r_usesImmB,r_usesImmC,r_usesImmD;
reg [31:0] r_immA,r_immB,r_immC,r_immD;
reg r_isSysA,r_isMemA,r_isMDA,r_isALUA,r_isSysB,r_isMemB,r_isMDB,r_isALUB;
reg r_isSysC,r_isMemC,r_isMDC,r_isALUC,r_isSysD,r_isMemD,r_isMDD,r_isALUD;
reg [2:0] r_isCFA,r_isCFB,r_isCFC,r_isCFD;
reg [31:0] r_targetA,r_targetB,r_targetC,r_targetD;
reg [31:0] r_PCA,r_PCB,r_PCC,r_PCD;
reg r_pred_A,r_pred_B,r_pred_C,r_pred_D;
wire ab_dependant,bc_dependant,cd_dependant;
reg r_adep,r_bdep,r_cdep,r_ddep;

//Pipe to next stage
always @(posedge CLK)begin
 r_opA = d_opA; r_opB = d_opB; r_opC = d_opC;
 r_opD = d_opD;
 r_lrdA = d_rdA; r_lrdB = d_rdB; r_lrdC =
d_rdC; r_lrdD = d_rdD;
 r_queueA = d_queueA; r_queueB = d_queueB; r_queueC = d_queueC; r_queueD = d_queueD;
 r_usesImmA = d_usesImmA;r_usesImmB = d_usesImmB;r_usesImmC = d_usesImmC;r_usesImmD =
d_usesImmD;
 r_immA = d_immA; r_immB = d_immB; r_immC = d_immC;
 r_immD = d_immD;
 r_isSysA = d_isSysA; r_isSysB = d_isSysB; r_isSysC = d_isSysC; r_isSysD = d_isSysD;
 r_isMemA = d_isMemA; r_isMemB = d_isMemB; r_isMemC = d_isMemC; r_isMemD = d_isMemD;
 r_isMDA = d_isMDA; r_isMDB = d_isMDB; r_isMDC = d_isMDC;
 r_isMDD = d_isMDD;
 r_isCFA = d_isCFA; r_isCFB = d_isCFB; r_isCFC = d_isCFC;
 r_isCFD = d_isCFD;
 r_isALUA = d_isALUA; r_isALUB = d_isALUB; r_isALUC = d_isALUC; r_isALUD = d_isALUD;
 r_targetA = d_targetA; r_targetB = d_targetB; r_targetC = d_targetC; r_targetD =
d_targetD;
 r_PCA = d_PCA; r_PCB = d_PCB; r_PCC = d_PCC;
 r_PCD = d_PCD;
 r_pred_A = d_pred_A; r_pred_B = d_pred_B; r_pred_C = d_pred_C; r_pred_D = d_pred_D;
 r_instrA = d_instrA; r_instrB = d_instrB; r_instrC = d_instrC; r_instrD = d_instrD;
 r_adep = ab_dependant;
 r_bdep = bc_dependant;
 r_cdep = cd_dependant;
 r_ddep = 0;
 if((fullFlush||ROB_Full || renameStall ||Istalled ||
fullFlushed)&&!(IStall&&robFulled&&!ROB_Full))begin
 r_numInstr = 0;

 53

 r_queueA = 0; r_queueB = 0; r_queueC = 0; r_queueD = 0;
 end
 else r_numInstr = numInstr;
end

decode decodeA(
 .instr(InstrA),
 .operation(opA1),
 .operation2(opA2),
 .queue(queueA),
 .rs(rsA),
 .rt(rtA),
 .rd(rdA1),
 .rd2(rdA2),
 .usesImmediate(usesImmA),
 .immediate(immA),
 .isSyscall(isSysA),
 .isMem(isMemA),
 .isMultDiv(isMDA),
 .isCF(isCFA),
 .isALU(isALUA),
 .PC(PCA),
 .fullFlush(1'b0),
 .target(targetA)
);
decode decodeB(
 .instr(InstrB),
 .operation(opB1),
 .operation2(opB2),
 .queue(queueB),
 .rs(rsB),
 .rt(rtB),
 .rd(rdB1),
 .rd2(rdB2),
 .usesImmediate(usesImmB),
 .immediate(immB),
 .isSyscall(isSysB),
 .isMem(isMemB),
 .isMultDiv(isMDB),
 .isCF(isCFB),
 .isALU(isALUB),
 .PC(PCB),
 .fullFlush(1'b0),
 .target(targetB)
);
decode decodeC(
 .instr(InstrC),
 .operation(opC1),
 .operation2(opC2),
 .queue(queueC),
 .rs(rsC),
 .rt(rtC),
 .rd(rdC1),
 .rd2(rdC2),
 .usesImmediate(usesImmC),
 .immediate(immC),
 .isSyscall(isSysC),
 .isMem(isMemC),
 .isMultDiv(isMDC),
 .isCF(isCFC),
 .isALU(isALUC),
 .PC(PCC),
 .fullFlush(1'b0),
 .target(targetC)
);
decode decodeD(
 .instr(InstrD),
 .operation(opD1),
 .operation2(opD2),
 .queue(queueD),
 .rs(rsD),

 54

 .rt(rtD),
 .rd(rdD1),
 .rd2(rdD2),
 .usesImmediate(usesImmD),
 .immediate(immD),
 .isSyscall(isSysD),
 .isMem(isMemD),
 .isMultDiv(isMDD),
 .isCF(isCFD),
 .isALU(isALUD),
 .PC(PCD),
 .fullFlush(1'b0),
 .target(targetD)
);

wire [5:0] free0,free1,free2,free3;
wire [7:0] numFree;

reg [203:0] remapped;

always @(*)begin
 remapped[5:0] = MAP[0];
 remapped[11:6] = MAP[1];
 remapped[17:12] = MAP[2];
 remapped[23:18] = MAP[3];
 remapped[29:24] = MAP[4];
 remapped[35:30] = MAP[5];
 remapped[41:36] = MAP[6];
 remapped[47:42] = MAP[7];
 remapped[53:48] = MAP[8];
 remapped[59:54] = MAP[9];
 remapped[65:60] = MAP[10];
 remapped[71:66] = MAP[11];
 remapped[77:72] = MAP[12];
 remapped[83:78] = MAP[13];
 remapped[89:84] = MAP[14];
 remapped[95:90] = MAP[15];
 remapped[101:96] = MAP[16];
 remapped[107:102] = MAP[17];
 remapped[113:108] = MAP[18];
 remapped[119:114] = MAP[19];
 remapped[125:120] = MAP[20];
 remapped[131:126] = MAP[21];
 remapped[137:132] = MAP[22];
 remapped[143:138] = MAP[23];
 remapped[149:144] = MAP[24];
 remapped[155:150] = MAP[25];
 remapped[161:156] = MAP[26];
 remapped[167:162] = MAP[27];
 remapped[173:168] = MAP[28];
 remapped[179:174] = MAP[29];
 remapped[185:180] = MAP[30];
 remapped[191:186] = MAP[31];
 remapped[197:192] = MAP[32];
 remapped[203:198] = MAP[33];
end

rename regRename(
 .RESET(RESET),
 .CLK(CLK),
 .fullFlush(fullFlush),
 .iStalled(Istalled),
 .numInstr(numInstr),
 .replacementMAP(remapped),
 .numFree(numFree),
 .renameStall(renameStall),
 .numRenamed(numRenamed),
 .inRS0(d_rsA),
 .inRT0(d_rtA),
 .inRD0(d_rdA),
 .outRS0(r_rsA),

 55

 .outRT0(r_rtA),
 .outRD0(r_rdA),
 .free0(free0),
 .inRS1(d_rsB),
 .inRT1(d_rtB),
 .inRD1(d_rdB),
 .outRS1(r_rsB),
 .outRT1(r_rtB),
 .outRD1(r_rdB),
 .free1(free1),
 .inRS2(d_rsC),
 .inRT2(d_rtC),
 .inRD2(d_rdC),
 .outRS2(r_rsC),
 .outRT2(r_rtC),
 .outRD2(r_rdC),
 .free2(free2),
 .inRS3(d_rsD),
 .inRT3(d_rtD),
 .inRD3(d_rdD),
 .outRS3(r_rsD),
 .outRT3(r_rtD),
 .outRD3(r_rdD),
 .free3(free3),
 .ab_swap(ab_swap),
 .bc_swap(bc_swap),
 .cd_swap(cd_swap),
 .ab_dependant(ab_dependant),
 .bc_dependant(bc_dependant),
 .cd_dependant(cd_dependant)
);
reg [5:0] ROB_free0,ROB_free1,ROB_free2,ROB_free3;
reg [2:0] numAddFree;
freelist free_bird(
 .RESET(RESET),
 .CLK(CLK),
 .numRequest(numRenamed),
 .numFree(numFree),
 .free0(free0),
 .free1(free1),
 .free2(free2),
 .free3(free3),
 .numAdd(numAddFree),
 .nowFree0(ROB_free0),
 .nowFree1(ROB_free1),
 .nowFree2(ROB_free2),
 .nowFree3(ROB_free3)
);

reg updatePredictor_WE;
reg [31:0]updatePredictorPC;
reg updatePrediction;

branch_predictor br_predictor(
 .RESET(RESET),
 .CLK(CLK),
 .PC(CF_PC),
 .Prediction(BR_Pred),
 .UpdateEnable(updatePredictor_WE),
 .UpdatePC(updatePredictorPC),
 .UpdateValue(updatePrediction),
 .PredictorSelect(`select_pred_tpred),
 .Direction(br_dir)
);
reg [2:0] incorrect_pushes,incorrect_pops;
return_address_stack ras(
 .RESET(RESET),
 .CLK(CLK),
 .push(push_link),
 .pop(pop_link),
 .LinkPC(Link_PC),

 56

 .PredPC(RAS_PC),
 .incorrect_pushes(incorrect_pushes),
 .incorrect_pops(incorrect_pops)
);
//Reorder Buffer / Ready Register list
wire [63:0] readyList;
reg [5:0] store_reg;

reg link_WE;
reg [5:0] link_reg;
reg [31:0] link_value;
reg [63:0] link_ready;
reg load_WE;
reg [5:0] load_reg;
reg [31:0] load_value;
reg [63:0] load_ready;

reg [4:0] ROB_Head;//Pointer to head of ROB
reg [4:0] ROB_Tail;
reg [5:0] ROB_Free;//Number of free entries

assign ROB_Full = ROB_Free < 4;
reg ROB_Ready[31:0];//Is the entry ready to commit
reg ROB_Flushed[31:0];//Is the entry flushed
reg [7:0] ROB_Op[31:0];//Operation the entry performs
reg [5:0] ROB_LogReg[31:0];//Logical destination
reg [5:0] ROB_PhyReg[31:0];//Physical destination
reg ROB_Pred[31:0];//Direction Prediction
reg [31:0] ROB_Pred_Target[31:0];//Predicted target
reg ROB_Dir[31:0];//Actual direction
reg [31:0] ROB_EffAddr_Target_PC8[31:0];//Effective address for mem, actual target for jr's, or
pc+8 of br
reg ROB_isSys[31:0];
reg ROB_isMem[31:0];
reg [2:0] ROB_isCF[31:0];
reg [31:0] ROB_debug_instr[31:0];
reg [31:0] ROB_debug_PC[31:0];
reg [2:0] numRetired;
reg [63:0] ROB_unready0,ROB_unready1,ROB_unready2,ROB_unready3;
reg [5:0] ROB_pr0,ROB_pr1,ROB_pr2,ROB_pr3,ROB_lr0,ROB_lr1,ROB_lr2,ROB_lr3;
reg [4:0] ROB_slot0,ROB_slot1,ROB_slot2,ROB_slot3;
reg retireDone,prem;
reg ROB_Dep[31:0];

reg didAStore,didALoad;
wire [31:0] ALU0_out,ALU1_out,EffAddr,BRJR_target;
wire BRJR_taken;
reg ALU0_WE,ALU1_WE;
reg [5:0] ex_rdA,ex_rdB;
reg [31:0] exv_rdA,exv_rdB;
reg LDST_Done,BRJR_Done;
reg [4:0] ex_ROBA,ex_ROBB,ex_ROBC,ex_ROBD;
reg ex_BRJR_taken;
reg [31:0] ex_EffAddr,ex_BRJR_target;

integer i,j;

reg [5:0] old_load_reg, delayed_load_reg;
reg DStalled;
reg loadDone,ugh;

always @(posedge CLK)begin
 if(RESET)begin
 load_ready = 0;
 ugh = 0;
 end
 else begin
 if(!DStall && loadDone == 0)begin
 loadDone = 1;
 load_ready = 1<<load_reg;
 end

 57

 else load_ready = 0;

 end
 DStalled = DStall;
 old_load_reg = load_reg;
end

wire badnews;
assign badnews = ROB_Free[5]==1;
reg gotFlushed,bingo,doingSyscall;
reg [3:0] oneCycleDelay;

reg [5:0] LDSTQ_Addr_Reg [31:0];
reg [5:0] LDSTQ_Data_Reg [31:0];
reg [31:0] LDSTQ_Addr [31:0];
reg [31:0] LDSTQ_Data [31:0];
reg LDSTQ_hasAddr [31:0];
reg LDSTQ_Valid [31:0];
reg LDSTQ_isStore [31:0];
reg LDSTQ_isLoad [31:0];
reg LDSTQ_hasData [31:0];
reg [4:0] LDSTQ_ROB [31:0];
reg [4:0] LDSTQ_nextFree;
reg [2:0] LDSTQ_Size [31:0];
reg LDSTQ_wroteValue [31:0];
reg [31:0] pre_load;
reg pre_load_WE;
reg stop_forwarding;
reg data_snooped;
reg [4:0] data_snooper;
reg unresolved_store;
reg earlyaccess;
reg [31:0] LDSTQ_max_fullness,LDSTQ_total_occupancy,ROB_total_occupancy;
reg [31:0] num_BR_predictions,num_JR_predictions,num_BR_incorrect,num_JR_incorrect;
reg [31:0] num_mem,num_cf,num_sys,num_alu_other;
reg [31:0] num_times_retire[4:0];
reg [31:0] num_times_rename[4:0];
reg [31:0] num_d_accesses;

//ROB and LDSTQ (the one for cache access not address calc)
always @(negedge CLK)begin
 //Insert new instr's into ROB
 if(RESET)begin
 ROB_Tail = 0;
 ROB_Head = 0;
 ROB_Ready[0] = 0;
 ROB_Free = 32;
 fullFlush = 0;
 isMemRetire = 0;
 ROB_slot0 = 0;
 ROB_slot1 = 1;
 ROB_slot2 = 2;
 ROB_slot3 = 3;
 ROB_unready3 = 0;
 ROB_unready2 = 0;
 ROB_unready1 = 0;
 ROB_unready0 = 0;
 ROB_free0 = 0;
 ROB_free1 = 0;
 ROB_free2 = 0;
 ROB_free3 = 0;
 doingSyscall = 0;
 num_instructions_retired = 0;
 num_instructions_inserted = 0;
 num_flushes = 0;
 updatePredictor_WE = 0;
 updatePredictorPC = 0;
 updatePrediction = 0;
 oneCycleDelay = 1;
 loadDone = 1;
 for(i=0;i<34;i=i+1)MAP[i]=i;

 58

 LDSTQ_nextFree = 0;
 for(i=0;i<32;i=i+1)LDSTQ_Valid[i] = 0;
 pre_load = 0;
 pre_load_WE = 0;
 stop_forwarding = 0;
 data_snooped = 0;
 data_snooper = 0;
 unresolved_store = 0;
 num_data_forwarded=0;
 num_data_forwarded_written_ahead_of_time=0;
 num_early_load_accesses=0;
 num_data_forwarded_not_written=0;
 num_loads_written_before_retire=0;
 num_rob_head_loads=0;
 LDSTQ_max_fullness=0;
 LDSTQ_total_occupancy=0;
 ROB_total_occupancy = 0;
 num_BR_predictions=0;
 num_JR_predictions=0;
 num_BR_incorrect=0;
 num_JR_incorrect=0;
 num_mem = 0;
 num_cf = 0;
 num_sys = 0;
 num_alu_other = 0;
 num_times_retire[0]=0;
 num_times_retire[1]=0;
 num_times_retire[2]=0;
 num_times_retire[3]=0;
 num_times_retire[4]=0;
 num_times_rename[0]=0;
 num_times_rename[1]=0;
 num_times_rename[2]=0;
 num_times_rename[3]=0;
 num_times_rename[4]=0;
 num_d_accesses = 0;
 incorrect_pushes = 0;
 incorrect_pops = 0;
 end
 else begin
 if(r_numInstr>=1)begin
 //ROB
 if(r_queueA == 0 || r_isMemA)ROB_Ready[ROB_Tail] = 1;//Is the entry ready
to commit
 else ROB_Ready[ROB_Tail] = 0;
 ROB_Flushed[ROB_Tail] = fullFlush;//Is the entry flushed
 ROB_Op[ROB_Tail] = r_opA;//Operation the entry performs
 if(r_isMemA && (r_opA==`select_mem_sw || r_opA==`select_mem_sh ||
r_opA==`select_mem_sb))begin
 ROB_PhyReg[ROB_Tail] = r_rtA;//Physical destination
 ROB_LogReg[ROB_Tail] = 0;
 end
 else begin
 ROB_PhyReg[ROB_Tail] = r_rdA;//Physical destination
 ROB_LogReg[ROB_Tail] = r_lrdA;//Logical destination
 end
 ROB_Pred[ROB_Tail] = r_pred_A;//Direction Prediction
 ROB_Pred_Target[ROB_Tail] = r_targetA;//Predicted target
 ROB_Dir[ROB_Tail] = r_pred_A;//Actual direction
 ROB_debug_PC[ROB_Tail] = r_PCA;
 ROB_EffAddr_Target_PC8[ROB_Tail] = r_PCA+8;//Effective address for mem,
actual target for jr's, or pc+8 of br
 ROB_isSys[ROB_Tail] = r_isSysA;
 ROB_isMem[ROB_Tail] = r_isMemA;
 ROB_isCF[ROB_Tail] = r_isCFA;
 ROB_Dep[ROB_Tail] = r_adep;
 ROB_debug_instr[ROB_Tail] = r_instrA;
 ROB_Tail = ROB_Tail + 1;
 ROB_Free = ROB_Free - 1; num_instructions_inserted =
num_instructions_inserted + 1;

 59

 //LDSTQ
 if(r_isMemA)begin
 LDSTQ_Addr_Reg[LDSTQ_nextFree] = r_rsA;
 if((r_opA==`select_mem_sw || r_opA==`select_mem_sh ||
r_opA==`select_mem_sb))begin
 LDSTQ_Data_Reg[LDSTQ_nextFree] = r_rtA;
 LDSTQ_isStore[LDSTQ_nextFree] = 1;
 LDSTQ_isLoad[LDSTQ_nextFree] = 0;
 if(r_opA==`select_mem_sw)begin
 LDSTQ_Size[LDSTQ_nextFree] = 4;
 end
 else if(r_opA==`select_mem_sh)begin
 LDSTQ_Size[LDSTQ_nextFree] = 2;
 end
 else begin
 LDSTQ_Size[LDSTQ_nextFree] = 1;
 end
 end
 else begin
 LDSTQ_Data_Reg[LDSTQ_nextFree] = r_rdA;
 LDSTQ_isStore[LDSTQ_nextFree] = 0;
 LDSTQ_isLoad[LDSTQ_nextFree] = 1;
 if(r_opA==`select_mem_lw)begin
 LDSTQ_Size[LDSTQ_nextFree] = 4;
 end
 else if(r_opA==`select_mem_lh||r_opA==`select_mem_lhu)begin
 LDSTQ_Size[LDSTQ_nextFree] = 2;
 end
 else begin
 LDSTQ_Size[LDSTQ_nextFree] = 1;
 end
 end
 LDSTQ_wroteValue[LDSTQ_nextFree] = 0;
 LDSTQ_hasAddr[LDSTQ_nextFree] = 0;
 LDSTQ_Valid[LDSTQ_nextFree] = 1;
 LDSTQ_hasData[LDSTQ_nextFree] = 0;
 LDSTQ_ROB[LDSTQ_nextFree] = ROB_Tail - 1;
 LDSTQ_nextFree = LDSTQ_nextFree + 1;
 end
 end
 if(r_numInstr>=2)begin
 //ROB
 if(r_queueB == 0 || r_isMemB)ROB_Ready[ROB_Tail] = 1;//Is the entry ready
to commit
 else ROB_Ready[ROB_Tail] = 0;
 ROB_Flushed[ROB_Tail] = fullFlush;//Is the entry flushed
 ROB_Op[ROB_Tail] = r_opB;//Operation the entry performs
 if(r_isMemB && (r_opB==`select_mem_sw || r_opB==`select_mem_sh ||
r_opB==`select_mem_sb))begin
 ROB_PhyReg[ROB_Tail] = r_rtB;//Physical destination
 ROB_LogReg[ROB_Tail] = 0;
 end
 else begin
 ROB_PhyReg[ROB_Tail] = r_rdB;//Physical destination
 ROB_LogReg[ROB_Tail] = r_lrdB;//Logical destination
 end
 ROB_Pred[ROB_Tail] = r_pred_B;//Direction Prediction
 ROB_Pred_Target[ROB_Tail] = r_targetB;//Predicted target
 ROB_Dir[ROB_Tail] = r_pred_B;//Actual direction
 ROB_debug_PC[ROB_Tail] = r_PCB;
 ROB_EffAddr_Target_PC8[ROB_Tail] = r_PCB+8;//Effective address for mem,
actual target for jr's, or pc+8 of br
 ROB_isSys[ROB_Tail] = r_isSysB;
 ROB_isMem[ROB_Tail] = r_isMemB;
 ROB_isCF[ROB_Tail] = r_isCFB;
 ROB_Dep[ROB_Tail] = r_bdep;
 ROB_debug_instr[ROB_Tail] = r_instrB;
 ROB_Tail = ROB_Tail + 1;
 ROB_Free = ROB_Free - 1; num_instructions_inserted =
num_instructions_inserted + 1;

 60

 //LDSTQ
 if(r_isMemB)begin
 LDSTQ_Addr_Reg[LDSTQ_nextFree] = r_rsB;
 if((r_opB==`select_mem_sw || r_opB==`select_mem_sh ||
r_opB==`select_mem_sb))begin
 LDSTQ_Data_Reg[LDSTQ_nextFree] = r_rtB;
 LDSTQ_isStore[LDSTQ_nextFree] = 1;
 LDSTQ_isLoad[LDSTQ_nextFree] = 0;
 if(r_opB==`select_mem_sw)begin
 LDSTQ_Size[LDSTQ_nextFree] = 4;
 end
 else if(r_opB==`select_mem_sh)begin
 LDSTQ_Size[LDSTQ_nextFree] = 2;
 end
 else begin
 LDSTQ_Size[LDSTQ_nextFree] = 1;
 end
 end
 else begin
 LDSTQ_Data_Reg[LDSTQ_nextFree] = r_rdB;
 LDSTQ_isStore[LDSTQ_nextFree] = 0;
 LDSTQ_isLoad[LDSTQ_nextFree] = 1;
 if(r_opB==`select_mem_lw)begin
 LDSTQ_Size[LDSTQ_nextFree] = 4;
 end
 else if(r_opB==`select_mem_lh||r_opB==`select_mem_lhu)begin
 LDSTQ_Size[LDSTQ_nextFree] = 2;
 end
 else begin
 LDSTQ_Size[LDSTQ_nextFree] = 1;
 end
 end
 LDSTQ_wroteValue[LDSTQ_nextFree] = 0;
 LDSTQ_hasAddr[LDSTQ_nextFree] = 0;
 LDSTQ_Valid[LDSTQ_nextFree] = 1;
 LDSTQ_hasData[LDSTQ_nextFree] = 0;
 LDSTQ_ROB[LDSTQ_nextFree] = ROB_Tail - 1;
 LDSTQ_nextFree = LDSTQ_nextFree + 1;
 end
 end
 if(r_numInstr>=3)begin
 //ROB
 if(r_queueC == 0 || r_isMemC)ROB_Ready[ROB_Tail] = 1;//Is the entry ready
to commit
 else ROB_Ready[ROB_Tail] = 0;
 ROB_Flushed[ROB_Tail] = fullFlush;//Is the entry flushed
 ROB_Op[ROB_Tail] = r_opC;//Operation the entry performs
 if(r_isMemC && (r_opC==`select_mem_sw || r_opC==`select_mem_sh ||
r_opC==`select_mem_sb))begin
 ROB_PhyReg[ROB_Tail] = r_rtC;//Physical destination
 ROB_LogReg[ROB_Tail] = 0;
 end
 else begin
 ROB_PhyReg[ROB_Tail] = r_rdC;//Physical destination
 ROB_LogReg[ROB_Tail] = r_lrdC;//Logical destination
 end
 ROB_Pred[ROB_Tail] = r_pred_C;//Direction Prediction
 ROB_Pred_Target[ROB_Tail] = r_targetC;//Predicted target
 ROB_Dir[ROB_Tail] = r_pred_C;//Actual direction
 ROB_debug_PC[ROB_Tail] = r_PCC;
 ROB_EffAddr_Target_PC8[ROB_Tail] = r_PCC+8;//Effective address for mem,
actual target for jr's, or pc+8 of br
 ROB_isSys[ROB_Tail] = r_isSysC;
 ROB_isMem[ROB_Tail] = r_isMemC;
 ROB_isCF[ROB_Tail] = r_isCFC;
 ROB_Dep[ROB_Tail] = r_cdep;
 ROB_debug_instr[ROB_Tail] = r_instrC;
 ROB_Tail = ROB_Tail + 1;
 ROB_Free = ROB_Free - 1; num_instructions_inserted =
num_instructions_inserted + 1;

 61

 //LDSTQ
 if(r_isMemC)begin
 LDSTQ_Addr_Reg[LDSTQ_nextFree] = r_rsC;
 if((r_opC==`select_mem_sw || r_opC==`select_mem_sh ||
r_opC==`select_mem_sb))begin
 LDSTQ_Data_Reg[LDSTQ_nextFree] = r_rtC;
 LDSTQ_isStore[LDSTQ_nextFree] = 1;
 LDSTQ_isLoad[LDSTQ_nextFree] = 0;
 if(r_opC==`select_mem_sw)begin
 LDSTQ_Size[LDSTQ_nextFree] = 4;
 end
 else if(r_opC==`select_mem_sh)begin
 LDSTQ_Size[LDSTQ_nextFree] = 2;
 end
 else begin
 LDSTQ_Size[LDSTQ_nextFree] = 1;
 end
 end
 else begin
 LDSTQ_Data_Reg[LDSTQ_nextFree] = r_rdC;
 LDSTQ_isStore[LDSTQ_nextFree] = 0;
 LDSTQ_isLoad[LDSTQ_nextFree] = 1;
 if(r_opC==`select_mem_lw)begin
 LDSTQ_Size[LDSTQ_nextFree] = 4;
 end
 else if(r_opC==`select_mem_lh||r_opC==`select_mem_lhu)begin
 LDSTQ_Size[LDSTQ_nextFree] = 2;
 end
 else begin
 LDSTQ_Size[LDSTQ_nextFree] = 1;
 end
 end
 LDSTQ_wroteValue[LDSTQ_nextFree] = 0;
 LDSTQ_hasAddr[LDSTQ_nextFree] = 0;
 LDSTQ_Valid[LDSTQ_nextFree] = 1;
 LDSTQ_hasData[LDSTQ_nextFree] = 0;
 LDSTQ_ROB[LDSTQ_nextFree] = ROB_Tail - 1;
 LDSTQ_nextFree = LDSTQ_nextFree + 1;
 end
 end
 if(r_numInstr>=4)begin
 //ROB
 if(r_queueD == 0 || r_isMemD)ROB_Ready[ROB_Tail] = 1;//Is the entry ready
to commit
 else ROB_Ready[ROB_Tail] = 0;
 ROB_Flushed[ROB_Tail] = fullFlush;//Is the entry flushed
 ROB_Op[ROB_Tail] = r_opD;//Operation the entry performs
 if(r_isMemD && (r_opD==`select_mem_sw || r_opD==`select_mem_sh ||
r_opD==`select_mem_sb))begin
 ROB_PhyReg[ROB_Tail] = r_rtD;//Physical destination
 ROB_LogReg[ROB_Tail] = 0;
 end
 else begin
 ROB_PhyReg[ROB_Tail] = r_rdD;//Physical destination
 ROB_LogReg[ROB_Tail] = r_lrdD;//Logical destination
 end
 ROB_Pred[ROB_Tail] = r_pred_D;//Direction Prediction
 ROB_Pred_Target[ROB_Tail] = r_targetD;//Predicted target
 ROB_Dir[ROB_Tail] = r_pred_D;//Actual direction
 ROB_debug_PC[ROB_Tail] = r_PCD;
 ROB_EffAddr_Target_PC8[ROB_Tail] = r_PCD+8;//Effective address for mem,
actual target for jr's, or pc+8 of br
 ROB_isSys[ROB_Tail] = r_isSysD;
 ROB_isMem[ROB_Tail] = r_isMemD;
 ROB_isCF[ROB_Tail] = r_isCFD;
 ROB_Dep[ROB_Tail] = r_ddep;
 ROB_debug_instr[ROB_Tail] = r_instrD;
 ROB_Tail = ROB_Tail + 1;
 ROB_Free = ROB_Free - 1; num_instructions_inserted =
num_instructions_inserted + 1;

 62

 //LDSTQ
 if(r_isMemD)begin
 LDSTQ_Addr_Reg[LDSTQ_nextFree] = r_rsD;
 if((r_opD==`select_mem_sw || r_opD==`select_mem_sh ||
r_opD==`select_mem_sb))begin
 LDSTQ_Data_Reg[LDSTQ_nextFree] = r_rtD;
 LDSTQ_isStore[LDSTQ_nextFree] = 1;
 LDSTQ_isLoad[LDSTQ_nextFree] = 0;
 if(r_opD==`select_mem_sw)begin
 LDSTQ_Size[LDSTQ_nextFree] = 4;
 end
 else if(r_opD==`select_mem_sh)begin
 LDSTQ_Size[LDSTQ_nextFree] = 2;
 end
 else begin
 LDSTQ_Size[LDSTQ_nextFree] = 1;
 end
 end
 else begin
 LDSTQ_Data_Reg[LDSTQ_nextFree] = r_rdD;
 LDSTQ_isStore[LDSTQ_nextFree] = 0;
 LDSTQ_isLoad[LDSTQ_nextFree] = 1;
 if(r_opD==`select_mem_lw)begin
 LDSTQ_Size[LDSTQ_nextFree] = 4;
 end
 else if(r_opD==`select_mem_lh||r_opD==`select_mem_lhu)begin
 LDSTQ_Size[LDSTQ_nextFree] = 2;
 end
 else begin
 LDSTQ_Size[LDSTQ_nextFree] = 1;
 end
 end
 LDSTQ_wroteValue[LDSTQ_nextFree] = 0;
 LDSTQ_hasAddr[LDSTQ_nextFree] = 0;
 LDSTQ_Valid[LDSTQ_nextFree] = 1;
 LDSTQ_hasData[LDSTQ_nextFree] = 0;
 LDSTQ_ROB[LDSTQ_nextFree] = ROB_Tail - 1;
 LDSTQ_nextFree = LDSTQ_nextFree + 1;
 end
 end
 num_times_rename[r_numInstr]=num_times_rename[r_numInstr]+1;
 ROB_slot0 = ROB_Tail;
 ROB_slot1 = ROB_Tail+1;
 ROB_slot2 = ROB_Tail+2;
 ROB_slot3 = ROB_Tail+3;
 //Update Entries in the ROB
 if(!fullFlush && !gotFlushed)begin
 if(ALU0_WE && ROB_Flushed[ex_ROBA]==0)begin
 ROB_Ready[ex_ROBA]=1;
 end
 if(ALU1_WE && ROB_Flushed[ex_ROBB]==0)begin
 ROB_Ready[ex_ROBB]=1;
 end
 if(LDST_Done && ROB_Flushed[ex_ROBC]==0)begin
 //ROB_Ready[ex_ROBC]=1;
 //ROB_EffAddr_Target_PC8[ex_ROBC] = ex_EffAddr;
 end
 if(BRJR_Done && ROB_Flushed[ex_ROBD]==0)begin
 ROB_Ready[ex_ROBD]=1;
 ROB_Dir[ex_ROBD] = ex_BRJR_taken;
 if(ex_BRJR_taken)ROB_EffAddr_Target_PC8[ex_ROBD] = ex_BRJR_target;
 end
 end
 LDSTQ_total_occupancy = LDSTQ_total_occupancy + LDSTQ_nextFree;
 ROB_total_occupancy = ROB_total_occupancy + (32-ROB_Free);
 if(LDSTQ_nextFree>LDSTQ_max_fullness)LDSTQ_max_fullness = LDSTQ_nextFree;
 //LDSTQ
 //Snoop in Address
 for(i=0;i<32;i=i+1)begin
 if(LDSTQ_Valid[i] && LDSTQ_ROB[i]==ex_ROBC && LDST_Done)begin
 LDSTQ_hasAddr[i] = 1;

 63

 LDSTQ_Addr[i] = ex_EffAddr;
 end
 end
 //Snoop in data
 if(data_snooped == 1)begin
 LDSTQ_Data[data_snooper] = store_value;
 if(LDSTQ_Valid[data_snooper])LDSTQ_hasData[data_snooper] = 1;
 data_snooped = 0;
 end
 for(i=0;i<32;i=i+1)begin
 if(data_snooped == 0 && LDSTQ_Valid[i]==1 && LDSTQ_hasData[i]==0 &&
LDSTQ_isStore[i] == 1 && (readyList>>LDSTQ_Data_Reg[i])&1'b1)begin
 store_reg = LDSTQ_Data_Reg[i];
 data_snooped = 1;
 data_snooper = i;
 end
 end
 stop_forwarding = 0;
 //Forward Data, perhaps too conservatively
 for(i=0;i<32;i=i+1)begin
 if(LDSTQ_isStore[i] && LDSTQ_Valid[i] && LDSTQ_hasAddr[i] &&
LDSTQ_hasData[i])begin
 stop_forwarding = 0;
 for(j=i+1;j<32;j=j+1)begin
 if(LDSTQ_isStore[j] &&
(((LDSTQ_Addr[j]&32'hFFFFFFFC)==(LDSTQ_Addr[i]&32'hFFFFFFFC)) || LDSTQ_hasAddr[j]==0))begin
 stop_forwarding = 1;
 end
 if(!stop_forwarding && LDSTQ_isLoad[j] && LDSTQ_Valid[j] &&
LDSTQ_hasAddr[j] && !LDSTQ_hasData[j] && LDSTQ_Addr[i]==LDSTQ_Addr[j] &&
LDSTQ_Size[i]==LDSTQ_Size[j])begin
 LDSTQ_hasData[j] = 1;
 num_data_forwarded = num_data_forwarded + 1;
 if(LDSTQ_Size[j]==4)LDSTQ_Data[j] = LDSTQ_Data[i];
 else if(LDSTQ_Size[j]==2)begin
 LDSTQ_Data[j] = LDSTQ_Data[i]&32'h0000ffff;
 if(ROB_Op[LDSTQ_ROB[j]]==`select_mem_lh &&
LDSTQ_Data[j][15])LDSTQ_Data[j] = LDSTQ_Data[j] | 32'hffff0000;
 end
 else begin
 LDSTQ_Data[j] = LDSTQ_Data[i]&32'h000000ff;
 if(ROB_Op[LDSTQ_ROB[j]]==`select_mem_lb&&
LDSTQ_Data[j][7])LDSTQ_Data[j] = LDSTQ_Data[j] | 32'hffffff00;
 end
 end
 end
 end
 end

 pre_load = 0;
 pre_load_WE = 0;

 //Retire Instructions at ROB head
 retireDone = 0;
 prem = 0;
 if(DStall || !loadDone || (ROB_Head==ROB_Tail&&ROB_Free!=0) ||
(ROB_Dep[ROB_Head]&&!ROB_Ready[(ROB_Head+1)&5'b11111]&&!ROB_Flushed[ROB_Head]))begin
 retireDone = 1;
 prem = 1;
 end
 numRetired = 0;//for retirement rat
 numAddFree = 0;//for free list
 didALoad = 0;
 if(!DStall)isMemRetire = 0;

 if(!DStall)load_reg = 0;
 //store_reg = 0;
 ROB_unready3 = 0;
 ROB_unready2 = 0;
 ROB_unready1 = 0;

 64

 ROB_unready0 = 0;
 ROB_free0 = 0;
 ROB_free1 = 0;
 ROB_free2 = 0;
 ROB_free3 = 0;
 doingSyscall = 0;
 updatePredictor_WE = 0;
 incorrect_pushes = 0;
 incorrect_pops = 0;
 if(!IStall && !ROB_Full/* && !Istalled*/)fullFlush = 0;
 //retire up to 4 instructions per cycle
 if(retireDone != 1 && (ROB_Ready[ROB_Head] == 1 || ROB_Flushed[ROB_Head] ==
1))begin
 if(ROB_isSys[ROB_Head] && ROB_Flushed[ROB_Head] == 0)begin
 if(oneCycleDelay!=0)begin
 oneCycleDelay = oneCycleDelay - 1;
 retireDone = 1;
 end
 else begin
 num_sys = num_sys + 1;
 oneCycleDelay = 1;
 num_instructions_retired = num_instructions_retired + 1;numRetired
= numRetired + 1;
 /**retireDone = 1;**/doingSyscall = 1;
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 correctTarget = ROB_debug_PC[ROB_Head]+4;

 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head =
ROB_Head + 1;
 ROB_free0 = 0;
 begin
 // store register file state to the C
interface functions!
 for (j=1; j<32;j=j+1)
 begin
 // Changed to setreg instead of
setregvalue
 $syscall_setreg
(j,CPU.reg_file.RegFile[CPU.MAP[j]]);
 end
 $syscall_setpc (ROB_debug_PC[ROB_Head]);
 // store PC

 // do the system call
 if ($emulate_syscall) begin
 // exit called
 $display ("-------------------------
----------");
 $display ("Program Terminated.");
 $display ("Retired %d instructions,
%d entered ROB",num_instructions_retired,num_instructions_inserted);
 $display ("Number of flushes:
%d",num_flushes);
 $display ("Ran for %d
cycles",$time/`cycle);
 $display ("ICache Accesses: %d
\nICache Misses: %d", i_cache_d_cache.num_icache_accesses,numIMisses);
 $display ("DCache Accesses: %d
\nDCache Misses: %d", num_d_accesses,numDMisses);
 $display ("Average Fullness: \nROB
%d \nALUQ %d \nCFQ %d \nLDSTAQ %d \nLDSTQ %d \nFreelist(avg. free regs)
%d",(10*ROB_total_occupancy)/($time/`cycle),(10*ALUqueue.total_occupancy)/($time/`cycle),(10*BRJR
queue.total_occupancy)/($time/`cycle),(10*LDSTqueue.total_occupancy)/($time/`cycle),(10*LDSTQ_tot
al_occupancy)/($time/`cycle),(10*free_bird.numFree)/($time/`cycle));
 $display ("RAS
%d",(10*ras.total_occupancy)/($time/`cycle));
 $display ("Max Fullness: \nALUQ %d
\nCFQ %d \nLDSTAQ %d \nLDSTQ %d\nRAS

 65

%d",ALUqueue.max_fullness,BRJRqueue.max_fullness,LDSTqueue.max_fullness,LDSTQ_max_fullness,ras.ma
x_fullness);
 $display ("BR Predictions: %d
\nIncorrect: %d\nJR Predictions: %d \nIncorrect:
%d",num_BR_predictions,num_BR_incorrect,num_JR_predictions,num_JR_incorrect);
 $display ("Correct Path: \nMem %d
\nCF %d \nSys %d \nALU & NOPS %d",num_mem,num_cf,num_sys,num_instructions_retired-
(num_mem+num_cf+num_sys));
 $display ("Retired 0 1 2 3 4: %d %d
%d %d
%d",num_times_retire[0],num_times_retire[1],num_times_retire[2],num_times_retire[3],num_times_ret
ire[4]);
 $display ("Renamed 0 1 2 3 4: %d %d
%d %d
%d",num_times_rename[0],num_times_rename[1],num_times_rename[2],num_times_rename[3],num_times_ren
ame[4]);
 $display ("Cycles Stalled: \nIStall
%d \nRename %d \nROB %d",num_cycles_istall,num_cycles_renamestall,num_cycles_robstall);
 $display ("Forwarded Data: %d\nWrote
Forwards Early: %d\nPerformed Early Loads: %d\nForwarded Data But No Early Write: %d\nROB Head
Loads: %d\nLoads Already Written Before Retire:
%d",num_data_forwarded,num_data_forwarded_written_ahead_of_time,num_early_load_accesses,num_data_
forwarded_not_written,num_rob_head_loads,num_loads_written_before_retire);
 $display ("-------------------------
----------");

 $finish;
 end

 // restore register file state from the C
interface
 for (j=1; j<32;j=j+1)
 begin
 // Changed to syscall_getreg
instead of syscall_regvalue

 CPU.reg_file.RegFile[CPU.MAP[j]] = $syscall_getreg(j);
 end
 end
 end

 end
 else if(ROB_isCF[ROB_Head][0] && ROB_Flushed[ROB_Head] == 0)begin
 if(/**!IStall &&**/ updatePredictor_WE==0)begin
 num_cf = num_cf + 1;
 if(ROB_Op[ROB_Head]==`select_qc_j ||
ROB_Op[ROB_Head]==`select_qc_jal)begin
 //regular jumps cant be wrong
 end
 else if(ROB_Op[ROB_Head]==`select_qc_jalr ||
ROB_Op[ROB_Head]==`select_qc_jr)begin
 num_JR_predictions = num_JR_predictions + 1;

 if(ROB_Pred_Target[ROB_Head]!=ROB_EffAddr_Target_PC8[ROB_Head])begin
 num_JR_incorrect = num_JR_incorrect + 1;
 correctTarget =
ROB_EffAddr_Target_PC8[ROB_Head];
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 /**retireDone = 1;**/
 end
 end
 else begin
 if(ROB_Dir[ROB_Head]!=ROB_Pred[ROB_Head])begin
 num_BR_incorrect = num_BR_incorrect + 1;
 if(ROB_Dir[ROB_Head])correctTarget =
ROB_Pred_Target[ROB_Head];
 else correctTarget =
ROB_EffAddr_Target_PC8[ROB_Head];
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;

 66

 /**retireDone = 1;**/
 end
 num_BR_predictions = num_BR_predictions + 1;

 updatePredictor_WE = 1;
 updatePredictorPC = ROB_debug_PC[ROB_Head];
 updatePrediction = ROB_Dir[ROB_Head];
 end
 //link
 if(ROB_isCF[ROB_Head][2])begin
 ROB_free0 = MAP[ROB_LogReg[ROB_Head]];
 ROB_unready0 = 1<<MAP[ROB_LogReg[ROB_Head]];
 MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head];
 end
 else ROB_free0 = 0;

 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head
= ROB_Head + 1;
 num_instructions_retired = num_instructions_retired +
1;numRetired = numRetired + 1;

 end
 else begin
 retireDone = 1;
 end
 end
 else if(ROB_isMem[ROB_Head] && ROB_Flushed[ROB_Head] == 0)begin
 if(isMemRetire==0 && (((ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh ||
ROB_Op[ROB_Head]==`select_mem_sb)&&(LDSTQ_hasAddr[0]&&LDSTQ_hasData[0]))
 ||(!(ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh ||
ROB_Op[ROB_Head]==`select_mem_sb)&&LDSTQ_hasAddr[0]&&(loadDone==1))))begin
 if(!(ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh || ROB_Op[ROB_Head]==`select_mem_sb))begin
 //load
 if(LDSTQ_hasData[0] && LDSTQ_wroteValue[0])begin
 num_loads_written_before_retire =
num_loads_written_before_retire+1;

 end
 else if(LDSTQ_hasData[0])begin
 //got data through forwarding but didnt get to write
yet
 pre_load = LDSTQ_Data[0];
 load_reg = LDSTQ_Data_Reg[0];
 pre_load_WE = 1;
 loadDone = 0;
 num_data_forwarded_not_written =
num_data_forwarded_not_written + 1;
 end
 else begin
 //doesnt have its data, need to issue cache access
 isMemRetire = 1;
 memOp = ROB_Op[ROB_Head];
 MAR = LDSTQ_Addr[0];
 load_reg = ROB_PhyReg[ROB_Head];
 loadDone = 0;
 num_rob_head_loads = num_rob_head_loads + 1;
 num_d_accesses = num_d_accesses + 1;
 end
 ROB_free0 = MAP[ROB_LogReg[ROB_Head]];
 ROB_unready0 = 1<<MAP[ROB_LogReg[ROB_Head]];
 MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head];
 end
 else begin
 //store
 SMDR = LDSTQ_Data[0];
 isMemRetire = 1;
 memOp = ROB_Op[ROB_Head];

 67

 MAR = LDSTQ_Addr[0];
 ROB_free0 = 0;
 num_d_accesses = num_d_accesses + 1;
 end
 //shift LDSTQ forward
 for(i=0;i<31;i=i+1)begin
 LDSTQ_Addr_Reg[i] = LDSTQ_Addr_Reg[i+1];
 LDSTQ_Data_Reg[i] = LDSTQ_Data_Reg[i+1];
 LDSTQ_Addr[i] = LDSTQ_Addr[i+1];
 LDSTQ_Data[i] = LDSTQ_Data[i+1];
 LDSTQ_hasAddr[i] = LDSTQ_hasAddr[i+1];
 LDSTQ_Valid[i] = LDSTQ_Valid[i+1];
 LDSTQ_isStore[i] = LDSTQ_isStore[i+1];
 LDSTQ_isLoad[i] = LDSTQ_isLoad[i+1];
 LDSTQ_hasData[i] = LDSTQ_hasData[i+1];
 LDSTQ_ROB[i] = LDSTQ_ROB[i+1];
 LDSTQ_Size[i] = LDSTQ_Size[i+1];
 LDSTQ_wroteValue[i] = LDSTQ_wroteValue[i+1];
 end
 LDSTQ_Addr_Reg[31]=0;
 LDSTQ_Data_Reg[31]=0;
 LDSTQ_Addr[31]=0;
 LDSTQ_Data[31]=0;
 LDSTQ_hasAddr[31]=0;
 LDSTQ_Valid[31]=0;
 LDSTQ_isStore[31]=0;
 LDSTQ_isLoad[31]=0;
 LDSTQ_hasData[31]=0;
 LDSTQ_ROB[31]=0;
 LDSTQ_Size[31]=0;
 LDSTQ_wroteValue[31]=0;
 LDSTQ_nextFree = LDSTQ_nextFree - 1;
 data_snooper = data_snooper - 1;
 num_mem = num_mem + 1;
 num_instructions_retired = num_instructions_retired +
1;numRetired = numRetired + 1;

 /**retireDone = 1;**/
 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head
= ROB_Head + 1;
 end
 else begin
 retireDone = 1;
 ROB_free0 = 0;
 end
 end
 else begin
 if(ROB_Flushed[ROB_Head]==0)num_instructions_retired =
num_instructions_retired + 1;
 if(ROB_isCF[ROB_Head][0])begin

 if(ROB_isCF[ROB_Head][2]&&ROB_LogReg[ROB_Head]==31)incorrect_pushes = incorrect_pushes +
1;
 if((ROB_Op[ROB_Head]==`select_qc_jalr ||
ROB_Op[ROB_Head]==`select_qc_jr)&&(ROB_debug_instr[ROB_Head][`rs]==31))incorrect_pops =
incorrect_pops + 1;
 end
 numRetired = numRetired + 1;
 if(ROB_Flushed[ROB_Head]==0)ROB_free0 = MAP[ROB_LogReg[ROB_Head]];

 else if(ROB_LogReg[ROB_Head]!=0)ROB_free0 = ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)ROB_unready0 =
1<<MAP[ROB_LogReg[ROB_Head]];
 else if(ROB_LogReg[ROB_Head]!=0)ROB_unready0 =
1<<ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)MAP[ROB_LogReg[ROB_Head]] =
ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)begin
 end
 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;

 68

 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head =
ROB_Head + 1;
 end
 end
 else begin
 ROB_free0 = 0;
 end
 //retireDone = 1;

 if(ROB_Head==ROB_Tail ||
(ROB_Dep[ROB_Head]&&!ROB_Ready[(ROB_Head+1)&5'b11111]&&!ROB_Flushed[ROB_Head]))retireDone = 1;
 if(retireDone != 1 && (ROB_Ready[ROB_Head] == 1 || ROB_Flushed[ROB_Head] ==
1))begin
 if(ROB_isSys[ROB_Head] && ROB_Flushed[ROB_Head] == 0)begin
 if(oneCycleDelay!=0)begin
 oneCycleDelay = oneCycleDelay - 1;
 retireDone = 1;
 end
 else begin
 num_sys = num_sys + 1;
 oneCycleDelay = 1;
 num_instructions_retired = num_instructions_retired + 1;numRetired
= numRetired + 1;
 /**retireDone = 1;**/doingSyscall = 1;
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 correctTarget = ROB_debug_PC[ROB_Head]+4;

 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head =
ROB_Head + 1;
 ROB_free1 = 0;
 begin
 // store register file state to the C
interface functions!
 for (j=1; j<32;j=j+1)
 begin
 // Changed to setreg instead of
setregvalue
 $syscall_setreg
(j,CPU.reg_file.RegFile[CPU.MAP[j]]);
 end
 $syscall_setpc (ROB_debug_PC[ROB_Head]);
 // store PC

 // do the system call
 if ($emulate_syscall) begin
 // exit called
 $display ("-------------------------
----------");
 $display ("Program Terminated.");
 $display ("Retired %d instructions,
%d entered ROB",num_instructions_retired,num_instructions_inserted);
 $display ("Number of flushes:
%d",num_flushes);
 $display ("Ran for %d
cycles",$time/`cycle);
 $display ("ICache Accesses: %d
\nICache Misses: %d", i_cache_d_cache.num_icache_accesses,numIMisses);
 $display ("DCache Accesses: %d
\nDCache Misses: %d", num_d_accesses,numDMisses);
 $display ("Average Fullness: \nROB
%d \nALUQ %d \nCFQ %d \nLDSTAQ %d \nLDSTQ %d \nFreelist(avg. free regs)
%d",(10*ROB_total_occupancy)/($time/`cycle),(10*ALUqueue.total_occupancy)/($time/`cycle),(10*BRJR
queue.total_occupancy)/($time/`cycle),(10*LDSTqueue.total_occupancy)/($time/`cycle),(10*LDSTQ_tot
al_occupancy)/($time/`cycle),(10*free_bird.numFree)/($time/`cycle));
 $display ("RAS
%d",(10*ras.total_occupancy)/($time/`cycle));
 $display ("Max Fullness: \nALUQ %d
\nCFQ %d \nLDSTAQ %d \nLDSTQ %d\nRAS

 69

%d",ALUqueue.max_fullness,BRJRqueue.max_fullness,LDSTqueue.max_fullness,LDSTQ_max_fullness,ras.ma
x_fullness);
 $display ("BR Predictions: %d
\nIncorrect: %d\nJR Predictions: %d \nIncorrect:
%d",num_BR_predictions,num_BR_incorrect,num_JR_predictions,num_JR_incorrect);
 $display ("Correct Path: \nMem %d
\nCF %d \nSys %d \nALU & NOPS %d",num_mem,num_cf,num_sys,num_instructions_retired-
(num_mem+num_cf+num_sys));
 $display ("Retired 0 1 2 3 4: %d %d
%d %d
%d",num_times_retire[0],num_times_retire[1],num_times_retire[2],num_times_retire[3],num_times_ret
ire[4]);
 $display ("Renamed 0 1 2 3 4: %d %d
%d %d
%d",num_times_rename[0],num_times_rename[1],num_times_rename[2],num_times_rename[3],num_times_ren
ame[4]);
 $display ("Cycles Stalled: \nIStall
%d \nRename %d \nROB %d",num_cycles_istall,num_cycles_renamestall,num_cycles_robstall);
 $display ("Forwarded Data: %d\nWrote
Forwards Early: %d\nPerformed Early Loads: %d\nForwarded Data But No Early Write: %d\nROB Head
Loads: %d\nLoads Already Written Before Retire:
%d",num_data_forwarded,num_data_forwarded_written_ahead_of_time,num_early_load_accesses,num_data_
forwarded_not_written,num_rob_head_loads,num_loads_written_before_retire);
 $display ("-------------------------
----------");

 $finish;
 end

 // restore register file state from the C
interface
 for (j=1; j<32;j=j+1)
 begin
 // Changed to syscall_getreg
instead of syscall_regvalue

 CPU.reg_file.RegFile[CPU.MAP[j]] = $syscall_getreg(j);
 end
 end
 end
 end
 else if(ROB_isCF[ROB_Head][0] && ROB_Flushed[ROB_Head] == 0)begin
 if(/**!IStall && **/updatePredictor_WE == 0)begin
 num_cf = num_cf + 1;
 if(ROB_Op[ROB_Head]==`select_qc_j ||
ROB_Op[ROB_Head]==`select_qc_jal)begin
 //regular jumps cant be wrong
 end
 else if(ROB_Op[ROB_Head]==`select_qc_jalr ||
ROB_Op[ROB_Head]==`select_qc_jr)begin
 num_JR_predictions = num_JR_predictions + 1;

 if(ROB_Pred_Target[ROB_Head]!=ROB_EffAddr_Target_PC8[ROB_Head])begin
 num_JR_incorrect = num_JR_incorrect + 1;
 correctTarget =
ROB_EffAddr_Target_PC8[ROB_Head];
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 /**retireDone = 1;**/
 end
 end
 else begin
 if(ROB_Dir[ROB_Head]!=ROB_Pred[ROB_Head])begin
 num_BR_incorrect = num_BR_incorrect + 1;
 if(ROB_Dir[ROB_Head])correctTarget =
ROB_Pred_Target[ROB_Head];
 else correctTarget =
ROB_EffAddr_Target_PC8[ROB_Head];
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 /**retireDone = 1;**/

 70

 end
 num_BR_predictions = num_BR_predictions + 1;

 updatePredictor_WE = 1;
 updatePredictorPC = ROB_debug_PC[ROB_Head];
 updatePrediction = ROB_Dir[ROB_Head];
 end
 //link
 if(ROB_isCF[ROB_Head][2])begin
 ROB_free1 = MAP[ROB_LogReg[ROB_Head]];
 ROB_unready1 = 1<<MAP[ROB_LogReg[ROB_Head]];
 MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head];
 end
 else ROB_free1 = 0;

 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head
= ROB_Head + 1;
 num_instructions_retired = num_instructions_retired +
1;numRetired = numRetired + 1;

 end
 else begin
 retireDone = 1;
 end
 end
 else if(ROB_isMem[ROB_Head] && ROB_Flushed[ROB_Head] == 0)begin
 if(isMemRetire==0 && (((ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh ||
ROB_Op[ROB_Head]==`select_mem_sb)&&(LDSTQ_hasAddr[0]&&LDSTQ_hasData[0]))
 ||(!(ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh ||
ROB_Op[ROB_Head]==`select_mem_sb)&&LDSTQ_hasAddr[0]&&(loadDone==1))))begin
 if(!(ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh || ROB_Op[ROB_Head]==`select_mem_sb))begin
 //load
 if(LDSTQ_hasData[0] && LDSTQ_wroteValue[0])begin
 num_loads_written_before_retire =
num_loads_written_before_retire+1;

 end
 else if(LDSTQ_hasData[0])begin
 //got data through forwarding but didnt get to write
yet
 pre_load = LDSTQ_Data[0];
 load_reg = LDSTQ_Data_Reg[0];
 pre_load_WE = 1;
 loadDone = 0;
 num_data_forwarded_not_written =
num_data_forwarded_not_written + 1;
 end
 else begin
 //doesnt have its data, need to issue cache access
 isMemRetire = 1;
 memOp = ROB_Op[ROB_Head];
 MAR = LDSTQ_Addr[0];
 load_reg = ROB_PhyReg[ROB_Head];
 loadDone = 0;
 num_rob_head_loads = num_rob_head_loads + 1;
 num_d_accesses = num_d_accesses + 1;
 end
 ROB_free1 = MAP[ROB_LogReg[ROB_Head]];
 ROB_unready1 = 1<<MAP[ROB_LogReg[ROB_Head]];
 MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head];
 end
 else begin
 //store
 SMDR = LDSTQ_Data[0];
 isMemRetire = 1;
 memOp = ROB_Op[ROB_Head];
 MAR = LDSTQ_Addr[0];

 71

 ROB_free1 = 0;
 num_d_accesses = num_d_accesses + 1;
 end
 //shift LDSTQ forward
 for(i=0;i<31;i=i+1)begin
 LDSTQ_Addr_Reg[i] = LDSTQ_Addr_Reg[i+1];
 LDSTQ_Data_Reg[i] = LDSTQ_Data_Reg[i+1];
 LDSTQ_Addr[i] = LDSTQ_Addr[i+1];
 LDSTQ_Data[i] = LDSTQ_Data[i+1];
 LDSTQ_hasAddr[i] = LDSTQ_hasAddr[i+1];
 LDSTQ_Valid[i] = LDSTQ_Valid[i+1];
 LDSTQ_isStore[i] = LDSTQ_isStore[i+1];
 LDSTQ_isLoad[i] = LDSTQ_isLoad[i+1];
 LDSTQ_hasData[i] = LDSTQ_hasData[i+1];
 LDSTQ_ROB[i] = LDSTQ_ROB[i+1];
 LDSTQ_Size[i] = LDSTQ_Size[i+1];
 LDSTQ_wroteValue[i] = LDSTQ_wroteValue[i+1];
 end
 LDSTQ_Addr_Reg[31]=0;
 LDSTQ_Data_Reg[31]=0;
 LDSTQ_Addr[31]=0;
 LDSTQ_Data[31]=0;
 LDSTQ_hasAddr[31]=0;
 LDSTQ_Valid[31]=0;
 LDSTQ_isStore[31]=0;
 LDSTQ_isLoad[31]=0;
 LDSTQ_hasData[31]=0;
 LDSTQ_ROB[31]=0;
 LDSTQ_Size[31]=0;
 LDSTQ_wroteValue[31]=0;
 LDSTQ_nextFree = LDSTQ_nextFree - 1;
 data_snooper = data_snooper - 1;

 num_mem = num_mem + 1;
 num_instructions_retired = num_instructions_retired +
1;numRetired = numRetired + 1;
 /**retireDone = 1;**/
 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head
= ROB_Head + 1;
 end
 else begin
 retireDone = 1;
 ROB_free1 = 0;
 end
 end
 else begin
 if(ROB_Flushed[ROB_Head]==0)num_instructions_retired =
num_instructions_retired + 1;
 if(ROB_isCF[ROB_Head][0])begin

 if(ROB_isCF[ROB_Head][2]&&ROB_LogReg[ROB_Head]==31)incorrect_pushes = incorrect_pushes +
1;
 if((ROB_Op[ROB_Head]==`select_qc_jalr ||
ROB_Op[ROB_Head]==`select_qc_jr)&&(ROB_debug_instr[ROB_Head][`rs]==31))incorrect_pops =
incorrect_pops + 1;
 end
 numRetired = numRetired + 1;
 if(ROB_Flushed[ROB_Head]==0)ROB_free1 = MAP[ROB_LogReg[ROB_Head]];
 else if(ROB_LogReg[ROB_Head]!=0)ROB_free1 = ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)ROB_unready1 =
1<<MAP[ROB_LogReg[ROB_Head]];
 else if(ROB_LogReg[ROB_Head]!=0)ROB_unready1 =
1<<ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)MAP[ROB_LogReg[ROB_Head]] =
ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)begin

 end
 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;

 72

 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head =
ROB_Head + 1;
 end
 end
 else begin
 ROB_free1 = 0;
 end
// retireDone = 1;
 if(ROB_Head==ROB_Tail ||
(ROB_Dep[ROB_Head]&&!ROB_Ready[(ROB_Head+1)&5'b11111]&&!ROB_Flushed[ROB_Head]))retireDone = 1;
 if(retireDone != 1 && (ROB_Ready[ROB_Head] == 1 || ROB_Flushed[ROB_Head] ==
1))begin
 if(ROB_isSys[ROB_Head] && ROB_Flushed[ROB_Head] == 0)begin
 if(oneCycleDelay!=0)begin
 oneCycleDelay = oneCycleDelay - 1;
 retireDone = 1;
 end
 else begin
 num_sys = num_sys + 1;
 oneCycleDelay = 1;
 num_instructions_retired = num_instructions_retired + 1;numRetired
= numRetired + 1;
 /**retireDone = 1;**/doingSyscall = 1;
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 correctTarget = ROB_debug_PC[ROB_Head]+4;

 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head =
ROB_Head + 1;
 ROB_free2 = 0;
 begin
 // store register file state to the C
interface functions!
 for (j=1; j<32;j=j+1)
 begin
 // Changed to setreg instead of
setregvalue
 $syscall_setreg
(j,CPU.reg_file.RegFile[CPU.MAP[j]]);
 end
 $syscall_setpc (ROB_debug_PC[ROB_Head]);
 // store PC

 // do the system call
 if ($emulate_syscall) begin
 // exit called
 $display ("-------------------------
----------");
 $display ("Program Terminated.");
 $display ("Retired %d instructions,
%d entered ROB",num_instructions_retired,num_instructions_inserted);
 $display ("Number of flushes:
%d",num_flushes);
 $display ("Ran for %d
cycles",$time/`cycle);
 $display ("ICache Accesses: %d
\nICache Misses: %d", i_cache_d_cache.num_icache_accesses,numIMisses);
 $display ("DCache Accesses: %d
\nDCache Misses: %d", num_d_accesses,numDMisses);
 $display ("Average Fullness: \nROB
%d \nALUQ %d \nCFQ %d \nLDSTAQ %d \nLDSTQ %d \nFreelist(avg. free regs)
%d",(10*ROB_total_occupancy)/($time/`cycle),(10*ALUqueue.total_occupancy)/($time/`cycle),(10*BRJR
queue.total_occupancy)/($time/`cycle),(10*LDSTqueue.total_occupancy)/($time/`cycle),(10*LDSTQ_tot
al_occupancy)/($time/`cycle),(10*free_bird.numFree)/($time/`cycle));
 $display ("RAS
%d",(10*ras.total_occupancy)/($time/`cycle));
 $display ("Max Fullness: \nALUQ %d
\nCFQ %d \nLDSTAQ %d \nLDSTQ %d\nRAS

 73

%d",ALUqueue.max_fullness,BRJRqueue.max_fullness,LDSTqueue.max_fullness,LDSTQ_max_fullness,ras.ma
x_fullness);
 $display ("BR Predictions: %d
\nIncorrect: %d\nJR Predictions: %d \nIncorrect:
%d",num_BR_predictions,num_BR_incorrect,num_JR_predictions,num_JR_incorrect);
 $display ("Correct Path: \nMem %d
\nCF %d \nSys %d \nALU & NOPS %d",num_mem,num_cf,num_sys,num_instructions_retired-
(num_mem+num_cf+num_sys));
 $display ("Retired 0 1 2 3 4: %d %d
%d %d
%d",num_times_retire[0],num_times_retire[1],num_times_retire[2],num_times_retire[3],num_times_ret
ire[4]);
 $display ("Renamed 0 1 2 3 4: %d %d
%d %d
%d",num_times_rename[0],num_times_rename[1],num_times_rename[2],num_times_rename[3],num_times_ren
ame[4]);
 $display ("Cycles Stalled: \nIStall
%d \nRename %d \nROB %d",num_cycles_istall,num_cycles_renamestall,num_cycles_robstall);
 $display ("Forwarded Data: %d\nWrote
Forwards Early: %d\nPerformed Early Loads: %d\nForwarded Data But No Early Write: %d\nROB Head
Loads: %d\nLoads Already Written Before Retire:
%d",num_data_forwarded,num_data_forwarded_written_ahead_of_time,num_early_load_accesses,num_data_
forwarded_not_written,num_rob_head_loads,num_loads_written_before_retire);
 $display ("-------------------------
----------");

 $finish;
 end

 // restore register file state from the C
interface
 for (j=1; j<32;j=j+1)
 begin
 // Changed to syscall_getreg
instead of syscall_regvalue

 CPU.reg_file.RegFile[CPU.MAP[j]] = $syscall_getreg(j);
 end
 end
 end
 end
 else if(ROB_isCF[ROB_Head][0] && ROB_Flushed[ROB_Head] == 0)begin
 if(/**!IStall &&**/ updatePredictor_WE == 0)begin
 num_cf = num_cf + 1;
 if(ROB_Op[ROB_Head]==`select_qc_j ||
ROB_Op[ROB_Head]==`select_qc_jal)begin
 //regular jumps cant be wrong
 end
 else if(ROB_Op[ROB_Head]==`select_qc_jalr ||
ROB_Op[ROB_Head]==`select_qc_jr)begin
 num_JR_predictions = num_JR_predictions + 1;

 if(ROB_Pred_Target[ROB_Head]!=ROB_EffAddr_Target_PC8[ROB_Head])begin
 num_JR_incorrect = num_JR_incorrect + 1;
 correctTarget =
ROB_EffAddr_Target_PC8[ROB_Head];
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 /**retireDone = 1;**/
 end
 end
 else begin
 if(ROB_Dir[ROB_Head]!=ROB_Pred[ROB_Head])begin
 num_BR_incorrect = num_BR_incorrect + 1;
 if(ROB_Dir[ROB_Head])correctTarget =
ROB_Pred_Target[ROB_Head];
 else correctTarget =
ROB_EffAddr_Target_PC8[ROB_Head];
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 /**retireDone = 1;**/

 74

 end
 num_BR_predictions = num_BR_predictions + 1;

 updatePredictor_WE = 1;
 updatePredictorPC = ROB_debug_PC[ROB_Head];
 updatePrediction = ROB_Dir[ROB_Head];
 end
 //link
 if(ROB_isCF[ROB_Head][2])begin
 ROB_free2 = MAP[ROB_LogReg[ROB_Head]];
 ROB_unready2 = 1<<MAP[ROB_LogReg[ROB_Head]];
 MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head];
 end
 else ROB_free2 = 0;

 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head
= ROB_Head + 1;
 num_instructions_retired = num_instructions_retired +
1;numRetired = numRetired + 1;

 end
 else begin
 retireDone = 1;
 end
 end
 else if(ROB_isMem[ROB_Head] && ROB_Flushed[ROB_Head] == 0)begin
 if(isMemRetire==0 && (((ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh ||
ROB_Op[ROB_Head]==`select_mem_sb)&&(LDSTQ_hasAddr[0]&&LDSTQ_hasData[0]))
 ||(!(ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh ||
ROB_Op[ROB_Head]==`select_mem_sb)&&LDSTQ_hasAddr[0]&&(loadDone==1))))begin
 if(!(ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh || ROB_Op[ROB_Head]==`select_mem_sb))begin
 //load
 if(LDSTQ_hasData[0] && LDSTQ_wroteValue[0])begin
 num_loads_written_before_retire =
num_loads_written_before_retire+1;

 end
 else if(LDSTQ_hasData[0])begin
 //got data through forwarding but didnt get to write
yet
 pre_load = LDSTQ_Data[0];
 load_reg = LDSTQ_Data_Reg[0];
 pre_load_WE = 1;
 loadDone = 0;
 num_data_forwarded_not_written =
num_data_forwarded_not_written + 1;
 end
 else begin
 //doesnt have its data, need to issue cache access
 isMemRetire = 1;
 memOp = ROB_Op[ROB_Head];
 MAR = LDSTQ_Addr[0];
 load_reg = ROB_PhyReg[ROB_Head];
 loadDone = 0;
 num_rob_head_loads = num_rob_head_loads + 1;
 num_d_accesses = num_d_accesses + 1;
 end
 ROB_free2 = MAP[ROB_LogReg[ROB_Head]];
 ROB_unready2 = 1<<MAP[ROB_LogReg[ROB_Head]];
 MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head];
 end
 else begin
 //store
 SMDR = LDSTQ_Data[0];
 isMemRetire = 1;
 memOp = ROB_Op[ROB_Head];
 MAR = LDSTQ_Addr[0];

 75

 ROB_free2 = 0;
 num_d_accesses = num_d_accesses + 1;
 end
 //shift LDSTQ forward
 for(i=0;i<31;i=i+1)begin
 LDSTQ_Addr_Reg[i] = LDSTQ_Addr_Reg[i+1];
 LDSTQ_Data_Reg[i] = LDSTQ_Data_Reg[i+1];
 LDSTQ_Addr[i] = LDSTQ_Addr[i+1];
 LDSTQ_Data[i] = LDSTQ_Data[i+1];
 LDSTQ_hasAddr[i] = LDSTQ_hasAddr[i+1];
 LDSTQ_Valid[i] = LDSTQ_Valid[i+1];
 LDSTQ_isStore[i] = LDSTQ_isStore[i+1];
 LDSTQ_isLoad[i] = LDSTQ_isLoad[i+1];
 LDSTQ_hasData[i] = LDSTQ_hasData[i+1];
 LDSTQ_ROB[i] = LDSTQ_ROB[i+1];
 LDSTQ_Size[i] = LDSTQ_Size[i+1];
 LDSTQ_wroteValue[i] = LDSTQ_wroteValue[i+1];
 end
 LDSTQ_Addr_Reg[31]=0;
 LDSTQ_Data_Reg[31]=0;
 LDSTQ_Addr[31]=0;
 LDSTQ_Data[31]=0;
 LDSTQ_hasAddr[31]=0;
 LDSTQ_Valid[31]=0;
 LDSTQ_isStore[31]=0;
 LDSTQ_isLoad[31]=0;
 LDSTQ_hasData[31]=0;
 LDSTQ_ROB[31]=0;
 LDSTQ_Size[31]=0;
 LDSTQ_wroteValue[31]=0;
 LDSTQ_nextFree = LDSTQ_nextFree - 1;
 data_snooper = data_snooper - 1;

 num_mem = num_mem + 1;
 num_instructions_retired = num_instructions_retired +
1;numRetired = numRetired + 1;
 /**retireDone = 1;**/
 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head
= ROB_Head + 1;
 end
 else begin

 retireDone = 1;
 ROB_free2 = 0;
 end
 end
 else begin
 if(ROB_Flushed[ROB_Head]==0)num_instructions_retired =
num_instructions_retired + 1;
 if(ROB_isCF[ROB_Head][0])begin

 if(ROB_isCF[ROB_Head][2]&&ROB_LogReg[ROB_Head]==31)incorrect_pushes = incorrect_pushes +
1;
 if((ROB_Op[ROB_Head]==`select_qc_jalr ||
ROB_Op[ROB_Head]==`select_qc_jr)&&(ROB_debug_instr[ROB_Head][`rs]==31))incorrect_pops =
incorrect_pops + 1;
 end
 numRetired = numRetired + 1;
 if(ROB_Flushed[ROB_Head]==0)ROB_free2 = MAP[ROB_LogReg[ROB_Head]];
 else if(ROB_LogReg[ROB_Head]!=0)ROB_free2 = ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)ROB_unready2 =
1<<MAP[ROB_LogReg[ROB_Head]];
 else if(ROB_LogReg[ROB_Head]!=0)ROB_unready2 =
1<<ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)MAP[ROB_LogReg[ROB_Head]] =
ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)begin

 end
 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;

 76

 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head =
ROB_Head + 1;
 end
 end
 else begin
 ROB_free2 = 0;
 end
 if(ROB_Head==ROB_Tail ||
(ROB_Dep[ROB_Head]&&!ROB_Ready[(ROB_Head+1)&5'b11111]&&!ROB_Flushed[ROB_Head]))retireDone = 1;
 if(retireDone != 1 && (ROB_Ready[ROB_Head] == 1 || ROB_Flushed[ROB_Head] ==
1))begin
 if(ROB_isSys[ROB_Head] && ROB_Flushed[ROB_Head] == 0)begin
 if(oneCycleDelay!=0)begin
 oneCycleDelay = oneCycleDelay - 1;
 retireDone = 1;
 end
 else begin
 num_sys = num_sys + 1;
 oneCycleDelay = 1;
 num_instructions_retired = num_instructions_retired + 1;numRetired
= numRetired + 1;
 /**retireDone = 1;**/doingSyscall = 1;
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 correctTarget = ROB_debug_PC[ROB_Head]+4;

 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head =
ROB_Head + 1;
 ROB_free3 = 0;
 begin
 // store register file state to the C
interface functions!
 for (j=1; j<32;j=j+1)
 begin
 // Changed to setreg instead of
setregvalue
 $syscall_setreg
(j,CPU.reg_file.RegFile[CPU.MAP[j]]);
 end
 $syscall_setpc (ROB_debug_PC[ROB_Head]);
 // store PC

 // do the system call
 if ($emulate_syscall) begin
 // exit called
 $display ("-------------------------
----------");
 $display ("Program Terminated.");
 $display ("Retired %d instructions,
%d entered ROB",num_instructions_retired,num_instructions_inserted);
 $display ("Number of flushes:
%d",num_flushes);
 $display ("Ran for %d
cycles",$time/`cycle);
 $display ("ICache Accesses: %d
\nICache Misses: %d", i_cache_d_cache.num_icache_accesses,numIMisses);
 $display ("DCache Accesses: %d
\nDCache Misses: %d", num_d_accesses,numDMisses);
 $display ("Average Fullness: \nROB
%d \nALUQ %d \nCFQ %d \nLDSTAQ %d \nLDSTQ %d \nFreelist(avg. free regs)
%d",(10*ROB_total_occupancy)/($time/`cycle),(10*ALUqueue.total_occupancy)/($time/`cycle),(10*BRJR
queue.total_occupancy)/($time/`cycle),(10*LDSTqueue.total_occupancy)/($time/`cycle),(10*LDSTQ_tot
al_occupancy)/($time/`cycle),(10*free_bird.numFree)/($time/`cycle));
 $display ("RAS
%d",(10*ras.total_occupancy)/($time/`cycle));
 $display ("Max Fullness: \nALUQ %d
\nCFQ %d \nLDSTAQ %d \nLDSTQ %d\nRAS
%d",ALUqueue.max_fullness,BRJRqueue.max_fullness,LDSTqueue.max_fullness,LDSTQ_max_fullness,ras.ma
x_fullness);

 77

 $display ("BR Predictions: %d
\nIncorrect: %d\nJR Predictions: %d \nIncorrect:
%d",num_BR_predictions,num_BR_incorrect,num_JR_predictions,num_JR_incorrect);
 $display ("Correct Path: \nMem %d
\nCF %d \nSys %d \nALU & NOPS %d",num_mem,num_cf,num_sys,num_instructions_retired-
(num_mem+num_cf+num_sys));
 $display ("Retired 0 1 2 3 4: %d %d
%d %d
%d",num_times_retire[0],num_times_retire[1],num_times_retire[2],num_times_retire[3],num_times_ret
ire[4]);
 $display ("Renamed 0 1 2 3 4: %d %d
%d %d
%d",num_times_rename[0],num_times_rename[1],num_times_rename[2],num_times_rename[3],num_times_ren
ame[4]);
 $display ("Cycles Stalled: \nIStall
%d \nRename %d \nROB %d",num_cycles_istall,num_cycles_renamestall,num_cycles_robstall);
 $display ("Forwarded Data: %d\nWrote
Forwards Early: %d\nPerformed Early Loads: %d\nForwarded Data But No Early Write: %d\nROB Head
Loads: %d\nLoads Already Written Before Retire:
%d",num_data_forwarded,num_data_forwarded_written_ahead_of_time,num_early_load_accesses,num_data_
forwarded_not_written,num_rob_head_loads,num_loads_written_before_retire);
 $display ("-------------------------
----------");

 $finish;
 end

 // restore register file state from the C
interface
 for (j=1; j<32;j=j+1)
 begin
 // Changed to syscall_getreg
instead of syscall_regvalue

 CPU.reg_file.RegFile[CPU.MAP[j]] = $syscall_getreg(j);
 end
 end
 end
 end
 else if(ROB_isCF[ROB_Head][0] && ROB_Flushed[ROB_Head] == 0)begin
 if(/**!IStall &&**/ updatePredictor_WE == 0)begin
 num_cf = num_cf + 1;
 if(ROB_Op[ROB_Head]==`select_qc_j ||
ROB_Op[ROB_Head]==`select_qc_jal)begin
 //regular jumps cant be wrong
 end
 else if(ROB_Op[ROB_Head]==`select_qc_jalr ||
ROB_Op[ROB_Head]==`select_qc_jr)begin
 num_JR_predictions = num_JR_predictions + 1;

 if(ROB_Pred_Target[ROB_Head]!=ROB_EffAddr_Target_PC8[ROB_Head])begin
 num_JR_incorrect = num_JR_incorrect + 1;
 correctTarget =
ROB_EffAddr_Target_PC8[ROB_Head];
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 /**retireDone = 1;**/
 end
 end
 else begin
 if(ROB_Dir[ROB_Head]!=ROB_Pred[ROB_Head])begin
 num_BR_incorrect = num_BR_incorrect + 1;
 if(ROB_Dir[ROB_Head])correctTarget =
ROB_Pred_Target[ROB_Head];
 else correctTarget =
ROB_EffAddr_Target_PC8[ROB_Head];
 num_flushes = num_flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
 /**retireDone = 1;**/
 end
 num_BR_predictions = num_BR_predictions + 1;

 78

 updatePredictor_WE = 1;
 updatePredictorPC = ROB_debug_PC[ROB_Head];
 updatePrediction = ROB_Dir[ROB_Head];
 end
 //link
 if(ROB_isCF[ROB_Head][2])begin
 ROB_free3 = MAP[ROB_LogReg[ROB_Head]];
 ROB_unready3 = 1<<MAP[ROB_LogReg[ROB_Head]];
 MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head];
 end
 else ROB_free3 = 0;

 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head
= ROB_Head + 1;
 num_instructions_retired = num_instructions_retired +
1;numRetired = numRetired + 1;

 end
 else begin
 retireDone = 1;
 end
 end
 else if(ROB_isMem[ROB_Head] && ROB_Flushed[ROB_Head] == 0)begin
 if(isMemRetire==0 && (((ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh ||
ROB_Op[ROB_Head]==`select_mem_sb)&&(LDSTQ_hasAddr[0]&&LDSTQ_hasData[0]))
 ||(!(ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh ||
ROB_Op[ROB_Head]==`select_mem_sb)&&LDSTQ_hasAddr[0]&&(loadDone==1))))begin
 if(!(ROB_Op[ROB_Head]==`select_mem_sw ||
ROB_Op[ROB_Head]==`select_mem_sh || ROB_Op[ROB_Head]==`select_mem_sb))begin
 //load
 if(LDSTQ_hasData[0] && LDSTQ_wroteValue[0])begin
 num_loads_written_before_retire =
num_loads_written_before_retire+1;

 end
 else if(LDSTQ_hasData[0])begin
 //got data through forwarding but didnt get to write
yet
 pre_load = LDSTQ_Data[0];
 load_reg = LDSTQ_Data_Reg[0];
 pre_load_WE = 1;
 loadDone = 0;
 num_data_forwarded_not_written =
num_data_forwarded_not_written + 1;
 end
 else begin
 //doesnt have its data, need to issue cache access
 isMemRetire = 1;
 memOp = ROB_Op[ROB_Head];
 MAR = LDSTQ_Addr[0];
 load_reg = ROB_PhyReg[ROB_Head];
 loadDone = 0;
 num_rob_head_loads = num_rob_head_loads + 1;
 num_d_accesses = num_d_accesses + 1;
 end
 ROB_free3 = MAP[ROB_LogReg[ROB_Head]];
 ROB_unready3 = 1<<MAP[ROB_LogReg[ROB_Head]];
 MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head];
 end
 else begin
 //store
 SMDR = LDSTQ_Data[0];
 isMemRetire = 1;
 memOp = ROB_Op[ROB_Head];
 MAR = LDSTQ_Addr[0];
 ROB_free3 = 0;
 num_d_accesses = num_d_accesses + 1;

 79

 end
 //shift LDSTQ forward
 for(i=0;i<31;i=i+1)begin
 LDSTQ_Addr_Reg[i] = LDSTQ_Addr_Reg[i+1];
 LDSTQ_Data_Reg[i] = LDSTQ_Data_Reg[i+1];
 LDSTQ_Addr[i] = LDSTQ_Addr[i+1];
 LDSTQ_Data[i] = LDSTQ_Data[i+1];
 LDSTQ_hasAddr[i] = LDSTQ_hasAddr[i+1];
 LDSTQ_Valid[i] = LDSTQ_Valid[i+1];
 LDSTQ_isStore[i] = LDSTQ_isStore[i+1];
 LDSTQ_isLoad[i] = LDSTQ_isLoad[i+1];
 LDSTQ_hasData[i] = LDSTQ_hasData[i+1];
 LDSTQ_ROB[i] = LDSTQ_ROB[i+1];
 LDSTQ_Size[i] = LDSTQ_Size[i+1];
 LDSTQ_wroteValue[i] = LDSTQ_wroteValue[i+1];
 end
 LDSTQ_Addr_Reg[31]=0;
 LDSTQ_Data_Reg[31]=0;
 LDSTQ_Addr[31]=0;
 LDSTQ_Data[31]=0;
 LDSTQ_hasAddr[31]=0;
 LDSTQ_Valid[31]=0;
 LDSTQ_isStore[31]=0;
 LDSTQ_isLoad[31]=0;
 LDSTQ_hasData[31]=0;
 LDSTQ_ROB[31]=0;
 LDSTQ_Size[31]=0;
 LDSTQ_wroteValue[31]=0;
 LDSTQ_nextFree = LDSTQ_nextFree - 1;
 data_snooper = data_snooper - 1;

 num_mem = num_mem + 1;
 num_instructions_retired = num_instructions_retired +
1;numRetired = numRetired + 1;
 /**retireDone = 1;**/
 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head
= ROB_Head + 1;
 end
 else begin

 retireDone = 1;
 ROB_free3 = 0;
 end
 end
 else begin
 if(ROB_Flushed[ROB_Head]==0)num_instructions_retired =
num_instructions_retired + 1;
 if(ROB_isCF[ROB_Head][0])begin

 if(ROB_isCF[ROB_Head][2]&&ROB_LogReg[ROB_Head]==31)incorrect_pushes = incorrect_pushes +
1;
 if((ROB_Op[ROB_Head]==`select_qc_jalr ||
ROB_Op[ROB_Head]==`select_qc_jr)&&(ROB_debug_instr[ROB_Head][`rs]==31))incorrect_pops =
incorrect_pops + 1;
 end
 numRetired = numRetired + 1;
 if(ROB_Flushed[ROB_Head]==0)ROB_free3 = MAP[ROB_LogReg[ROB_Head]];
 else if(ROB_LogReg[ROB_Head]!=0)ROB_free3 = ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)ROB_unready3 =
1<<MAP[ROB_LogReg[ROB_Head]];
 else if(ROB_LogReg[ROB_Head]!=0)ROB_unready3 =
1<<ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)MAP[ROB_LogReg[ROB_Head]] =
ROB_PhyReg[ROB_Head];
 if(ROB_Flushed[ROB_Head]==0)begin

 end
 ROB_Ready[ROB_Head] = 0;ROB_Flushed[ROB_Head] = 0;
 ROB_LogReg[ROB_Head] = 0;ROB_PhyReg[ROB_Head] = 0;ROB_Head =
ROB_Head + 1;

 80

 end
 end
 else begin
 ROB_free3 = 0;
 end

 ROB_Free = numRetired + ROB_Free;
 num_times_retire[numRetired]=num_times_retire[numRetired]+1;
 unresolved_store = 0;
 earlyaccess = 0;
 //Flush LDSTQ
 if(fullFlush)begin
 for(i=0;i<32;i=i+1)begin
 LDSTQ_Valid[i] = 0;
 end
 LDSTQ_nextFree = 0;
 end
 else begin
 //Issue Loads if nothing else is using the WB reg or d$
 for(i=0;i<32;i=i+1)begin
 if(loadDone == 1 && (isMemRetire == 0 || !isLoad &&
LDSTQ_hasData[i]) && LDSTQ_isLoad[i] && LDSTQ_Valid[i] && LDSTQ_hasAddr[i] &&
!LDSTQ_wroteValue[i])begin
 if(LDSTQ_hasData[i])begin
 //got data through forwarding but didnt get to write yet
 pre_load = LDSTQ_Data[i];
 load_reg = LDSTQ_Data_Reg[i];
 pre_load_WE = 1;
 loadDone = 0;
 LDSTQ_wroteValue[i] = 1;
 num_data_forwarded_written_ahead_of_time =
num_data_forwarded_written_ahead_of_time + 1;
 end
 else begin
 //dont issue the load until you know noone overlaps,
if they can forward the data, wait til they do
 unresolved_store = 0;
 for(j=0;j<i;j=j+1)begin

 if(LDSTQ_isStore[j]&&(!LDSTQ_hasAddr[j]||((LDSTQ_Addr[j]&32'hFFFFFFFC)==(LDSTQ_Addr[i]&32
'hFFFFFFFC))))begin
 unresolved_store = 1;
 end
 end
 //doesnt have its data, need to issue cache access
 if(unresolved_store == 0)begin
 earlyaccess = 1;
 isMemRetire = 1;
 memOp = ROB_Op[LDSTQ_ROB[i]];
 MAR = LDSTQ_Addr[i];
 load_reg = LDSTQ_Data_Reg[i];
 loadDone = 0;
 LDSTQ_wroteValue[i] = 1;
 LDSTQ_hasData[i] = 1;
 num_early_load_accesses =
num_early_load_accesses + 1;
 num_d_accesses = num_d_accesses + 1;
 end
 end
 end
 end
 end//ldstq

 end

end

always @(*)begin
 if(r_isCFA[2])begin
 link_WE = 1;

 81

 link_reg = r_rdA;
 link_value = r_immA;
 link_ready = 1 << r_rdA;
 end
 else if(r_isCFB[2])begin
 link_WE = 1;
 link_reg = r_rdB;
 link_value = r_immB;
 link_ready = 1 << r_rdB;
 end
 else if(r_isCFC[2])begin
 link_WE = 1;
 link_reg = r_rdC;
 link_value = r_immC;
 link_ready = 1 << r_rdC;
 end
 else if(r_isCFD[2])begin
 link_WE = 1;
 link_reg = r_rdD;
 link_value = r_immD;
 link_ready = 1 << r_rdD;
 end
 else begin
 link_WE = 0;
 link_ready = 0;
 link_value = 0;
 link_reg = 0;
 end
end
wire [63:0] i_readyA,i_readyB,i_readyC,i_readyD;
ready_register_list ready_regs(
 .RESET(RESET),
 .CLK(CLK),
 .toBeReady0(i_readyA),
 .toBeReady1(i_readyB),
 .toBeReady2(link_ready),
 .toBeReady3(load_ready),
 .clearReady0(ROB_unready0),
 .clearReady1(ROB_unready1),
 .clearReady2(ROB_unready2),
 .clearReady3(ROB_unready3),
 .ReadyList(readyList),
 .fullFlush(fullFlush)
);

//Issue Queues
//output wires from issue queue/reg file
wire [7:0] i_opA,i_opB,i_opC,i_opD;
wire [5:0] i_rsA,i_rsB,i_rsC,i_rsD,i_rtA,i_rtB,i_rtC,i_rtD;
wire [5:0] i_rdA,i_rdB,i_rdC,i_rdD;
wire [31:0] iv_rsA,iv_rsB,iv_rsC,iv_rsD,iv_rtA,iv_rtB,iv_rtC,iv_rtD;
wire i_usesImmA,i_usesImmB,i_usesImmC,i_usesImmD;
wire [31:0] i_immA,i_immB,i_immC,i_immD;
wire [4:0] i_ROBA,i_ROBB,i_ROBC,i_ROBD;

wire ALUQueueFull,LDSTQueueFull,BRJRQueueFull;
wire [1:0] ALUNumIssued,LDSTNumIssued,BRJRNumIssued;
//registers piping to execution units
reg [7:0] ir_opA,ir_opB,ir_opC,ir_opD;
reg [5:0] ir_rsA,ir_rsB,ir_rsC,ir_rsD,ir_rtA,ir_rtB,ir_rtC,ir_rtD;
reg [5:0] ir_rdA,ir_rdB,ir_rdC,ir_rdD;
reg [31:0] irv_rsA,irv_rsB,irv_rsC,irv_rsD,irv_rtA,irv_rtB,irv_rtC,irv_rtD;
reg ir_usesImmA,ir_usesImmB,ir_usesImmC,ir_usesImmD;
reg [31:0] ir_immA,ir_immB,ir_immC,ir_immD;
reg [4:0] ir_ROBA,ir_ROBB,ir_ROBC,ir_ROBD;
reg [1:0] ir_ALUNumIssued,ir_LDSTNumIssued,ir_BRJRNumIssued;

//pipeline registers
always @(posedge CLK)begin
 ir_opA = i_opA;ir_opB = i_opB;ir_opC = i_opC;ir_opD = i_opD;
 ir_rsA = i_rsA;ir_rsB = i_rsB;ir_rsC = i_rsC;ir_rsD = i_rsD;

 82

 ir_rtA = i_rtA;ir_rtB = i_rtB;ir_rtC = i_rtC;ir_rtD = i_rtD;
 ir_rdA = i_rdA;ir_rdB = i_rdB;ir_rdC = i_rdC;ir_rdD = i_rdD;
 irv_rsA = iv_rsA;irv_rsB = iv_rsB;irv_rsC = iv_rsC;irv_rsD = iv_rsD;
 irv_rtA = iv_rtA;irv_rtB = iv_rtB;irv_rtC = iv_rtC;irv_rtD = iv_rtD;
 ir_usesImmA = i_usesImmA;ir_usesImmB = i_usesImmB;ir_usesImmC = i_usesImmC;ir_usesImmD =
i_usesImmD;
 ir_immA = i_immA;ir_immB = i_immB;ir_immC = i_immC;ir_immD = i_immD;
 ir_ROBA = i_ROBA;ir_ROBB = i_ROBB;ir_ROBC = i_ROBC;ir_ROBD = i_ROBD;
 ir_ALUNumIssued = ALUNumIssued;ir_LDSTNumIssued = LDSTNumIssued;ir_BRJRNumIssued =
BRJRNumIssued;
end

issue_queue ALUqueue (
 .RESET(RESET),
 .CLK(CLK),
 .fullFlush(fullFlush),
 .maxIssue(2'b10),
 .queueNum(`ALUQueue),
 .readyFlags(readyList),
 .inOperation0(r_opA),.inImmediate0(r_immA),.inRT0(r_rtA),.inRS0(r_rsA),.inRD0(r_rdA),.inQ
ueue0(r_queueA),.inROB0(ROB_slot0),.inUImm0(r_usesImmA),
 .inOperation1(r_opB),.inImmediate1(r_immB),.inRT1(r_rtB),.inRS1(r_rsB),.inRD1(r_rdB),.inQ
ueue1(r_queueB),.inROB1(ROB_slot1),.inUImm1(r_usesImmB),
 .inOperation2(r_opC),.inImmediate2(r_immC),.inRT2(r_rtC),.inRS2(r_rsC),.inRD2(r_rdC),.inQ
ueue2(r_queueC),.inROB2(ROB_slot2),.inUImm2(r_usesImmC),
 .inOperation3(r_opD),.inImmediate3(r_immD),.inRT3(r_rtD),.inRS3(r_rsD),.inRD3(r_rdD),.inQ
ueue3(r_queueD),.inROB3(ROB_slot3),.inUImm3(r_usesImmD),
 .outOperation0(i_opA),.outImmediate0(i_immA),.outRT0(i_rtA),.outRS0(i_rsA),.outRD0(i_rdA)
,.outROB0(i_ROBA),.outUImm0(i_usesImmA),
 .outOperation1(i_opB),.outImmediate1(i_immB),.outRT1(i_rtB),.outRS1(i_rsB),.outRD1(i_rdB)
,.outROB1(i_ROBB),.outUImm1(i_usesImmB),
 .outReadyFlag0(i_readyA),.outReadyFlag1(i_readyB),
 .QueueTooFull(ALUQueueFull),
 .numIssued(ALUNumIssued)
);
issue_queue LDSTqueue(
 .RESET(RESET),
 .CLK(CLK),
 .fullFlush(fullFlush),
 .maxIssue(2'b01),
 .queueNum(`MEMQueue),
 .readyFlags(readyList),
 .inOperation0(r_opA),.inImmediate0(r_immA),.inRT0(6'b0),.inRS0(r_rsA),.inRD0(r_rdA),.inQu
eue0(r_queueA),.inROB0(ROB_slot0),.inUImm0(r_usesImmA),
 .inOperation1(r_opB),.inImmediate1(r_immB),.inRT1(6'b0),.inRS1(r_rsB),.inRD1(r_rdB),.inQu
eue1(r_queueB),.inROB1(ROB_slot1),.inUImm1(r_usesImmB),
 .inOperation2(r_opC),.inImmediate2(r_immC),.inRT2(6'b0),.inRS2(r_rsC),.inRD2(r_rdC),.inQu
eue2(r_queueC),.inROB2(ROB_slot2),.inUImm2(r_usesImmC),
 .inOperation3(r_opD),.inImmediate3(r_immD),.inRT3(6'b0),.inRS3(r_rsD),.inRD3(r_rdD),.inQu
eue3(r_queueD),.inROB3(ROB_slot3),.inUImm3(r_usesImmD),
 .outOperation0(i_opC),.outImmediate0(i_immC),.outRT0(i_rtC),.outRS0(i_rsC),.outRD0(i_rdC)
,.outROB0(i_ROBC),.outUImm0(i_usesImmC),
 .outOperation1(),.outImmediate1(),.outRT1(),.outRS1(),.outRD1(),.outROB1(),.outUImm1(),//
NC
 .outReadyFlag0(i_readyC),
 .outReadyFlag1(),//NC
 .QueueTooFull(LDSTQueueFull),
 .numIssued(LDSTNumIssued)
);
issue_queue BRJRqueue(
 .RESET(RESET),
 .CLK(CLK),
 .fullFlush(fullFlush),
 .maxIssue(2'b01),
 .queueNum(`BRQueue),
 .readyFlags(readyList),
 .inOperation0(r_opA),.inImmediate0(r_immA),.inRT0(r_rtA),.inRS0(r_rsA),.inRD0(r_rdA),.inQ
ueue0(r_queueA),.inROB0(ROB_slot0),.inUImm0(r_usesImmA),
 .inOperation1(r_opB),.inImmediate1(r_immB),.inRT1(r_rtB),.inRS1(r_rsB),.inRD1(r_rdB),.inQ
ueue1(r_queueB),.inROB1(ROB_slot1),.inUImm1(r_usesImmB),

 83

 .inOperation2(r_opC),.inImmediate2(r_immC),.inRT2(r_rtC),.inRS2(r_rsC),.inRD2(r_rdC),.inQ
ueue2(r_queueC),.inROB2(ROB_slot2),.inUImm2(r_usesImmC),
 .inOperation3(r_opD),.inImmediate3(r_immD),.inRT3(r_rtD),.inRS3(r_rsD),.inRD3(r_rdD),.inQ
ueue3(r_queueD),.inROB3(ROB_slot3),.inUImm3(r_usesImmD),
 .outOperation0(i_opD),.outImmediate0(i_immD),.outRT0(i_rtD),.outRS0(i_rsD),.outRD0(i_rdD)
,.outROB0(i_ROBD),.outUImm0(i_usesImmD),
 .outOperation1(),.outImmediate1(),.outRT1(),.outRS1(),.outRD1(),.outROB1(),.outUImm1(),//
NC
 .outReadyFlag0(i_readyD),
 .outReadyFlag1(),//NC
 .QueueTooFull(BRJRQueueFull),
 .numIssued(BRJRNumIssued)
);

//Execution Units
//bypassing/forwarding logic to allow dependant instructions to issue back to back
wire [31:0] alu0_rs_v,alu0_rt_v,alu1_rs_v,alu1_rt_v,ldst_rs_v,brjr_rs_v,brjr_rt_v;

forwarding alu0_rs(
 .rfValue(irv_rsA),.rfAddr(ir_rsA),
 .wb0Value(exv_rdA),.wb0Addr(ex_rdA),//ALU0
 .wb1Value(exv_rdB),.wb1Addr(ex_rdB),//ALU1
 .wb2Value(cacheOut),.wb2Addr(load_reg),//Load?
 .wb3Value(link_value),.wb3Addr(link_reg),//Link
 .outValue(alu0_rs_v)
);
forwarding alu0_rt(
 .rfValue(irv_rtA),.rfAddr(ir_rtA),
 .wb0Value(exv_rdA),.wb0Addr(ex_rdA),//ALU0
 .wb1Value(exv_rdB),.wb1Addr(ex_rdB),//ALU1
 .wb2Value(cacheOut),.wb2Addr(load_reg),//Load?
 .wb3Value(link_value),.wb3Addr(link_reg),//Link
 .outValue(alu0_rt_v)
);
forwarding alu1_rs(
 .rfValue(irv_rsB),.rfAddr(ir_rsB),
 .wb0Value(exv_rdA),.wb0Addr(ex_rdA),//ALU0
 .wb1Value(exv_rdB),.wb1Addr(ex_rdB),//ALU1
 .wb2Value(cacheOut),.wb2Addr(load_reg),//Load?
 .wb3Value(link_value),.wb3Addr(link_reg),//Link
 .outValue(alu1_rs_v)
);
forwarding alu1_rt(
 .rfValue(irv_rtB),.rfAddr(ir_rtB),
 .wb0Value(exv_rdA),.wb0Addr(ex_rdA),//ALU0
 .wb1Value(exv_rdB),.wb1Addr(ex_rdB),//ALU1
 .wb2Value(cacheOut),.wb2Addr(load_reg),//Load?
 .wb3Value(link_value),.wb3Addr(link_reg),//Link
 .outValue(alu1_rt_v)
);
forwarding addr_rs(
 .rfValue(irv_rsC),.rfAddr(ir_rsC),
 .wb0Value(exv_rdA),.wb0Addr(ex_rdA),//ALU0
 .wb1Value(exv_rdB),.wb1Addr(ex_rdB),//ALU1
 .wb2Value(cacheOut),.wb2Addr(load_reg),//Load?
 .wb3Value(link_value),.wb3Addr(link_reg),//Link
 .outValue(ldst_rs_v)
);
forwarding br_rs(
 .rfValue(irv_rsD),.rfAddr(ir_rsD),
 .wb0Value(exv_rdA),.wb0Addr(ex_rdA),//ALU0
 .wb1Value(exv_rdB),.wb1Addr(ex_rdB),//ALU1
 .wb2Value(cacheOut),.wb2Addr(load_reg),//Load?
 .wb3Value(link_value),.wb3Addr(link_reg),//Link
 .outValue(brjr_rs_v)
);
forwarding br_rt(
 .rfValue(irv_rtD),.rfAddr(ir_rtD),
 .wb0Value(exv_rdA),.wb0Addr(ex_rdA),//ALU0
 .wb1Value(exv_rdB),.wb1Addr(ex_rdB),//ALU1
 .wb2Value(cacheOut),.wb2Addr(load_reg),//Load?

 84

 .wb3Value(link_value),.wb3Addr(link_reg),//Link
 .outValue(brjr_rt_v)
);
forwarding store_value_fwd(
 .rfValue(pre_store_value),.rfAddr(store_reg),
 .wb0Value(exv_rdA),.wb0Addr(ex_rdA),//ALU0
 .wb1Value(exv_rdB),.wb1Addr(ex_rdB),//ALU1
 .wb2Value(cacheOut),.wb2Addr(load_reg),//Load?
 .wb3Value(link_value),.wb3Addr(link_reg),//Link
 .outValue(store_value)
);

always @(posedge CLK)begin
 ex_rdA = ir_rdA;
 ex_rdB = ir_rdB;
 exv_rdA = ALU0_out;
 exv_rdB = ALU1_out;

 if(ir_ALUNumIssued == 2)begin
 ALU0_WE = 1;
 ALU1_WE = 1;
 end
 else if(ir_ALUNumIssued == 1)begin
 ALU0_WE = 1;
 ALU1_WE = 0;
 end
 else begin
 ALU0_WE = 0;
 ALU1_WE = 0;
 end
 gotFlushed = fullFlush;
 LDST_Done = ir_LDSTNumIssued;
 BRJR_Done = ir_BRJRNumIssued;
 ex_BRJR_taken = BRJR_taken;
 ex_EffAddr = EffAddr;
 ex_BRJR_target = BRJR_target;
 ex_ROBA = ir_ROBA;
 ex_ROBB = ir_ROBB;
 ex_ROBC = ir_ROBC;
 ex_ROBD = ir_ROBD;
end

alu alu0(
 .RSOperand(alu0_rs_v),
 .RTOperand(alu0_rt_v),
 .Immediate(ir_immA),
 .UseImmediate(ir_usesImmA),
 .ALUOp(ir_opA),
 .ALUout(ALU0_out)
);
alu alu1(
 .RSOperand(alu1_rs_v),
 .RTOperand(alu1_rt_v),
 .Immediate(ir_immB),
 .UseImmediate(ir_usesImmB),
 .ALUOp(ir_opB),
 .ALUout(ALU1_out)
);
addr_calc ldst_addr(
 .RegVal(ldst_rs_v),
 .Immediate(ir_immC),
 .EffAddr(EffAddr)
);
branch_compare br_qc_jr(
 .RSOperand(brjr_rs_v),
 .RTOperand(brjr_rt_v),
 .ComparisonType(ir_opD),
 .Taken(BRJR_taken),
 .Target(BRJR_target)
);

 85

reg [5:0] phy_to_log0,phy_to_log1,phy_to_log2,phy_to_log3;

always @(*)begin
 for(i=0;i<34;i=i+1)begin
 if(MAP[i] == ex_rdA) phy_to_log0 = i;
 if(MAP[i] == ex_rdB) phy_to_log1 = i;
 if(MAP[i] == link_reg) phy_to_log2 = i;
 if(MAP[i] == load_reg) phy_to_log3 = i;
 end
end

wire [31:0] pre_load_data;
assign pre_load_data = (pre_load_WE)?pre_load:cacheOut;

//Writeback / RegFile
physical_register_file reg_file(
 .RESET(RESET),
 .CLK(CLK),
 .ReadAddr0(i_rsA),.ReadValue0(iv_rsA),
 .ReadAddr1(i_rsB),.ReadValue1(iv_rsB),
 .ReadAddr2(i_rsC),.ReadValue2(iv_rsC),
 .ReadAddr3(i_rsD),.ReadValue3(iv_rsD),
 .ReadAddr4(i_rtA),.ReadValue4(iv_rtA),
 .ReadAddr5(i_rtB),.ReadValue5(iv_rtB),
 .ReadAddr6(store_reg),.ReadValue6(pre_store_value),
 .ReadAddr7(i_rtD),.ReadValue7(iv_rtD),
 .WriteValue0(exv_rdA),.WriteAddr0(ex_rdA),.WriteEnable0(ALU0_WE),
 .WriteValue1(exv_rdB),.WriteAddr1(ex_rdB),.WriteEnable1(ALU1_WE),
 .WriteValue2(link_value),.WriteAddr2(link_reg),.WriteEnable2(link_WE),
 .WriteValue3(pre_load_data),.WriteAddr3(load_reg),.WriteEnable3(isLoad||pre_load_WE)
);

initial begin
 //$shm_open();
 //$shm_probe(CPU, "AMC");
end

endmodule

**
rename.v

`include "mips.h"

module
rename(RESET,CLK,fullFlush,numInstr,replacementMAP,numFree,renameStall,numRenamed,iStalled,

inRS0,inRT0,inRD0,outRS0,outRT0,outRD0,free0,

inRS1,inRT1,inRD1,outRS1,outRT1,outRD1,free1,

inRS2,inRT2,inRD2,outRS2,outRT2,outRD2,free2,

inRS3,inRT3,inRD3,outRS3,outRT3,outRD3,free3,

ab_swap,bc_swap,cd_swap,ab_dependant,bc_dependant,cd_dependant);
input RESET,CLK,fullFlush,iStalled;
input [2:0] numInstr;
input [203:0] replacementMAP;
input [7:0] numFree;
input ab_swap,bc_swap,cd_swap;
output renameStall;
reg [5:0] newMAP[33:0];
input [5:0]
inRS0,inRT0,inRD0,inRS1,inRT1,inRD1,inRS2,inRT2,inRD2,inRS3,inRT3,inRD3,free0,free1,free2,free3;
output reg [5:0]
outRS0,outRT0,outRD0,outRS1,outRT1,outRD1,outRS2,outRT2,outRD2,outRS3,outRT3,outRD3;
output reg [2:0] numRenamed;
output reg ab_dependant,bc_dependant,cd_dependant;
reg [5:0] MAP[33:0];

 86

reg ab_l,bc_l,cd_l;
wire bothab,bothbc,bothcd;

assign bothab = ab_dependant&ab_l;
assign bothbc = bc_dependant&bc_l;
assign bothcd = cd_dependant&cd_l;

assign renameStall = numFree < 4;

always @(*)begin
 ab_dependant = 0;
 bc_dependant = 0;
 cd_dependant = 0;
 ab_l = 0;
 bc_l = 0;
 cd_l = 0;
 if(ab_swap)begin
 if(inRD0 && (inRD0 == inRS1 || inRD0 == inRT1 || inRD0 == inRD1))ab_dependant = 1;
 else ab_dependant = 0;
 if(inRD1 && (inRD1 == inRS0 || inRD1 == inRT0 || inRD1 == inRD0))ab_l = 1;
 else ab_l = 0;
 end
 if(bc_swap)begin
 if(inRD1 && (inRD1 == inRS2 || inRD1 == inRT2 || inRD1 == inRD2))bc_dependant = 1;
 else bc_dependant = 0;
 if(inRD2 && (inRD2 == inRS1 || inRD2 == inRT1 || inRD2 == inRD1))bc_l = 1;
 else bc_l = 0;
 end
 if(cd_swap)begin
 if(inRD2 && (inRD2 == inRS3 || inRD2 == inRT3 || inRD2 == inRD3))cd_dependant = 1;
 else cd_dependant = 0;
 if(inRD3 && (inRD3 == inRS2 || inRD3 == inRT2 || inRD3 == inRD2))cd_l = 1;
 else cd_l = 0;
 end
end

integer i;

always @(*)begin
 newMAP[0] = replacementMAP[5:0];
 newMAP[1] = replacementMAP[11:6];
 newMAP[2] = replacementMAP[17:12];
 newMAP[3] = replacementMAP[23:18];
 newMAP[4] = replacementMAP[29:24];
 newMAP[5] = replacementMAP[35:30];
 newMAP[6] = replacementMAP[41:36];
 newMAP[7] = replacementMAP[47:42];
 newMAP[8] = replacementMAP[53:48];
 newMAP[9] = replacementMAP[59:54];
 newMAP[10] = replacementMAP[65:60];
 newMAP[11] = replacementMAP[71:66];
 newMAP[12] = replacementMAP[77:72];
 newMAP[13] = replacementMAP[83:78];
 newMAP[14] = replacementMAP[89:84];
 newMAP[15] = replacementMAP[95:90];
 newMAP[16] = replacementMAP[101:96];
 newMAP[17] = replacementMAP[107:102];
 newMAP[18] = replacementMAP[113:108];
 newMAP[19] = replacementMAP[119:114];
 newMAP[20] = replacementMAP[125:120];
 newMAP[21] = replacementMAP[131:126];
 newMAP[22] = replacementMAP[137:132];
 newMAP[23] = replacementMAP[143:138];
 newMAP[24] = replacementMAP[149:144];
 newMAP[25] = replacementMAP[155:150];
 newMAP[26] = replacementMAP[161:156];
 newMAP[27] = replacementMAP[167:162];
 newMAP[28] = replacementMAP[173:168];
 newMAP[29] = replacementMAP[179:174];
 newMAP[30] = replacementMAP[185:180];
 newMAP[31] = replacementMAP[191:186];

 87

 newMAP[32] = replacementMAP[197:192];
 newMAP[33] = replacementMAP[203:198];
end

always @(posedge CLK)begin
 if(RESET)begin
 for(i=0;i<34;i=i+1)begin
 MAP[i] = i;

 end
 outRS0 = 0; outRT0 = 0; outRD0 = 0;
 outRS1 = 0; outRT1 = 0; outRD1 = 0;
 outRS2 = 0; outRT2 = 0; outRD2 = 0;
 outRS3 = 0; outRT3 = 0; outRD3 = 0;
 numRenamed = 0;
 end
 else begin
 if(fullFlush)begin
 for(i=0;i<34;i=i+1)begin
 MAP[i] = newMAP[i];

 end
 outRS0 = 0; outRT0 = 0; outRD0 = 0;
 outRS1 = 0; outRT1 = 0; outRD1 = 0;
 outRS2 = 0; outRT2 = 0; outRD2 = 0;
 outRS3 = 0; outRT3 = 0; outRD3 = 0;
 numRenamed = 0;
 end
 else begin
 if(renameStall)begin
 outRS0 = 0; outRT0 = 0; outRD0 = 0;
 outRS1 = 0; outRT1 = 0; outRD1 = 0;
 outRS2 = 0; outRT2 = 0; outRD2 = 0;
 outRS3 = 0; outRT3 = 0; outRD3 = 0;
 numRenamed = 0;
 end
 else begin
 outRS0 = 0; outRT0 = 0; outRD0 = 0;
 outRS1 = 0; outRT1 = 0; outRD1 = 0;
 outRS2 = 0; outRT2 = 0; outRD2 = 0;
 outRS3 = 0; outRT3 = 0; outRD3 = 0;
 case(numInstr)
 3'd0:begin
 numRenamed = 0;
 end
 3'd1:begin
 numRenamed = 0;
 outRS0 = MAP[inRS0];
 outRT0 = MAP[inRT0];
 if(inRD0)begin
 case(numRenamed)
 3'd0:begin
 outRD0 = free0;
 MAP[inRD0] = free0;
 end
 3'd1:begin
 end
 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD0 = 0;
 end
 end
 3'd2:begin

 88

 if(ab_swap)begin
 numRenamed = 0;
 outRS1 = MAP[inRS1];
 outRT1 = MAP[inRT1];
 if(inRD1)begin
 case(numRenamed)
 3'd0:begin
 outRD1 = free0;
 MAP[inRD1] = free0;
 end
 3'd1:begin
 end
 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD1 = 0;
 end
 outRS0 = MAP[inRS0];
 outRT0 = MAP[inRT0];
 if(inRD0)begin
 case(numRenamed)
 3'd0:begin
 outRD0 = free0;
 MAP[inRD0] = free0;
 end
 3'd1:begin
 outRD0 = free1;
 MAP[inRD0] = free1;
 end
 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD0 = 0;
 end
 end
 else begin
 numRenamed = 0;
 outRS0 = MAP[inRS0];
 outRT0 = MAP[inRT0];
 if(inRD0)begin
 case(numRenamed)
 3'd0:begin
 outRD0 = free0;
 MAP[inRD0] = free0;
 end
 3'd1:begin
 end
 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin

 89

 outRD0 = 0;
 end
 outRS1 = MAP[inRS1];
 outRT1 = MAP[inRT1];
 if(inRD1)begin
 case(numRenamed)
 3'd0:begin
 outRD1 = free0;
 MAP[inRD1] = free0;
 end
 3'd1:begin
 outRD1 = free1;
 MAP[inRD1] = free1;
 end
 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD1 = 0;
 end
 end
 end
 3'd3:begin
 numRenamed = 0;
 outRS0 = MAP[inRS0];
 outRT0 = MAP[inRT0];
 if(inRD0)begin
 case(numRenamed)
 3'd0:begin
 outRD0 = free0;
 MAP[inRD0] = free0;
 end
 3'd1:begin
 end
 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD0 = 0;
 end
 if(bc_swap)begin
 outRS2 = MAP[inRS2];
 outRT2 = MAP[inRT2];
 if(inRD2)begin
 case(numRenamed)
 3'd0:begin
 outRD2 =
free0;
 MAP[inRD2] =
free0;
 end
 3'd1:begin
 outRD2 =
free1;
 MAP[inRD2] =
free1;
 end
 3'd2:begin
 end

 90

 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD2 = 0;
 end
 outRS1 = MAP[inRS1];
 outRT1 = MAP[inRT1];
 if(inRD1)begin
 case(numRenamed)
 3'd0:begin
 outRD1 =
free0;
 MAP[inRD1] =
free0;
 end
 3'd1:begin
 outRD1 =
free1;
 MAP[inRD1] =
free1;
 end
 3'd2:begin
 outRD1 =
free2;
 MAP[inRD1] =
free2;
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD1 = 0;
 end
 end
 else begin
 outRS1 = MAP[inRS1];
 outRT1 = MAP[inRT1];
 if(inRD1)begin
 case(numRenamed)
 3'd0:begin
 outRD1 =
free0;
 MAP[inRD1] =
free0;
 end
 3'd1:begin
 outRD1 =
free1;
 MAP[inRD1] =
free1;
 end
 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD1 = 0;

 91

 end
 outRS2 = MAP[inRS2];
 outRT2 = MAP[inRT2];
 if(inRD2)begin
 case(numRenamed)
 3'd0:begin
 outRD2 =
free0;
 MAP[inRD2] =
free0;
 end
 3'd1:begin
 outRD2 =
free1;
 MAP[inRD2] =
free1;
 end
 3'd2:begin
 outRD2 =
free2;
 MAP[inRD2] =
free2;
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD2 = 0;
 end
 end
 end
 3'd4:begin
 numRenamed = 0;
 outRS0 = MAP[inRS0];
 outRT0 = MAP[inRT0];
 if(inRD0)begin
 case(numRenamed)
 3'd0:begin
 outRD0 = free0;
 MAP[inRD0] = free0;
 end
 3'd1:begin
 end
 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD0 = 0;
 end
 outRS1 = MAP[inRS1];
 outRT1 = MAP[inRT1];
 if(inRD1)begin
 case(numRenamed)
 3'd0:begin
 outRD1 = free0;
 MAP[inRD1] = free0;
 end
 3'd1:begin
 outRD1 = free1;
 MAP[inRD1] = free1;
 end

 92

 3'd2:begin
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD1 = 0;
 end
 if(cd_swap)begin
 outRS3 = MAP[inRS3];
 outRT3 = MAP[inRT3];
 if(inRD3)begin
 case(numRenamed)
 3'd0:begin
 outRD3 =
free0;
 MAP[inRD3] =
free0;
 end
 3'd1:begin
 outRD3 =
free1;
 MAP[inRD3] =
free1;
 end
 3'd2:begin
 outRD3 =
free2;
 MAP[inRD3] =
free2;
 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD3 = 0;
 end
 outRS2 = MAP[inRS2];
 outRT2 = MAP[inRT2];
 if(inRD2)begin
 case(numRenamed)
 3'd0:begin
 outRD2 =
free0;
 MAP[inRD2] =
free0;
 end
 3'd1:begin
 outRD2 =
free1;
 MAP[inRD2] =
free1;
 end
 3'd2:begin
 outRD2 =
free2;
 MAP[inRD2] =
free2;
 end
 3'd3:begin
 outRD2 =
free3;

 93

 MAP[inRD2] =
free3;

 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD2 = 0;
 end
 end
 else begin
 outRS2 = MAP[inRS2];
 outRT2 = MAP[inRT2];
 if(inRD2)begin
 case(numRenamed)
 3'd0:begin
 outRD2 = free0;
 MAP[inRD2] = free0;
 end
 3'd1:begin
 outRD2 = free1;
 MAP[inRD2] = free1;
 end
 3'd2:begin
 outRD2 = free2;
 MAP[inRD2] = free2;

 end
 3'd3:begin
 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD2 = 0;
 end
 outRS3 = MAP[inRS3];
 outRT3 = MAP[inRT3];
 if(inRD3)begin
 case(numRenamed)
 3'd0:begin
 outRD3 = free0;
 MAP[inRD3] = free0;
 end
 3'd1:begin
 outRD3 = free1;
 MAP[inRD3] = free1;
 end
 3'd2:begin
 outRD3 = free2;
 MAP[inRD3] = free2;

 end
 3'd3:begin
 outRD3 = free3;
 MAP[inRD3] = free3;

 end
 default:begin
 end
 endcase
 numRenamed = numRenamed + 1;
 end
 else begin
 outRD3 = 0;
 end

 94

 end
 end
 default: begin
 numRenamed = 0;
 end
 endcase
 end
 end
 end
end

endmodule

**
freelist.v

`include "mips.h"

module
freelist(RESET,CLK,numRequest,numFree,free0,free1,free2,free3,numAdd,nowFree0,nowFree1,nowFree2,n
owFree3);
input RESET,CLK;
input [2:0] numRequest;
output reg [7:0] numFree;
output [5:0] free0,free1,free2,free3;
input [2:0] numAdd;
input [5:0] nowFree0,nowFree1,nowFree2,nowFree3;
reg [31:0] total_free;
reg [5:0] freeRegisters[29:0];
reg [5:0] head,tail;//add at tail, remove from head
reg [2:0] nonZero;

assign free3 = freeRegisters[head];
assign free2 = freeRegisters[(head+30-1)%30];
assign free1 = freeRegisters[(head+30-2)%30];
assign free0 = freeRegisters[(head+30-3)%30];

integer i;

always @(negedge CLK)begin
 if(RESET)begin
 for(i=0;i<30;i=i+1)freeRegisters[i]=i+34;
 head = 3;
 tail = 0;
 numFree = 30;
 total_free = 0;
 end
 else begin

 nonZero = 0;
 if(nowFree0)begin
 freeRegisters[tail] = nowFree0;
 tail = tail + 1;
 if(tail==30)tail=0;
 nonZero = nonZero + 1;
 end
 if(nowFree1)begin
 freeRegisters[tail] = nowFree1;
 tail = tail + 1;
 if(tail==30)tail=0;
 nonZero = nonZero + 1;
 end
 if(nowFree2)begin
 freeRegisters[tail] = nowFree2;
 tail = tail + 1;
 if(tail==30)tail=0;
 nonZero = nonZero + 1;
 end
 if(nowFree3)begin
 freeRegisters[tail] = nowFree3;
 tail = tail + 1;

 95

 if(tail==30)tail=0;
 nonZero = nonZero + 1;
 end

 numFree = numFree - numRequest + nonZero;
 total_free = total_free + numFree;
 head = head + numRequest;
 if(head>=30)head=head-30;
 end
end

endmodule

**
return_address_stack.v

`include "mips.h"

module return_address_stack(RESET,CLK,push,pop,LinkPC,PredPC,incorrect_pushes,incorrect_pops);
input RESET;
input CLK;
input push;
input pop;
input [31:0] LinkPC;
output reg [31:0] PredPC;
reg [31:0] predStack[15:0];
reg [3:0] count;
reg [31:0] missed;
input [2:0] incorrect_pops,incorrect_pushes;
reg [2:0] add_pops,remove_pushes;
reg [31:0] total_occupancy,max_fullness;

integer i;

always @(posedge CLK)begin
 if(RESET)begin
 count = 0;
 missed = 0;
 for(i=0;i<16;i=i+1)begin
 predStack[i] = 0;
 end
 PredPC = 0;
 total_occupancy = 0;
 max_fullness = 0;
 end
 else begin
 add_pops = incorrect_pops;
 remove_pushes = incorrect_pushes;
 for(i=0;i<4;i=i+1)begin
 if(add_pops)begin
 if(count != 15)begin
 count = count + 1;
 end
 else begin
 missed = missed + 1;
 end
 add_pops = add_pops - 1;
 end
 end
 for(i=0;i<4;i=i+1)begin
 if(remove_pushes)begin
 if(missed != 0)begin
 missed = missed - 1;
 end
 else begin
 if(count != 0)begin
 count = count - 1;
 end
 end
 remove_pushes = remove_pushes - 1;

 96

 end
 end
 if(count!=0)PredPC = predStack[count-1];
 if(pop)begin
 if(missed != 0)begin
 missed = missed - 1;
 end
 else begin
 if(count != 0)begin
 count = count - 1;
 end
 end
 end
 if(push)begin
 if(count != 15)begin
 predStack[count]=LinkPC;
 count = count + 1;
 end
 else begin
 missed = missed + 1;
 end
 end
 total_occupancy = total_occupancy + count+missed;
 if(count+missed > max_fullness)max_fullness = count+missed;
 end
end

endmodule

**
branch_predictor.v

`include "mips.h"

module
branch_predictor(RESET,CLK,PC,Prediction,UpdateEnable,UpdatePC,UpdateValue,PredictorSelect,Direct
ion);
input RESET;
input CLK;
input [31:0] PC;
output Prediction;
input UpdateEnable;
input [31:0] UpdatePC;
input UpdateValue;
input [2:0] PredictorSelect;
input Direction;

wire DPred;
wire GPred;
wire PPred;
wire TPred;
wire VPred;

reg [7:0] GHR;
reg [7:0] LHR [255:0];
reg [1:0] GSatCnt [255:0];
reg [1:0] PSatCnt [255:0];
reg [1:0] TSatCnt [255:0];

integer i;

assign DPred = (Direction)? 1'b1 : 1'b0;//If direction is backwards, predict taken, if direction
is forward, predict not taken
assign GPred = GSatCnt[GHR][1];//Indexed by GHR, top most bit of sat cnt is prediction
assign PPred = PSatCnt[PC[9:2]][1];//Indexed by lower bits of PC (not the two LSB, =0),top most
bit of sat cnt is prediction
assign TPred = TSatCnt[LHR[PC[9:2]]][1];//Index first table of history registers with pc, index
sat cnt table with that history
assign VPred = ((TPred&GPred)|(TPred&PPred)|(GPred&PPred));

//Select the Prediction to Use

 97

assign Prediction = (PredictorSelect == `select_pred_dpred)?DPred:1'bz,
 Prediction = (PredictorSelect == `select_pred_gpred)?GPred:1'bz,
 Prediction = (PredictorSelect == `select_pred_ppred)?PPred:1'bz,
 Prediction = (PredictorSelect == `select_pred_tpred)?TPred:1'bz,
 Prediction = (PredictorSelect == `select_pred_vpred)?VPred:1'bz;

always @(posedge CLK or RESET)begin
 if(RESET)begin
 //Clear table on Reset;Shouldn't need to but simulator will complain undefined
otherwise
 GHR = 0;
 for(i=0;i<256;i=i+1) LHR[i] = 0;
 for(i=0;i<256;i=i+1) GSatCnt[i] = 2'b01;
 for(i=0;i<256;i=i+1) PSatCnt[i] = 2'b01;
 for(i=0;i<256;i=i+1) TSatCnt[i] = 2'b01;
 end
 else if(UpdateEnable)begin
 //GPred
 case(GSatCnt[GHR])
 2'b00:begin
 if(UpdateValue)GSatCnt[GHR] = 2'b01;
 else GSatCnt[GHR] = 2'b00;
 end
 2'b01:begin
 if(UpdateValue)GSatCnt[GHR] = 2'b10;
 else GSatCnt[GHR] = 2'b00;
 end
 2'b10:begin
 if(UpdateValue)GSatCnt[GHR] = 2'b11;
 else GSatCnt[GHR] = 2'b01;
 end
 2'b11:begin
 if(UpdateValue)GSatCnt[GHR] = 2'b11;
 else GSatCnt[GHR] = 2'b10;
 end
 endcase
 GHR = (GHR << 1)|UpdateValue;

 //PPred
 case(PSatCnt[UpdatePC[9:2]])
 2'b00:begin
 if(UpdateValue)PSatCnt[UpdatePC[9:2]] = 2'b01;
 else PSatCnt[UpdatePC[9:2]] = 2'b00;
 end
 2'b01:begin
 if(UpdateValue)PSatCnt[UpdatePC[9:2]] = 2'b10;
 else PSatCnt[UpdatePC[9:2]] = 2'b00;
 end
 2'b10:begin
 if(UpdateValue)PSatCnt[UpdatePC[9:2]] = 2'b11;
 else PSatCnt[UpdatePC[9:2]] = 2'b01;
 end
 2'b11:begin
 if(UpdateValue)PSatCnt[UpdatePC[9:2]] = 2'b11;
 else PSatCnt[UpdatePC[9:2]] = 2'b10;
 end
 endcase

 //TPred
 case(TSatCnt[LHR[UpdatePC[9:2]]])
 2'b00:begin
 if(UpdateValue)TSatCnt[LHR[UpdatePC[9:2]]] = 2'b01;
 else TSatCnt[LHR[UpdatePC[9:2]]] = 2'b00;
 end
 2'b01:begin
 if(UpdateValue)TSatCnt[LHR[UpdatePC[9:2]]] = 2'b10;
 else TSatCnt[LHR[UpdatePC[9:2]]] = 2'b00;
 end
 2'b10:begin
 if(UpdateValue)TSatCnt[LHR[UpdatePC[9:2]]] = 2'b11;
 else TSatCnt[LHR[UpdatePC[9:2]]] = 2'b01;

 98

 end
 2'b11:begin
 if(UpdateValue)TSatCnt[LHR[UpdatePC[9:2]]] = 2'b11;
 else TSatCnt[LHR[UpdatePC[9:2]]] = 2'b10;
 end
 endcase
 LHR[UpdatePC[9:2]] = (LHR[UpdatePC[9:2]]<<1)|UpdateValue;

 end
end

endmodule

**
decode.v
`include "mips.h"

module
decode(instr,operation,operation2,queue,rs,rt,rd,rd2,usesImmediate,immediate,isSyscall,isMem,isMu
ltDiv,isCF,isALU,PC,target,fullFlush);

input [31:0] instr;
input [31:0] PC;
input fullFlush;
output reg [7:0] operation,operation2;
output reg [1:0] queue;
output reg [5:0] rs,rt,rd,rd2;
output reg usesImmediate;
output reg [31:0] immediate;
output reg isSyscall,isMem,isMultDiv,isALU;
output reg [2:0] isCF;
output reg [31:0] target;
wire [31:0] PC4;
assign PC4 = PC+4;

always @(*) begin
if(fullFlush)begin
 operation = 0;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = 0;
end
else begin
 casex({instr[`op], instr[`function], instr[`rt]})
 {`SPECIAL, `ADD, `dc5 }:begin
 operation = `select_alu_add;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;

 99

 end
 {`SPECIAL, `ADDU, `dc5 }:begin
 operation = `select_alu_add;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SUB, `dc5 }:begin
 operation = `select_alu_sub;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SUBU, `dc5 }:begin
 operation = `select_alu_sub;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SLT, `dc5 }:begin
 operation = `select_alu_slt;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SLTU, `dc5 }:begin
 operation = `select_alu_sltu;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];

 100

 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `AND, `dc5 }:begin
 operation = `select_alu_and;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `OR, `dc5 }:begin
 operation = `select_alu_or;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `XOR, `dc5 }:begin
 operation = `select_alu_xor;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `NOR, `dc5 }:begin
 operation = `select_alu_nor;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;

 101

 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SRL, `dc5 }:begin
 operation = `select_alu_srl;
 operation2 = 0;
 queue = `ALUQueue;
 rs = 0;
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = {16'b0,
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SRA, `dc5 }:begin
 operation = `select_alu_sra;
 operation2 = 0;
 queue = `ALUQueue;
 rs = 0;
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = {16'b0,
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SLL, `dc5 }:begin
 operation = `select_alu_sll;
 operation2 = 0;
 queue = `ALUQueue;
 rs = 0;
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = {16'b0,
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SLLV, `dc5 }:begin
 operation = `select_alu_sll;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SRLV, `dc5 }:begin

 102

 operation = `select_alu_srl;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `SRAV, `dc5 }:begin
 operation = `select_alu_sra;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `JR, `dc5 }:begin
 operation = `select_qc_jr;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 1;
 isALU = 0;
 target = 0;
 end
 {`SPECIAL, `JALR, `dc5 }:begin
 operation = `select_qc_jalr;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rd];
 rd2 = 0;
 immediate = PC+8; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 3'b101;
 isALU = 0;
 target = 0;
 end
 {`SPECIAL, `SYSCALL, `dc5 }:begin
 operation = 0;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 0;
 rd2 = 0;

 103

 immediate = 0; usesImmediate = 0;
 isSyscall = 1;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`SPECIAL, `BREAK, `dc5 }:begin
 operation = 0;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`SPECIAL, `MULT, `dc5 }:begin
 operation = `select_alu_mult_h;
 operation2 = `select_alu_mult_l;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 32;
 rd2 = 33;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 1;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `MULTU, `dc5 }:begin
 operation = `select_alu_multu_h;
 operation2 = `select_alu_multu_l;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 32;
 rd2 = 33;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 1;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `DIV, `dc5 }:begin
 operation = `select_alu_div_h;
 operation2 = `select_alu_div_l;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 32;
 rd2 = 33;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 1;
 isCF = 0;
 isALU = 1;
 target = PC+4;

 104

 end
 {`SPECIAL, `DIVU, `dc5 }:begin
 operation = `select_alu_divu_h;
 operation2 = `select_alu_divu_l;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 32;
 rd2 = 33;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 1;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `MFHI, `dc5 }:begin
 operation = `select_alu_mfhi;
 operation2 = 0;
 queue = `ALUQueue;
 rs = 32;
 rt = 0;
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SPECIAL, `MFLO, `dc5 }:begin
 operation = `select_alu_mflo;
 operation2 = 0;
 queue = `ALUQueue;
 rs = 33;
 rt = 0;
 rd = instr[`rd];
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`REGIMM, `dc6, `BLTZ}:begin
 operation = `select_qc_ltz;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = {1'b0,instr[15],1'b1};
 isALU = 0;
 target = PC4 + {{14{instr[15]}},
instr[`immediate], 2'b0};
 end
 {`REGIMM, `dc6, `BGEZ}:begin
 operation = `select_qc_gez;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];

 105

 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = {1'b0,instr[15],1'b1};
 isALU = 0;
 target = PC4 + {{14{instr[15]}},
instr[`immediate], 2'b0};
 end
 {`REGIMM, `dc6, `BGEZAL}: begin
 operation = `select_qc_gez;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rd];
 rd2 = 0;
 immediate = PC+8; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = {1'b1,instr[15],1'b1};
 isALU = 0;
 target = PC4 + {{14{instr[15]}},
instr[`immediate], 2'b0};
 end
 {`REGIMM, `dc6, `BLTZAL}: begin
 operation = `select_qc_ltz;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rd];
 rd2 = 0;
 immediate = PC+8; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = {1'b1,instr[15],1'b1};
 isALU = 0;
 target = PC4 + {{14{instr[15]}},
instr[`immediate], 2'b0};
 end
 {`ADDI, `dc6, `dc5 }: begin
 operation = `select_alu_add;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`ADDIU, `dc6, `dc5 }: begin
 operation = `select_alu_add;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;

 106

 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SLTI, `dc6, `dc5 }: begin
 operation = `select_alu_slt;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`SLTIU, `dc6, `dc5 }: begin
 operation = `select_alu_sltu;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`ANDI, `dc6, `dc5 }: begin
 operation = `select_alu_and;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {16'b0,
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`ORI, `dc6, `dc5 }: begin
 operation = `select_alu_or;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {16'b0,
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;

 107

 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`XORI, `dc6, `dc5 }: begin
 operation = `select_alu_xor;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {16'b0,
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`LUI, `dc6, `dc5 }: begin
 operation = `select_alu_or;
 operation2 = 0;
 queue = `ALUQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {instr[`immediate],
16'b0}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 1;
 target = PC+4;
 end
 {`LW, `dc6, `dc5 }: begin
 operation = `select_mem_lw;
 operation2 = 0;
 queue = `MEMQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 1;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`LHU, `dc6, `dc5 }: begin
 operation = `select_mem_lhu;
 operation2 = 0;
 queue = `MEMQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 1;
 isMultDiv = 0;
 isCF = 0;

 108

 isALU = 0;
 target = PC+4;
 end
 {`LH, `dc6, `dc5 }: begin
 operation = `select_mem_lh;
 operation2 = 0;
 queue = `MEMQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 1;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`LBU, `dc6, `dc5 }: begin
 operation = `select_mem_lbu;
 operation2 = 0;
 queue = `MEMQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 1;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`LB, `dc6, `dc5 }: begin
 operation = `select_mem_lb;
 operation2 = 0;
 queue = `MEMQueue;
 rs = instr[`rs];
 rt = 0;
 rd = instr[`rt];
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 1;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`SW, `dc6, `dc5 }: begin
 operation = `select_mem_sw;
 operation2 = 0;
 queue = `MEMQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 0;
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 1;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end

 109

 {`SH, `dc6, `dc5 }: begin
 operation = `select_mem_sh;
 operation2 = 0;
 queue = `MEMQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 0;
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 1;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`SB, `dc6, `dc5 }: begin
 operation = `select_mem_sb;
 operation2 = 0;
 queue = `MEMQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 0;
 rd2 = 0;
 immediate = {{16{instr[15]}},
instr[`immediate]}; usesImmediate = 1;
 isSyscall = 0;
 isMem = 1;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`J, `dc6, `dc5 }: begin
 operation = `select_qc_j;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 1;
 isALU = 0;
 target =
{PC4[31:28],instr[`target],2'b0};
 end
 {`JAL, `dc6, `dc5 }: begin
 operation = `select_qc_jal;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 31;
 rd2 = 0;
 immediate = PC+8; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 3'b101;
 isALU = 0;
 target =
{PC4[31:28],instr[`target],2'b0};
 end
 {`BNE, `dc6, `dc5 }: begin
 operation = `select_qc_ne;
 operation2 = 0;

 110

 queue = `BRQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 0;
 rd2 = 0;
 immediate = {{14{instr[15]}},
instr[`immediate], 2'b0}; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = {1'b0,instr[15],1'b1};
 isALU = 0;
 target = PC4 + {{14{instr[15]}},
instr[`immediate], 2'b0};
 end
 {`BEQ, `dc6, `dc5 }: begin
 operation = `select_qc_eq;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];
 rt = instr[`rt];
 rd = 0;
 rd2 = 0;
 immediate = {{14{instr[15]}},
instr[`immediate], 2'b0}; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = {1'b0,instr[15],1'b1};
 isALU = 0;
 target = PC4 + {{14{instr[15]}},
instr[`immediate], 2'b0};
 end
 {`BLEZ, `dc6, `dc5 }: begin
 operation = `select_qc_lez;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = {{14{instr[15]}},
instr[`immediate], 2'b0}; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = {1'b0,instr[15],1'b1};
 isALU = 0;
 target = PC4 + {{14{instr[15]}},
instr[`immediate], 2'b0};
 end
 {`BGTZ, `dc6, `dc5 }: begin
 operation = `select_qc_gtz;
 operation2 = 0;
 queue = `BRQueue;
 rs = instr[`rs];
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = {{14{instr[15]}},
instr[`immediate], 2'b0}; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = {1'b0,instr[15],1'b1};
 isALU = 0;
 target = PC4 + {{14{instr[15]}},
instr[`immediate], 2'b0};
 end

 // These are passed thru as NOPs so that real

 111

 // program may run.
 {`LWC1, `dc6, `dc5 }: begin
 operation = 0;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`SWC1, `dc6, `dc5 }: begin
 operation = 0;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 {`COP1, `dc6, `dc5 }: begin
 operation = 0;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end

 default:
 begin
 operation = 0;
 operation2 = 0;
 queue = 0;
 rs = 0;
 rt = 0;
 rd = 0;
 rd2 = 0;
 immediate = 0; usesImmediate = 0;
 isSyscall = 0;
 isMem = 0;
 isMultDiv = 0;
 isCF = 0;
 isALU = 0;
 target = PC+4;
 end
 endcase

 end
end

 112

endmodule

branch_compare.v

`include "mips.h"

module branch_compare(RSOperand, RTOperand, ComparisonType, Taken, Target);
input [31:0] RSOperand;
input [31:0] RTOperand;
input [7:0] ComparisonType;
output reg Taken;
output reg [31:0] Target;

always @(*) begin
 case (ComparisonType)
 `select_qc_ne: begin
 Taken = (RSOperand != RTOperand);
 Target = 0;
 end
 `select_qc_eq: begin
 Taken = (RSOperand == RTOperand);
 Target = 0;
 end
 `select_qc_lez:begin
 Taken = (RSOperand[31] == 1) | (RSOperand == 0);
 Target = 0;
 end
 `select_qc_gtz:begin
 Taken = (RSOperand[31] == 0) & (RSOperand != 0);
 Target = 0;
 end
 `select_qc_gez:begin
 Taken = (RSOperand[31] == 0);
 Target = 0;
 end
 `select_qc_ltz:begin
 Taken = (RSOperand[31] == 1);
 Target = 0;
 end
 `select_qc_jr: begin
 Target = RSOperand;
 Taken = 1;
 end
 `select_qc_jalr:begin
 Target = RSOperand;
 Taken = 1;
 end
 default: begin
 Target = 0;
 Taken = 0;
 end
 endcase
end

endmodule

physical_register_file.v
`include "mips.h"

module physical_register_file(RESET,CLK,ReadAddr0,ReadValue0,ReadAddr1,ReadValue1,

 ReadAddr2,ReadValue2,ReadAddr3,ReadValue3,

 ReadAddr4,ReadValue4,ReadAddr5,ReadValue5,

 ReadAddr6,ReadValue6,ReadAddr7,ReadValue7,

 WriteValue0,WriteAddr0,WriteEnable0,

 113

 WriteValue1,WriteAddr1,WriteEnable1,

 WriteValue2,WriteAddr2,WriteEnable2,

 WriteValue3,WriteAddr3,WriteEnable3);

//Read0,1 ALU0
//Read2,3 ALU1
//Read4,5 LDST
//Read6,7 Br/Jr
//Write0 ALU0, two cycle write for mult/div
//Write1 ALU1, two cycle write for mult/div
//Write2 LD
//Write3 Link, could combine with load

input RESET,CLK;
input [5:0] ReadAddr0;
output reg [31:0] ReadValue0;
input [5:0] ReadAddr1;
output reg [31:0] ReadValue1;
input [5:0] ReadAddr2;
output reg [31:0] ReadValue2;
input [5:0] ReadAddr3;
output reg [31:0] ReadValue3;
input [5:0] ReadAddr4;
output reg [31:0] ReadValue4;
input [5:0] ReadAddr5;
output reg [31:0] ReadValue5;
input [5:0] ReadAddr6;
output reg [31:0] ReadValue6;
input [5:0] ReadAddr7;
output reg [31:0] ReadValue7;
input WriteEnable0;
input [5:0] WriteAddr0;
input [31:0] WriteValue0;
input WriteEnable1;
input [5:0] WriteAddr1;
input [31:0] WriteValue1;
input WriteEnable2;
input [5:0] WriteAddr2;
input [31:0] WriteValue2;
input WriteEnable3;
input [5:0] WriteAddr3;
input [31:0] WriteValue3;

reg [31:0] RegFile [63:0];

always @(RegFile[ReadAddr0])begin
 ReadValue0 = RegFile[ReadAddr0];
end
always @(RegFile[ReadAddr1])begin
 ReadValue1 = RegFile[ReadAddr1];
end
always @(RegFile[ReadAddr2])begin
 ReadValue2 = RegFile[ReadAddr2];
end
always @(RegFile[ReadAddr3])begin
 ReadValue3 = RegFile[ReadAddr3];
end
always @(RegFile[ReadAddr4])begin
 ReadValue4 = RegFile[ReadAddr4];
end
always @(RegFile[ReadAddr5])begin
 ReadValue5 = RegFile[ReadAddr5];
end
always @(RegFile[ReadAddr6])begin
 ReadValue6 = RegFile[ReadAddr6];
end
always @(RegFile[ReadAddr7])begin
 ReadValue7 = RegFile[ReadAddr7];

 114

end

integer i;

always @(negedge CLK)begin
 if(RESET)begin
 for(i=0;i<64;i=i+1)RegFile[i]=0;
 end
 else begin
 if(WriteEnable0 && WriteAddr0!=0)RegFile[WriteAddr0]=WriteValue0;
 if(WriteEnable1 && WriteAddr1!=0)RegFile[WriteAddr1]=WriteValue1;
 if(WriteEnable2 && WriteAddr2!=0)RegFile[WriteAddr2]=WriteValue2;
 if(WriteEnable3 && WriteAddr3!=0)RegFile[WriteAddr3]=WriteValue3;
 end
end

endmodule

module
ready_register_list(RESET,CLK,toBeReady0,toBeReady1,toBeReady2,toBeReady3,clearReady0,clearReady1
,clearReady2,clearReady3,ReadyList,fullFlush);
input RESET;
input CLK;
input [63:0] toBeReady0;
input [63:0] toBeReady1;
input [63:0] toBeReady2;
input [63:0] toBeReady3;
input [63:0] clearReady0;
input [63:0] clearReady1;
input [63:0] clearReady2;
input [63:0] clearReady3;
input fullFlush;
output reg [63:0] ReadyList;

always @(posedge CLK)begin
 if(RESET)begin
 ReadyList = 0;
 end
 else begin
 if(!fullFlush)ReadyList = ReadyList | toBeReady0 | toBeReady1 | toBeReady2;
 ReadyList = ReadyList | toBeReady3;//add new ready registers
 ReadyList = ReadyList & ~clearReady0 & ~clearReady1 & ~clearReady2 &
~clearReady3;//clear retired registers (or flush)
 ReadyList = ReadyList | 64'h0000000000000001;
 end
end

endmodule

memory.v

//---
//
// Copyright (c) 1999 Cornell University
// Computer Systems Laboratory
// Cornell University, Ithaca, NY 14853
// All Rights Reserved
//
// Permission to use, copy, modify, and distribute this software
// and its documentation for any purpose and without fee is hereby
// granted, provided that the above copyright notice appear in all
// copies. Cornell University makes no representations
// about the suitability of this software for any purpose. It is
// provided "as is" without express or implied warranty. Export of this
// software outside of the United States of America may require an
// export license.
//
// $Id: mem.v,v 1.8 2000/10/14 19:21:49 heinrich Exp $
//
//---

 115

`include "mips.h"
`include "cache.h"

module mem (CLK, memOperation, isMem, RESET, MAR, Valid, SMDR, IaddrA, IaddrB, IaddrC, IaddrD,
Bus, Read, Write, Addr, cacheOut, IinA, IinB, IinC, IinD, Istall, Dstall, isLoad);

 input CLK;
 input [7:0] memOperation;
 input isMem;
 input RESET;
 input [31:0] MAR;
 input Valid;
 input [31:0] SMDR;
 input [31:0] IaddrA;
 input [31:0] IaddrB;
 input [31:0] IaddrC;
 input [31:0] IaddrD;

 inout [31:0] Bus;
 reg [31:0] BusReg;

 output Read;
 reg Read;
 output Write;
 reg Write;

 output reg [31:0] Addr;
 output [31:0] cacheOut;
 output [31:0] IinA;
 output [31:0] IinB;
 output [31:0] IinC;
 output [31:0] IinD;
 reg [31:0] preCacheOut;
 reg [`I_TAG_WIDTH-1:0] iTagA;
 reg [`I_TAG_WIDTH-1:0] iTagB;
 reg [`I_TAG_WIDTH-1:0] iTagC;
 reg [`I_TAG_WIDTH-1:0] iTagD;
 reg [`D_TAG_WIDTH-1:0] dTag;
 reg [1:0] iStateA;
 reg [1:0] iStateB;
 reg [1:0] iStateC;
 reg [1:0] iStateD;
 reg [1:0] dState;
 reg rDstall;
 reg rIstallA,rIstallB,rIstallC,rIstallD;
 reg deferred_rIstallA,deferred_rIstallB,deferred_rIstallC,deferred_rIstallD;
 reg retry;
 output reg isLoad;
 reg isStore;
 reg [`D_WO_WIDTH-1:0] offset;
 reg writeDone;
 reg readDone;
 reg [1:0] Dsize;
 reg [31:0] iCacheOutA;
 reg [31:0] iCacheOutB;
 reg [31:0] iCacheOutC;
 reg [31:0] iCacheOutD;
 reg [4:0] dcount;
 reg [4:0] icount;
 reg [31:0] num_icache_accesses;
 reg hit;
 wire [31:0] magic_number;
 assign magic_number = 32'h0043BFF4;
 wire google;
 assign google =
(IaddrA[31:5]==magic_number[31:5])|(IaddrB[31:5]==magic_number[31:5])|(IaddrC[31:5]==magic_number
[31:5])|(IaddrD[31:5]==magic_number[31:5]);

 output Dstall;
 output Istall;

 116

 // These wires are for performing sub-word stores
 wire [4:0] sa;
 wire [31:0] mask;
 wire [31:0] value;

 // This is a good place to keep track of the cache stats
 always @(posedge CLK) begin
 // This information is for STATs only
 if (RESET) begin
 CPU.numLoads =`TICK 32'b0;
 CPU.numStores =`TICK 32'b0;
 end

 if (isLoad & ~Dstall) begin
 CPU.numLoads =`TICK CPU.numLoads + 1;
 end
 if (isStore & ~Dstall) begin
 CPU.numStores =`TICK CPU.numStores + 1;
 end
 end

 // This always block handles simple decoding of isLoad or isStore
 always @(*) begin
 if ((isMem)&&(memOperation==`select_mem_lw || memOperation==`select_mem_lh ||
memOperation==`select_mem_lhu || memOperation==`select_mem_lbu ||
memOperation==`select_mem_lb))begin
 isLoad = 1;
 end
 else begin
 isLoad = 0;
 end

 if ((isMem)&&(memOperation==`select_mem_sw || memOperation==`select_mem_sh ||
memOperation==`select_mem_sb))begin
 isStore = 1;
 end
 else begin
 isStore = 0;
 end

 // Set the data size correctly
 if (memOperation==`select_mem_sh) begin
 Dsize = `SIZE_HALF;
 end
 else if (memOperation==`select_mem_sb) begin
 Dsize = `SIZE_BYTE;
 end
 else begin
 Dsize = `SIZE_WORD;
 end
 end

 // Main I$ control signals
 assign Istall =
rIstallA|rIstallB|rIstallC|rIstallD|deferred_rIstallA|deferred_rIstallB|deferred_rIstallC|deferre

 d_rIstallD ;
 assign IinA = iCacheOutA;
 assign IinB = iCacheOutB;
 assign IinC = iCacheOutC;
 assign IinD = iCacheOutD;

 // Main D$ control signals
 assign Dstall = rDstall;

 wire [31:0] preLoadDataLB, preLoadDataLH;

 assign preLoadDataLB = (preCacheOut >> ((~MAR & 32'h3) << 3)) & 32'hff;
 assign preLoadDataLH = (preCacheOut >> (((~MAR >> 1) & 32'h1) << 4)) & 32'hffff;
 assign
 cacheOut = (memOperation == `select_mem_lw) ? preCacheOut : 32'bz,

 117

 cacheOut = (memOperation == `select_mem_lhu) ? (preCacheOut >> (((~MAR >> 1) &
32'h1) << 4)) & 32'hffff : 32'bz,
 cacheOut = (memOperation == `select_mem_lbu) ? (preCacheOut >> ((~MAR & 32'h3) <<
3)) & 32'hff : 32'bz,
 cacheOut = (memOperation == `select_mem_lb) ? {{24{preLoadDataLB[7]}},
preLoadDataLB[7:0]} : 32'bz,
 cacheOut = (memOperation == `select_mem_lh) ?
{{16{preLoadDataLH[15]}},preLoadDataLH[15:0]}:32'bz;

 // This always block handles the D$ cache access, we trigger on I3 because unknown MAR's
seemed to be causing problems
 // With the isStore||isLoad block we won't do more than triggering on MAR other than the if
statement
 always @(*) begin
 if(isStore || isLoad)begin
 // This should set cacheOut appropriately
 // Read tag and state
 dTag = $dcache_tag_read(MAR[`D_INDEX],0);
 dState = $dcache_state_read(MAR[`D_INDEX],0);

 //DCache Hit, tags match, and is valid
 if((dState[`D_VALID]==1'b1) && (dTag == MAR[`D_TAG]))begin
 hit =1'b1;
 if(isLoad)begin
 preCacheOut =$dcache_data_read(MAR[`D_INDEX],0,MAR[`D_WO]);
 end
 end
 //DCache Miss
 else begin
 hit =1'b0;
 rDstall =1'b1;

 //Dirty and Valid, writeback to memory then read
 if(dState == 2'b11)begin
 dcount =`TICK 4'b0000;
 end
 else begin
 //Not dirty so just read block from memory
 dcount =`TICK 4'b1000;
 end
 end
 end
 end

 //Retry Logic - Will always be a hit
 //Handle I$ miss before D$ miss if both missed
 //Separated from other triggered cache always blocks for easier debugging/reading
 always @(posedge retry)begin
 if(rIstallA||rIstallB||rIstallC||rIstallD)begin
 iTagA = $icache_tag_read(IaddrA[`I_INDEX],0);
 iStateA = $icache_state_read(IaddrA[`I_INDEX],0);
 iTagB = $icache_tag_read(IaddrB[`I_INDEX],0);
 iStateB = $icache_state_read(IaddrB[`I_INDEX],0);
 iTagC = $icache_tag_read(IaddrC[`I_INDEX],0);
 iStateC = $icache_state_read(IaddrC[`I_INDEX],0);
 iTagD = $icache_tag_read(IaddrD[`I_INDEX],0);
 iStateD = $icache_state_read(IaddrD[`I_INDEX],0);
 //ICache Hit
 if((iStateA[`I_VALID]==1'b1) && (iTagA == IaddrA[`I_TAG])) begin
 iCacheOutA = $icache_data_read(IaddrA[`I_INDEX],0,IaddrA[`I_WO]);
 end
 else $finish;
 if((iStateB[`I_VALID]==1'b1) && (iTagB == IaddrB[`I_TAG])) begin
 iCacheOutB = $icache_data_read(IaddrB[`I_INDEX],0,IaddrB[`I_WO]);
 end
 else $finish;
 if((iStateC[`I_VALID]==1'b1) && (iTagC == IaddrC[`I_TAG])) begin
 iCacheOutC = $icache_data_read(IaddrC[`I_INDEX],0,IaddrC[`I_WO]);
 end

 118

 else $finish;
 if((iStateD[`I_VALID]==1'b1) && (iTagD == IaddrD[`I_TAG])) begin
 iCacheOutD = $icache_data_read(IaddrD[`I_INDEX],0,IaddrD[`I_WO]);
 end
 else $finish;
 end
 else if(rDstall)begin
 dTag = $dcache_tag_read(MAR[`D_INDEX],0);
 dState = $dcache_state_read(MAR[`D_INDEX],0);
 //DCache Hit
 if((dState[`D_VALID]==1'b1) && (dTag == MAR[`D_TAG]))begin
 hit =1'b1;
 if(isLoad)begin
 preCacheOut
=$dcache_data_read(MAR[`D_INDEX],0,MAR[`D_WO]);
 end
 end
 if(deferred_rIstallA)begin
 rIstallA = deferred_rIstallA;
 deferred_rIstallA = 0;
 end
 if(deferred_rIstallB)begin
 rIstallB = deferred_rIstallB;
 deferred_rIstallB = 0;
 end
 if(deferred_rIstallC)begin
 rIstallC = deferred_rIstallC;
 deferred_rIstallC = 0;
 end
 if(deferred_rIstallD)begin
 rIstallD = deferred_rIstallD;
 deferred_rIstallD = 0;
 end

 end
 retry =`TICK 0;
 end

 // This always block handles the I$ access
 always @(IaddrA or IaddrB or IaddrC or IaddrD) begin
 // This should set iCacheOut appropriately
 iTagA = $icache_tag_read(IaddrA[`I_INDEX],0);
 iStateA = $icache_state_read(IaddrA[`I_INDEX],0);
 iTagB = $icache_tag_read(IaddrB[`I_INDEX],0);
 iStateB = $icache_state_read(IaddrB[`I_INDEX],0);
 iTagC = $icache_tag_read(IaddrC[`I_INDEX],0);
 iStateC = $icache_state_read(IaddrC[`I_INDEX],0);
 iTagD = $icache_tag_read(IaddrD[`I_INDEX],0);
 iStateD = $icache_state_read(IaddrD[`I_INDEX],0);
 num_icache_accesses = num_icache_accesses + 1;
 //ICache Hit
 if((iStateA[`I_VALID]==1'b1) && (iTagA == IaddrA[`I_TAG])
 &&(iStateB[`I_VALID]==1'b1) && (iTagB == IaddrB[`I_TAG])
 &&(iStateC[`I_VALID]==1'b1) && (iTagC == IaddrC[`I_TAG])
 &&(iStateD[`I_VALID]==1'b1) && (iTagD == IaddrD[`I_TAG])) begin
 iCacheOutA = $icache_data_read(IaddrA[`I_INDEX],0,IaddrA[`I_WO]);
 iCacheOutB = $icache_data_read(IaddrB[`I_INDEX],0,IaddrB[`I_WO]);
 iCacheOutC = $icache_data_read(IaddrC[`I_INDEX],0,IaddrC[`I_WO]);
 iCacheOutD = $icache_data_read(IaddrD[`I_INDEX],0,IaddrD[`I_WO]);
 end
 //ICache Miss, we don't have dirty here because you only read I$
 else begin
 iCacheOutA =32'b0;
 iCacheOutB =32'b0;
 iCacheOutC =32'b0;
 iCacheOutD =32'b0;
 if((iStateA[`I_VALID]!=1'b1) || (iTagA != IaddrA[`I_TAG]))begin
 if(rDstall)deferred_rIstallA = 1;
 else rIstallA =1'b1;
 end
 if(((iStateB[`I_VALID]!=1'b1) || (iTagB != IaddrB[`I_TAG]))

 119

 &&(IaddrA[`I_INDEX]!=IaddrB[`I_INDEX])) begin
 if(rDstall)deferred_rIstallB = 1;
 else rIstallB =1'b1;
 end
 if(((iStateC[`I_VALID]!=1'b1) || (iTagC != IaddrC[`I_TAG]))
 &&(IaddrA[`I_INDEX]!=IaddrC[`I_INDEX])
 &&(IaddrB[`I_INDEX]!=IaddrC[`I_INDEX])) begin
 if(rDstall)deferred_rIstallC = 1;
 else rIstallC =1'b1;
 end
 if(((iStateD[`I_VALID]!=1'b1) || (iTagD != IaddrD[`I_TAG]))
 &&(IaddrA[`I_INDEX]!=IaddrD[`I_INDEX])
 &&(IaddrB[`I_INDEX]!=IaddrD[`I_INDEX])
 &&(IaddrC[`I_INDEX]!=IaddrD[`I_INDEX])) begin
 if(rDstall)deferred_rIstallD = 1;
 else rIstallD =1'b1;
 end
 icount =0;
 end
 end

 //Handle All Miss State Machines Here, POSEDGE triggered
 always @(posedge CLK) begin
 //I$ miss
 if(rIstallA)begin
 //Set read and addr
 if(icount==0)begin
 Read =1'b1;
 Addr =IaddrA;
 end
 //Wait for valid and read in words for 8 cycles
 if(Valid && (icount < 8))begin
 $icache_tag_write(IaddrA[`I_INDEX],0,IaddrA[`I_TAG]);
 $icache_state_write(IaddrA[`I_INDEX],0,2'b01);
 $icache_data_write(IaddrA[`I_INDEX],0,icount[2:0],Bus);
 end
 //After 8 Cycles retry cache read
 if(icount==8)begin
 Read =1'b0;
 if(rIstallB==0 && rIstallC==0 && rIstallD==0)retry =`TICK 1'b1;
 icount =`TICK icount+1;
 rIstallA =1'b0;
 CPU.numIMisses =CPU.numIMisses + 1;
 icount =`TICK 0;
 end
 //After 9 cycles we unstall and go on
 else if(icount == 9) begin

 end
 //Advance counter on valid signal
 else begin
 if(Valid)begin
 icount =`TICK icount+1;
 end
 end
 end
 //I$ miss
 else if(rIstallB)begin
 //Set read and addr
 if(icount==0)begin
 Read =1'b1;
 Addr =IaddrB;
 end
 //Wait for valid and read in words for 8 cycles
 if(Valid && (icount < 8))begin
 $icache_tag_write(IaddrB[`I_INDEX],0,IaddrB[`I_TAG]);
 $icache_state_write(IaddrB[`I_INDEX],0,2'b01);
 $icache_data_write(IaddrB[`I_INDEX],0,icount[2:0],Bus);
 end
 //After 8 Cycles retry cache read
 if(icount==8)begin

 120

 Read =1'b0;
 if(rIstallC==0 && rIstallD==0)retry =`TICK 1'b1;
 icount =`TICK icount+1;
 rIstallB =1'b0;
 CPU.numIMisses =CPU.numIMisses + 1;
 icount =`TICK 0;
 end
 //After 9 cycles we unstall and go on
 else if(icount == 9) begin

 end
 //Advance counter on valid signal
 else begin
 if(Valid)begin
 icount =`TICK icount+1;
 end
 end
 end
 else if(rIstallC)begin
 //Set read and addr
 if(icount==0)begin
 Read =1'b1;
 Addr =IaddrC;
 end
 //Wait for valid and read in words for 8 cycles
 if(Valid && (icount < 8))begin
 $icache_tag_write(IaddrC[`I_INDEX],0,IaddrC[`I_TAG]);
 $icache_state_write(IaddrC[`I_INDEX],0,2'b01);
 $icache_data_write(IaddrC[`I_INDEX],0,icount[2:0],Bus);
 end
 //After 8 Cycles retry cache read
 if(icount==8)begin
 Read =1'b0;
 if(rIstallD==0)retry =`TICK 1'b1;
 icount =`TICK icount+1;
 rIstallC =1'b0;
 CPU.numIMisses =CPU.numIMisses + 1;
 icount =`TICK 0;
 end
 //After 9 cycles we unstall and go on
 else if(icount == 9) begin

 end
 //Advance counter on valid signal
 else begin
 if(Valid)begin
 icount =`TICK icount+1;
 end
 end
 end
 else if(rIstallD)begin
 //Set read and addr
 if(icount==0)begin
 Read =1'b1;
 Addr =IaddrD;
 end
 //Wait for valid and read in words for 8 cycles
 if(Valid && (icount < 8))begin
 $icache_tag_write(IaddrD[`I_INDEX],0,IaddrD[`I_TAG]);
 $icache_state_write(IaddrD[`I_INDEX],0,2'b01);
 $icache_data_write(IaddrD[`I_INDEX],0,icount[2:0],Bus);
 end
 //After 8 Cycles retry cache read
 if(icount==8)begin
 Read =1'b0;
 retry =`TICK 1'b1;
 icount =`TICK icount+1;
 rIstallD =1'b0;
 CPU.numIMisses =CPU.numIMisses + 1;
 icount =`TICK 0;
 end

 121

 //After 9 cycles we unstall and go on
 else if(icount == 9) begin

 end
 //Advance counter on valid signal
 else begin
 if(Valid)begin
 icount =`TICK icount+1;
 end
 end
 end
 //D$ miss
 else if(rDstall) begin
 //After writeback is done (if needed) read in the block, setting read and address
 if(dcount==8)begin
 Read =1'b1;
 Addr =MAR;
 Write =`TICK 1'b0;
 end
 //Writeback block from cache to memory
 if(dcount<8) begin
 Write =1'b1;
 Addr ={dTag,MAR[`D_INDEX],dcount[2:0],2'b00};
 BusReg =$dcache_data_read(MAR[`D_INDEX],0,dcount[2:0]);
 dcount =`TICK dcount+1;
 end
 //Read block from memory to cache
 else if(Valid && (dcount < 16)) begin
 $dcache_tag_write(MAR[`D_INDEX],0,MAR[`D_TAG]);
 $dcache_state_write(MAR[`D_INDEX],0,2'b01);
 $dcache_data_write(MAR[`D_INDEX],0,dcount[2:0],Bus);
 dcount =`TICK dcount+1;
 end
 //Reread data after its updated
 else if(dcount == 16) begin
 Read =1'b0;
 retry =`TICK 1'b1;
 dcount =`TICK dcount+1;
 rDstall =`TICK 1'b0;
 CPU.numDMisses =CPU.numDMisses + 1;
 dcount =`TICK 0;
 end
 //Unstall and continue pipe
 else if(dcount == 17) begin

 end

 end
 end

 //Shift Amount
 assign sa = (Dsize == `SIZE_BYTE) ? ((~MAR & 32'h3) << 3) : 5'bz,
 sa = (Dsize == `SIZE_HALF) ? (((~MAR >> 1) & 32'h1) << 4) : 5'bz,
 sa = (Dsize == `SIZE_WORD) ? 0 : 5'bz;
 //Data Mask
 assign
 mask = (Dsize == `SIZE_BYTE) ? (32'hff << sa) : 32'bz,
 mask = (Dsize == `SIZE_HALF) ? (32'hffff << sa) : 32'bz,
 mask = (Dsize == `SIZE_WORD) ? 0 : 32'bz;

 // Assume that stores write the data array on the negedge of the clock
 always @(negedge CLK) begin
 // This code is complete and it works! Note how it uses the
 // cache PLI calls for both reads and writes
 if (hit & isStore) begin
 // Need to write the data array and the Dirty bit
 // Handle sub-word stores here
 if (Dsize == `SIZE_WORD) begin
 $dcache_data_write(MAR[`D_INDEX], 0, MAR[`D_WO], SMDR);
 end
 else if (Dsize == `SIZE_HALF) begin

 122

 $dcache_data_write(MAR[`D_INDEX], 0, MAR[`D_WO],
($dcache_data_read(MAR[`D_INDEX],0,MAR[`D_WO]) & ~mask)|((SMDR & 32'hffff) << sa));
 end
 else if (Dsize == `SIZE_BYTE) begin
 $dcache_data_write(MAR[`D_INDEX], 0, MAR[`D_WO],
($dcache_data_read(MAR[`D_INDEX],0,MAR[`D_WO]) & ~mask)|((SMDR & 32'hff) << sa));
 end
 // Write Dirty and Valid bits
 $dcache_state_write(MAR[`D_INDEX], 0, 2'b11);
 end
 end

 // This always block handles reset
 // We moved miss state machines out of this block for easier reading/debugging
 always @(posedge CLK) begin
 if (RESET) begin
 offset =`TICK 0;
 retry =`TICK 1'b0;
 writeDone =`TICK 1'b0;
 readDone =`TICK 1'b0;
 CPU.numDMisses =`TICK 32'b0;
 CPU.numIMisses =`TICK 32'b0;
 Read = 1'b0;
 Write = 1'b0;
 //Addr = 32'b0;
 rDstall = 0;
 icount = 0;
 dcount = 0;
 rIstallA = 1;
 rIstallB = 0;
 rIstallC = 0;
 rIstallD = 0;
 deferred_rIstallA = 0;
 deferred_rIstallB = 0;
 deferred_rIstallC = 0;
 deferred_rIstallD = 0;
 isStore = 0;
 isLoad = 0;
 preCacheOut = 0;
 num_icache_accesses = 0;
 end
 end // always @ (posedge CLK)

 //Initialize some signals
 initial begin
 Read = 1'b0;
 Write = 1'b0;
 Addr = 32'b0;
 rDstall = 0;
 icount = 0;
 dcount = 0;
 rIstallA = 0;
 rIstallB = 0;
 rIstallC = 0;
 rIstallD = 0;
 isStore = 0;
 isLoad = 0;
 end

 // Only drive Bus during write back
 assign Bus = (Write) ? BusReg : 32'bz;

//--

endmodule

issue_queue.v
`include "mips.h"

 123

module issue_queue(RESET,CLK,fullFlush,maxIssue,queueNum,readyFlags,

 inOperation0,inImmediate0,inRT0,inRS0,inRD0,inQueue0,inROB0,inUImm0,

 inOperation1,inImmediate1,inRT1,inRS1,inRD1,inQueue1,inROB1,inUImm1,

 inOperation2,inImmediate2,inRT2,inRS2,inRD2,inQueue2,inROB2,inUImm2,

 inOperation3,inImmediate3,inRT3,inRS3,inRD3,inQueue3,inROB3,inUImm3,

 outOperation0,outImmediate0,outRT0,outRS0,outRD0,outROB0,outUImm0,

 outOperation1,outImmediate1,outRT1,outRS1,outRD1,outROB1,outUImm1,
 outReadyFlag0,outReadyFlag1,QueueTooFull,numIssued);

input RESET,CLK,fullFlush;
input [1:0] maxIssue,queueNum;
input [63:0] readyFlags;
output reg [63:0] outReadyFlag0;
output reg [63:0] outReadyFlag1;
input [7:0] inOperation0,inOperation1,inOperation2,inOperation3;
input [31:0] inImmediate0,inImmediate1,inImmediate2,inImmediate3;
input [4:0] inROB0,inROB1,inROB2,inROB3;
input [5:0] inRT0,inRT1,inRT2,inRT3,inRS0,inRS1,inRS2,inRS3,inRD0,inRD1,inRD2,inRD3;
input [1:0] inQueue0,inQueue1,inQueue2,inQueue3;
input inUImm0,inUImm1,inUImm2,inUImm3;
output reg outUImm0,outUImm1;
output reg[7:0] outOperation0,outOperation1;
output reg[31:0] outImmediate0,outImmediate1;
output reg[5:0] outRT0,outRT1,outRS0,outRS1,outRD0,outRD1;
output reg[4:0] outROB0,outROB1;
output reg QueueTooFull;

reg [31:0] max_fullness;
reg [31:0] total_occupancy;

reg [7:0] Operation [31:0];
reg [31:0] Immediate [31:0];
reg Valid [31:0];
reg [5:0] RT [31:0];
reg [5:0] RS [31:0];
reg [5:0] RD [31:0];
reg [4:0] ROB [31:0];
reg usesImm[31:0];
output reg [1:0] numIssued;
reg Inserted;
reg [5:0] FreeSlots;
//reg [31:0] wtfRS,wtfRT,wtfAND;
wire wtfRS,wtfRT,wtfAND;
integer i;

reg [31:0] entryReady;
always @(*)begin
for(i=0;i<32;i=i+1)entryReady[i] = Valid[i] & ((readyFlags>>RS[i])&1'b1) &
((readyFlags>>RT[i])&1'b1);
end

assign wtfRS = ((readyFlags>>RS[0])&1'b1);
assign wtfRT = ((readyFlags>>RT[0])&1'b1);
assign wtfAND = wtfRS & wtfRT;

always @(posedge CLK)begin
 //compact issue queue
 for(i=0;i<31;i=i+1)begin
 if((Valid[i]==0) && (Valid[i+1]==1))begin
 //$display("compacting %d to %d",i+1,i);
 Valid[i]=1;
 Operation[i] = Operation[i+1];
 Immediate[i] = Immediate[i+1];
 RT[i] = RT[i+1];
 RS[i] = RS[i+1];

 124

 RD[i] = RD[i+1];
 ROB[i] = ROB[i+1];
 usesImm[i] = usesImm[i+1];
 Valid[i+1]=0;
 end
 end
end

always @(negedge CLK)begin
 if(RESET || fullFlush)begin
 for(i=0;i<32;i=i+1)Valid[i]=0;
 FreeSlots = 32;
 numIssued = 0;
 outReadyFlag0 = 0;
 outReadyFlag1 = 0;
 outOperation0 = 0;
 outImmediate0 = 0;
 outRT0 = 0;
 outRS0 = 0;
 outRD0 = 0;
 outROB0 = 0;
 outUImm0 = 0;
 outReadyFlag0 = 0;
 outOperation1 = 0;
 outImmediate1 = 0;
 outRT1 = 0;
 outRS1 = 0;
 outRD1 = 0;
 outUImm1 = 0;
 outROB1 = 0;
 outReadyFlag1 = 0;
 total_occupancy = 0;
 max_fullness = 0;
 end
 else begin

 //insert instructions
 Inserted = 0;
 for(i=0;i<32;i=i+1)begin
 if((Valid[i]==0) && (Inserted==0) && (inOperation0!=0) &&
(inQueue0==queueNum))begin
 Valid[i]=1;
 Inserted=1;
 Operation[i] = inOperation0;
 Immediate[i] = inImmediate0;
 RT[i] = inRT0;
 RS[i] = inRS0;
 RD[i] = inRD0;
 ROB[i] = inROB0;
 usesImm[i] = inUImm0;
 FreeSlots = FreeSlots - 1;
 end
 end

 Inserted = 0;
 for(i=0;i<32;i=i+1)begin
 if((Valid[i]==0) && (Inserted==0) && (inOperation1!=0) &&
(inQueue1==queueNum))begin
 Valid[i]=1;
 Inserted=1;
 Operation[i] = inOperation1;
 Immediate[i] = inImmediate1;
 RT[i] = inRT1;
 RS[i] = inRS1;
 RD[i] = inRD1;
 ROB[i] = inROB1;
 usesImm[i] = inUImm1;
 FreeSlots = FreeSlots - 1;
 end
 end

 125

 Inserted = 0;
 for(i=0;i<32;i=i+1)begin
 if((Valid[i]==0) && (Inserted==0) && (inOperation2!=0) &&
(inQueue2==queueNum))begin
 Valid[i]=1;
 Inserted=1;
 Operation[i] = inOperation2;
 Immediate[i] = inImmediate2;
 RT[i] = inRT2;
 RS[i] = inRS2;
 RD[i] = inRD2;
 ROB[i] = inROB2;
 usesImm[i] = inUImm2;
 FreeSlots = FreeSlots - 1;
 end
 end

 Inserted = 0;
 for(i=0;i<32;i=i+1)begin
 if((Valid[i]==0) && (Inserted==0) && (inOperation3!=0) &&
(inQueue3==queueNum))begin
 Valid[i]=1;
 Inserted=1;
 Operation[i] = inOperation3;
 Immediate[i] = inImmediate3;
 RT[i] = inRT3;
 RS[i] = inRS3;
 RD[i] = inRD3;
 ROB[i] = inROB3;
 usesImm[i] = inUImm3;
 FreeSlots = FreeSlots - 1;
 end
 end

 total_occupancy = total_occupancy + (32-FreeSlots);
 if((32-FreeSlots)>max_fullness)max_fullness = (32-FreeSlots);

 //find next ones to issue
 numIssued = 0;
 outReadyFlag0 = 0;
 outReadyFlag1 = 0;
 outOperation0 = 0;
 outImmediate0 = 0;
 outRT0 = 0;
 outRS0 = 0;
 outRD0 = 0;
 outROB0 = 0;
 outUImm0 = 0;
 outReadyFlag0 = 0;
 outOperation1 = 0;
 outImmediate1 = 0;
 outRT1 = 0;
 outRS1 = 0;
 outRD1 = 0;
 outUImm1 = 0;
 outROB1 = 0;
 outReadyFlag1 = 0;
 for(i=0;i<32;i=i+1)begin
 if(entryReady[i] && numIssued < maxIssue)begin
 if(numIssued == 0)begin
 outOperation0 = Operation[i];
 outImmediate0 = Immediate[i];
 outRT0 = RT[i];
 outRS0 = RS[i];
 outRD0 = RD[i];
 outROB0 = ROB[i];
 outUImm0 = usesImm[i];
 outReadyFlag0 = (1'b1 << RD[i]);
 numIssued = 1;
 FreeSlots = FreeSlots + 1;

 126

 Valid[i] = 0;
 end
 else begin
 outOperation1 = Operation[i];
 outImmediate1 = Immediate[i];
 outRT1 = RT[i];
 outRS1 = RS[i];
 outRD1 = RD[i];
 outUImm1 = usesImm[i];
 outROB1 = ROB[i];
 outReadyFlag1 = (1'b1 << RD[i]);
 numIssued = 2;

 FreeSlots = FreeSlots + 1;
 Valid[i] = 0;
 end
 end
 end

 end
 QueueTooFull = (FreeSlots < 4);
end

endmodule

addr_calc.v
`include "mips.h"

module addr_calc(RegVal, Immediate, EffAddr);
input [31:0] RegVal;
input [31:0] Immediate;
output reg [31:0] EffAddr;

always @(*) begin
 EffAddr = RegVal + Immediate;
end

endmodule

alu.v
`include "mips.h"

module alu(RSOperand, RTOperand, Immediate, UseImmediate, ALUOp, ALUout);
input [31:0] RSOperand;
input [31:0] RTOperand;
input [31:0] Immediate;
input UseImmediate;
input [7:0] ALUOp;
output reg [31:0] ALUout;
reg [31:0] Temp;
reg [4:0] ShiftAmount;
wire [31:0]
signed_div,signed_div_t,unsigned_div,signed_rem,signed_rem_t,unsigned_rem,signed_RS,signed_RT;
wire [32:0] unsigned_RS,unsigned_RT;
wire [63:0] signed_mult,signed_mult_t;
wire [63:0] unsigned_mult;
wire signofRS,signofRT;

assign signofRS = RSOperand[31];
assign signofRT = RTOperand[31];

assign unsigned_RS = {1'b0,RSOperand};
assign unsigned_RT = {1'b0,RTOperand};
assign signed_RS = (signofRS)?(~RSOperand)+1:RSOperand;
assign signed_RT = (signofRT)?(~RTOperand)+1:RTOperand;

assign signed_mult_t = signed_RS * signed_RT;
assign unsigned_mult = unsigned_RS * unsigned_RT;
assign unsigned_div = {1'b0,RSOperand}/{1'b0,RTOperand};

 127

assign signed_div_t = {signed_RS}/{signed_RT};
assign unsigned_rem = {1'b0,RSOperand}%{1'b0,RTOperand};
assign signed_rem_t = {signed_RS}%{signed_RT};
assign signed_mult = (signofRS!=signofRT)?(~signed_mult_t) + 1:signed_mult_t;
assign signed_div = (signofRS!=signofRT)?(~signed_div_t) + 1:signed_div_t;
assign signed_rem = (signofRS)?(~signed_rem_t) + 1:signed_rem_t;

always @(*) begin
 Temp = (UseImmediate) ? Immediate : RTOperand;
 ShiftAmount = (UseImmediate) ? Immediate[10:6] : RSOperand[4:0];

 case (ALUOp)
 `select_alu_add: ALUout = RSOperand + Temp;
 `select_alu_and: ALUout = RSOperand & Temp;
 `select_alu_xor: ALUout = RSOperand ^ Temp;
 `select_alu_or: ALUout = RSOperand | Temp;
 `select_alu_nor: ALUout = ~(RSOperand | Temp);
 `select_alu_sub: ALUout = RSOperand - Temp;
 `select_alu_sltu: ALUout = ({1'b0,RSOperand} < {1'b0,Temp}) ? 1 : 0;
 `select_alu_slt: ALUout = (RSOperand[31] != Temp[31]) ? RSOperand[31] : ((RSOperand < Temp)
? 1 : 0);
 `select_alu_sra: ALUout = {{32{RTOperand[31]}},RTOperand} >> ShiftAmount;
 `select_alu_srl: ALUout = RTOperand >> ShiftAmount;
 `select_alu_sll: ALUout = RTOperand << ShiftAmount;
 `select_alu_mult_h: ALUout = signed_mult[63:32];
 `select_alu_mult_l: ALUout = signed_mult[31:0];
 `select_alu_multu_h: ALUout = unsigned_mult[63:32];
 `select_alu_multu_l: ALUout = unsigned_mult[31:0];
 `select_alu_div_h: ALUout = signed_rem;
 `select_alu_div_l: ALUout = signed_div;
 `select_alu_divu_h: ALUout = unsigned_rem;
 `select_alu_divu_l: ALUout = unsigned_div;
 `select_alu_mfhi: ALUout = RSOperand;
 `select_alu_mflo: ALUout = RSOperand;
 default: ALUout = 0;
 endcase

 end

endmodule

forwarding.v
`include "mips.h"

module
forwarding(rfValue,rfAddr,wb0Value,wb0Addr,wb1Value,wb1Addr,wb2Value,wb2Addr,wb3Value,wb3Addr,out
Value);
input [5:0] rfAddr,wb0Addr,wb1Addr,wb2Addr,wb3Addr;
input [31:0] rfValue,wb0Value,wb1Value,wb2Value,wb3Value;
output reg [31:0] outValue;

always @(*)begin
 if(rfAddr == 0)begin
 outValue = 0;
 end
 else begin
 if(rfAddr == wb0Addr)begin
 outValue = wb0Value;
 end
 else if(rfAddr == wb1Addr)begin
 outValue = wb1Value;
 end
 else if(rfAddr == wb2Addr)begin
 outValue = wb2Value;
 end
 else if(rfAddr == wb3Addr)begin
 outValue = wb3Value;
 end
 else begin
 outValue = rfValue;

 128

 end
 end
end

endmodule

mips.v
//---
//
// Copyright (c) 1999 Cornell University
// Computer Systems Laboratory
// Cornell University, Ithaca, NY 14853
// All Rights Reserved
//
// Permission to use, copy, modify, and distribute this software
// and its documentation for any purpose and without fee is hereby
// granted, provided that the above copyright notice appear in all
// copies. Cornell University makes no representations
// about the suitability of this software for any purpose. It is
// provided "as is" without express or implied warranty. Export of this
// software outside of the United States of America may require an
// export license.
//
// $Id: mips.v,v 1.6 1999/10/19 03:39:05 heinrich Exp $
//
//---

`include "mips.h"
`include "cache.h"

`define MEM_DELAY #162

module TOP;

 wire [31:0] Bus;
 reg [31:0] BusReg;

 reg RESET, CLK;

 wire [31:0] Addr; // Address Bus between cpu & memory
 wire Read; // Bus Read
 wire Write; // Bus Write
 reg Valid; // Valid signal for cache fill

 reg startRead;
 reg [`D_WO_WIDTH-1:0] currentWord;
 reg scheduled;

 // Create a 50% duty cycle clock
 initial begin
 CLK = 1;
 forever begin
 `PHASE
 CLK = 0;
 `PHASE
 CLK = 1;
 end
 end

 // This holds reset long enough to clear all the machine state
 initial begin
 RESET = 1;
 #86 RESET = 0;
 end

 // This is the R10000
 cpu CPU
 (

 129

 .CLK (CLK),
 .RESET (RESET),
 .Bus (Bus),
 .Addr (Addr),
 .Write (Write),
 .Read (Read),
 .Valid (Valid)
);

 // This block is a good place to put $monitor or $dump statements
 initial
 begin
 $seed_mm;

 // I$ and D$ creation.
 // The args are:
 // associativity, linesize, number of lines

 $create_icache(1, 32, 256);
 $create_dcache(1, 32, 256);

 end

 // Memory system
 // The interface here is simple:
 //
 // Writes:
 //
 // At the posedge of the clock, if the Write signal is asserted,
 // store the word on the Bus to memory at the address on the Addr bus.
 //
 // Reads:
 //
 // "Reads" are any kind of cache fill from the processor (note these
 // could be triggered by a load miss or a store miss, it doesn't matter)
 // At the posedge of the clock, if the Read signal is sensed the scheduled
 // signal is set, which indicates that a memory request will be served.
 // At the same time, the startRead signal is scheduled to be asserted
 // MEM_DELAY ticks later. When startRead is high and Read signal is still set,
 // the memory system places the word at Addr (which is still being driven
 // by the cpu) onto the Bus. For length MAX_OFFSET+1 cycles, the memory system
 // increments the local Addr by 4 and drives the next word on the Bus.
 // The Valid line is asserted as long as the memory system is producing
 // Valid data. After the last word in the cache line is driven,
 // the Valid line and scheduled signal are de-asserted. At that time
 // (when the read of all values is complete), the Read signal must also be
 // set low.

 always @(BusReg)begin
 //$display("bbb %b",BusReg);
 end

 always @(posedge CLK) begin
 if (RESET) begin
 Valid <= `TICK 1'b0;
 currentWord <= `TICK 0;
 startRead <= `TICK 1'b0;
 scheduled <= `TICK 1'b0;
 end

 if (Read & !scheduled) begin
 startRead <= `MEM_DELAY 1'b1;
 scheduled <= `TICK 1'b1;
 end

 if (startRead) begin
 if(Read) begin
 // Note that this implies a line size of 4 words. It is also
 // what dictates that the I$ and the D$ have the same line size.
 // You can change the line size in the cache creation statements

 130

 // above, but you must also change the following line, and
 // the defines in cache.h
 BusReg <= `TICK $load_mm({Addr[31:5], currentWord[2:0], 2'b0});
 Valid <= `TICK 1;
 if (currentWord != `MAX_OFFSET) begin
 currentWord <= `TICK currentWord + 1;
 end
 else begin
 startRead <= `TICK 1'b0;
 end
 end
 else begin
 Valid <= `TICK 1'b0;
 scheduled <= `TICK 1'b0;
 startRead <= `TICK 1'b0;
 currentWord <= `TICK 0;
 end
 end
 else begin
 Valid <= `TICK 1'b0;
 if(currentWord != 0) begin
 scheduled <= `TICK 1'b0;
 currentWord <= `TICK 0;
 end
 end

 // Handle writes to the memory system. Partial word writes are now
 // handled in the cache!
 if (Write) begin
 //$display("Time: %d",$time);
 $store_mm(Addr,Bus);
 end
 end // always @ (posedge CLK)
 // Drive Bus with BusReg unless a write is in progress
 assign Bus =(~Write) ? BusReg : 32'bz;

 //---

endmodule

**
mips.h
//-*-mode:verilog-*--
//
// Copyright (c) 1999 Cornell University
// Computer Systems Laboratory
// Cornell University, Ithaca, NY 14853
// All Rights Reserved
//
// Permission to use, copy, modify, and distribute this software
// and its documentation for any purpose and without fee is hereby
// granted, provided that the above copyright notice appear in all
// copies. Cornell University makes no representations
// about the suitability of this software for any purpose. It is
// provided "as is" without express or implied warranty. Export of this
// software outside of the United States of America may require an
// export license.
//
// $Id: mips.h,v 1.2 1999/10/18 17:58:51 heinrich Exp $
//
//---

// Clock parameters
`define cycle 10
`define phase 5
`define TICK #2
`define CYCLE #`cycle
`define PHASE #`phase

/*---

 131

Instruction Fields

-*/

`define op 31:26 // 6-bit operation code
`define rs 25:21 // 5-bit source register specifier
`define rt 20:16 // 5-bit source/dest register spec or sub opcode
`define immediate 15:0 // 16-bit immediate, branch or address disp
`define target 25:0 // 26-bit jump target address
`define rd 15:11 // 5-bit destination register specifier
`define sa 10:6 // 5-bit shift amount
`define function 5:0 // 6-bit function field
`define sub 25:21 // 5-bit sub-operation code
`define coprocessor 20:0 // 21-bit coprocessor-specific field

/*---
--
Symbolic Register Names for Hardware

-*/

`define r0 5'b00000
`define r1 5'b00001
`define r2 5'b00010
`define r3 5'b00011
`define r4 5'b00100
`define r5 5'b00101
`define r6 5'b00110
`define r7 5'b00111
`define r8 5'b01000
`define r9 5'b01001
`define r10 5'b01010
`define r11 5'b01011
`define r12 5'b01100
`define r13 5'b01101
`define r14 5'b01110
`define r15 5'b01111
`define r16 5'b10000
`define r17 5'b10001
`define r18 5'b10010
`define r19 5'b10011
`define r20 5'b10100
`define r21 5'b10101
`define r22 5'b10110
`define r23 5'b10111
`define r24 5'b11000
`define r25 5'b11001
`define r26 5'b11010
`define r27 5'b11011
`define r28 5'b11100
`define r29 5'b11101
`define r30 5'b11110
`define r31 5'b11111

/*---

Symbolic Register Names for Assembler and Compiler

--*/

`define zero 5'b00000 // Read only zero value
`define at 5'b00001 // Assembler temporary
`define v0 5'b00010 // Integer function value
`define v1 5'b00011
`define a0 5'b00100 // Parameters
`define a1 5'b00101
`define a2 5'b00110
`define a3 5'b00111
`define t0 5'b01000 // not preserved by subroutines
`define t1 5'b01001

 132

`define t2 5'b01010
`define t3 5'b01011
`define t4 5'b01100
`define t5 5'b01101
`define t6 5'b01110
`define t7 5'b01111
`define s0 5'b10000 // preserved by subroutines
`define s1 5'b10001
`define s2 5'b10010
`define s3 5'b10011
`define s4 5'b10100
`define s5 5'b10101
`define s6 5'b10110
`define s7 5'b10111
`define t8 5'b11000 // preserved by subroutines
`define t9 5'b11001
`define k0 5'b11010 // Kernel
`define k1 5'b11011
`define gp 5'b11100 // Global pointer
`define sp 5'b11101 // Stack pointer
`define s8 5'b11110 // preserved by subroutines
`define ra 5'b11111 // Link register

/*---

Opcode Assignments for `op Operations

--*/

`define SPECIAL 6'b000000
`define REGIMM 6'b000001
`define J 6'b000010
`define JAL 6'b000011
`define BEQ 6'b000100
`define BNE 6'b000101
`define BLEZ 6'b000110
`define BGTZ 6'b000111

`define ADDI 6'b001000
`define ADDIU 6'b001001
`define SLTI 6'b001010
`define SLTIU 6'b001011
`define ANDI 6'b001100
`define ORI 6'b001101
`define XORI 6'b001110
`define LUI 6'b001111

`define COP0 6'b010000
`define COP1 6'b010001
`define COP2 6'b010010
`define COP3 6'b010011
`define BEQL 6'b010100
`define BNEL 6'b010101
`define BLEZL 6'b010110
`define BGTZL 6'b010111

`define LB 6'b100000
`define LH 6'b100001
`define LWL 6'b100010
`define LW 6'b100011
`define LBU 6'b100100
`define LHU 6'b100101
`define LWR 6'b100110

`define SB 6'b101000
`define SH 6'b101001
`define SWL 6'b101010
`define SW 6'b101011

`define SWR 6'b101110
`define CACHE 6'b101111

 133

`define LL 6'b110000
`define LWC1 6'b110001
`define LWC2 6'b110010
`define LWC3 6'b110011

`define LDC1 6'b110101
`define LDC2 6'b110110
`define LDC3 6'b110111

`define SC 6'b111000
`define SWC1 6'b111001
`define SWC2 6'b111010
`define SWC3 6'b111011

`define SDC1 6'b111101
`define SDC2 6'b111110
`define SDC3 6'b111111

/*---
Opcode Assignments for `SPECIAL function Operations
---*/

`define SLL 6'b000000
`define SRL 6'b000010
`define SRA 6'b000011
`define SLLV 6'b000100
`define SRLV 6'b000110
`define SRAV 6'b000111

`define JR 6'b001000
`define JALR 6'b001001

`define SYSCALL 6'b001100
`define BREAK 6'b001101

`define MFHI 6'b010000
`define MTHI 6'b010001
`define MFLO 6'b010010
`define MTLO 6'b010011

`define MULT 6'b011000
`define MULTU 6'b011001
`define DIV 6'b011010
`define DIVU 6'b011011

`define ADD 6'b100000
`define ADDU 6'b100001
`define SUB 6'b100010
`define SUBU 6'b100011
`define AND 6'b100100
`define OR 6'b100101
`define XOR 6'b100110
`define NOR 6'b100111

`define SLT 6'b101010
`define SLTU 6'b101011

`define TGE 6'b110000
`define TGEU 6'b110001
`define TLT 6'b110010
`define TLTU 6'b110011
`define TEQ 6'b110100

`define TNE 6'b110110

/*--
Opcode Assignments for `REGIMM rt Operations
---*/

 134

`define BLTZ 5'b00000
`define BGEZ 5'b00001
`define BLTZL 5'b00010
`define BGEZL 5'b00011

`define TGEI 5'b01000
`define TGEIU 5'b01001
`define TLTI 5'b01010
`define TLTIU 5'b01011
`define TEQI 5'b01100

`define TNEI 5'b01110

`define BLTZAL 5'b10000
`define BGEZAL 5'b10001
`define BLTZALL 5'b10010
`define BGEZALL 5'b10011

/*--
Opcode Assignments for `COPz rs Operations
---*/

`define MF 5'b00000
`define CF 5'b00010
`define MT 5'b00100
`define CT 5'b00110

`define BC 5'b01000

/*---

Opcode Assignments for `COPz rt Operations

--*/

`define BCF 5'b00000
`define BCT 5'b00001
`define BCFL 5'b00010
`define BCTL 5'b00011

/*---

Encoded data path controls

--*/
`define select_pc_pc 5'b00000
`define select_pc_inc 5'b11110 // Next PC value select
`define select_pc_add 5'b11101
`define select_pc_jump 5'b11011
`define select_pc_vector 5'b10111
`define select_pc_register 5'b01111

`define select_bp_reg 3'b000
`define select_bp_stage3A 3'b001
`define select_bp_stage4A 3'b010
`define select_bp_stage3B 3'b101
`define select_bp_stage4B 3'b110

`define instr_sel_new 2'b00
`define instr_sel_olda 2'b01
`define instr_sel_oldb 2'b10
`define instr_sel_nop 2'b11

`define instr_sel_swizzle 2'b00
`define instr_sel_self 2'b01

`define pc_cf 2'b11
`define plus_8 2'b10
`define plus_4 2'b01
`define no_change 2'b00

 135

// Decoded ALU operation select (ALUsel) signals
`define select_alu_add 8'b00000001
`define select_alu_and 8'b00000010
`define select_alu_xor 8'b00000100
`define select_alu_or 8'b00001000
`define select_alu_nor 8'b00010000
`define select_alu_sub 8'b00100001
`define select_alu_sltu 8'b01000000
`define select_alu_slt 8'b01100000
`define select_alu_shift 8'b10000000
`define select_alu_sra 8'b10000001
`define select_alu_srl 8'b10000010
`define select_alu_sll 8'b10000100
`define select_alu_mult_h 8'b10001000
`define select_alu_mult_l 8'b10010000
`define select_alu_multu_h 8'b10100000
`define select_alu_multu_l 8'b11000000
`define select_alu_div_h 8'b11000001
`define select_alu_div_l 8'b11000010
`define select_alu_divu_h 8'b11000100
`define select_alu_divu_l 8'b11001000
`define select_alu_mfhi 8'b11010000
`define select_alu_mflo 8'b11100000

`define select_mem_lw 8'b00000001
`define select_mem_lhu 8'b00000010
`define select_mem_lh 8'b00000100
`define select_mem_lbu 8'b00001000
`define select_mem_lb 8'b00010000
`define select_mem_sw 8'b00100000
`define select_mem_sh 8'b01000000
`define select_mem_sb 8'b10000000

`define ALUQueue 2'b01
`define MEMQueue 2'b10
`define BRQueue 2'b11

// Decoded quick compare condition select (QCsel) signals
`define select_qc_ne 8'b00000001
`define select_qc_eq 8'b00000010
`define select_qc_lez 8'b00000100
`define select_qc_gtz 8'b00001000
`define select_qc_gez 8'b00010000
`define select_qc_ltz 8'b00100000
`define select_qc_jr 8'b01000000
`define select_qc_jalr 8'b10000000
`define select_qc_j 8'b10000001
`define select_qc_jal 8'b10000010

// Select data to be written back to register file
`define select_wb_alu 3'b110
`define select_wb_load 3'b101
`define select_wb_link 3'b011

`define select_pred_dpred 3'b000
`define select_pred_gpred 3'b001
`define select_pred_ppred 3'b010
`define select_pred_tpred 3'b011
`define select_pred_vpred 3'b100

/*---
Miscellaneous
---*/

// Various width don't care and invalid values
`define dc32 32'bxxxxxxxx
`define invalid 32'bxxxxxxxx
`define undefined 32'bxxxxxxxx
`define dc8 8'bxxxxxxxx

 136

`define dc6 6'bxxxxxx
`define dc5 5'bxxxxx
`define dc3 3'bxxx
`define dc2 2'bxx
`define dc 1'bx
`define null 1'bx
`define true 1'b1
`define false 1'b0

// State encodings for multi-cycle MIPS
`define IF_STATE 3'h0
`define ID_STATE 3'h1
`define EX_STATE 3'h2
`define MEM_STATE 3'h3
`define WB_STATE 3'h4

// Dsize encoding for supporting sub-word writes
`define SIZE_BYTE 2'h0
`define SIZE_HALF 2'h1
`define SIZE_WORD 2'h2

cache.h
// Tag fields
`define D_BO_WIDTH 2

//---
//
// Data Cache
//
//---
// If you change the number of words in a $ line you must change
// *all* of the following defines, as well as the memory system
// in mips.v
`define D_WO_WIDTH 3
`define MAX_OFFSET 7

`define D_INDEX_WIDTH 9
`define D_TAG_WIDTH 18

`define D_BO 1:0
`define D_WO 4:2
`define D_INDEX 13:5
`define D_TAG 31:14

// State fields
`define D_VALID 0
`define D_DIRTY 1

//---
//
// Instruction Cache
//
//---
// If you change the number of words in a $ line you must change
// *all* of the following defines, as well as the memory system
// in mips.v
`define I_WO_WIDTH 3

`define I_INDEX_WIDTH 9
`define I_TAG_WIDTH 18

`define I_BO 1:0
`define I_WO 4:2
`define I_INDEX 13:5
`define I_TAG 31:14

// State fields
`define I_VALID 0

