A MIPS R10000-LIKE OUT-OF-ORDER MICROPROCESSOR
IMPLEMENTATION IN VERILOG HDL

A Design Project Report
Presented to the Engineering Division of the Graduate School
Of Cornell University
In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

By
Scott Thomas Bingham
Project Advisor: Dr. Bruce R Land

Degree Date: May, 2007

Abstract

Master of Electrical Engineering Program
Cornell University
Design Project Report

Project Title: A MIPS R10000-Like Out-Of-Order Microprocessor Implementation in
Verilog HDL

Author: Scott Thomas Bingham
Abstract:

Microprocessors have evolved greatly over the past few decades from single cycle state
machines, to pipelined architectures, to wide issue superscalar processors to out of order
execution engines. This project implements one such out-of-order processor using the MIPS
instruction set architecture taught in ECE314 and ECE475. Because each of those classes
culminates in a microprocessor design in Verilog HDL, those implementations provide a good
performance baseline for comparison of this design. This microprocessor was designed to
exploit instruction level parallelism as much as possible while still maintaining reasonable
amount of logic per clock cycle. Ultimately the design implemented is capable of fetching,
decoding, renaming, issuing, executing, and retiring up to four instructions per clock cycle with
speculative execution; this results in a performance improvement of almost 3x over the two-way
superscalar MIPS processor implemented in ECE475. Upon successful implementation, the
processor was variably configured to try and gauge the effects of each component on
performance.

Report Approved by
Project Advisor: Date:

Executive Summary

A major breakthrough in microprocessor architecture was the realization that independent
instructions can be executed in parallel and that there exists a significant amount of parallelism
in most code. The first step to exploiting this is to pipeline a datapath so that multiple
instructions can execute at a time. However, there is further parallelism that can be exploited by
replicating the datapath and executing independent instructions in parallel. Even this does not
take advantage of all the parallelism, however. Taking this a step further, we can fetch a large
number of instructions and analyze them at once and execute those for which we already have
the operands, regardless of their actual ordering in the program.

However, this executing based purely on real data flow introduces several design issues. First,
we must be able to supply the execution engine with a sufficiently large number of instructions
so that parallelism can be extracted. Once these instructions have been fetched, we next need to
decode them to see what operations they actually perform and where data flow hazards exist.
Next, these instructions must be renamed to eliminate hazards where the register names are
reused but no data flows between the instructions. These instructions can then be placed in a
queue that issues instructions for execution as their operands become available. To maximize
throughput, dependant instructions need to be executed immediately subsequent to their operands
becoming available. Even when this is achieved, there exist further problems. Almost one in
five instructions is a control flow instruction that can change the execution path of the program.
Without knowing which way to go, we would have to stall until the data is available. This goes
contrary to the desire to achieve high throughput and so we make an educated guess based on the
past behavior of the program as to which way to actually go. However, our guesses may not be
good enough all the time and so mechanisms must be provided to check the guesses and recover
before we irreversibly alter the execution of the program.

This project implements a processor in Verilog HDL that does the aforementioned steps and
attempts to improve performance as much as possible under the constraints of the instruction set
architecture and program semantics. In ideal conditions, the microprocessor implemented is
capable of sustaining the execution of four instructions per cycle. While these conditions are
rare in all but trivial programs meant to exploit this scheduling, this implementation still yields a
nearly 3x improvement over a two-way superscalar processor previously implemented in
ECE475. The major components implemented in this design are:
e instruction and data cache interfaces
e an instruction decoder which removes the now unnecessary branch delay slot
imposed by the ISA for backwards compatibility
e register allocation tables and a register renamer
e a 64 entry physical register file, a free register list, and ready operand tracking
e four execution units (2 general purpose ALU’s, one dedicated branch/jump resolver
and one address calculation unit) and issue queues for these execution units
e aload store queue used to track memory dependencies and forward data when
possible to avoid a cache access
e forwarding units to maintain back to back execution of dependant instructions
e areorder buffer to maintain the sequential consistency of a program
The resulting design is described by over six thousand lines of Verilog code and was verified
using the ncveri | og simulator and compiled C micro-benchmarks.

Table of Contents

I. Design Problem Overview
I.A. Project Goals
1.B. Canonical Five Stage Pipelined Processor
I.C. Two-way Superscalar Processor
1.D. MIPS Instruction Set Architecture
I1. Design Details
I1.A. Front End
I1.LA.1. Program Counter (PC) / Instruction Cache (13)
I1.A.2. Instruction Decode
I11.A.2.a. Multiply / Divide Expansion
11.A.2.b. Control Flow Reordering
11.A.3. Branch Prediction
I1.A.4. Return Address Stack (RAS)
I1.A.5. Register Rename
I1.A.6. Free Register List
11.B. Back End
11.B.1. Issue Queues
11.B.2. Physical Register File
11.B.3. Ready Register List
11.B.4. Execution Units
11.B.4.a. Arithmetic Logic (ALU) Units
11.B.4.b. Branch / Jump Register Resolution Unit
11.B.4.c. Load-Store Address Resolution Unit
11.B.5. Data Forwarding
11.B.6. Load-Store Queue / Data Cache (D$)
11.B.7. Reorder Buffer (ROB)
11.B.8. Commit / Pipeline Flushing
I11. Differences with MIPS R10000
IV. Results
IV.A. Test Cases
IVV.B. Comparison with Five Stage Pipeline & Two-Way Superscalar
IV.C. Reorder Buffer Size
IV.D. Branch Predictors
IV.E. Retirement Rate
V. Conclusion
V.A. Design Difficulties
V.B. Possible Improvements
V.C. Final Remarks
V1. References
VII1. Appendix

I. Design Problem Overview

The first microprocessors evaluated one instruction at a time, where each instruction could take
one or many cycles for the state machine to complete. The next step in CPU design came when
researchers realized that different pieces of the state machine were needed at different points of
the instructions execution and that it was possible to pipeline these components such that many
instructions could be executed at a time in different parts of the state machine provided that they
were independent of each other. While the latency of each individual instruction increases due to
pipelining for various reasons, such as the overhead associated with registers separating each
stage and the clock speed being determined by the slowest stage, this realization of instruction
level parallelism (ILP) has driven massive performance improvements over the past few decades.

Exploiting ILP has some serious limitations. Very rarely is code written where each instruction
is independent of those around it. It is almost always the case that one calculation feeds another
which feeds another creating a string of data dependencies. Coupled with a limited number of
registers in an instruction set architecture (ISA), four types of data hazards arrive: read-after-
write (RAW), write-after-read (WAR), write-after-write (WAW), and read-after-read (RAR).
The RAW dependency is the only real dependency in that data flows. The middle two after
merely dependencies in name only. With a sufficiently large number of registers, they can be
resolved. These WAR and WAW dependencies are not of concern to a pipelined processor that
performs each instruction in order because any reader will have read the value before the writer
overwrites it and subsequent writes will happen in order. The final dependency represents no
dependency at all because reading a register does not modify its contents; however it is included
for completeness.

Other hazards arise from pipelining the CPU. Structural hazards arise from the fact that multiple
instructions in the pipeline may need to perform an addition, for example. This hazard is
typically resolved through duplication of hardware or through scheduling of resource usage. The
final hazard that arises from pipelining is control flow hazards. Approximately 20% of a
program (1 in 5 instructions) is an instruction that alters the control flow of the program
execution. These conditional branches and jumps often need the results of previously executed
instructions to determine which path to take. The resulting problem is quite serious: you must
wait until the condition has been resolved or guess. Early pipelined microprocessors either
waited or made a static guess, typically that the branch was not taken because if so, you already
know where to fetch instructions from next. This lead to the creation of the branch delay slot,
where the instruction following the branch is always executed regardless of the path the branch
takes. Essentially, you can execute this instruction “for free” because you would have been
waiting otherwise. This delay slot becomes a serious issue in future hardware improvements
where it is no longer needed but must be supported for backwards compatibility with legacy
code.

If we consider pipelining the CPU to be parallelism in time, the next exploitation of ILP may be
considered parallelism in space. To further exploit ILP, the next generation of CPU’s executed
several instructions in parallel in each stage of the execution. These superscalar CPU’s could
execute 2, 4, or more instructions in parallel as well as pipelining the execution. Once again,
however, there is only so much parallelism that can be realized through this method because the
instructions executed simultaneously must be independent of each other and only neighboring

instructions are considered for execution. To avoid structural hazards, the execution engine (the
back-end of the CPU; fetching and decoding are considered the front-end), is replicated, though
sometimes not completely, to provide parallelism in instructions. Somewhat sophisticated
scheduling is needed to selectively issue instructions to execute or to wait until the instructions
they depend on have produced results.

The current state of the microprocessor is what this project addresses: out of order execution. To
further exploit ILP, a large number of instructions are fetched and considered for execution.
Those that have their operands ready are issued for execution even if they were fetched after the
other instructions. This allows execution of instructions based purely on data dependencies and
not on adjacency, although limited by the size of the window of instructions considered for
execution. This project implements such an out of order processor in Verilog HDL using a
subset of the MIPS ISA, particularly the majority of the integer instructions. These are sufficient
to execute most non-floating point programs, compiled from C source code in my case.
Execution correctness and performance was evaluated in the ncveri | og Cadence Simulator on
the Linuxpool/AMDPool. ECE314 implements the canonical five stage pipeline for the same
MIPS ISA subset. ECE475 implements a two-way superscalar processor, again using MIPS.
However, no subsequent computer architecture class at Cornell University implements an out of
order processor. This “gap” in the implementation knowledge is the motivation for this project
which implements an R10000-like MIPS CPU. The subsequent sections give a brief overview of
the goals of the project and how each of the previously implemented processor works or differs
from the others. The implementations from previous ECE classes provide a baseline benchmark
for the out of order processor.

I.A. Project Goals
Initially, the goal of the project was to implement an out-of-order CPU on the DE2 FPGA board
used in ECE576. However, due to the immense complexity of the design (over 6,000 lines of
Verilog code, not including header files), the limited debugging capabilities of the FPGA, and
the limited size of the FPGA, it was determined that the functionality of the design would be
better verified using the ncveri | og simulator rather than scaling down the design to fit on an
FPGA. This allows for a wider range of benchmarks to be tested and functionality to be verified
for real world applications. Ultimately, the goal of this project is to implement an R10000-like
out of order MIPS CPU in Verilog HDL with the following capabilities:
e Execute same subset of MIPS ISA implemented by ECE314 and ECE475 CPU’s
e Achieve significantly higher IPC throughput than ECE314 and ECE475 CPU’s
e Execute instructions out-of-order but commit in program order to exploit ILP but
maintain sequential consistency
e Execute instructions as fast as structural, data, and control hazards permit
e Schedule instruction execution for at least 2 execution units
e Predict control flow direction and speculatively execute until control flow resolved and
recover if prediction incorrect
e Fetch, decode, rename, execute, and retire up to 4 instructions per cycle

The processor implementation should minimally have the following structures:
e Separate Instruction and Data Memory
e Instruction Decoder

Branch Predictor / Return Address Stack

Register Renaming / Register Allocation Table

Issue Queues

Reorder Buffer

Physical Register File with Size Greater than Logical Register File
2 Arithmetic Logic Units with Data Forwarding

Upon successful implementation of the above, additional structures were added to improve
performance, such as a load-store queue. Performance tweaks were made to various structures to
squeeze as much performance as possible out of the CPU while maintaining realistic workloads
per cycle. Several branch predictors are also implemented to measure their accuracy and its
effect on performance. Structure sizes and throughputs are varied as well to measure their effect
on performance. Finally, micro-benchmarks were written in C to measure performance to run
along with benchmarks from other ECE computer architecture courses to measure correctness
and performance.

1.B. Canonical Five Stage Pipelined Processor

The standard MIPS pipeline is divided into five stages: instruction fetch (IF), instruction decode
(ID), execution (EX), memory (MEM), and write back (WB). The functionality of each stage
and its components will be described briefly so that a comparison can be made to the out of order
implementation. The interface to memory is uniform to all three processors, although heavily
modified to suit the needs of each processor. This yields a more accurate comparison as to the
performance of each core by keeping the memory system consistent.

Instruction Fetch

The instruction fetch stage is responsible for retrieving instructions from memory or an
instruction cache. Where to fetch is determined by the program counter (PC) which maintains
the memory address of the current instruction. For straight-line code execution, the PC is
incremented by four (4 byte instruction words, 32 bit PC) every cycle. However, when a branch
is determined to be taken or a jump is taken, the target of these control flow instructions is
loaded into the PC instead. Because the control flow instructions are not evaluated until the first
half of the EX stage, the processor increments the PC after a control flow instruction to fetch the
delay slot. The PC is negative edge triggered so that the target can be calculated in the first half
of the cycle resulting in a single delay slot. The instruction memory has to fetch the target
instruction and pass it to the next stage where it is decoded before the next falling edge of the
clock. To stall this processor, all that must be done is to freeze the PC and pass a NOP to the ID
stage. If a physically addressed or tagged instruction cache is used, this stage will also contain a
translation look-aside buffer (TLB). However, in my simulation, there is no operating system
(O/S); hence, there is only one process running on the processor at a time. For this reason,
virtually addressed and tagged caches are used, and there is no need for a TLB. An instruction
cache miss need not stall the processor. Since it will have no useful work to do other than finish
the current instructions while it waits, it is simpler to stall until the miss is resolved.

Instruction Decode
The instruction decode stage contains a control unit that decodes instructions depending on their
type to determine what operations the rest of the processor should perform as the instruction

enters each stage. The source and destination registers are determined, and any immediate
instructions have their immediate values extracted from the instruction and sign extended if
needed. On the first half of the cycle, the register file that resides in this stage is updated with
previously calculated values. In the second half of the cycle, the instruction reads its operands
from the register file. This ordering eliminates any RAW hazards that may have been present
between the current instruction and the one three previous. The fetch and decode stages are
collectively the front end of the processor. When a system call enters this stage, the front end
stalls so that the back end of the processor (EX, MEM, and WB) can write all values back to the
register file before the system call is allowed to proceed so that the register file is fully updated
before jumping to the O/S to handle the system call. Because our simulator does not run an O/S,
system calls are emulated with function calls to C libraries. This emulation requires the register
file be completely updated with the values from all instructions ahead of the system call. The
system call is then performed when the system call enters the EX stage, and the return values are
immediately written into the register file.

Execution

The execution stage contains the ALU which performs arithmetic and logical operations and
calculates effective addresses for loads and stores. Also in the EX stage is a branch comparator
that evaluates branch conditions to determine the direction that the processor should take. The
target of PC relative jJumps and branches is calculated at the same time. Depending on the
direction of the branch (always taken for jumps), the PC is then updated to fetch from the branch
target or the fall through path next. In the MIPS ISA, multiplies and divides do not write to the
regular register file, rather to two dedicated registers HI and LO which can only be accessed with
special instructions MFHI and MFLO, move from high and move from low, respectively.
Because multiplies and divides can take multiple cycles to complete and their results can only be
retrieved with special instructions, the processor can continue to execute while the
multiply/divide happens off the path and only needs to stall if MFHI or MFLO are seen before
the calculation is completed. The infrequency of multiplies and divides and the fact that they
write to the same registers means that they share the same block and only one of either can occur
at a time. However, because they always write to HI and LO registers, when a new multiply or
divide comes upon the execution unit while it is busy, it simply starts the next multiply/divide
because there is guaranteed to be no consumers of the value being currently calculated. To
resolve RAW hazards, data forwarding or bypassing is used. If the operands to the current
instruction were calculated in either of the two previous instructions, they were not in the register
file when the current instruction read it. Therefore, these values are passed back to the execution
stage so that stalling is not needed. The newest value (MEM before WB, WB before register
file) is used if there is a dependency. Because loads do not evaluate until the next stage, their
value can not be passed back in time for the execution stage. Therefore, the MIPS ISA
introduces a load delay slot similar to the branch delay slot in which the instruction following a
load cannot consume its result.

Memory

The memory stage contains a data cache (and another TLB if physical tags or indexes are used).
All three implementations discussed here use the same basic memory interface. Separate L1
caches are present for instructions and data but share a main memory (there is no L2). Accesses
and tag checks to the L1 caches are emulated in a C library. The interface to the cache is

responsible for checking the tag and valid bit of accesses. If there is a miss, a memory state
machine stalls the processor, retrieves the data values from main memory, updates the cache, and
retries the access before proceeding. Because stores can happen on the word, half word, and
byte levels, input store values must be properly masked to only modify the desired addresses.
Similarly, loads can happen on the word, half word, and bytes levels, and can be either signed or
unsigned. All loads are therefore treated as word accesses to the cache and the result is masked,
shifted, and sign extended as required by the instruction. The load value or the ALU result if the
instruction was not a load, are then passed to the WB stage. Because of the assembly line nature
of this processor, a data cache miss stops the entire pipeline until it is resolved. If both the data
cache and the instruction cache misses occur “at the same time,” the instruction cache fill is
performed first because it happens just after the negative edge and will be triggered before data
access which comes shortly after the positive edge. If a data cache miss was to occur first, there
could be no instruction cache miss because the PC would have been stalled before it could
update to a new address.

Write-back

In the final stage, there is very little to do other than forward data values back to the register file

and execution stage. The resulting value can either be from the ALU, memory, or a link address
for branches and jumps that link. Linking saves the point in the program which should be saved

to the return address register. This is mostly used for function calls so the program knows where
to return upon exiting the function. In the MIPS ISA, the link address is the instruction after the

delay slot or PC+8 from the control flow instruction.

I.C. Two-way Superscalar Processor

Because the superscalar processor is similar in most respects to the simple five-stage pipelined
CPU, only the differences involved with duplicating pipeline will be discussed. There are two
execution pipelines (A and B), both of which can execute ALU instructions. However, the A
pipeline is responsible for processing control flow instructions and system calls. The B pipe
handles all data memory accesses. This division of labor is instituted because only one control
flow and only one data memory access can happen at a time.

Instruction Fetch

The instruction memory now must fetch two instructions per cycle, the current PC and the
subsequent instruction. The simplest implementation requires that accesses be double word
aligned; this limitation can lead to wasted fetch slots when a branch or jump targets the second
word of a double word block or if only one instruction of the pair could be issued at a time.
Therefore, logic is added to the memory interface to access both PC and PC+4 across two cache
lines if needed. This could require handling two cache misses before being able to proceed as a
side effect. The next PC to fetch is still determined by control flow instructions (in the EX stage
of pipe A) but can also be determined by the superscalar issue logic in the ID stage.

Instruction Decode

The majority of the changes to make the processor superscalar are instituted in this stage.
Superscalar issue logic determines which instruction to issue down which pipe. The restrictions
of control flow down pipe A and data accesses down pipe B are handled here. Data hazards such
as RAW and WAW now must be scheduled to be avoided. Because there is no active

forwarding between EX stages, a dependent instruction cannot be issued with its producer.
Similarly, if both instructions write to the same register, they cannot issue at the same time. This
implementation holds the B instruction for the next cycle rather than trying to resolve whether or
not it was necessary to issue the A instruction in the first place if they both write to the same
register. System calls now require both pipes to be drained before issuing by themselves to the
EX stage. The superscalar logic is also responsible for ensuring that branch delay slots get
fetched in the next cycle if not fetched with the branch. Any subsequent instructions need to be
squashed in the event of a jump or branch being taken. The simplest implementation would
issue the second instruction alone if it could not be issued with the first instruction. This
implementation, however, saves the instruction that was not issued and takes a new one from the
next fetch block. The first instruction need not go down pipe A if swapping the two instructions
allows the both to issue together. The load delay slot must be still respected in the scheduling of
consumers even though they may be fetched on the next cycle. The occurrence of a MFHI or
MFLO instruction while the multiply/divide block is busy causes a stall. Finally, the number of
read and write ports on the register file are doubled to allow for two instructions reading and
writing simultaneously.

Execution / Memory / Write-back

The changes in these stages are fairly simple as the scheduling is handled in the ID stage. The
restrictions of what instructions can enter which pipeline have already been discussed. There is
still only one multiply/divide unit for the reason that any subsequent multiply/divide would
overwrite the first one or have to wait while the MFHI / MFLO instructions stall waiting for their
results. For greater flexibility in scheduling, multiplies / divides can be issued to either pipe.
While it is possible to continue executing around a data cache miss now, this was not
implemented due to the complexity of scheduling around dependencies. The final point about
the superscalar processor is that the number of forwarding paths has doubled, from MEM-A,
WB-A, MEM-B, or WB-B.

I.D. MIPS Instruction Set Architecture

MIPS is a reduced instruction set computer (RISC) meaning that it has fairly simple instructions
based on the assumption that it is faster to perform simple things this way and complex
operations can be constructed from the smallest logical parts. Code density, and therefore cache
hit rates, are worse with RISC computers due to more instructions being needed to describe an
operation. And typically instructions are fixed length (4 bytes) whereas CISC machines such as
x86 have variable length instructions. However, RISC machines tend to be easier to implement
and can be made faster. In fact, modern CISC processors often convert CISC instructions into
micro-ops to be executed by a RISC-like execution core. As with most RISC machines, there are
many registers, 32 integer registers, available to the programmer. One key feature is that there is
a hardcoded zero register which is useful in many operations such as logical comparisons or
clearing a value. MIPS uses big endian memory addressing, meaning that the most significant
byte (MSB) is stored at the memory address. The prescribed function of each register is briefly
described in Table 1, followed by a description of the subset of the ISA implemented by my out
of order processor (as well as the 5-stage and superscalar CPU’s) in Table 2, Table 3, and Table
4.

10

Table 1 MIPS Register Usage

Name Number | Register Usage
$zero $0 Hardcoded Zero
$at $1 Assembler Temporary
$v0-$vl | $2-$3 Return Values
$a0- $a3 | $4- $7 Argument Registers (More Arguments Passed on Stack)
$t0-$t7 | $8-$15 | Temporary Registers (Not Saved Across Function Calls)
$s0-$s7 | $16- $23 | Saved Registers (Saved Across Function Calls)
$t8-$t9 | $24-$25 | Temporary Registers (Not Saved Across Function Calls)
$k0- $k1 | $26- $27 | OS Kernel Registers
$agp $28 Global Pointer
$sp $29 Stack Pointer
$fp $30 Frame Pointer
$ra $31 Return Address
Table 2 MIPS ALU Instructions
Instruction Operation Notes
ADD, ADDI rd <- rs + rt Generate Overfl ow Exception
rt <- rs + sext_imm Not I nmplemented, No O S
ADDU, ADDIU |rd <- rs + rt No Overfl ow Gener at ed
rt <- rs + sext_imm
SUB, SUBU rd <- rs - rt Overfl ow Not | npl enented
SLT, SLTI rd <- (rs <rt) Set Less Than
re <- (rs < sext_inmm Result 1 True, 0 Fal se
SLTU, SLTIU |[rd <- (O]|rs < O]]|rt) Set Less Than Unsi gned
rt <- (0]]rs < 0O]]|sext_im Result 1 True, 0 Fal se
AND, ANDI rd <- rs &rt | medi ate Zer o Extended
rt <- rs & zext_imm
OorR ORl rd <- rs | rt | medi ate Zer o Ext ended
re <- rs | zext_inmm
LUI rt <- imm=<< 16 Load Upper |Imediate
XOR, XORI rd <- rs xor rt | medi ate Zer o Ext ended
rt <- rs xor zext_inm
NCR rd <- ~(rs | rt)
SLL, SLLV rd <- rt << sa Shift Left Logical
rd <- rt <<rs
SRL, SRLV rd <- rt >> sa Shift Right Logical
rd <- rt > rs Zero Extend Shift
SRA, SRAV rd <- rt >>> sa Shift Right Arithnetic
rd <- rt >>>rs Si gn Extend Shift
MULT, MJULTU |HI,LO <- rs * rt Upper 32 Bits of Product
H,LO <- 0O]|rs * O]|rt H, Lower 32 Bits in LO
DV, D VU H <- rs / rt H Gets Division Result
LO<- rs %rt LO Gets Renmi nder
H <- O]|rs / O]]|rt
LO<- O]|rs %O]|rt
MFHI, MFLO |rd <- H Move From Hi
rd <- LO Move From LO

11

Table 3 MIPS Memory Instructions

Instruction | Operation Notes
LW rt <- nmenfbase+offset] Load Word
LH, LHU rt <- sext(menbase+offset] &FFF) |Load Hal f Wrd
rt <- zext(meni base+of f set] &FFF)
LB, LBU rt <- sext(meni base+of f set] &FF) Load Byte
rt <- zext(men base+offset] &F)
SW menf base+of fset] <- rt Store Wrd
SH menf base+of fset] <- rt[15:0] Store Half Word
SB menf base+offset] <- rt[7:0] Store Byte
Table 4 MIPS Control Flow Instructions
Instruction | Operation Notes
J PC <- PC+4[31:28]|]instr_index||00 | Junp to Address, Has
Del ay Sl ot
JAL $ra <- PC+8 Junmp to Address and
PC <- PC+4[31:28]||instr_index||00 |Link, Has Delay Sl ot
JR PC <- rs Junp to Address in
Regi ster, Has Del ay Sl ot
JALR rd <- PC+8 Junp to Address in
PC <- rs Regi ster and Link, Has
Del ay Sl ot
BNE if(rs!=rt) PC<- PC+ 4 + offset |Branch Not Equal, Has
Del ay Sl ot
BEQ if(rs ==rt) PC<- PC+ 4 + offset |Branch Equal, Has Del ay
Sl ot
BLTZ if(rs <0) PC<- PC+ 4 + offset Branch Less Than Zer o,
Has Del ay Sl ot
BCGEZ if(rs >>0) PC<- PC+ 4 + offset Branch Greater Than or
Equal to Zero, Has Del ay
Sl ot
BLEZ if(rs <= 0) PC<- PC+ 4 + offset Branch Less Than or
Equal to Zero, Has Del ay
Sl ot
BGTZ if(rs >0) PC<- PC+ 4 + offset Branch Greater Than
Zero, Has Del ay Sl ot
BGEZAL if(rs >>0) PC<- PC+ 4 + offset Branch Greater Than or
ra <- PC + 8 Equal to Zero and Link,
Has Del ay Sl ot
BLTZAL if(rs >0) PC<- PC+ 4 + offset Branch Less Than Zero
ra <- PC + 8 and Link, Has Del ay Sl ot
SYSCALL Perform System Cal | Exception Ermul ated in C Library,

Updat es Register File,
Fl ushes Pipeline to
Enmul at e Exception Vector

12

I1. Design Details

The high-level data-path for the CPU is shown in Figure 1. Due to the extremely large number
of busses passing between modules, the exact names and widths are omitted to more clearly
show the functionality. Individually, each component is mostly straightforward. However, the
timing of interactions between each part and the many corner cases (several unfortunately
discovered during debugging) that arise yield significant complexity over the previously
described CPU’s. Module interactions are described in detail in their respective sections.

ALUO +—
ALU Issue =—
Queue || Physical ALU1 —
— Register Forwarding
@_ Instruction Instruction —— Register BRJRIssue | | File
Cache Decode +—— Rename Queue QC | DataCache
LDST Addr J_
Issue Queue ADDR —
LDST Queue]
Branch Free Reorder Buffer —
Predictor Register RAT
| List
|
Return
Address
Stack RAT
|
|—— FrontEnd X Back End }
Figure 1 High Level Datapath
IlLA. Front End

The front end of the CPU is responsible for fetching instructions, decoding these instructions,
and renaming them such that the backend can issue them as dependencies allow. Speculative
control flow is done in the front end to provide a constant stream of instructions. Upon resolving
a speculated flow direction, the reorder buffer (ROB) can direct the front end to stop what it is
doing and redirect its fetching down the correct path. The front end of the processor will have to
stall if the back end runs out of space to buffer instructions, the free list runs out of registers to
provide to the renamer, or the instruction cache misses.

I1.LA.1. Program Counter (PC) / Instruction Cache (1$)

The program counter is still used to index into the instruction memory as before and maintain the
current state of the processor. However, the complexity of updating the PC has increased. The
instruction decoder provides the control as to how to get the next PC. It can either stay the same
on an instruction cache miss, be calculated based off of the type of instructions in the decoder, or
get updated from the ROB on a flush. If the decoder finds that a control flow instruction is being
decoded, it may update the PC with a jump target, a branch target or the fall through target
depending on the branch predictor’s prediction, or a return address stack prediction if a jump
register is decoded. Otherwise, the PC will be updated with the address of the instruction
following the last one decoded. If the processor has to stall because the renamer runs out of free
registers or the ROB is full, the design freezes the front end. However, the PC must still be
updated based of the instructions in the decoder and that target may change based on prediction
updates coming from retired branches in the ROB. This condition was discovered
experimentally when a branch predicted taken, updated the PC with the target, and stalled.

13

When the stall was resolved, the prediction had changed to not taken and that prediction was
carried with the branch into the ROB, even though it had set the PC to the taken path.

The instruction cache interface remains similar to the previous implementations. Changes were
made to support fetching four instructions per cycle. Again, no requirement is made that the
instructions reside in the same cache line. With four addresses being accessed, the chance of a
miss increases. Despite fetching four instructions, we can only have at most two misses because
of the size of the cache line used. Both misses must be handled before fetching can continue.
Because data memory accesses and instruction memory accesses no longer stall each other, it is
possible to have an instruction cache miss come part way through a data cache miss. In this case,
the instruction cache miss is deferred until the data cache miss has been resolved. The design
uses a blocking cache interface that can only handle one miss of any type. When the processor
decides to flush because of a misprediction during an instruction cache miss, the flush has to be
deferred until the miss is resolved. Although this miss is clearly from the wrong path, there is
still a high probability that the code will be needed soon due to spatial locality. Small direct
mapped caches are used to re-align the comparison with the previous processors and maintain the
assumption of single cycle accesses. The assumption that two cache lines can be accessed
simultaneously can be easily supported by banking the caches, such that the addresses which
resolved to different lines also access different banks.

11.LA.2. Instruction Decode

As its name suggests, the instruction decoder is responsible for interpreting the 4 byte instruction
word and extracting useful information for the instruction. In hardware, it is implemented as a
large lookup table. Four lookup tables proceed in parallel to set the proper control signals for
each instruction. Information extracted from decoding an instruction includes which registers it
uses, what type of instruction it is, which issue queue to place it in, what operand the
corresponding execution unit should perform, and calculating targets and immediates. Once the
four instructions have been decoded, they proceed to a mini-scheduling piece of logic that
determines which instructions can go to rename of those fetched. This mini-state machine also
makes the decision of where to fetch from next. Instructions that need special consideration are
discussed in the next two sections.

11.A.2.a. Multiply / Divide Expansion

Only multiplies will be discussed for brevity, though the discussion applies to both multiplies
and divides. In the previous two CPU’s, there existed two dedicated registers for storing the
results of multiplies. Also, subsequent multiplies could stop short and overwrite currently
executing multiplies. However, now that instructions are being executed out of order, we need a
mechanism for providing consumers with the proper multiply. This is handled by renaming the
HI and LO registers as if they were part of the normal 32 registers in the ISA. This creates the
issue of needing two registers for one instruction. The solution is to expand each multiply into
two instructions where one writes the HI register and the other writes the LO register. Because
of the limitation of renaming four instructions per cycle, the expansion of a multiply will force
another instruction out of the current block going to rename and that a multiply cannot be
decoded as the fourth instruction of the block. In either case, the dropped instruction (or more if
two multiplies are expanded) will be fetched again in the next cycle. While a multiply now takes

14

up more buffer and queue space, instructions only wanting to read the result of HI or LO can
execute once that half of the multiply has completed.

11.A.2.b. Control Flow Reordering

This discussion applies to both branch and jump delay slots, but the term branch delay slot will
be used. While the branch delay slot was useful in boosting performance of a pipelined
processor, it now becomes a nuisance. There is no longer a need for it as we can predict the next
instruction and execute instructions out of order. Therefore, the last part of the decode logic
attempts to reverse the delay slot and have it execute ahead of the branch. This is legal because
the ISA specifies that logically the branch delay slot be executed before the effects of the branch
are seen. To minimize wasted ROB space and the number of ports needed to write link values,
only one control flow instruction will be renamed each cycle. Any subsequent instructions wait
until the next cycle if they still remain in the predicted path.

Swapping the delay slot and the branch simplifies flushing on a misprediction because the delay
slot will already have been committed when the branch reaches the ROB head. This requires
that the delay slot be fetched in the same block as the branch and so a branch cannot be the last
instruction in the block. However, this is a useful restriction even without reordering the
instructions because otherwise it would be possible for the branch to reach the ROB head while
the delay slot was still waiting on an instruction cache miss to be resolved, further complicating
flushing.

Due to compiler optimizations such as code boosting to fill the delay slot, we occasionally have
the situation where the delay slot instruction’s result will change the branch direction if allowed
to be renamed first as this will cause the branch to use its value that should have happened after
the branch evaluated. Therefore, we always rename the branch first, although the delay slot is
inserted ahead of it into the ROB. In the case where there is a data dependency, another problem
arrives. If the delay slot reaches the ROB head before branch evaluates, it will mark the branch’s
operands as unready, for reasons to be discussed in the commit description, and the branch will
wait at the ROB head forever. It must wait for the branch to be resolved before the delay slot
can commit when there is a dependency.

I11.A.3. Branch Prediction

The performance of a processor that executes instructions speculatively is only as good as its
ability to predict the correct path to take. To this end, one static and three dynamic branch
predictors were implemented. Finally, a pseudo fifth predictor was implemented that simply
takes a vote among the three dynamic predictors. The static predictor always predicts backward
branching branches to be taken under the assumption that they are loops and loops are usually
‘taken’. Forward branching branches are predicted ‘not taken’ because they are typically if
statements, and there seems to be a slight tendency for them to be ‘not taken’ (ie. execute the “if”
not the “else”). This static prediction is based solely on the sign of the offset.

Figure 2 shows the dynamic branch predictors. Predictor ‘a’ is a bimodal predictor. Bit 11:2 of
the program counter of the branch are used to index a table of two bit saturating counters with
1024 entries (where the most significant bit of the counter corresponds to the prediction). A
count of 3 or 2 indicates ‘taken’, where 1 or O indicates ‘not taken’. The bimodal predictor is

15

rather simple to in concept and implementation but has the lowest prediction accuracy of the
three. This is because it only considers the past history of the branch (or other branches that map
to the same entry) and makes the assumption that past behavior will dictate future behavior.
While in many cases this is correct, it has many serious flaws. For example, a branch that
toggles between “taken’ and ‘not taken’ can force this predictor to miss 100% of the time if it is
in a weakly taken (2) or not taken (1) state.

GHR
PC — I T PC —

l l

a. b. C.

Figure 2 Branch Predictors

Predictor ‘b’ is a GAg predictor. A 10 bit global history register (GHR) is used to a table of the
same size with two bit saturating counters. The GHR is a shift register that is updated by every
branch. The assumption here is that branches correlate and the direction of the current branch
can be determined by the previous branches. Consider the following code segment:

if(a){

b = 1,

else b = 0;

() {

Clearly, the direction taken by the second “if” statement is controlled by that of the first. This is
where a correlating branch predictor will perform better than one that only considers its own past
history.

Predictor ‘c’ is a two level SAg predictor that exploits self-correlation. While it has the highest
accuracy, it is the slowest and consumes the most space. The lower bits of the PC are used to
index a table of 1024 entries, each of which is a 10 bit shift register. The value of the shift
register is used to index a table to 1024 2-bit saturating counters.

All branch predictors are updated upon retiring a branch so that only correct path branches
influence the predictor accuracy. This introduces a possibly large update latency but also
prevents mispath branches from influencing the prediction of other branches. All these
predictors are also vulnerable to aliasing so that other branches that happen to map to the same
entry will perturb the other predictions.

I1.A.4. Return Address Stack (RAS)
The return address stack is used for predicting jump register instructions. The assumption is that
most jump register instructions use the return address register and most of the time the return

16

register was previously set by a link instruction. Therefore, each link value is pushed onto the
stack and popped off when a jump register instruction is decoded. Typically function calls are
made with a jump and link instruction and returned from with a jump register instruction. This is
the type of sequence where the return address stack is most useful. To try to maintain accuracy
in the event of deep recursion, a counter is kept to track the number of missed link values and the
corresponding number of jump register instructions do not pop a value from the stack. Also,
since mispredicted path instructions will push and pop the stack before we realize they were
mispredicted, the reorder buffer tracks these at commit and informs the return address stack
whether its stack pointer is too high or too low. While this doesn’t solve all of the
mispredictions, it does help improve accuracy enough to warrant implementation.

11.A.5. Register Rename

Register renaming resolves the WAW and WAR hazards introduced by executing instructions
out of order. Each logical register is mapped to a physical register that is currently holding the
value for that logical register as stored in the register allocation table (RAT). Renaming works
because we have twice as many physical registers as logical registers (64 physical registers).
Each physical register is written to only once while it is live and the backend of the CPU works
solely with physical register until commit where the logical register is needed again. Therefore
there are no WAW or WAR hazards. Consumers do not read the register until it has been written
to, controlled by the ready register list discussed later. Every instruction is given a destination
register from the free list, provided one is available, and the RAT is updated with the new
mapping. Because instructions in the same fetch block can have any number of dependencies,
renaming happens in the order instructions were fetched. Because this RAT is working with
speculative values, it must be updated on a flush with the actual correct mappings as stored in the
retirement RAT. At reset, both RAT’s are mapped so that each logical register corresponds to

the physical register with the same number. An example renaming is as follows:
Free List: pl0, p32, p27, p9
RAT Mappings: rl : p3, r2: pl, r3: p33, r4: p23
Instructions before Renane (Note the destination is the first register):
add r5, r3, r1
sub r6, r2, r4
add r5, r5, r6
Instructions after Renane
add pl0, p33, p3
sub p32, pl, p23
add p27, pl0, p32

I1.A.6. Free Register List

The free register list is a ring buffer that gets freed registers from the reorder buffer and gives
them to the renamer. Because there are 64 physical registers in this implementation and 34
logical registers (32 + HI + LO), there are a maximum of 30 free registers. If a large enough
number of instructions write values and are given a register from the free list, the free list can run
out requiring the processor to stall until enough free registers have been recovered for renaming
to continue.

11.B. Back End

The back end of the CPU is responsible for taking the renamed instructions and issuing them to
be executed as their operands become available. The only dependency that remains is the RAW

17

dependency which is ultimately the limiting factor in how fast we can execute a program. Other
independent instructions are issued to execute while we wait on other dependencies. The
sequential ordering of the program is maintained through the reorder buffer which commits
instructions in order as they complete execution. The major components of the back end are the
issue and load-store queues, the reorder buffer, the four execution units (2 ALUs, 1 Address
Calculation Unit, 1 Branch/Jump Register Resolver), forwarding muxes, the physical register
file, the retirement RAT, and the data cache.

11.B.1. Issue Queues

There are three issue queues in the processor: one for the two ALU’s and one for each of the
other execution units. The ALU queue can issue two instructions to be executed every cycle
whereas the other queues can only issue one. Each queue snoops on the bus of instructions
coming out of rename to see if their queue matches. If so, the instruction is inserted into the
issue queue at the first available entry. NOPS and syscalls do not require any execution unit, and
so they are placed only into the ROB and not an issue queue. The decision of which instruction
to issue next is made by searching the queue for the first instruction (or two for the ALU’s) that
has all of its operands ready. It is then issued to read from the register file.

After instructions are issued, there is now a hole in the issue queue that the issued instruction
previously occupied. Because we both insert and issue from the front of the queue, a newer
instruction may get inserted ahead of an older one and force it to wait, thereby also delaying all
dependant instructions. This will shortly be resolved because the instruction will eventually stall
at the ROB head and be the only instruction left in the queue that can be issued. However, to
give priority to older instructions, the issue queues are compacted after issuing an instruction.
Starting at the front of the queue, each instruction moves up a space if the entry in front of it is
no longer valid. For the ALU queue, this means that all possible gaps may not be filled because
two instructions can issue at once. In most cases, performance is improved greatly by giving
priority to older instructions. In the rare event that an issue queue fills, the processor would have
to stall. Because this stall would have identical results to an ROB full stall, the issue queues are
instead sized such that they will never fill completely.

11.B.2. Physical Register File

The physical register file works the same as the register file in the other processors except that it
contains double the number of registers and has more ports to support all of the execution units.
Two read ports and one write port is dedicated to each ALU. The branch/jump register
execution unit also has two read ports but does not need a write port. One write port is dedicated
to storing link values. One read port is dedicated to the address calculation unit and another to
producing values for stores to write. The final write port is used for load data. This totals to
eight read ports and four write ports. Writes are performed on the positive clock edge if an
enable signal is set for the corresponding write port. Reads are performed after instructions are
issued on the negative clock edge. As mentioned previously, there are 64 physical registers in
the register file, each 32 bits wide. As with the logical register file, one physical register is
hardcoded to zero for instructions that compare with zero or to cause an instruction to be a NOP
by setting its destination to the zero register.

18

11.B.3. Ready Register List

To control the execution of instructions, we need to know which have their operands ready. This
is maintained through the ready register list, really a 64 bit bit-vector of ready registers. After
ALU operations are issued, the ready bit of their destination register is set. This allows
dependant instructions to issue in the following cycle, maintaining the back to back dependent
instruction execution of the other CPU’s. Link values are marked as ready as they enter the
ROB. Load values are marked as ready as they are performed, either through data forwarding or
cache accesses. As instructions retire, the physical register previously mapped to same
destination as the instruction retiring is now marked as unready and returned to the free list
because we are guaranteed no other instruction will need its value as it will be mapped to the
currently retiring instruction’s register. Flushed instructions return their register to the free list
and mark their destination as unready instead of the previous writer. Because an instruction may
be marked as ready and then flushed in the same cycle and marked as unready, clearing the ready
bit masks out setting the ready bit. The hardcoded zero is always marked as ready even if an
instruction tries to clear it by writing to the zero register as a NOP.

11.B.4. Execution Units

Each execution unit performs independently of the others because the issue logic guarantees
there are no RAW hazards between currently executing instructions. While it is possible to send
all instructions through the general purpose ALU’s with a few additions, the importance of
resolving control flow and memory accesses as quickly as possible results in them each having
their own execution unit and issue queue. The number of execution units dedicated to each type
of instruction roughly corresponds to the average occurrence of the instruction type in a typical
program.

11.B.4.a. Arithmetic Logic (ALU) Units

The two general purpose ALU’s perform all of the instructions indicated in Table 2. They are
essentially the same ALU’s used in the previous processors with the change that multiplies,
divides, and MFHI/MFLO are now performed in the ALU instead of in separate logic. The ALU
performs every operation every cycle and selects the result for the operation indicated by the
instruction currently executing. Which register to use and whether or not to use the immediate
value passed in were all determined previously in decode. The operands for ALU instructions
can come from either the register file or from forwarded values from the execution performed in
the previous cycle. The ALU result is written back to the register file on the next positive edge.
There are two ALU’s because the majority of instructions are processed by one of the ALU’s,
and there is usually sufficient parallelism to issue two independent instructions every cycle. A
third ALU is not added because control flow and memory access instructions are already
separated out, and a third ALU would add two more read and one more write ports to the register
file.

11.B.4.b. Branch / Jump Register Resolution Unit

The branch comparison unit, also referred to as the quick compare (QC) unit, tests expression
conditions between the two source operands of a branch or one operand and zero. The decision
to take a branch or not is written back to the reorder buffer entry corresponding to the branch.
When the branch gets to the ROB head and the predicted and actual decisions do not match, we
have to flush the pipeline and fetch the correct target. Jump register instructions also pass

19

through this unit but no computation is performed. It is rather a convenient reuse of register file
ports that might otherwise sit idle. Jump register instructions are not frequent enough to warrant
their own ports in the already heavily loaded register file.

11.B.4.c. Load-Store Address Resolution Unit

Because memory accesses can incur a very high latency if they miss, it is important to resolve
their effective address as soon as possible. This is simply an addition of a base register and a
signed offset contained in the instruction. Once this value has been calculated, it is written to the
load-store queue. This allows stores to forward data and loads to issue before they reach the
ROB head as will be discussed shortly.

11.B.5. Data Forwarding

To allow dependent instructions to issue back to back, it is necessary to forward the data values
currently being written to the register file to the execution units because the values were not
present when the instruction read the register file. The notion of getting the newest value is no
longer a problem because the renamer already handled this by guaranteeing that each register is
only written once during its lifetime. Each of the eight read ports on the register file has a
corresponding forwarding unit. Each forwarding unit compares the register that was intended to
be read with each of the four write-back paths’ destination register. If the register number
matches, the value being currently written back is used instead of the one fetched from the
register file. Because write-backs happen a cycle earlier than in the pipelined or superscalar
processors, there is only one cycle worth of addresses to compare against but there are now four
sources of forwarding.

11.B.6. Load-Store Queue / Data Cache (D$)

The load store queue was not initially implemented in the processor. Loads were performed
when they reached the ROB head like stores are. However, performance suffered tremendously
by waiting that long to perform the load. There are typically many instructions dependant on the
load result --- the longer the load waits, the longer its consumers must wait. Furthermore, if the
load gets to the ROB head and then misses, the processor must wait even longer to execute the
dependant instructions.

This lead to the load-store queue being implemented. Unlike registers, memory dependencies
cannot be resolved in rename because their effective addresses are not yet known. It is therefore
essential that the load store queue ordering maintain sequential consistency semantics. As loads
and stores enter the back end from rename, they are added to the end of the load store queue in
program order. Each cycle, queue entries snoop the result of the address calculation unit to see if
their corresponding entry in the address queue has just calculated the effective address. If so, the
address is added to the queue entry. Also each cycle, we search the queue for a store that does
not yet have the data that it will write to memory. Because there is only one register read port
for store values, only one store can request its data per cycle. This store is always the one closest
to the head of the queue (the oldest store). Stores in the queue that have both their address and
data can search the rest of the queue for a load of the same size to the same address. If a match is
found, the data is forwarded to that load to save a cache access. This search is stopped when a
store to the same address or a store with an unresolved address is found. A conservative
forwarding policy of stopping the search when a store to the same word is found was

20

implemented. A more aggressive policy would do per byte aliasing checks; however, the
assumption that words are typically accessed with word accesses and bytes accessed with byte
accesses is made. Significant speedups can be achieved even with this conservative forwarding
policy. Stores must still wait to write to the cache until they reach the head of the reorder buffer
to guarantee that they are not speculative because there is no easy way of undoing a store that
shouldn’t have happened.

Once a load has its address, it can issue a cache access or receive forwarded data. Priority of
cache accesses is given to the oldest loads. If no load or store cache access is performed because
the operation reached the ROB head without going to memory, then another load that has its
address but doesn’t have its data yet can use the cache for its access provided there isn’t an
outstanding miss. Forwarded data also needs to be written back to the register file. Waiting until
the load reaches the ROB head is as bad as not forwarding at all. Therefore, the queue is
searched for either a load with its data but not written back or a load with its address but no data.
The oldest one found is issued. Even while a store is using the data cache, we can write back a
load that had its data forwarded. In essence, this performs two memory operations
simultaneously despite having only a single cache port.

The data cache is essentially the same as in the previous processors. Dirty lines must be written
back on an eviction before the request line can be filled. While the load store queue speeds up
loads significantly, stores may still suffer long latency misses at the ROB head without
prefetching, which is not implemented. A data cache miss can be nearly twice as bad as an
instruction cache miss because of the possibility of having to wait to write back dirty data to the
next level of memory.

11.B.7. Reorder Buffer (ROB)

The reorder buffer is a 32 entry circular buffer responsible for maintaining instructions in
program order despite being executed out of order. Relevant information about each instruction
coming out of rename is inserted into the ROB at the tail. Instructions are retired in program
order when they reach the ROB head, or rather the ROB head reaches them. If the ROB fills up,
the processor must stall until entries are freed. Entries are marked as ready as their operations
complete elsewhere in the processor. Only instructions that are marked as either ready or flushed
can be retired or committed. This implementation has the capability of retiring four instructions
per cycle to match the fetch width and number of execution units.

11.B.8. Commit / Pipeline Flushing

Retiring or committing instructions in order is critical for proper program execution. When an
instruction reaches the ROB head, it is checked to see if it is marked as either ready or flushed.
If it is marked as neither, retirement must stall until the instruction can be retired. When an
instruction that writes to a register reaches the ROB head is ready and is not flushed, we must
reclaim the physical register of the previous instruction that wrote to the same logical register as
it is only at this point that we can guarantee that it will no longer be needed. The now free
register is sent to the free list, marked as unready, and the retirement RAT is updated to show the
new mapping. The retirement RAT contains the mappings of logical to physical registers of all
instructions so far and is guaranteed not to be speculative. When a branch or jump register
reaches the ROB head, we check to see if the predicted path was indeed the correct one. If so,

21

the instruction is retired as normal. If not, the ROB, issue and load-store queues, and currently
decoding instructions are flushed, the rename RAT is replaced with the correct information from
the retirement RAT, and the PC is set to the correct target. As mentioned previously, if a delay
slot reaches the ROB head that overwrites an operand of its control flow instruction, it must wait
until both instructions are ready before committing.

Memory operations that have yet to access the cache or have gotten forwarded data but have yet
to write it to the register file are performed when they reach the ROB head. Because of resource
limitations, only one such instruction can be performed and retired each cycle. System calls that
reach the ROB head stall there for one cycle to allow any writers to the logical register file (as
determined by the retirement RAT) to complete before emulating the system call with C
libraries. The ROB is the flushed following this emulation because the values in the register file
previously read are now stale and this more accurately simulates jumping to O/S code and
returning to the user code following the system call. Finally, registers allocated to flushed
instructions must be reclaimed and added to the free list, and marked as unready.

I11. Differences with MIPS R10000

While this processor design is based generally off the MIPS R10000, there are some design
differences that should be noted. The R10000 implements the full 64-bit MIPS 4 ISA including
floating point instructions which are absent from this implementation. While the fetch width is
the same, it issues instructions to five execution units (two of which are floating point) and
implements non-blocking, set associative caches. Because more than one process runs on the
CPU at a time, it implements TLB’s to cache the page table. To buffer against instruction cache
misses and to save instructions not able to be decoded in a given cycle, there is a fetch buffer to
store up to eight instructions. Mispredicted branches are allowed to selectively flush the pipeline
and gueues as soon as they are determined to be mispredicted. This is done by tagging each
instruction with which branch of up to 4 speculated branches that the instruction depends on.
The rename RAT is placed on a branch stack as branches are predicted so that it can be easily
restored upon a flush. The branch predictor used is the bimodal predictor described previously.
Branches are resolved in the integer ALU whereas a separate comparison unit is used in my
implementation.

IV. Results

Performance results for the processor were collected to compare with the other processors and
different configurations of the out of order processor. Unless the test indicates that an item is
varying, the implementation discussed above is used. Both instruction and data caches are 16KB
direct mapped caches with 32 byte blocks. The SAg predictor is used in all cases unless
otherwise stated.

IV.A. Test Cases

The test cases presented here are a subset of those used to verify functionality. Many of those
tests tested very specific instructions and were too short for performance to be reasonable. This
is because short programs have a very large number of cold cache misses, and there is not
sufficient time to train branch predictors. All test cases presented here were written in C and
compile with a gcc cross compiler on the Linuxpool. Several other assembly language programs
were written to test functionality as well but they are not shown here. Table 5 describes the
mini-benchmarks used.

22

Table 5 Performance Benchmarks

array_rewrite On even Ioop_ iterations the _first array is copied to the second array,
- On odd iterations the array is copied back from the second array

bigfib Calculates the Fibonacci sequence to 6765

hello Prints Hello World and then performs a tight nested loop sequence

msort Merge sort for an array of size 500

nested branches | A series of correlated branches in nested loops

ngueen Nqueens algorithm for board of size 7

recursion_loops | Repeated recursive calls that have variable loop lengths

towers Towers of Hanoi for 6 disks

IV.B. Comparison with Five Stage Pipeline & Two-Way Superscalar

Normalized IPC
3
25]
2 -
|— @ Pipelined
15]] | Superscalar
1 O Out of Order
0.5 — — — — — — —
0 1
& 4 »° & & & $ ©
& ™) © & & K \ooQ &
¢ & < 7/ ©
N/ S O
& >/ R4
> g &
& <

Figure 3 Three CPU Performance Comparison

As the above figure indicates, the out of order processor outperforms the other two processors for
all benchmarks tested. This is due largely in part to the predictability of the branches in these
benchmarks. Though not described in this graph, “towers” executes less than one instruction per
cycle for all implementations. This is because there are an extremely large number of instruction
cache misses and the program does not run for long enough to recover from the performance loss
of the stalls. Normalized IPC is used in these performance tests because the clock speed can be
set somewhat arbitrarily in the simulator and a better measure of relative performance is how
much work is done each cycle.

23

1V.C. Reorder Buffer Size

Normalized IPC
3
2.5]
2 [] @ ROB Entries 8
1.5 4 W ROB Entries 16
1 O ROB Entries 32
0.5
0
& »° & & @ &
XS @ o O < K
© ¢ o & &
,;}0
S
e
<

Figure 4 Reorder Buffer Size Performance Comparison

Surprisingly, cutting down the ROB size did not affect some benchmarks very much. Again
using “towers” as an example, this is because the instruction cache could not supply enough
instructions to fill the ROB anyway. “Nqueen” and “bigfib” also show little improvement going
from 16 to 32 entries which would indicate that they empty the ROB fast enough to not stall
often due to the ROB being full. This could be due to a favorable instruction stream executing
on the processor or that the instruction memory again can’t supply enough instructions to keep
the back end busy. A third explanation may be that many branches are mispredicted and the
ROB does not have a chance to fill before getting flushed, which may be the case for “bigfib,”
which has relatively bad predictor accuracy as shown next. The most likely explanation is a
combination of not being able to fill the ROB due to instruction cache misses and flushes.
IVV.D. Branch Predictors

Normalized IPC
3
2.5
O Static Prediction
21 m Bimodal
1.5 - 0O SAg
1 O GAg
B Vote
0.5
0 a
& & NS & L o Qe &
@y\,\\ 0&, N ((\ro (\é\ 0\}@ \00 o\&
A & < Q7 A
>’ Q S
& &7 S
S <
& N

Figure 5 Branch Predictor Performance Comparison

24

Prediction Accuracy
1.2
l 1 . . .
@ Static Prediction
081 m Bimodal
0.6 0O SAg
0.4 - O GAg
H Vote
0.2
0 4
@ & Y & & & $ &
Q’@«\ ®© N4 & (\g}(\ &e & 0$e,
A\ & < 7 A
Y Q)
& 87 &
> g R
& <

As can be seen from the above graphs, using a static prediction scheme tends to perform pretty

Figure 6 Branch Predictor Accuracy

poorly. Not surprisingly, the majority vote of the three dynamic predictors is near the top but
never really the best. As discussed previously, different branch predictors predict better for
different branch behaviors and so taking a vote smoothes out the bad predictions but can also

suppresses the predictor that best predicts a given branch. Also of concern in branch accuracy is

that only correct path branches are considered in accuracy calculations and updating the

predictors. Intuitively, it seems correct to suppress the results of a branch that you were never

supposed to reach, but doing so may prevent warming up a predictor to a branch that you will

soon reach.

IV.E. Retirement Rate

Normalized IPC
3
25 1 |__ 1|
) Bl [[1 || |@ Retire width 1
W Retire Width 2
1.5 | -
O Retire Width 3
o | |0 Retire Width 4
0.5 - - - -
O B
& & Y & & &
Qﬁ\\ ‘O\Q ‘\QJ (& (\é\ \OOQ
< & Y
X ¥ &3
& &7 5
2 <
& <

Figure 7 Retirement Width Performance Comparison

25

The final performance test performed was to see the effect of varying the retirement width.
Retirement width one caps the maximum IPC at 1 and is slower than the superscalar processor in
most cases; it can be slower than the pipelined processor due to instruction cache misses and the
overhead involved in filling the ROB. As seen with varying the ROB size, often times the full
capabilities of the ROB are not needed. It would take a near optimal flow of instructions to keep
the entire busy at maximum performance for the length of the program. Cache limitations and
predictor accuracy prevent this for all but the most trivial programs.

V. Conclusion

V.A. Design Difficulties

The debugging stage for this processor was much more tedious than expected. While each
component has fairly predictable behavior in isolation, the interactions and timing between the
modules makes it difficult to predict all possible corner cases of events that may occur. Also, the
unexpected insertion of instructions that would affect a branch outcome by the compiler into the
delay slot caused much grief. Because of the massive number of signals in the processor, it was
nearly impossible to debug what was going wrong by looking at the waveforms only as was
possible in the previous processors. | found it easier to generate traces of instructions retired and
values written, and compare those to the pipelined implementation to find the point in time at
which the out of order processor goofed and then follow the relevant signals in the simulator
waveform. Such debugging would have been very difficult if not impossible if the
implementation was attempted on only hardware from the start.

V.B. Possible Improvements

There are four main improvements that could be applied. Increasing the fetch width, execution
width, or retire width would improve performance so they are not considered, nor is simply
increasing buffer/queue sizes. The first useful improvement would be to use a set associative
cache. This would greatly reduce all misses except cold misses which are unavoidable (but
could be reduced with bigger block size). The second improvement that could be implemented is
to implement a branch stack as the R10000 does. This would require much more flush logic to
selectively flush instructions but has the benefit of reducing the amount of time spent on the
wrong path which could pollute the cache. To this end, the third improvement would be to
implement a better branch predictor. While some programs designed to work well with the
branch predictors implemented worked very well, they also performed poorly on some more
realistic applications. Finally, non-blocking caches would improve memory throughput greatly
in the presence of a miss in both the instruction and data caches. This is especially useful when a
flush is required but the instruction cache is already servicing a miss and so the redirection of the
PC must wait.

V.C. Final Remarks

Overall, the out of order implementation satisfied the project goals quite well. | was able to
fetch, decode, rename, issue, execute, and retire up to four instructions per cycle and achieved a
much higher IPC than previous processors implemented in computer architecture classes. Last
minute changes, such as the inclusion of a load store queue, significantly boosted performance.

V1. References
[1] Yeager, Kenneth C. “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro 1996

26

VII. Appendix

The appendix is organized as follows. First, the simulator output and source code for the
performance benchmarks shown above. Array_rewrite, hello, nested_branches, and
recursion_loops were written for this project. The other four came from ECE475 projects. Next,
the Verilog source code for the project is listed. The header files mips.h and cache.h were
heavily modified from ECE475; the source code was written from scratch with the exception of
mips.v and memory.v which were heavily modified from their ECE475 versions. ECE475
Verilog code bears the appropriate copyright notice.

e i

Loaded Executable “test/array_rewite'
Boot code entry point: Oxbfc00000
User code entry point: 0x00400290
Stack pointer: Ox7fffefff

Testing Array Rewite
012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49

EXIT called, code: 0O

Program Ter m nat ed.

Retired 172648 instructions, 195685 entered ROB
Nunmber of flushes: 1007

Ran for 95731 cycles

| Cache Accesses: 60509

| Cache M sses: 430

DCache Accesses: 49185

DCache M sses: 55

Aver age Full ness:

ROB 23.9

ALUQ 0

CFQ 0

LDSTAQ 0

LDSTQ 6.9

Freelist(avg. free regs) 0
RAS

Max Ful | ness:

ALUQ 6

CFQ 2

LDSTAQ 5

LDSTQ 20

RAS 8

BR Predictions: 10384

I ncorrect: 330

JR Predictions: 1139

I ncorrect: 571

Correct Path:

Mem 52832

CF 16649

Sys 106

ALU & NOPS 103061

Retired 0 1 2 3 4: 32162 8337 12979 7587 34657
Renamed 0 1 2 3 4: 36864 0 14210 11331 33318
Cycles Stall ed:

I Stall 11701

Renane 115

ROB 23390

Forwar ded Dat a: 5841

Wote Forwards Early: 5789

Perforned Early Loads: 26786

Forwarded Data But No Early Wite: 0
ROB Head Loads: 5892

27

Loads Already Witten Before Retire: 30433

int q[50];
int main ()
int i,j,t,z[50];
printf("Testing Array Rewrite\n")

for(i=0;i<50;i++){
z[i] ;
qli]

}
for(i=0;i<50;i++){
for(j=0;j<50;j++){

ifCzlin{
t=z[j];
z[j] = aljl;
aljl=t;
}el se{
t =aljl;
alil = z[jl;
z[jl=t;
}
}
printf("% ",i);
}
printf("\n");
exit(0);

}

s

Loaded Executable “test/bigfib’
Boot code entry point: Oxbfc00000
User code entry point: 0x00400420
Stack pointer: Ox7fffefff

Series: 112 358 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
EXIT called, code: 99

Pr ogr am Ter m nat ed.

Retired 3715759 instructions, 5729728 entered ROB
Nunmber of flushes: 74062

Ran for 2388991 cycl es
| Cache Accesses: 1877710

| Cache M sses: 321

DCache Accesses: 1019551

DCache M sses: 64

Aver age Full ness:

ROB 26.1

ALUQ 0

CFQ 0

LDSTAQ 0

LDSTQ 9.2
Freelist(avg. free regs) 0
RAS 13.2

Max Ful | ness:

ALUQ 4

CFQ 2

LDSTAQ 3

LDSTQ 20

RAS 22

BR Predictions: 209709

I ncorrect: 37495

JR Predictions: 115069

I ncorrect: 36523

28

Correct Path:
Mem 1418908

CF 554721

Sys 44

ALU & NOPS 1742086

Retired 0 1 2 3 4: 348541 520711 294758 280403
Renaned 0 1 2 3 4: 656904 0 503665 191258
Cycles Stalled:

I Stall 8882

Renane 29

ROB 500394

Forwar ded Dat a: 461079

Wote Forwards Early: 445431

Perforned Early Loads: 115643

Forwarded Data But No Early Wite: 119

ROB Head Loads: 327506

Loads Already Witten Before Retire: 514881

int rfib (int x)

if (x =01]] x ==1) return x;
else return rfib(x-1) + rfib(x-2);

}

int ifib (int n)
{

int x, vy, z, i;

if (n==01]] n==1) return n;
X =0,y =1,
for (i=2; i <=n; i++) {

z =X +vy,;

X =y,

y =z

}

return vy,

}

int main (void)

{

int d;

int i;

d = 20;

printf ("Series: ");

for (i=1; i <=4d; i++) {
printf (" %", rfib(i));
if (ifib (i) '=rfib (i)) {

printf ("\n*** yow *** You're hosed\n");

}

}
printf ("\n");
exit(99);

}

e B o o o 2

Loaded Executable “test/hello

Boot code entry point: Oxbfc00000
User code entry point: 0x00400290
Stack pointer: Ox7fffefff

Hel o Worl d.
0123456789
r: 100000

EXIT called, code: 0O

Pr ogram Ter m nat ed.
Retired 1509920 i nstructi ons, 1516437 entered ROB

29

944569
1037156

Nunmber of flushes: 316

Ran for 548540 cycl es
| Cache Accesses: 505587
| Cache M sses: 262
DCache Accesses: 203961
DCache M sses: 80
Average Full ness:

ROB 28.5
ALUQ 0
CFQ 0
LDSTAQ 0
LDSTQ 9.4
Freelist(avg. free regs) 0
RAS

Max Ful | ness:

ALUQ 4

CFQ 2

LDSTAQ 3

LDSTQ 20

RAS 9

BR Predictions: 101283
I ncorrect: 136

JR Predictions: 274
I ncorrect: 152

Correct Path:

Mem 503563

CF 201880

Sys 28

ALU & NOPS 804449

Retired 0 1 2 3 4: 42720 101417 100945 682
Renaned 0 1 2 3 4 43440 0 201437 101057
Cycles Stalled:

I Stall 7345

Renane 3

ROB 35795

For war ded Dat a: 300127

Wote Forwards Early: 300098

Perforned Early Loads: 1573

Forwarded Data But No Early Wite: 6

ROB Head Loads: 872

Loads Already Witten Before Retire: 301169

int main ()
int i,j,r;
printf("Hello World.\n");
for(i=0;i<10;i++){
for(j=0;j<10000;j ++){
r++;
}
printf("%l ",i);
}
printf("\nr:%\n",r);

exit(0);

e i

Loaded Executable “test/nsort’

Boot code entry point: Oxbfc00000
User code entry point: 0x004008b8
Stack pointer: Ox7fffefff

30

302767
202598

Program Ter mi nat ed.

Retired 378137 instructions,
Nunmber of flushes: 2760

Ran for 190350 cycl es
| Cache Accesses: 136264

| Cache M sses: 190

DCache Accesses: 125980
DCache M sses: 164

Aver age Full ness:

ROB 28.0

ALUQ 0

CFQ 0

LDSTAQ 0
LDSTQ 8.7
Freelist(avg. free regs)

RAS 1.

Max Ful | ness:

ALUQ 4

CFQ 2

LDSTAQ 3

LDSTQ 17

RAS 10

BR Predictions: 20580

I ncorrect: 2744

JR Predictions: 25

I ncorrect: 12

Correct Path:

Mem 125190

CF 31285

Sys 4

ALU & NOPS 221658

Retired 0 1 2 3 4: 44177 10892
Renamed 0 1 2 3 4 59539 0
Cycles Stall ed:

I Stall 5432

Renane 0

ROB 48914

For war ded Dat a: 11443

Wote Forwards Early: 11299
Perforned Early Loads: 94571
Forwarded Data But No Early Wite:
ROB Head Loads: 11664

Loads Already Witten Before Retire:

#defi ne TYPE int
#define Sl ZE 500

TYPE x[Sl ZE] ;
TYPE y[SI ZE] ;
void init (void)
{
int i;
x[0] = 3;
x[1] =7;
for (i=1; i < SIZE-1; i++) {
x[i+1] = x[i]+(x[i-1]7128);
}
}
voi d dunpout put (void)
{
int i;
int flag = 0;

for (i=1; i < SIZE i++) {
if (x[i] < x[i-1]) {
flag = 1,
printf ("Error at position %\ n",

30269
23384

139

93642

i)

457452 entered ROB

31

34006
18992

70997
88427

}
if (!flag) printf ("Array sorted correctly.\n");

voi d mergesort (unsigned long n, TYPE *array, TYPE *array2)
{

TYPE *p, *q, *r;

unsigned long int i, j, k, I, m t, ki,

unsi gned | ong | 0g2;

if (n==0) return;

p = array; g = array2;
for(log2=0,i=1; i < n; i*=2, log2++) ;
for (i=1, k=2; i <=1log2; i++ k*=2) {
for (j=0; j <n; j +=k) {
I =j; m=j+(k>>1);
if ((n-j) <k) k1 =n-j; else k1l = k;
for (t=0; t < k1; t++)
if (1 < (j+(k>>1)))
if (m< j+kl)
if (p[1] < plm) qlj+t] = p[l++];
else q[j+t] = p[m++];

el se
alj+t] = p[1++];
el se
} alj +t] = p[me+;
r=p.p=9 q=r;
if (array !=p) for (i=0; i < n; i++) *array++ = *p++
}
int main (void)
{
init ();
mergesort (SIZE, x, y);
dunpout put ();
exit(0);
}

e R e 2 o o

Loaded Executabl e “test/nested_branches’
Boot code entry point: Oxbfc00000

User code entry point: 0x00400290

Stack pointer: Ox7fffefff

Testing Nested Branches
012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49

EXIT called, code: 0

Program Ter m nat ed.

Retired 1469454 instructions, 1573207 entered ROB
Nunmber of flushes: 3894

Ran for 583748 cycl es
| Cache Accesses: 462081

| Cache M sses: 424

DCache Accesses: 232784

DCache M sses: 141

Aver age Full ness:

ROB 28.5

ALUQ 0

CFQ 0

LDSTAQ 0

32

LDSTQ 9.7

Freelist(avg. free regs) 0
RAS 1.1

Max Ful | ness:

ALUQ 4

CFQ 0

LDSTAQ 3

LDSTQ 20

RAS 8

BR Predictions: 111014

I ncorrect: 3216

JR Predictions: 1139

I ncorrect: 572

Correct Path:

Mem 517568

CF 212731

Sys 106

ALU & NOPS 739049

Retired 0 1 2 3 4: 27910 199412 17715 16444
Renanmed 0 1 2 3 4 129153 0 115918 13305
Cycles Stalled:

I Stall 11530

Renane 114

ROB 110071

Forwar ded Dat a: 295427

Wote Forwards Early: 294436

Perforned Early Loads: 24752

Forwarded Data But No Early Wite: 23
ROB Head Loads: 3219

Loads Already Witten Before Retire: 309513

int main ()

int i,j,k,ab,c;
printf("Testing Nested Branches\n");

a = 0;
b = 0;
c =0,

for(i=0;i<50;i++){
for(j=0;j<i*3;j++){
a++;
i f(a&l)b=0;
el se b=1;

i f(b)c++
el se {

}
}
printf("o%d ",i);

for(k=i; k>0; k--)at+;

}
printf("\n");
exit(0);
}

s

Loaded Executabl e "test/nqueen’

Boot code entry point: Oxbfc00000
User code entry point: 0x00400290
Stack pointer: Ox7fffefff

o | (0,0, (1,2), (2,4, (3,6), (41), (53), (6,5),
1 | (0,0), (1,3), (2,6), (3,2), (4,5), (51), (6,4,
2 | (0,00, (1,4), (2,1), (3,5, (4,2), (56), (6,3),
3 | (0,00, (1,5, (2,3), (3,1), (4,6), (54, (6,2,
4 | (0,1, (1,3), (2,0), (3,6), (44, (52, (65),

322258
325364

5 | (0.1, (1,3, (2,5, (3,0, (42, (54), (6,
6 | (0.1, (1,4), (2,0, (3,3, (46), (52, (6,
71 (0,1), (1,4), (2,2), (3,0), (4,6), (53), (6,
8 | (0,1), (1,4, (2,6), (3,3), (40, (52, (6
9o | (0.1, (1,5, (2,2), (3,6), (43), (50, (6,
10 | (0,1), (1,6), (2,4), (3,2), (4,0), (5/5), (6,
11 | (0,2), (1,0), (2,5), (3,1), (4,4), (5,6), (6,
12 | (0,2), (1,0), (2,5), (3,3), (4,1), (5,6), (6,
13 | (0,2), (1,4), (2,6), (3,1), (4,3), (5,5, (6,
14 | (0,2), (1,5), (2,1), (3,4), (4,0), (5,3), (86,
15 | (0,2), (1,6), (2,1), (3,3), (4,5), (5,0), (s,
16 | (0,2), (1,6), (2,3), (3,0), (4,4), (5/1), (86,
17 | (0,3), (1,0, (2,2), (3,5, (4,1), (5,6), (6,
18 | (0,3), (1,0), (2,4), (3,1), (4,5, (5.2), (6,
19 | (0,3), (1,1), (2,6), (3,4), (4,2), (5,0), (86,
20 | (0,3), (1,5), (2,0), (3,2), (4,4), (56), (6,
21 | (0,3), (1,6), (2,2), (3,5, (4,1), (54), (6,
22 | (0,3), (1,6), (2,4), (3,1), (4,5, (50), (6,
23 | (0,4), (1,0), (2,3), (3,6), (4,2), (5/5), (6,
24 | (0,4), (1,0), (2,5, (3,3), (4,1), (56), (6,
25 | (0,4), (1,1), (2,5, (3,2), (4,6), (5,3), (6,
26 | (0,4), (1,2), (2,0), (3,5, (4,3), (5/1), (86,
27 | (0,4), (1,6), (2,1), (3,3), (45, (50), (6,
28 | (0,4), (1,6), (2,1), (3,5, (4,2), (50, (6,
29 | (0,5), (1,0), (2,2), (3,4), (4,6), (5/1), (86,
30 | (0,5), (1,1), (2,4), (3,0), (4,3), (5,6), (6,
31 | (0,5), (1,2), (2,0), (3,3), (4,6), (5,4), (6,
32 | (0,5), (1,2), (2,4), (3,6), (4,0), (53), (6,
33 | (0,5), (1,2), (2,6), (3,3), (4,0), (54), (6,
34 | (0,5), (1,3), (2,1), (3,6), (4,4), (5 2), (6,
35 | (0,5), (1,3), (2,6), (3,0), (4,2), (5,4), (6,
36 | (0,6), (1,1), (2,3), (3,5, (4,0), (52), (6,
37 | (0,6), (1,2), (2,5), (3,1), (4,4), (50), (6,
38 | (0,6), (1,3), (2,0), (3,4), (4,1), (55, (6,
39 | (0,6), (1,4), (2,2), (3,0), (4,5), (5,3), (6,
40 solutions found, programterm nated successfully.
EXIT call ed, code: 2

Program Ter mi nat ed.

Retired 1360242 instructions, 1955796 entered ROB
Nunmber of flushes: 23675

Ran for 913062 cycl es
| Cache Accesses: 629221

| Cache M sses: 3325

DCache Accesses: 512470

DCache M sses: 84

Aver age Ful |l ness:

ROB 23.9

ALUQ 0

CFQ 0

LDSTAQ 0

LDSTQ 8.0
Freelist(avg. free regs) 0
RAS 8.7

Max Ful | ness:

ALUQ 4

CFQ 0

LDSTAQ 3

LDSTQ 20

RAS 18

BR Predictions: 138551

I ncorrect: 13760

JR Predictions: 19683

I ncorrect: 8007

Correct Path:

Mem 501285

CF 203055

Sys 1908

ALU & NOPS 653994

34

Retired 0 1 2 3 4: 260501 119256 116263 64119 352914
Renaned 0 1 2 3 4: 327381 0 149026 88844 347803
Cycles Stall ed:

I Stall 88242

Renane 21

ROB 193904

Forwar ded Dat a: 57937

Wote Forwards Early: 51432

Perforned Early Loads: 300581

Forwarded Data But No Early Wite: 5187

ROB Head Loads: 73951

Loads Already Witten Before Retire: 284209

#defi ne NUM_QUEENS 7

#defi ne FALSE 0

#defi ne TRUE 1

typedef int BoardPosition;

int Threatens(int x, int y, BoardPosition *board, int nunPiecesPl aced);
voi d PrintSol ution(BoardPosition *board, int numQueens, int solutionsFound);
voi d Fi ndSol uti on(BoardPosition *board, int piecesPlaced, int *solutionsFound);

int main() {
Boar dPosi ti on boar d[NUM_QUEENS] ;
int piecesPlaced = 0;
int solutionsFound = 0;

Fi ndSol uti on(board, piecesPlaced, &sol utionsFound);
printf("\n% solutions found, programtermninated successfully.\n", solutionsFound);

exit(2);
}

int Threatens(int x, int y, BoardPosition *board, int nunPiecesPlaced) {

int i =0;
int threats = FALSE; /* set if threat detected */

int temp;
while ((i < nunPiecesPlaced) & (threats == FALSE)) {

if (board[i] ==vy) /* test rows */
threats = TRUE;

/* now test diagonals */

temp = x-i;

if ((y == (board[i]-tenmp)) || (y == (board[i]+tenp)))
threats = TRUE;

++i

}

return threats;

}

voi d Fi ndSol ution(BoardPosition *board, int piecesPlaced, int *sol utionsFound) ({
int i;
for (i=0; i<NUM QUEENS; ++i) {

if (!Threatens(piecesPlaced, i, board, piecesPlaced)) {
boar d[pi ecesPl aced] = i; /* record it */

if (piecesPlaced == (NUM_ QUEENS-1)) {
Print Sol uti on(board, NUM QUEENS, *sol utionsFound);
++(*sol uti onsFound);

}

35

Fi ndSol uti on(board, piecesPlaced+1, sol utionsFound);

}
}
return;
}
voi d PrintSol ution(BoardPosition *board, int nunmQueens, int solutionsFound) {
int i
printf("9%d | ", sol utionsFound)
for (i = 0; i<numueens; ++i) {
printf("(%, %), ", i, board[i]);
printf("\n");

}

e R o L

Loaded Executable “test/recursion_| oops
Boot code entry point: Oxbfc00000

User code entry point: 0x00400354

Stack pointer: Ox7fffefff

Testing Recursion Loops

2:510 4:262652 6: 67371514 8:67371512 10: 67371510 12: 67371508 14: 67371506 16: 67371504 18: 67371502
20: 67371500 22: 67371498 24: 67371496 26: 67371494 28: 67371492 30: 67371490 32: 67371488 34: 67371486
36: 67371484 38: 67371482 40: 67371480 42: 67371478 44: 67371476 46: 67371474 48: 67371472 50: 67371470
52: 67371468 54: 67371466 56: 67371464 58: 67371462 60: 67371460 62: 67371458 64: 67371456 66: 67371454
68: 67371452 70: 67371450 72: 67371448 74: 67371446 76: 67371444 78: 67371442 80: 67371440 82: 67371438
84: 67371436 86: 67371434 88: 67371432 90: 67371430 92: 67371428 94: 67371426 96: 67371424 98: 67371422
100: 67371420

Pr ogram Ter m nat ed

Retired 329630 instructions, 367972 entered ROB
Nunmber of flushes: 1684

Ran for 153144 cycles
| Cache Accesses: 111733

| Cache M sses: 623

DCache Accesses: 102871

DCache M sses: 149

Average Full ness

ROB 25.0

ALUQ 0

CFQ 0

LDSTAQ 0

LDSTQ 7.9
Freelist(avg. free regs) 0
RAS 3.6

Max Ful | ness

ALUQ 4

CFQ 0

LDSTAQ 3

LDSTQ 20

RAS 9

BR Predictions: 20202

I ncorrect: 454

JR Predictions: 1954

I ncorrect: 1024

Correct Path
Mem 110919
CF 34960

36

Sys 206
ALU & NOPS 183545
Retired 0 1 2 3 4: 38849 9645 27802
Renaned 0 1 2 3 4 44255 0 20072
Cycles Stalled:
I Stall 16844
Renane 318
ROB 24351
For war ded Dat a: 11372
Wote Forwards Early: 11318
Perforned Early Loads: 65004
Forwarded Data But No Early Wite: 49
ROB Head Loads: 5566
Loads Already Witten Before Retire: 73003
int q=0;
int rec(int i){
int j,x;
if(i<5)x = rec(i+1);
for(j=0;j<g<<2;j++)x = x | g<<j
return x;

}
int main ()

int i,z;
printf("Testing Recursion Loops\n");

for(i=0;i<50;i++){
q++;
q++;
z += rec(i);
printf("%:% ", q, z);

}
printf("\n");
exit(0);
}

4634
27408

e

Loaded Executable “test/towers'

72205
61401

Boot code entry point: Oxbfc00000
User code entry point: 0x004003a0
Stack pointer: Ox7fffefff

Move disk 1 frompeg Ato peg B
Move disk 2 frompeg Ato peg C
Move disk 1 frompeg Bto peg C
Move disk 3 frompeg Ato peg B
Move disk 1 frompeg Cto peg A
Move disk 2 frompeg Cto peg B
Move disk 1 frompeg Ato peg B
Move disk 4 frompeg Ato peg C
Move disk 1 frompeg B to peg C
Move disk 2 frompeg B to peg A
Move disk 1 frompeg Cto peg A
Move disk 3 frompeg Bto peg C
Move disk 1 frompeg Ato peg B
Move disk 2 frompeg A to peg C
Move disk 1 frompeg Bto peg C
Move disk 5 frompeg Ato peg B
Move disk 1 frompeg Cto peg A
Move disk 2 frompeg Cto peg B
Move disk 1 frompeg Ato peg B
Move disk 3 frompeg Cto peg A
Move disk 1 frompeg B to peg C
Move disk 2 frompeg B to peg A
Move disk 1 frompeg Cto peg A

37

Move disk 4 frompeg Cto peg B
Move disk 1 frompeg Ato peg B
Move disk 2 frompeg Ato peg C
Move disk 1 frompeg B to peg C
Move disk 3 frompeg Ato peg B
Move disk 1 frompeg Cto peg A
Move disk 2 frompeg Cto peg B
Move disk 1 frompeg Ato peg B
Move disk 6 frompeg Ato peg C
Move disk 1 frompeg B to peg C
Move disk 2 frompeg B to peg A
Move disk 1 frompeg Cto peg A
Move disk 3 frompeg Bto peg C
Move disk 1 frompeg Ato peg B
Move disk 2 frompeg Ato peg C
Move disk 1 frompeg B to peg C
Move disk 4 frompeg B to peg A
Move disk 1 frompeg C to peg A
Move disk 2 frompeg Cto peg B
Move disk 1 frompeg Ato peg B
Move disk 3 frompeg Cto peg A
Move disk 1 frompeg Bto peg C
Move disk 2 frompeg B to peg A
Move disk 1 frompeg Cto peg A
Move disk 5 frompeg B to peg C
Move disk 1 frompeg Ato peg B
Move disk 2 frompeg Ato peg C
Move disk 1 frompeg B to peg C
Move disk 3 frompeg Ato peg B
Move disk 1 frompeg Cto peg A
Move disk 2 frompeg Cto peg B
Move disk 1 frompeg Ato peg B
Move disk 4 frompeg Ato peg C
Move disk 1 frompeg Bto peg C
Move disk 2 frompeg B to peg A
Move disk 1 frompeg Cto peg A
Move disk 3 frompeg B to peg C
Move disk 1 frompeg Ato peg B
Move disk 2 frompeg Ato peg C
Move disk 1 frompeg Bto peg C
EXIT called, code: O

Program Ter m nat ed.

Retired 156503 i nstructi ons, 233348 entered ROB
Nunber of flushes: 3467
Ran for 164497 cycles
| Cache Accesses: 79145

| Cache M sses: 2313
DCache Accesses: 59867
DCache M sses: 331

Aver age Full ness:

ROB 16.9

ALUQ 0

CFQ 0
LDSTAQ 0
LDSTQ 5.2
Freelist(avg. free regs) 0
RAS 8.7

Max Ful | ness:

ALUQ 4

CFQ 0

LDSTAQ 3

LDSTQ 20

RAS 16

BR Predictions: 21491

I ncorrect: 833

JR Predictions: 4163

I ncorrect: 2128

Correct Path:

Mem 54237

38

CF 31551
Sys 506
ALU & NOPS
Retired 0 1 2 3
Renamed 0 1 2 3
Cycles Stall ed:
I Stall 58667

Renane 0

ROB 27028

For war ded Dat a: 1574

Wote Forwards Early: 1571

Perforned Early Loads: 26194

Forwarded Data But No Early Wite: 0
ROB Head Loads: 11084

Loads Already Witten Before Retire: 20564

70209
4: 81173 18837 16710 9982
4 90822 0 23594 14132

char s[5];
#defi ne TOAER SI ZE 6

voi d
printnessage(int n, char *frompeg, char *to_peg)

printf("Mve disk %d frompeg % to peg %\n",
n, frompeg, to_peg);
}

voi d
towers(int n, char *frompeg, char *to_peg, char *aux_peg)

if (n==1){
printnessage(n, frompeg, to_peg);
return;

b
towers(n-1, from peg, aux_peg, to_peg);
printmessage(n, frompeg, to_peg);

towers(n-1, aux_peg, to_peg, frompeg);
}
int
mai n(int argc, char **argv)
towers(TONER_SI ZE, A, C, B);
exit(0);
}

L s s S

khkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkhkkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk**x*%

cpu. v
“include "mps.h"
modul e cpu(CLK, RESET, Bus, Addr, Wi te, Read, Val i d) ;

i nput CLK; /1 C ock
i nput RESET; /'l Master reset

i nput Val i d; /1 Input fromnemsystemon fills

37786
35941

inout [31:0] Bus; /1 Data Bus between cpu & nenory

wire [31: 0] Bus;

out put [31:0] Addr; /] Address Bus between cpu & nenory

wire [31: 0] Addr;

out put Read; /1 Bus Read
wire Read;

output Wite; /1 Bus Wite
wre Wite;

39

/1 Stats

reg [31:0] nunlioads;

reg [31:0] nunStores;

reg [31:0] nunDM sses;

reg [31:0] num M sses;

reg [31:0] num.instructions_retired,

reg [31:0] num.instructions_inserted;

reg [31:0] numflushes;

reg [31:0] num.instructions_fetched;

reg [31:0] num.instructions_decoded;

reg [31:0] num branches;

reg [31:0] numjrs;

reg [31:0] numcorrect_br_pred;

reg [31:0] numcorrect_jr_pred;

reg [31:0]

num dat a_f orwar ded, num dat a_f orwarded_wri tten_ahead_of _ti ne, num early_| oad_accesses, num data_forw
arded_not _written, numrob_head_| oads, num | oads_witten_before_ retire;

reg [31:0] numcycles_istall,numcycles_renanestall, numcycles_robstall;

/] Control Regs

wire ROB Full;

reg [31:0] PC, nextFetchAt, correctTarget;
wire [31:0] InAddrA | nAddrB, | nAddr C, | nAddr D;
reg [31:0] InstrAInstrB,InstrC InstrD
wire [31:0] InlnstA InlnstB, InlnstC |nlnstD;
reg [31:0] PCA, PCB, PCC, PCD;

reg [31:0] PC.inc, PC sane, PC br, PC j np;

reg Istalled,

wire |IStall,DStall;

wire renaneStall;

reg full Flush, full Fl ushed, robFul | ed;

reg [5:0] MAP[33:0];//retirement rat, noved out of its own nodule for timng
wire [31:0] RAS_PC

wire BR Pred;

/1 PC Rel ated Stuff
al ways @ negedge CLK)begin
i f (RESET) begi n
PC = 32' hbf c00000;

end
el se begin
if(lstall || (Istalled& & fullFlush) /*|| (robFulled&& fullFlush)*/ /*]|]
(ROB_Ful Il &! full Flush) || (renaneStall &&! full Flush)*/)begin
PC = PC,

end
el se if(full Flush)begin
PC = correct Target;
end
el se begin
PC = next Fet chAt;

end

end
end
/11 Cache
assi gn | nAddrA = PC;
assign | nAddrB = PC+4;
assi gn | nAddrC = PC+8;
assign | nAddrD = PC+12;

al ways @ posedge CLK)begin
i f (RESET) begi n

| nAddr A,

| nAddr B;

| nAddr C;
nAddr D,

I nl nst A
I nl nst B;
I nl nst C,
I nl nstD;

InstrA
InstrB
InstrC
InstrD

40

Istalled = 1;

numcycles_istall = 0;
num cycl es_renanestall = 0;
num cycl es_robstall = 0;
end
el se begin
if(lStall)numcycles_istall = numcycles_istall + 1;
if(renameStall)numcycl es_renanestall = numcycl es_renanestal | +1;
i f(ROB_Ful |)num cycl es_robstall = num.cycl es_robstall +1;

if(lStall)begin
i f(fullFlush)begin
PCA =

3
oo
cooo

eeee

InstrA
InstrB
InstrC
InstrD

end
el se begin
if(ROB_Full|]|renaneStall)begin
PCA = PCA;

= PCB;
PCC = PCC,
PCD = PCD;
I nstrA;
I nstrB;
InstrC,
I nstrD;

35

(%2}

—

-

(@]
o mn

end

= | nAddr A,
PCB = | nAddr B;

= | nAddr C,
PCD = | nAddr D,
I nl nstA
I nl nst B;
I nlnstC
I nl nstD;

=}
7))
—
-
os)
o

end
end
Istalled = IStall;
full Flushed = full Fl ush;
robFul |l ed = ROB_Ful | ;
end
el se begin
if(fullFlush)begin
PCA = 0

CA = 0;
PCB = 0;
PCC = 0;
PCD = 0;
InstrA = 0;
InstrB = 0;
InstrC = 0;
InstrD = 0;
end
el se begin
if((ROB_Full]|]renaneStall)&&! Istalled)begin
PCA = PCA;
PCB = PCB;
PCC = PCC;
PCD = PCD;
InstrA = InstrA
InstrB = InstrB;
InstrC = InstrC
InstrD = InstrD;

end
el se begin
PCA = | nAddr A,

41

PCB = | nAddr B;
PCC = | nAddr C;
PCD = | nAddr D,
InstrA = InlnstA
InstrB = I nlnstB;
InstrC = InlnstC,
InstrD = I nlnstD
end
end
Istalled = IStall;

full Flushed = full Fl ush;
robFul |l ed = ROB_Ful | ;
end
end
end

reg [7:0] menDp;
reg i sMenRetire;
reg [31:0] MAR;
reg [31:0] SMR;
wire [31:0] cacheCQut;
wire [31:0] store_value, pre_store_val ue;
wire islLoad;
mem i _cache_d_cache(
. CLK(CLK) ,
. menmOper at i on(nenp),
.isMen(isMenRetire),
. RESET(RESET) ,
. MAR(MAR) ,
.Valid(Vvalid),
. SMDR(SMDR) ,
. laddr A(1 nAddr A) ,
. I addr B(| nAddr B) ,
. laddr C(1 nAddr C),
. laddr D(| nAddr D) ,
. Bus(Bus),
. Read(Read) ,
Wite(Wite),
. Addr (Addr),
. cacheCut (cacheQut),
.1inA(lnlnstA),
.1inB(InlnstB),
.1inC(InlnstC,
.1inD(InlnstD),
.Istall(lIStall),
.Dstall (Dstall),
.isLoad(isLoad)

)

/1 Decode / rename / predict

reg [31:0] CF_PC, Link_PC,

reg push_link, pop_link, br_dir;

reg [2:0] num nstr,r_numnstr;

wire [2:0] nunRenaned;

/1 Val ues comi ng out of decoder

ire [7:0] opAl, opA2, opBl1, opB2, opCl, opC2, opD1, opD2;

re [1: 0] queueA, queueB, queueC, queueD;

re [5:0] rsArsB,rsCrsDrtArtB,rtCrtD

re [5:0] rdAl, rdA2,rdB1,rdB2, rdCl, rdC2, rdD1, rdD2;

re usesl nmA, usesl mB, usesl MmtC, uses| mmD;

re [31:0] immA i mB, i mC, i mD,

re i sSysA, i sMemA, i sMDA, i SALUA, i sSysB, i sMenB, i sMDB, i SALUB;
re i sSysC,isMenC, i sMDC, i sALUC, i sSysD, i sMenD, i sMDD, i sALUD;
re [2:0] isCFA, isCFB,isCFC,isCFD,

re [31:0] targetA targetB,targetC, targetD,

//Val ues going to renane

reg [7:0] d_opA, d_opB, d_opC, d_opD,

reg [1:0] d_queueA d_queueB, d_queueC, d_queueD,

reg [5:0] d_rsA d rsB,d rsCd rsDd rtA d rtB,d rtCd_rtDh
reg [5:0] d_rdA d_rdB, d_rdC, d_rdD,

£ 222222282

42

reg d_usesl nmA, d_usesl mB, d_usesl mC, d_uses| nmD;
reg [31:0] d_immA d_i mB, d_i mC, d_i mD,
reg d_i sSysA, d_i sMemA, d_i sMDA, d_i sALUA, d_i sSysB, d_i sMenB, d_i sMDB, d_i sALUB;
reg d_i sSysC, d_i sMenC, d_i sMDC, d_i sALUC, d_i sSysD, d_i sMenD, d_i sMDD, d_i sALUD;
reg [2:0] d_isCFA d_isCFB, d_i sCFC, d_i sCFD;
reg [31:0] d_targetA d_targetB,d targetC, d_targetD
reg [31:0] d_PCA d_PCB, d_PCC, d_PCD;
reg d_pred_A d_pred_B, d_pred_C, d_pred_D,
reg [31:0] d_instrAd_instrB,d_instrC d_instrD,
reg [31:0] r_instrAr_instrB,r_instrCr_instrD
//tenmporary swap val ues
reg [7:0] t_op;
reg [1:0] t_queue;
reg [5:0] t_rs;
reg [5:0] t_rt;
reg [5:0] t_rd;
reg t_useslnm
reg [31:0] t_imm
reg t_isSys,t_isMemt_isMD t_isALU;
reg [2:0] t_isCF;
reg [31:0] t_target;
reg [31:0] t_PC
reg t_pred;
reg [31:0] t_instr;
reg ab_swap, bc_swap, cd_swap;
//Set up instructions fromdecode to go into renane and rest of cpu
//mult/div expanded to two instructions
//control flow ends decode unless untaken branch and no other branches in fetch group
//swap delay slot with CF to make it easier to flush after misprediction gets to ROB head
al ways @ *) begin
num nstr = 4,
next Fet chAt = PCD+4;
/lassign initial values

d_opA = opAl; d_opB = opB1; d_opC = opC1;
d_opD = opD1;

d_queueA = queueA, d_queueB = queueB; d_queueC = queueC,
d_queueD = queueD,

d_rsA = rsA d_rsB = rsB; d_rsC = rsC
d_rsD = rsDh

drtA =rtA d_rtB = rtB; drtC=rtC
d_rtD = rtD

d_rdA = rdA1; d_rdB = rdB1; d_rdC = rdCi;
d_rdD = rdD1;

d_usesl mA = usesl mmA; d_usesl nmB = usesl mB; d_usesl MmC = usesl mC; d_usesl nmD = uses| mD,
d_i mA = i nmA; d_imB = imB; d_imC = imGC,
d_imD = i mD;

d_i sSysA = i sSysA; d_i sSysB = i sSysB; d_i sSysC = i sSysC,
d_i sSysD = isSysD,

d_i sMemA = i sMemA; d_i sMenB = i sMenB; d_i sMenC = i sMent;
d_i sMenD = i sMenD;

d_i sMDA = i sMDA; d_i sMDB = i sMDB; d_i sMDC = i sMDC;
d_i sMDD = i sMDD;

d_i SALUA = i sALUA; d_i SALUB = i sALUB; d_i sALUC = i sALUC;
d_i SALUD = i sALUD;

d_i sCFA = i sCFA; d_i sCFB = i sCFB; d_i sCFC = i sCFC;
d_i sCFD = i sCFD;

d_targetA = targetA; d_targetB = targetB; d_targetC = targetC; d_targetD = targetD;
d_PCA = PCA; d_PCB = PCB; d_PCC = PCCG;
d_PCD = PCD;

d_pred_A = 0; d_pred_B = 0; d_pred_C = 0;
d_pred_D = 0;

d_instrA = InstrA; d_instrB = InstrB; d_instrC = 1InstrC, d_instrD = InstrD

ab_swap = 0; bc_swap = 0; cd_swap = O;

/'l expand mul tiplies/divides
i f(d_i sMDA) begin
i f(d_i sMDB) begin
//mult/div back to back, expand both, a to a/b, b to c/d
d_opB = opA2; d_opC = opB1; d_opD = opB2;
d_queueB = queueA; d_queueC = queueB; d_queueD =
queueB;

43

i sSysB;
i sMenB;
i sMDB;

i SALUB;

i sCFB;

queueC;

i sSysC;
i sMencC,
i sMDC,

i SALUC,

i sCFC,

d_rsB = rsA d_rsC = rsB; d_rsD = rsB;
drtB =rtA drtC =rtB; drtD = rtB;
d_rdB = rdA2; d_rdC = rdBi1; d_rdD = rdB2;

d_usesl MmB = usesl mmA; d_usesl mTC = uses| mB; d_usesl mmD = usesl| nmB;
d_imB = i nmA; d_imC = i mB; d_imD = i mB;

d_i sSysB = i sSysA; d_i sSysC = i sSysB; d_isSysD =
d_i sMenB = i sMemA; d_i sMenC = i sMenB; d_i sMenD =
d_i sMDB = i sMDA; d_i sMDC = i sMDB; d_isMDD =
d_i SALUB = i sALUA; d_i SALUC = i sALUB; d_i SALUD =
d_i sCFB = i sCFA; d_i sCFC = i sCFB; d_isCFD =

d_targetB = targetA;
d_PCB = PCA;
d_instrB = InstrA;
next Fet chAt = PCB+4;

d_targetC = targetB;
d_PCC = PCB;
d_instrC = InstrB;

d_targetD = targetB;
d_PCD = PCB;
d_instrD = I nstrB;

end

el se if(d_i sMDC) begin

//won't be roomfor both nd's to be expanded

/1A expands to A and B, Bto C, D enpty because can't expand that nult

d_opB = opA2; d_opC = opB1; d_opD = 0;
d_queueB = queueA; d_queueC = queueB; d_queueD = 0;
d_rsB = rsA d_rsC = rsB; d_rsD = 0;
drtB = rtA drtC =rtB; d_rtD = 0;
d_rdB = rdA2; d_rdC = rdB1; d_rdD = 0;
d_usesl mB = usesl mmA; d_usesl mtC = usesl mB; d_usesl nmD = O0;
d_imB = i nmA; d_imC = i mB; d_inmD = 0;
d_i sSysB = i sSysA; d_i sSysC = i sSysB; d_isSysD = 0;
d_i sMenB = i sMenA; d_i sMenC = i sMenB; d_i sMenD = 0;
d_i sVMDB = i sMDA; d_i sMDC = i sMDB; d_i sMDD = 0;
d_i SALUB = i sALUA; d_i SALUC = i sALUB; d_i sALUD = 0;
d_i sCFB = i sCFA; d_i sCFC = i sCFB; d_i sCFD = 0;
d_targetB = targetA; d_targetC = targetB; d_targetD = 0;
d_PCB = PCA; d_PCC = PCB; d_PCD = 0;
d_instrB = InstrA; d_instrC = InstrB; d_instrD = 0;
next Fet chAt = PCB+4;
num nstr = 3;

end

el se begin

/lonly one md, first slot, if there was one in last slot it got pushed out

/1A expands to A and B, Bto C, Cto D D pushed out
d_opB = opA2; d_opC = opB1; d_opD = opC1;
d_queueB = queueA; d_queueC = queueB; d_queueD =
d_rsB = rsA d_rsC = rsB; d_rsD = rsC,
drtB = rtA drtC =rtB; drtD =rtC
d_rdB = rdA2; d_rdC = rdBi1; d_rdD = rdCi;

end
end

d_usesl MmB = usesl mmA; d_usesl mTC = uses| mB; d_usesl nmD = usesl nmTC;

d_imB = i nmA;
d_i sSysB = i sSysA

d_i sMenB = i sMemA;
d_i sMDB = i sMDA;

d_i SALUB = i sALUA;
d_i sCFB = i sCFA;
d_targetB = targetA;
d_PCB = PCA

d_instrB = InstrA
next Fet chAt = PCC+4;

el se if(d_i sMDB)begin
i f(d_i sMDC) begin

d_imC = i nmB;

d_i sSysC = i sSysB;

d_i sMenC = i sMenB;

d_i sMDC = i sMDB;

d_i SALUC = i sALUB;

d_i sCFC = i sCFB;

d_targetC = targetB;
d_PCC = PCB
d_instrC = I nstrB;

44

d_imD = i mC;
d_isSysD =

d_i sMenD =
d_isMDD =
d_i SALUD =

d_i sCFD =

d_targetD = targetC

d_PCD = PCC,

d_instrD = InstrC,

//Mult in 2nd spot takes B and C, pushes D out, C can't expand so D enpty,

A sane
d_opC = opB2; d_opD = 0;
d_queueC = queueB; d_queueD = 0;
d_rsC = rsB; d_rsD = 0;
drtC=rtB; drtD = 0;
d_rdC = rdB2; d_rdD = 0;
d_usesl mC = usesl mB; d_usesl mD = 0;
d_imC = i mB; d_imD = 0;
d_i sSysC = i sSysB; d_isSysD = 0;
d_i sMenC = i sMenB; d_i sMenD = 0;
d_i sMDC = i sNDB; d_i sMDD = 0;
d_i SALUC = i sALUB; d_i sALUD = 0;
d_i sCFC = i sCFB; d_i sCFD = 0;
d_targetC = targetB; d_targetD = 0;
d_PCC = PCB; d_PCD = 0;
d_instrC = | nstrB; d_instrD = 0;

next Fet chAt = PCB+4;
num nstr = 3;
end
el se begin
//only Bis mult, a same, bto b and c, c to d

d_opC = opB2; d_opD = opC1;
d_queueC = queueB; d_queueD = queueC,
d_rsC = rsB; d_rsD = rsC,
drtC =rtB; drtD=rtC
d_rdC = rdB2; d_rdD = rdCi;
d_usesl mMmtC = usesl mB; d_usesl nmD = uses| mtC,
d_imC = imB; d_imD = imGC,
d_i sSysC = i sSysB; d_i sSysD = i sSysC,
d_i sMenC = i sMenB; d_i sMenD = i sMent,
d_i sMDC = i s\DB; d_i sMDD = i sMDC;
d_i SALUC = i sALUB; d_i SALUD = i sALUC;
d_i sCFC = i sCFB; d_i sCFD = i sCFC;
d_targetC = targetB; d_targetD = targetC;
d_PCC = PCB; d_PCD = PCC,
d_instrC = | nstrB; d_instrD = InstrC,

next Fet chAt = PCC+4;
end
end
el se if(d_i sMDC) begin
/la same, b sane, c expands to c and d

d_opD = opC2;
d_queueD = queueC,
d_rsD = rsC,
drtD=rtC
d_rdD = rdC2;

d_usesl mD = usesl mcC;
d_imD = imC,
d_i sSysD = i sSysC,
d_i sMenD = i sMent,
d_i sMDD = i sMDC;
d_i SALUD = i sALUC,
d_i sCFD = i sCFC;
d_targetD = targetC;
d_PCD = PCC;
d_instrD = InstrC
next Fet chAt = PCC+4;

end

el se if(d_i sMDD) begin
//can't expand a mult in slot d, defer to next cycle
d_opD = 0;
d_queueD = 0;
d_rsD
d_rtD
d_rdD = 0;
d_usesl mD = 0;
d_imD =
d_i sSysD
d_i sMenD
d_i sMDD = 0;

0;
0:

nino

45

end

d_i SALUD = 0;

d_i sCFD = 0;
d_targetD = 0;
d_PCD = 0;

d_instrD = 0;

num nstr = 3;

next Fet chAt = PCC+4;

if(d_i sCFC[0])begin
d_opC = 0;
d_queueC =0;
d_rsC =0;
d_rtC =0;
d_rdC =0;
d_usesl mtC =0;
d_i mC =0;
d_i sSysC =0;
d_i sMenC =0;
d_i sMDC =0;
d_i sALUC =0;
d_i sCFC =0;
d_targetC =0;
d_PCC =0;
d_instrC = 0;
num nstr = 2;

next Fet chAt = PCB+4;

end

//handl e control flow instructions
//swap with delay slot,no nore instructions decoded if pred not taken
//CF can't be last instruction fetched to make sure we get the delay slot

push_link = 0;
pop_link = 0;

i f(d_i sCFA[0])begin
i f(d_i sMDB) begin

/1 Swap A and C
t_op = d_opA;
t _queue = d_queueA;

t_rs = d_rsA
t rt =d.rtA
t_rd = d_rdA;

t useslnm- d_usesl nmA;
t_imm= d_i mmA;
t_isSys = d_i sSysA;

t_isMem = d_i sMemA;
t_isMD = d_i sVDA,
t_isALU = d_i sALUA;

t _isCF = d_i sCFA
t_target = d_targetA
t_PC = d_PCA;
t_pred 0,

t_instr = d_instrA

d_opA = d_opG;
d_queueA = d_queueC;
d_rsA = d_rsC
d_rtA=4d_rtC
d_rdA = d_rdGC

d_usesl mmA = d_usesl mtC;

d_imA = d_i mC,

d_| sSysA = d_i sSysC,
d_i sMemA = d_| shvent,
d_i sMDA = d_i sMDC;

d_i sSALUA = d_i sALUG;
d_i sCFA = d_i sCFC,
d_targetA = d_targetC,
d_PCA = d_PCC;
d_pred_A = 0;

46

d_opC = t_op;
d_queueC = t_queue;
d_rsC=t_rs;
drtC=1t_rt;
d_rdC =t _rd;
d_usesl mMmtC = t_usesl mm
dimC=t_imm
d_isSysC = t_isSys;
d_isMenC = t_ishMem
d_isMDC =t _i sMD,
d_i SALUC = t_i sALU;
d_i sCFC =t _i sCF;
d_targetC = t_target;
d_PCC =t _PC;
d_pred_C = t_pred;

d_instrA = d_instrC d_instrC=1t_instr;

CF_PC = d_PCC,

Li nk_PC = d_i mC,

if(d_isCFC[2] && d_rdC == 31)push_link = 1;

if((d_opC == "select_qgc_jr || d_opC ==
“select_qc_jalr)&.d rsC==31)pop_link = 1;

br_dir = d_isCFC 1];

if(d_opC == "select_qc_jr || d_opC == “select_qc_jalr)begin
next Fet chAt = RAS_PC,
d_targetC = RAS_PC,

end

else if(d_opC == “select_qc_j || d_opC == “select_qc_jal)begin
next Fet chAt = d_targetC

end

el se begin
i f (BR_Pred)begin
next FetchAt = d_targetC
d_pred_C=1
end
el se begin
next Fet chAt = d_PCC + 8;
d_pred_C=0
end
end
//woul dnt have to kill if predicted not taken and is not CF

d_opD = 0;
d_queueD = 0;
d_rsD = 0;
d_rtD = 0;

d_imD = 0;
d_isSysD = 0;
d_i sMenD = 0;
d_i sMDD = 0;
d_i sALUD = 0;
d_i sCFD = 0;
d_targetD = 0;
d_PCD = 0;
d_instrD
num nstr

0,
3,

end

el se begin
/1 Swap A and B
t_op = d_opA;
t _queue = d_queueA;

t_rs = d_rsA

t rt =d.rtA

t_rd = d_rdA

t _useslmm = d_uses| nmA;
t_imm= d_i mmA;

t_isSys = d_i sSysA
t_isMem = d_i sMemhA;

t:i sMD = d_i sMDA;
t_isALU = d_i sALUA;

t_isCF = d_i sCFA;

t_target = d_targetA

t_PC = d_PCA;

t_pred = 0;

t_instr = d_instrA

/1 Swap A and B

ab_swap = 1;

d_opA = d_opB; d_opB = t_op;
d_queueA = d_queueB; d_queueB = t_queue;
d_rsA = d_rsB; d_rsB =1t_rs;
drtA=d_rtB; drtB=1t_rt;
d_rdA = d_rdB; drdB =t _rd;
d_usesl mA = d_usesl mB; d_useslmMmB = t_usesl mm

47

d_imA = d_i mB;
d_i sSysA = d_i sSysB;
d_i sMemA = d_i sMenB;

d_i sMDA = d_i sMVDB;
d_i SALUA = d_i sALUB;
d_i sCFA = d_i sCFB;

d_targetA = d_targetB;

d_PCA = d_PCB;
d_pred_A = 0;

d_instrA = d_instrB;

CF_PC = d_PCB;

Li nk_PC = d_i nmB;

d_|
d_|

d_|

d_

d_

dimB=1t_imm
i sSysB = t_isSys;
isMenB = t_isMem
d_isMDB =t _isMD;
i SALUB = t_i SALU;
d_isCFB =t _i sCF;
targetB = t_target;
d_PCB = t_PC;
d_pred_B = t_pred,
instrB =t_instr;

if(d_isCFB[2] && d_rdB == 31)push_link = 1;

“select_qc_jalr)&d_rsB==31)pop_link =

end

if((d_opB == "select_qc_jr || d_opB ==
1;
br_dir = d_i sCFB[1];
if(d_opB == “select_qc_jr || d_opB == “select_qc_jalr)begin
next Fet chAt = RAS_PC,
d_targetB = RAS_PC,
d_pred_B = 1;
end
else if(d_opB == “select_qc_j || d_opB == “select_qc_jal)begin
next Fet chAt = d_targetB;
d_pred_B = 1;
end
el se begin
i f (BR_Pred)begin
next Fet chAt = d_targetB;
d_pred_B = 1;
end
el se begin
next FetchAt = d_PCB + 8;
d_pred_B = 0;
end
end

/I woul dnt have to kill

d_opC = 0;
d_queueC =0;

d_rsC =0;
d_rtC =0;
d_rdC =0;

d_usesl mtC =0;

d_i mC =0;
d_i sSysC =0;
d_i sMenC =0;

d_i sMDC =

0;

d_i sALUC =0;

d_i sCFC =

0;

d_targetC =0;

d_PCC =0;

d_instrC = 0;
d_opD = 0;
d_queueD = 0;

d_i sCFD = 0;

d_targetD = O;

d_PCD = 0;

d_instrD
num nstr

0;
2;

if predicted not taken and is not CF

48

end
el se if(d_i sCFB[0])begin
i f(d_i sMDC) begin
//swap b and d
t_op = d_opB;

t _queue = d_queueB;
t_rs = d_rsB;
t_rt =d_rtB;
t_rd = d_rdB;

t _useslnm = d_uses| mB;
t_imm= d_i mB;

t_isSys = d_isSysB;
t_isMem = d_i sMenB;
t_isMD = d_i sMDB;
t_i sALU = d_i sALUB;
t _isCF = d_i sCFB;
t_target = d _targetB;
t_PC = d_PCB;

t_pred = 0;

t_instr = d_instrB;
d_opB = d_opD;
d_queueB = d_queueD;
d_rsB = d_rsD;
drtB = d_rtD

d_rdB = d_rdb;

d_uses| mB = d_usesl mD;
d_imB = d_i mD;

d_isSysB = d _i sSysD,
d_isMenB =

d_i sMenD;
d_isMDB = d_| s VDD,
d_i sALUB = d_i sALUD;
d_i sCFB = d_i sCFD;
d_targetB = d_targetD
d_PCB = d_PCD;
d_pred_B = 0;
d_instrB = d_instrD;

CF_PC = d_PCD;
Li nk_PC = d_i mD;

d_opD = t_op;
d_queueD = t_queue;
d_rsD=1t_rs;
drtD=1t_rt;
d rdD =t _rd;
d_useslmD = t_useslmm
d_imD = t_imm
d_isSysD = t_isSys;
d_isMenD = t_isMem
d_isMDD =t
d_i SALUD = t _isALU,
d_isCFD = t _i sCF;
d_targetD = t_target;
d_PCD = t_PC;
d_pred_D = t_pred,;
d_instrD = t_instr;

_i sMD;

if(d_isCFD[2] && d_rdD == 31)push_link = 1;

if((d_opD ==

“select_qgc_jr || d_opD ==

“select_qc_jalr)&d_rsD==31)pop_link =

br_dir

if(d_opD ==

=d i sCFD{ 1] ;

“select_qgc_jr ||
next Fet chAt = RAS_PC,
d_targetD = RAS_PC,

d_opD ==

end

else if(d_opD ==

“select_qgc_j ||
next Fet chAt = d_targetD

d_opD

end
el se begin

i f (BR_Pred)begin
next FetchAt = d_targetD
d_pred_D = 1;
end
el se begin
next FetchAt = d_PCD + 8;
end

end
num nstr = 4,

end

el se begin

t
t
t
t
t
t
t
t

_op = d_opB;
_queue = d_queueB;
_rs
rt
_rd
_useslmm = d_usesl mB;
_imm= d_i mB;

_isSys = d_isSysB;

d_rsB;
d_rtB;
d_rdB;

49

“select_qgc_jalr)begin

“select_qgc_jal)begin

t_isMem = d_i sMenB;
t_isMD = d_i sMDB;
t_i sALU = d_i sALUB;

t _isCF = d_i sCFB;
t_target = d_targetB;
t _PC = d_PCB;

t_pred = 0;

t_instr = d_instrB;
//Swap B and C
bc_swap = 1;

d_opB = d_opC; d_opC = t_op;
d_queueB = d_queueC; d_queueC = t_queue;
d_rsB = d_rsC d_rsC=1t_rs;
drtB=drtC drtC=1t_rt;
d_rdB = d_rdC d rdC =1t _rd;
d_usesl mB = d_usesl mtC, d_usesl mMmC = t_usesl mm
d_imB = d_i mC, d_imC = t_imm

d_i sSysB = d_i sSysC; d_i sSysC = t_isSys;

d_i sMenB = d_i sMent; d_isMenC = t_i sMem

d_i sMDB = d_i sMDC, d_isMDC =t _i sMD;
d_i sALUB = d_i sALUC; d_i sALUC = t _i SALU,

d_i sCFB = d_i sCFC, d_isCFC = t _i sCF;
d_targetB = d_targetC d_targetC = t_target;
d_PCB = d_PCC; d_PCC = t_PC;
d_pred_B = 0; d_pred_C = t_pred,
d_instrB = d_instrC d_instrC =1t _instr;

CF_PC = d_PCC,

Li nk_PC = d_i nmmC;

if(d_isCFC[2] && d_rdC == 31)push_link = 1;

if((d_opC == "select_qgc_jr || d_opC ==
“select_qc_jalr)&.&d_rsC==31)pop_link = 1;

br_dir = d_i sCFC 1] ;

if(d_opC == "select_qc_jr || d_opC == “select_qc_jalr)begin
next Fet chAt = RAS_PC,
d_targetC = RAS_PC,

d_pred_C = 1;
end
else if(d_opC == “select_qc_j || d_opC == “select_qc_jal)begin
next Fet chAt = d_targetC,
d_pred_C = 1;
end
el se begin
i f (BR_Pred)begin
next FetchAt = d_targetC,
d_pred_C = 1;
end
el se begin
d_pred_C = 0;
next FetchAt = d_PCC + 8;
end
end
//woul dnt have to kill if predicted not taken and is not CF
d_opD = 0;
d_queueD = 0;
d_rsD = 0;
drtD = 0;
d_rdD = 0;
d_usesl mMmD = 0;
d_inmD = 0;
d_i sSysD = 0;
d_isMenD = 0;
d_i sMDD = 0;
d_i SALUD = 0;
d_i sCFD = 0;
d_targetD = 0;
d_PCD = 0;
d_instrD = 0;

num nstr = 3;

50

end

end

el se if(d_i sCFC[0])begin
t_op = d_opC
t _queue = d_queueC;

t_rs =d_rsC

t_rt =d_rtGC

t_rd = d_rdC

t _usesl nm = d_uses| mtC,
t_imm= d_i mC,

t_isSys = d_isSysC;
t_isMem= d_i

t |sCF = d i sCFC,
t_target = d_targetC,
t_PC = d_PCC,

t_pred = 0;

d opC = d opD d_opD = t_op;
d_queueC = d_queueD; d_queueD = t_queue;
d_rsC = d_rsD; drsD=t_rs;
drtC=4d_rth drtD=1t_rt;
d_rdC = d_rdb; d_rdD = t_rd;
d_usesl mC = d_uses| mD, d_usesl MmD = t_usesl mm
d|rmC=d_|rmD, dimD=1t_imm
d_i sSysC = d_i sSysD; d_isSysD = t_isSys;

d_i sMenC = d_i sMenD; d_isMenD = t_i sMem

d_i sMDC = d_i sMDD; d_|sl\/DD: t_i sMD;
d_i sALUC = d_i sALUD; d_i SALUD = t_i sALU,

d_i sCFC = d_i sCFD; d_| |SCFD = t_isCF
d_targetC = d_targetD; d_targetD = t_target;
d_PCC = d_PCD; d_PCD = t_PC;
d_pred_C = 0; d_pred_D = t_pred,;
d_instrC = d_instrD; d_instrD = t_instr;

CF_PC = d_PCD;

Li nk_PC = d_i mD;

if(d_isCFD[2] && d_rdD == 31)push_link = 1;

if((d_opD == "select_qc_jr || d_opD == “select_qc_jalr)&d_rsD==31) pop_|ink
br_dir = d_i sCFD[1] ;

if(d_opD == "select_qc_jr || d_opD == “select_qgc_jalr)begin
next Fet chAt = RAS_PC,
d_targetD = RAS_PC,

end

else if(d_opD == “select_qc_j || d_opD == “select_qc_jal)begin
next FetchAt = d_targetD

end

el se begin
i f (BR_Pred)begin
next Fet chAt = d_targetD
d_pred_D = 1;
end
el se begin
next FetchAt = d_PCD + 8;
end
end
end
else if(d_i sCFD[0])begin
//defer til next cycle so we can get delay slot at sane tine
d_opD = 0;
d_queueD = 0;
d_rsD = 0;
drtD = 0;
d_rdD = 0;
d_usesl nmD = 0;
d_inmD = 0;
d_isSysD = 0;

51

d_i sMenD = 0;

d_i sMDD = 0;
d_i sALUD = 0;
d_i sCFD = 0;
d_targetD = 0;
d_PCD = 0;
d_instrD = 0;
num nstr = 3;
next Fet chAt = PCC+4;
end
if((lstalled || ROB_Full || fullFlush || fullFlushed ||

renaneStal |) &&! (I St al | &&r obFul | ed&&! ROB_Ful |)) begi n
if(!renameStall)num nstr = 0;
d_queueA = 0;
d_queueB
d_queueC
d_queueD
pop_link
push_link

0;
0;
0;
0;

= 0;
end
end

/1 Val ues after the register separating renanme from rob/queue/ execute
reg [7:0] r_opA r_opB, r_opC, r_opD

reg [1:0] r_queueA r_queueB, r_queueC, r_queueD,
wire [5:0] r_rsAr_rsB,r_rsCr_rsDr_rtAr_rtBr
wire [5:0] r_rdAr_rdB,r_rdC r_rdbD;

reg [5:0] r_IrdAr_IrdB,r_IrdCr_IrdD;

reg r_usesl nmmA r_usesl mB, r_usesl mC, r _uses| nmD;
reg [31:0] r_immAr_imB, r_imC, r_i mD,
reg r_i sSysA r_isMemA r_i sMDA r_i SALUA r
reg r_isSysC, r_isMenC, r_i sMDC, r_i SALUC, r _i sSysD, r
reg [2:0] r_isCFA r_isCFB, r_isCFC, r_i sCFD;

reg [31:0] r_targetA r_targetB,r_targetC, r_targetD
reg [31:0] r_PCA r_PCB,r_PCC, r_PCD;

reg r_pred_A r_pred_B,r_pred_C, r_pred_D,

wi re ab_dependant, bc_dependant, cd_dependant;

reg r_adep, r_bhdep, r_cdep, r_ddep;

rtCr_rtD;

_isSysB, r_isMenB, r

_isMenD, r

_isMDB, r
_isMDD, r

/1 Pipe to next stage

al ways @ posedge CLK)begin
r_opA = d_opA
r_opD = d_opD,
r_IrdA = d_rdA; r

d_rdcC r_lrdD = d_rdD;
r_queueA = d_queueA, _queueB = d_queueB;

r_opB = d_opB; r

_lrdB = d_rdB;

r_usesl mmA = d_usesl mmA;r _usesl mB = d_usesl mB; r_usesl mC = d_uses|l mC, r_usesl mD =
d_usesl| nmD;

r_immA = d_i nmA; r_imB = d_i mmB; r_imC = d_i mGC;

r_imD = d_i mD,

r_i sSysA = d_i sSysA r_isSysB = d_i sSysB; r_isSysC = d_i sSysC, r_isSysD = d_i sSysD,

r_isMemA = d_i sMemA; r_isMenB = d_i sMenB; r_isMenC = d_i sMencC, r_isMenD = d_i sMenD;

r_isMDA = d_i sMDA; r_isvMbB = d_i sMDB; r_isMbC = d_i sMDC;

r_isMbD = d_i sMDD;

r_i sCFA = d_i sCFA; r_isCFB = d_i sCFB; r_isCFC = d_i sCFC,

r _isCFD = d_i sCFD;

r_i sALUA = d_i sALUA; r_i sALUB = d_i sALUB; r_i sALUC = d_i sALUC, r_i sALUD = d_i sALUD,

r_targetA = d_targetA, r_targetB = d_targetB; r_targetC = d_targetC, r_targetD =
d_targetD

r_PCA = d_PCA r_PCB = d_PCB; r_PCC = d_PCC,

r_PCD = d_POD

r_pred_A = d_pred_A r_pred_B = d_pred_B; r_pred_C = d_pred_C, r_pred_D = d_pred_D,

r_instrA =d_instrA; r_instrB = d_instrB; r_instrC = d_instrC, r_instrD = d_instrD;

r_adep = ab_dependant;

r_bdep = bc_dependant;

r_cdep = cd_dependant;

r_ddep = O;

if_((fuIIFIush||R03_FuII || renaneStall ||Istalled ||
full Fl ushed) &&! (I St al | &&r obFul | ed&&! ROB_Ful |)) begi n
r_numnstr = 0;

52

_queueC = d_queueC;

_i SALUB;
_i SALUD,

_opC = d_opC,

r_lrdC =

r_queueD = d_queueD,

r_queueA = 0; r_queueB = 0; r_queueC = 0; r_queueD = 0;
end
el se r_num nstr = num nstr;
end

decode decodeA(
.instr(lnstrA),
.operation(opAl),
.operation2(opA2),
. queue(queueA),
.rs(rsAh),
rt(rtA),
.rd(rdAl),
.rd2(rdA2),
.usesl medi at e(usesl MmA) ,
i mredi at e(i M),
i sSyscal | (i sSysA),
.isMen(i sMemd),
isMultDi v(i sMDA),
i sCF(i sCFA),
i SALU(i SALUA),
. PC(PCA) ,
.full Flush(1' b0),
.target(targetA)
)i
decode decodeB(
.instr(lnstrB),
.operation(opBl),
.operation2(opB2),
. queue(queueB),
.rs(rsB),
.rt(rtB),
.rd(rdBl),
.rd2(rdB2),
. uses|l medi at e(usesl mB),
i mredi at e(i mB),
i sSyscal | (i sSysB),
.isMen(i sMenB),
.isMultDiv(isMB),
i sCF(i sCFB),
. i SALU(i sALUB),
. PC(PCB),
.ful I Flush(1' b0),
.target (targetB)
)i
decode decodeC(
.instr(lnstrQ,
.operation(opCl),
.operation2(opC2),
. queue(queueC),
.rs(rsQ,
.rt(rtQ,
.rd(rdcCl),
.rd2(rdc2),
.usesl medi at e(usesl m©),
i mredi at e(i mQC),
i sSyscal | (i sSysC),
.isMen(isMenC),
isMultDi v(i sMDC),
i sCF(i sCFQ),
i SALU(i sALUC),
. PC(PCO),
.full Flush(1' b0),
.target(targetC
)i
decode decodeD(
.instr(lnstrD),
.operation(opDl),
.operation2(opD2),
. queue(queueD),
.rs(rsD),

53

.rt(rtD),

.rd(rdD1),

.rd2(rdD2),

.usesl medi at e(usesl mD),

mredi at e(i D),
sSyscal | (i sSysD),
shven(i sMenD),
sMul tDi v(i sMDD),
sCF(i sCFD),
SALU(i sALUD),

. PO(PCD),
.full Flush(1' b0),
.target (targetD)

)

wire [5:0] free0,freel, free2, frees3;

Wi

re [7:0] nuntree;

reg [203: 0] remapped;

al

ways @*)begin

remapped[5: 0] = MAP[O] ;
remapped[11: 6] = MAP[1];
MAP[2] ;
MAP[3] ;
MAP[4] ;
MAP[5] ;
MAP[6] ;
MAP[7] ;
VAP 8] ;
MAP[9] ;
MAP[10] ;
MAP[11] ;
MAP[12] ;
MAP[13] ;

remapped[17: 12]
remapped[23: 18]
remapped[29: 24]
remapped[35: 30]
remapped[41: 36]
remapped[47: 42]
r emapped[53: 48]
remapped[59: 54]
remapped[65: 60]
remapped[71: 66]
remapped[77: 72]
remapped[83: 78]
remapped[89: 84]
r emapped[95: 90]
remapped[101: 96] =
remapped[107: 102]
remapped[113: 108]
remapped[119: 114]
remapped[125: 120]
remapped[131: 126]
remapped[137: 132]
remapped[143: 138]
remapped[149: 144]
remapped[155: 150]
remapped[161: 156]
remapped[167: 162]
remapped[173: 168]
remapped[179: 174]
r emapped[185: 180]
remapped[191: 186]
remapped[197: 192]
r emapped[203: 198]

end

renane regRenane(

RESET(RESET) ,

. CLK(CLK)

.full Flush(full Flush),
.iStalled(lstalled),

.num nstr(num nstr)

. repl acement MAP(r enapped),
. nunfFr ee(nunfree),
.renaneStal |l (renaneStall),
. nunRenaned(nunRenaned)
.inRSO(d_rsA),

i nRTO(d_rtA),
.inRDO(d_rdA),

.0ut RSO(r_rsA),

54

L.OUtRTO(r_rtA),
.out RDO(r_rdA),
.free0(free0),
.inRS1(d_rsB),
.inRTL(d_rtB),
.inRD1(d_rdB),
.out RS1(r_rsB),
LOUtRTL1(r_rtB),
.out RDL(r_rdB),
.freel(freel),
.inRS2(d_rsQ),
.inRT2(d_rtQ),
.inRD2(d_rdQ),
.Out RS2(r_rsQ),
LOUtRT2(r_rtQ,
.out RD2(r_rdQC),
.free2(free2),
.inRS3(d_rsD),
.inRT3(d_rtD),
.inRD3(d_rdD),
.OUt RS3(r_rsD),
.OUtRT3(r_rtD),
.out RD3(r_rdD),
.free3(free3),

. ab_swap(ab_swap),

. bc_swap(bc_swap),
.cd_swap(cd_swap),

. ab_dependant (ab_dependant),
. bc_dependant (bc_dependant),
. cd_dependant (cd_dependant)

)
reg [5:0] ROB_free0, ROB freel, ROB free2, ROB free3;

reg [2: 0] numAddFr ee;
freelist free_bird(
. RESET(RESET) ,
. CLK(CLK) ,
. nunmRequest (nunRenaned) ,
. nun¥r ee(nunfr ee) ,
.free0(free0),
.freel(freel),
.free2(free2),
.free3(free3d),
. numAdd(numAddFr ee) ,
. nowFr ee0(ROB_free0),
. nowFreel(ROB_freel),
. nowFr ee2(ROB_free2),
. nowFr ee3(ROB_free3)

)

reg updat ePredi ct or _VE;
reg [31: 0] updat ePredi ct or PC;
reg updat ePrediction;

branch_predictor br_predictor(
. RESET(RESET) ,
. CLK(CLK),
. PC(CF_PO),
. Prediction(BR _Pred),
. Updat eEnabl e(updat ePr edi ct or _VE),
. Updat ePC(updat ePr edi ct or PC) ,
. Updat eVal ue(updat ePredi ction),
. PredictorSel ect (" select_pred_tpred),
.Direction(br_dir)

reg [2:0] incorrect_pushes,incorrect_pops;
return_address_stack ras(
. RESET(RESET) ,
. CLK(CLK) ,
. push(push_link),
. pop(pop_I i nk),
. Li nkPC(Li nk_PC),

55

. PredPC(RAS_PC),
.incorrect_pushes(incorrect_pushes),
.incorrect_pops(incorrect_pops)

)

/1 Reorder Buffer / Ready Register |ist

wire [63:0] readylist;

reg [5:0] store_reg;

reg |ink_VE;

reg [5:0] link_reg;
reg [31:0] Iink_val ue;
reg [63:0] link_ready;
reg | oad_VE;

reg [5:0] |oad_reg;
reg [31:0] |oad_val ue;
reg [63:0] |oad_ready;

reg [4:0] ROB_Head;//Pointer to head of ROB
reg [4:0] ROB Tail;
reg [5:0] ROB_Free;//Nunber of free entries

assign ROB_Full = ROB Free < 4;

reg ROB_Ready[31:0];//ls the entry ready to comm t

reg ROB_Flushed[31:0];//1s the entry flushed

reg [7:0] ROB_Op[31:0];//Cperation the entry perforns

reg [5:0] ROB_LogReg[31:0];//Logical destination

reg [5:0] ROB_PhyReg[31:0];//Physical destination

reg ROB_Pred[31:0];//Direction Prediction

reg [31:0] ROB Pred_Target[31:0];//Predicted target

reg ROB_Dir[31:0];//Actual direction

reg [31:0] ROB_EffAddr_Target _PC8[31:0];//Effective address for nem actual target for jr's, or
pc+8 of br

reg ROB_isSys[31:0];

reg ROB_isMeni31:0];

reg [2:0] ROB_isCF[31:0];

reg [31:0] ROB_debug_instr[31:0];

reg [31:0] ROB_debug_PC 31:0];

reg [2:0] nunRetired,;

reg [63: 0] ROB_unready0O, ROB_unreadyl, ROB_unready2, ROB_unready3;
reg [5:0] ROB pr0O,ROB pr1l, ROB pr2, ROB pr3,ROB Ir0,ROB Ir1,ROB Ir2, ROB Ir3;
reg [4:0] ROB_slot0, ROB_slotl, ROB_ sl ot2, ROB_sl ot 3;

reg retireDone, prem

reg ROB_Dep[31:0];

reg di dASt or e, di dALoad;

wire [31:0] ALUO out, ALUl out, Ef f Addr, BRIR target;
wi re BRIR t aken;

reg ALUO_VE, ALUL_VE;

reg [5:0] ex_rdA ex_rdB;

reg [31:0] exv_rdA exv_rdB;

reg LDST_Done, BRIR Done;

reg [4:0] ex_ROBA, ex_ROBB, ex_ROBC, ex_ROBD;

reg ex_BRIR taken;

reg [31:0] ex_EffAddr, ex BRIR target;

integer i,j;

reg [5:0] old_l|load reg, delayed_|oad_reg;
reg DStall ed,;
reg | oadDone, ugh;

al ways @ posedge CLK)begin
i f (RESET) begi n
| oad_ready = 0;

ugh = 0;
end
el se begin
if(!DStall && | oadDone == 0)begin
| oadDone = 1,

| oad_ready = 1<<l| oad_reg;
end

56

end

el se | oad_ready = 0;

end
DStall ed = DStall;
old_|l oad_reg = | oad_reg;

Wi re badnews;

assi gn badnews = ROB_Free[5] ==1;
got Fl ushed, bi ngo, doi ngSyscal | ;
[3: 0] oneCycl eDel ay;

reg
reg

reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg

[5:0] LDSTQ Addr_Reg [31:0];
[5:0] LDSTQ Data_Reg [31:0];
[31:0] LDSTQ Addr [31:0];
[31:0] LDSTQ Data [31:0];
LDSTQ hasAddr [31:0];

LDSTQ Valid [31:0];

LDSTQ i sStore [31:0];

LDSTQ i sLoad [31:0];

LDSTQ hasData [31:0];

[4:0] LDSTQ ROB [31:0];

[4: 0] LDSTQ next Free;

[2:0] LDSTQ Size [31:0];
LDSTQ wr ot eVal ue [31:0];
[31:0] pre_load;

pre_|l oad_VE;

st op_f orwar di ng;
dat a_snooped;

[4: 0] data_snooper;
unr esol ved_store;
earl yaccess;

[31:
[31:
[31:
[31:
[31:
[31:

LDSTQ nax_ful | ness, LDSTQ t ot al _occupancy, ROB_t ot al _occupancy;

num BR predictions, num JR predictions, numBR incorrect,numJR i ncorrect;
num_nmem num cf, num sys, num al u_ot her;

numtimes_retire[4:0];

num ti mes_renane[4: 0] ;

num d_accesses;

// ROB and LDSTQ (the one for cache access not address calc)
al ways @ negedge CLK) begin

//lnsert newinstr's into ROB
i f (RESET) begi n

ROB Tail = O;
ROB_Head = O;
ROB_Ready[0] = 0;
ROB_Free = 32,

0;

@

o

2

[E=N
(IITRRTINT
WNPR O

ROB_unr eady3
ROB_unr eady?2
ROB_unr eady1
ROB_unr eady0
ROB_free0
ROB_freel
ROB_free2
ROB_free3 ;
doi ngSyscal | = 0;
num.instructions_retired = 0;
num.instructions_inserted = 0;
num fl ushes = 0;

updat ePr edi ct or _VE = 0;

updat ePredi ctorPC = 0;

updat ePrediction = 0;

oneCycl eDel ay = 1;

| oadDone = 1,
for(i=0;i<34;i

TRNTENTENTI
eeee

(TRRTIT]
eeee

i+1) MAP[i] =i ;

57

LDSTQ next Free = 0;

for(i=0;i<32;i=i+1)LDSTQ Valid[i] = 0;

pre_load = O;

pre_l oad_VE = 0;

stop_forwarding = 0;

dat a_snooped = O;

dat a_snooper = O;

unresol ved_store = 0;

num dat a_f or war ded=0;

num data_forwarded_written_ahead_of _tine=0;

num early_| oad_accesses=0;

num dat a_f or war ded_not _wri tten=0;

num | oads_written_before_retire=0;

num rob_head_| oads=0;

LDSTQ nex_f ul | ness=0;

LDSTQ t ot al _occupancy=0;

ROB_t ot al _occupancy = 0;

num BR predi cti ons=0;

num JR predictions=0;

num BR i ncorrect =0;

num_ JR i ncorrect =0;

num_nmem = O;

numcf = O;

numsys = 0;

num al u_ot her = 0;

numtimes_retire[0] =0;

numtimes_retire[1] =0;

numtimes_retire[2]=0;

numtimes_retire[3]=0;

numtimes_retire[4]=0;

num ti mes_r enane[0] =0;

num ti mes_renane[1] =0;

num_ ti mes_renane[2] =0;

num ti mes_r enane[3] =0;

num ti mes_r enane[4] =0;

num d_accesses = O;

incorrect_pushes = 0;

i ncorrect_pops = 0;

end
el se begin

i f(r_num nstr>=1)begin
/1 ROB
if(r_queueA == 0 || r_isMemA) ROB Ready[ROB Tail] = 1;//1s the entry ready

to comit
el se ROB_Ready[ROB Tail] = 0;
ROB_Fl ushed[ROB_Tail] = full Flush;//Is the entry flushed
ROB_Op[ROB_Tail] = r_opA;//Operation the entry perforns
if(r_isMemA & & (r_opA=="sel ect_nmemsw || r_opA=="sel ect_nmemsh ||
r_opA=="sel ect _nmem sh)) begin
ROB_PhyReg[ROB_Tai |]
ROB_LogReg[ROB_Tai |]

r_rtA;//Physical destination
0;
end
el se begin
ROB_PhyReg[ROB_Tai |]
ROB_LogReg[ROB_Tai I]

r_rdA;//Physical destination
r_IrdA;//Logi cal destination

end

ROB _Pred[ROB_Tail] = r_pred_A;//Direction Prediction

ROB Pred_Target[ROB Tail] = r_targetA;//Predicted target

ROB_Dir[ROB_Tail] = r_pred_A;//Actual direction

ROB_debug_PC[ROB_Tail] = r_PCA;

ROB_Ef f Addr _Target _PC8[ROB_Tail] = r_PCA+8;//Effective address for nem
actual target for jr's, or pc+8 of br

ROB_i sSys[ROB_Tail] = r_i sSysA
ROB_i sMenfROB Tail] = r_i sMemhA;
ROB_i sSCF[ROB_Tai l] = r_i sCFA
ROB_Dep[ROB_Tail] = r_adep;

r
ROB_debug_instr[ROB Tail] = r_instrA;
ROB_Tai | ROB Tail + 1;
ROB_Free ROB Free - 1; num.instructions_inserted =
num.instructions_inserted + 1;

58

/1 LDSTQ
if(r_i sMemA) begin
LDSTQ _Addr _Reg[LDSTQ next Free] = r_rsA;

if((r_opA=="select_nmemsw ||

r_opA=="sel ect _nmem sh)) begin

end
end

LDSTQ Dat a_Reg[LDSTQ next Fr ee]
LDSTQ i sSt or e[LDSTQ next Free] =
LDSTQ i sLoad[LDSTQ next Free] =
if(r_opA=="sel ect_nmem sw)begin
LDSTQ Si ze[LDSTQ next Free] = 4;

r_opA=="sel ect_nmem sh ||

= T_IrtA
1;
0;

“sel ect _nmem sh) begin
ze[LDSTQ next Free] = 2;

ze[LDSTQ next Free] = 1;

LDSTQ Dat a_Reg[LDSTQ next Fr ee]
LDSTQ i sSt or e[LDSTQ next Free] =
LDSTQ i sLoad[LDSTQ next Free] =
if(r_opA=="sel ect_nem.| w)begin
ze[LDSTQ next Free] = 4;

end
el se if(r_opA==
LDSTQ Si
end
el se begin
LDSTQ S
end
end
el se begin
LDSTQ S
end
el se if(r_opA==
LDSTQ _Si
end
el se begin
LDSTQ _Si
end
end

= r_rdA
0;
1;

“select_nmem.| h||r_opA=="sel ect _nmem | hu) begin
ze[LDSTQ next Free] = 2;

ze[LDSTQ next Free] = 1;

LDSTQ wr ot eVal ue[LDSTQ next Free] = 0;
LDSTQ hasAddr [LDSTQ next Free] = O;
LDSTQ Val i d[LDSTQ next Free] = 1;

LDSTQ hasDat a[LDSTQ next Free] = O;
LDSTQ ROB[LDSTQ next Free] = ROB_Tail -
LDSTQ next Free = LDSTQ next Free + 1;

i f(r_num nstr>=2)begin

/1 ROB
if(r_queueB == 0 ||
to comit
el se ROB_Ready[ROB Tail] = 0;
ROB_

ROB_
if(r_isMenB && (r_opB=="sel ect _nem sw ||

1;

r_isMenB) ROB_Ready[ROB Tail] = 1;//1s the entry ready

Fl ushed[ROB_Tail] = full iil ush;//1s the entry flushed
Op[ROB_Tail] = r_opB;//Operation the entry performs

r_opB=="sel ect _nmem sh)) begin

end

ROB_PhyReg[ROB_Tai |]
ROB_LogReg[ROB_Tai I]

el se begin

end

ROB_
ROB_
ROB_
ROB_

actual target for jr's, or

ROB_
ROB_|
ROB_|
ROB_
ROB_
ROB_
ROB_

ROB_PhyReg[ROB_Tai |]
ROB_LogReg[ROB_Tai I]

r
0

r
r

_rtB;//Physical

_rdB; // Physi cal
_lrdB;//Logi cal

r_opB=="sel ect _nmem sh ||

destination

destination
destination

Pred[ROB Tail] = r_pred_B;//Direction Prediction
Pred_Target[ROB Tail] = r_targetB;//Predicted target
Dir[ROB Tail] = r_pred_B;//Actual directio
debug_PC[ROB_Tail] = r_PCB;
ROB_Ef f Addr _Tar get _PC8[ROB_Tai |]

n

= r_PCB+8;//Effective address for nmem

pc+8 of br

i sSys[ROB_Tail] = r_i sSysB;
isMenf ROB_Tail] = r_i sMenB;

i SCF[ROB_Tail] = r_i sCFB;

Dep[ROB_Tail] = r_bdep;
debug_instr[ROB Tail] = r_instrB;
Tai | ROB Tail + 1;

Free

num.instructions_inserted + 1;

59

ROB Free - 1; num.instructions_inserted =

/1 LDSTQ
if(r_i sMenB)begin
LDSTQ _Addr _Reg[LDSTQ next Free] = r_rsB;
if((r_opB=="select_nmemsw || r_opB=="select_nemsh ||
r_opB=="sel ect _nmem sh)) begin
LDSTQ Dat a_Reg[LDSTQ nextFree] = r_rtB;
LDSTQ i sSt or e[LDSTQ next Free] = 1;
LDSTQ i sLoad[LDSTQ next Free] = O;
if(r_opB=="sel ect_nmem sw)begin
LDSTQ Si ze[LDSTQ next Free] = 4;
end
el se if(r_opB=="sel ect _nmem sh) begi n
LDSTQ Si ze[LDSTQ next Free] = 2;
end
el se begin
LDSTQ Si ze[LDSTQ next Free] = 1;
end
end
el se begin
LDSTQ Dat a_Reg[LDSTQ next Free] = r_rdB;
LDSTQ i sSt or e[LDSTQ next Free] = O;
LDSTQ i sLoad[LDSTQ next Free] = 1;
if(r_opB=="sel ect_nem.|w)begin
LDSTQ Si ze[LDSTQ next Free] = 4;
end
else if(r_opB=="select_mem.| h||r_opB=="sel ect _nmem | hu) begi n
LDSTQ Si ze[LDSTQ next Free] = 2;
end
el se begin
LDSTQ Si ze[LDSTQ next Free] = 1;
end
end
LDSTQ wr ot eVal ue[LDSTQ next Free] = 0;
LDSTQ hasAddr [LDSTQ next Free] = O;
LDSTQ Val i d[LDSTQ next Free] = 1;
LDSTQ hasDat a[LDSTQ next Free] = O;
LDSTQ ROB[LDSTQ next Free] = ROB_Tail - 1;
LDSTQ next Free = LDSTQ next Free + 1;

end

end

i f(r_num nstr>=3)begin
/1 ROB

if(r_queueC == 0 || r_isMenC)ROB _Ready[ROB Tail] = 1;//1s the entry ready
to comit
el se ROB_Ready[ROB Tail] = 0;
ROB_Fl ushed[ROB_Tail] = full Flush;//Is the entry flushed
ROB_Op[ROB_Tail] = r_opC;//Operation the entry perforns
if(r_isMenC & & (r_opC=="select_nmemsw || r_opC=="sel ect_nmemsh ||
r_opC=="sel ect _mem sh)) begin
ROB_PhyReg[ROB Tail] = r_rtC;//Physical destination
ROB_LogReg[ROB Tail] = 0;
end
el se begin
ROB_PhyReg[ROB Tail] =
ROB_LogReg[ROB _Tail] =

r_rdC; //Physical destination
r_IrdC //Logi cal destination

end

ROB _Pred[ROB_Tail] = r_pred_C;//Direction Prediction

ROB Pred_Target[ROB Tail] = r_targetC;//Predicted target

ROB Dir[ROB _Tail] = r_pred_C,//Actual direction

ROB_debug_PC[ROB_Tail] = r_PCC;

ROB_Ef f Addr _Target _PC8[ROB_Tail] = r_PCC+8;//Effective address for nem
actual target for jr's, or pc+8 of br

ROB_i sSys[ROB Tail] = r_isSysC;
ROB_i sMenf ROB _Tail] = r_isMenC;
ROB_i sCF[ROB_Tai l] = r_i sCFC,
ROB_Dep[ROB_Tail] = r_cdep;

r
ROB_debug_instr[ROB Tail] = r_instrC
ROB_Tai | ROB Tail + 1;
ROB_Free ROB Free - 1; num.instructions_inserted =
num.instructions_inserted + 1;

60

/1 LDSTQ

if(r_isMenC)begin

r_opC=="sel ect_mem sb)) begin

end
end

if(r_numnstr>=

/1 ROB

if(r_queueD == 0 ||

to comit

el se ROB_Ready[ROB_Tai l]
ROB_Fl ushed[ROB_Tai |]
ROB_Op[ROB_Tai I]

r_opD=="sel ect _mem sb)) begin

end

LDSTQ _Addr _Reg[LDSTQ next Free] = r_rsC,
if((r_opC=="select_nmemsw || r_opC=="select_nmemsh ||
LDSTQ Dat a_Reg[LDSTQ nextFree] =r_rtC,
LDSTQ i sSt or e[LDSTQ next Free] = 1;
LDSTQ i sLoad[LDSTQ next Free] = O;
if(r_opC=="sel ect_nmem sw)begin
LDSTQ Si ze[LDSTQ next Free] = 4;
end
el se if(r_opC=="sel ect _nmem sh) begi n
LDSTQ Si ze[LDSTQ next Free] = 2;
end
el se begin
LDSTQ Si ze[LDSTQ next Free] = 1;
end
end
el se begin
LDSTQ Dat a_Reg[LDSTQ next Free] = r_rdC;
LDSTQ i sSt or e[LDSTQ next Free] = O;
LDSTQ i sLoad[LDSTQ next Free] = 1;
if(r_opC=="sel ect_nem.|w) begin
LDSTQ Si ze[LDSTQ next Free] = 4;
end
else if(r_opC=="select_mem.|h||r_opC=="sel ect_nmem | hu) begi n
LDSTQ Si ze[LDSTQ next Free] = 2;
end
el se begin
LDSTQ Si ze[LDSTQ next Free] = 1;
end
end

LDSTQ wr ot eVal ue[LDSTQ _next Fr ee]
LDSTQ hasAddr [LDSTQ next Free] = O;
LDSTQ Val i d[LDSTQ next Free] = 1;
LDSTQ hasDat a[LDSTQ next Free] = O;
LDSTQ ROB[LDSTQ next Fr ee] ROB_Tai |
LDSTQ next Free = LDSTQ next Free + 1;

0,

4) begi n
r_i sMenD) ROB_Ready[ROB_Tai |]

=0
= full

ROB_PhyReg[ROB_Tai |]
ROB_LogReg[ROB_Tai I]

r_rtD;//Physical
0;

el se begin

end

ROB_Pr ed[ROB_Tai |]
ROB_Pred_Target[ROB Tail]
ROB_Di r[ROB_Tai I]
ROB_debug_PC[ROB_Tai |]
ROB_Ef f Addr _Tar get _PC8[ROB_Tai |]

actual target for jr's, or pc+8 of br
ROB_i sSys[ROB_Tail] = r_isSysD;
ROB_i sMenfROB _Tail] = r_isMenD;
ROB_i sCF[ROB_Tai l] = r_i sCFD,
ROB_Dep[ROB_Tail] = r_ddep;
ROB_debug_instr[ROB Tail] = r_instrD;
ROB _Tail = ROB Tail + 1;
ROB Free = ROB_Free - 1; num.nstructions_inserted

num.instructions_inserted + 1;

ROB_PhyReg[ROB_Tai |]
ROB_LogReg[ROB_Tai I]

_rdD; // Physi cal
_lrdD;// Logi cal

r
r

r_pred_

= r_pred_D;//Actual direction

r_PCD;

61

1:

r_PCD+8;//Effective address for

1;//1s the entry ready

iil ush;//1s the entry flushed
r_opD;// Qperation the entry performs

if(r_isMenD && (r_opD=="sel ect_nmemsw || r_opD=="sel ect_nmemsh ||

destination

destination
destination

D;//Direction Prediction
r_targetD;//Predicted target

mem

/1 LDSTQ
if(r_i sMenD)begin
LDSTQ _Addr _Reg[LDSTQ next Free] = r_rsD;
if((r_opD=="select_nmemsw || r_opD=="select_nmemsh ||
r_opD=="sel ect _mem sh)) begin
LDSTQ Dat a_Reg[LDSTQ nextFree] = r_rtD;
LDSTQ i sSt or e[LDSTQ next Free] = 1;
LDSTQ i sLoad[LDSTQ next Free] = O;
if(r_opD=="sel ect_nmem sw)begin
LDSTQ Si ze[LDSTQ next Free] = 4;
end
el se if(r_opD=="sel ect _nmem sh) begi n
LDSTQ Si ze[LDSTQ next Free] = 2;

end
el se begin
LDSTQ Si ze[LDSTQ next Free] = 1;
end
end
el se begin
LDSTQ Dat a_Reg[LDSTQ next Free] = r_rdD;
LDSTQ i sSt or e[LDSTQ next Free] = O;
LDSTQ i sLoad[LDSTQ next Free] = 1;
if(r_opD=="sel ect_nem.| w)begin
LDSTQ Si ze[LDSTQ next Free] = 4;
end
else if(r_opD=="sel ect_mem.| h||r_opD=="sel ect _nmem | hu) begi n
LDSTQ Si ze[LDSTQ next Free] = 2;
end
el se begin
LDSTQ Si ze[LDSTQ next Free] = 1;
end
end

LDSTQ wr ot eVal ue[LDSTQ next Free] = 0;
LDSTQ hasAddr [LDSTQ next Free] = O;

LDSTQ Val i d[LDSTQ next Free] = 1;

LDSTQ hasDat a[LDSTQ next Free] = O;
LDSTQ ROB[LDSTQ next Free] = ROB_Tail - 1;
LDSTQ next Free = LDSTQ next Free + 1;

end
end
numtimes_renanme[r_num nstr]=numtimes_renane[r_num nstr] +1;
ROB_sl ot0 = ROB Tail;
ROB sl ot1l = ROB Tail +1;
ROB_sl ot2 = ROB_Tail +2;
ROB sl ot3 = ROB_Tail +3;

/! Update Entries in the ROB
if(!full Flush && !got Fl ushed) begin
i f (ALUO_WVE && ROB_FI ushed[ex_ROBA] ==0) begi n
ROB_Ready[ex_ROBA] =1;
end
i f (ALUL_WE && ROB_FI ushed[ex_ROBB] ==0) begi n
ROB_Ready[ex_ROBB] =1;
end
i f (LDST_Done && ROB_Fl ushed[ex_ROBC] ==0) begi n
/ | ROB_Ready[ex_ROB(C] =1;
/| ROB_Ef f Addr _Tar get _PC8[ex_ROBC] = ex_Eff Addr;
end
i f (BRIR_Done && ROB_Fl ushed[ex_ROBD] ==0) begi n
ROB_Ready[ex_ROBD] =1;
ROB_Dir[ex_ROBD] = ex_BRIR t aken;
i f (ex_BRJR_t aken) ROB_Ef f Addr _Tar get _PC8[ex_ROBD] = ex_BRIR target;
end
end
LDSTQ t ot al _occupancy = LDSTQ total _occupancy + LDSTQ next Free;
ROB_t ot al _occupancy = ROB_total _occupancy + (32-ROB_Free);
i f (LDSTQ next Free>LDSTQ max_f ul | ness) LDSTQ max_f ul | ness = LDSTQ next Fr ee;
/1 LDSTQ
/1 Snoop in Address
for(i=0;i<32;i=i+1)begin
if(LDSTQ Valid[i] && LDSTQ ROB[i]==ex_ROBC && LDST_Done) begi n
LDSTQ hasAddr[i] = 1;

62

LDSTQ Addr[i] = ex_EffAddr;
end
end
/1 Snoop in data
i f (data_snooped == 1)begin
LDSTQ Dat a[dat a_snooper] = store_val ue;
i f (LDSTQ Val i d[dat a_snooper]) LDSTQ hasDat a[dat a_snooper] = 1;
dat a_snooped = O;
end
for(i=0;i<32;i=i+1)begin
i f(data_snooped == 0 && LDSTQ Valid[i]==1 && LDSTQ hasData[i]==0 &&
LDSTQ i sStore[i] == 1 && (readylLi st>>LDSTQ Data_Reg[i])&l' bl) begin
store_reg = LDSTQ Data_Reg[i];
dat a_snooped = 1;
dat a_snooper = i;
end
end
stop_forwarding = 0;
/'l Forward Data, perhaps too conservatively
for(i=0;i<32;i=i+1)begin
i f(LDSTQ isStore[i] && LDSTQ Valid[i] && LDSTQ hasAddr[i] &&
LDSTQ hasData[i])begin
stop_forwarding = 0;
for(j=i+1;j<32;j=j+1)begin
i f(LDSTQ isStore[j] &&
(((LDSTQ Addr[j] &32' hFFFFFFFC) ==(LDSTQ Addr [i] &32' hFFFFFFFC)) || LDSTQ hasAddr[j]==0)) begin
stop_forwarding = 1;
end
if(!stop_forwarding && LDSTQ isLoad[j] && LDSTQ Valid[j] &&
LDSTQ hasAddr[j] && !'LDSTQ hasData[j] && LDSTQ Addr[i]==LDSTQ Addr[j] &&
LDSTQ Si ze[i]==LDSTQ Si ze[j]) begin
LDSTQ hasData[j] = 1;
num dat a_forwarded = num data_forwarded + 1;
i f(LDSTQ Si ze[j]==4)LDSTQ Data[j] = LDSTQ Data[il];
el se i f(LDSTQ Si ze[]j] ==2) begi n
LDSTQ Data[j] = LDSTQ Data[i]&32' hOOOOf fff;
i f(ROB_Op[LDSTQ ROB[j]]=="select_nem|h &&
LDSTQ Data[j][15])LDSTQ Data[j] = LDSTQ Data[j] | 32'hffff0000;
end
el se begin
LDSTQ Data[j] = LDSTQ Data[i]&32' h0O00000f f;
i f(ROB_Op[LDSTQ ROB[j]]=="sel ect_nem | b&&
LDSTQ Data[j][7])LDSTQ Data[j] = LDSTQ Data[j] | 32'hffffffO0O;
end
end
end
end
end

pre_load = 0;
pre_l oad_VE = 0;

//Retire Instructions at ROB head

retireDone = O;

prem = 0O;

if(DStall || !loadDone || (ROB_Head==ROB_Tai |l &ROB_Free! =0) ||

(ROB_Dep[ROB_Head] &&!' ROB_Ready[(ROB_Head+1) &' b11111] &&! ROB_Fl ushed[ROB_Head])) begi n

retireDone = 1;
prem= 1;

end

nunmRetired = 0;//for retirenment rat

numAddFree = 0;//for free list

di dALoad = 0;

if(!DStall)isMenRetire = O;

if(!DStall)load_reg = 0;
//store_reg = O;

ROB_unr eady3
ROB_unr eady?2
ROB_unr eady1

o
eee

63

ROB_unready0 = 0;
ROB_free0
ROB freel
ROB_free2

ROB free3 ;

doi ngSyscall = 0;

updat ePr edi ct or _VE = 0;

incorrect_pushes = 0;

incorrect_pops = O;

if(!'lIStall & 'ROB_Full/* && !lIstalled*/)fullFlush = 0;

//retire up to 4 instructions per cycle

if(retireDone !'= 1 && (ROB_Ready[ROB_Head] == 1 || ROB_Fl ushed[ROB_Head] ==

eeee

1)) begin
i f (ROB_i sSys[ROB_Head] && ROB_Fl ushed[ROB_Head] == 0)begin
i f (oneCycl eDel ay! =0) begi n
oneCycl eDel ay = oneCycl eDel ay - 1;
retireDone = 1;
end
el se begin
num sys = numsys + 1;
oneCycl eDel ay = 1;
num.instructions_retired = numinstructions_retired + 1;nunRetired
= nunRetired + 1;
/**retireDone = 1;**/doi ngSyscall = 1;
num flushes = num flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
correct Target = ROB_debug_PC ROB_Head] +4;

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head =
ROB_Head + 1;
ROB_free0 = O;
begi n
/] store register file state to the C
interface functions!
for (j=1; j<32;j=j+1)
begi n
/1 Changed to setreg instead of
setregval ue
$syscal | _setreg
(j,CPU reg_file.RegFil e[CPU. MAP[j]]);
end
$syscal | _set pc (ROB_debug_PC[ROB_Head]);
/1 store PC

/1 do the systemcall
if ($emul ate_syscall) begin
/1 exit called
$display ("-----------"-"“"------------

$di splay ("Program Term nated.");

$display ("Retired %l instructions,
%l entered ROB", num.instructions_retired, numinstructions_inserted);

$di splay ("Nunmber of flushes:
%", num f | ushes);

$di splay ("Ran for %
cycles", $tinme/ "cycle);

$di splay ("I Cache Accesses: %
\'nl Cache M sses: %", i_cache_d_cache.num.icache_accesses, num M sses);

$di spl ay ("DCache Accesses: %
\ nDCache M sses: %l", num.d_accesses, nhunDM sses);

$di spl ay ("Average Fullness: \nROB
%l \nALUQ % \nCFQ % \ nLDSTAQ % \nLDSTQ %d \nFreelist(avg. free regs)
%", (10*ROB_t ot al _occupancy)/ ($time/ cycle), (10*ALUqueue. t ot al _occupancy)/ ($ti me/ “cycle), (10*BRIR
queue. t ot al _occupancy)/ ($ti me/ "cycle), (10*LDSTqueue. t ot al _occupancy)/ ($time/ cycle), (10*LDSTQ t ot
al _occupancy)/ ($time/ "cycle), (10*free_bird. nunFree)/ ($tine/ "cycle));

$di splay ("RAS
%", (10*ras. total _occupancy)/ ($tinme/ cycle));

$di splay ("Max Full ness: \nALUQ %
\nCFQ % \ nLDSTAQ % \ nLDSTQ %\ nRAS

64

%", ALUgueue. max_f ul | ness, BRIRqueue. max_f ul | ness, LDSTqueue. max_f ul | ness, LDSTQ max_ful | ness, ras. na
x_full ness);

$di splay ("BR Predictions: %
\nlncorrect: %\ nJR Predictions: % \nlncorrect:
%", num BR predictions, num BR i ncorrect, num JR predictions, numJR_incorrect);

$di splay ("Correct Path: \nMem %
\nCF % \nSys % \nALU & NOPS %", num nmem num cf, num sys, num.i nstructions_retired-
(num_nmemtnum cf +num sys)) ;

$display ("Retired 0 1 2 3 4: % %
%l %l
%", numtimes_retire[0], numtimes_retire[1], numtimes_retire[2],numtimes_retire[3],numtimes_ret
ire[4]);

$di splay ("Renaned 0 1 2 3 4: % %
% %l
%", num tines_renane[0], num times_renane[1], numtinmes_renanme[2], numtinmes_renanme[3], numtinmes_ren
ame[4]);

$display ("Cycles Stalled: \nlStall
%l \nRenanme % \nROB %", num cycl es_istall,numcycl es_renanestal |, numcycl es_robstall);

$di splay ("Forwarded Data: %d\nWote
Forwards Early: %\ nPerforned Early Loads: %\ nForwarded Data But No Early Wite: %\ nROB Head
Loads: %\ nLoads Already Witten Before Retire:
%", num dat a_f orwar ded, num data_forwarded_witten_ahead_of tine, numearly_ | oad_accesses, num data_
forwarded_not _written, numrob_head_| oads, num | oads_witten_before_retire);

$display ("-----------“““““““-------

$fini sh;
end

/! restore register file state fromthe C
interface
for (j=1; j<32;j=j+1)
begi n
/1 Changed to syscall _getreg

nstead of syscall _regval ue

CPU.reg_file.RegFile[CPU.MAP[j]] = $syscall _getreg(j);

end
end
end
end
el se i f(ROB_i sCF[ROB_Head] [0] && ROB_Fl ushed[ROB_Head] == 0)begin
if(/**1l1sStall &&*/ updatePredictor_WE==0)begin

numcf = numcf + 1;
i f (ROB_Op[ROB_Head] =="sel ect_qc_j ||
ROB_Op[ROB_Head] =="sel ect _qc_j al) begi n
//regular junps cant be wong
end
el se i f(ROB_Op[ROB_Head] =="sel ect_qc_jalr ||
ROB_(Op[ROB_Head] =="sel ect _qc_j r) begin
num JR predictions = numJR predictions + 1;

i f (ROB_Pred_Target [ROB_Head] ! =ROB_Ef f Addr _Tar get _PC8[ROB_Head]) begi n
num JR incorrect = numJR incorrect + 1;
correct Target =
ROB_Ef f Addr _Tar get _PC8[ROB_Head] ;
num flushes = numflushes + 1;fullFlush =

1;for(i=0;i<32;i=i+1) ROB_Fl ushed[i] = 1;
/**retireDone = 1;**/
end
end
el se begin
i f (ROB_Di r[ROB_Head] ! =ROB_Pr ed[ROB_Head]) begi n
num BR i ncorrect = numBR_incorrect + 1;
i f(ROB_Di r[ROB_Head]) correct Target =
ROB_Pred_Tar get [ROB_Head] ;
el se correct Target =
ROB_Ef f Addr _Tar get _PC8[ROB_Head] ;
num fl ushes = num flushes + 1;full Flush =
1; for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;

65

= ROB_Head + 1;
1;nunRetired = nunRetired + 1;

end

/**retireDone = 1;**/
end
num BR predictions = num BR predictions + 1;

updat ePredi ctor _VE = 1;
updat ePr edi ct or PC = ROB_debug_PC ROB_Head] ;
updat ePredi cti on = ROB_Di r[ROB_Head] ;
end
/11ink
i f (ROB_i sCF[ROB_Head] [2]) begi n
ROB _free0 = MAP[ROB_LogReg[ROB_Head]];
ROB_unr eady0 = 1<<MAP[ROB_LogReg[ROB_Head]];
MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head] ;
end
el se ROB free0 = 0;

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head

num.instructions_retired = num.instructions_retired +

el se begin

end
end

retirebDone = 1;

el se if(ROB_i sMen]{ ROB_Head] && ROB_Fl ushed[ROB_Head] == 0)begin
if(isMenRetire==0 && (((ROB_Op[ROB_Head] =="sel ect_nmem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sh ||

ROB_(Op[ROB_Head] ==" sel ect _nem sb) &&(LDSTQ _hasAddr [0] &&LDSTQ hasDat a[0]))
|] (! (ROB_Op[ROB_Head] =="sel ect _nmem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sh ||

ROB_Op[ROB_Head] =="sel ect _nem sb) &L DSTQ hasAddr [0] &&(| oadDone==1)))) begi n

ROB_Op[ROB_Head] =="sel ect _nmem sh ||

num | oads_witten_before_retire+l;

yet

num data_forwarded_not_witten + 1;

i f(!(ROB_Op[ROB_Head] =="sel ect _mem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sb)) begi n

/11 oad
i f (LDSTQ hasDat a[0] && LDSTQ wr ot eVal ue[0]) begi n
num | oads_written_before_retire =
end
el se i f(LDSTQ hasDat a[0]) begi n
//got data through forwarding but didnt get to wite
pre_load = LDSTQ Data[0];
|l oad_reg = LDSTQ Data_Reg[0] ;
pre_l oad_VE = 1;
| oadDone = O0;
num data_forwarded_not_witten =
end
el se begin
//doesnt have its data, need to issue cache access
isMenRetire = 1,
memOp = ROB_Op[ROB_Head] ;
MAR = LDSTQ Addr[O0];
| oad_reg = ROB_PhyReg[ROB_Head];
| oadDone = 0;
num rob_head_| oads = numrob_head_| oads + 1;
num d_accesses = num d_accesses + 1;
end
ROB _free0 = MAP[ROB_LogReg[ROB_Head]];
ROB_unready0 = 1<<MAP[ROB_LogReg[ROB_Head]];
MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head] ;
end
el se begin
/lstore

SMDR = LDSTQ Data[0] ;
isMenRetire = 1;
menOp = ROB_Op[ROB_Head] ;

66

MAR = LDSTQ Addr[0];
ROB free0 = 0;
num d_accesses = num d_accesses + 1;

end

/1shift LDSTQ forward

for(i=0;i<31;i=i+1)begin
LDSTQ Addr _Reg[i] = LDSTQ Addr_Reg[i +1];
LDSTQ Data_Reg[i] = LDSTQ Data_Reg[i +1];
LDSTQ Addr[i] = LDSTQ Addr[i +1];
LDSTQ Data[i] = LDSTQ Data[i +1];
LDSTQ hasAddr[i] = LDSTQ hasAddr[i +1];
LDSTQ Val id[i] = LDSTQ Valid[i+1];
LDSTQ i sStore[i] = LDSTQ.isStore[i+1];
LDSTQ i sLoad[i] = LDSTQ_ isLoad[i +1];
LDSTQ hasData[i] = LDSTQ hasData[i +1];
LDSTQ ROB[i] = LDSTQ ROB[i +1];
LDSTQ Size[i] = LDSTQ Si ze[i +1];
LDSTQ wr ot eVal ue[i] = LDSTQ wr ot eVal ue[i +1];

end

LDSTQ Addr _Reg[31] =0;

LDSTQ Dat a_Reg[31] =0;

LDSTQ Addr[31] =0;

LDSTQ Dat a[31] =0;

LDSTQ hasAddr [31] =0;

LDSTQ Val i d[31] =0;

LDSTQ i sSt or e[31] =0;

LDSTQ i sLoad[31] =0;

LDSTQ hasDat a[31] =0;

LDSTQ_ROB[31] =0;

LDSTQ Si ze[31] =0;

LDSTQ wr ot eVal ue[31] =0;

LDSTQ next Free = LDSTQ next Free - 1,

dat a_snooper = data_snooper - 1,

num mem = numnmem + 1;

num.instructions_retired = num.instructions_retired +

1;nunRetired = nunRetired + 1;

/**retireDone = 1;**/
ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head

= ROB_Head + 1;

end
el se begin
retirebDone = 1;
ROB free0 = 0;
end

end
el se begin
i f (ROB_FI ushed[ROB_Head] ==0) num_i nstructions_retired =
num.instructions_retired + 1;
i f (ROB_i sCF[ROB_Head] [0]) begi n

i f (ROB_i sCF[ROB_Head] [2] &&ROB_LogReg[ROB_Head] ==31) i ncorrect _pushes = incorrect_pushes +
1;
i f((ROB_Op[ROB_Head] =="select_qc_jalr ||

ROB_Op[ROB_Head] =="sel ect _qc_j r) &(ROB_debug_i nstr[ROB_Head] ["rs]==31))i ncorrect _pops =
i ncorrect_pops + 1;

end

nunRetired = nunRetired + 1,

i f (ROB_FIl ushed[ROB_Head] ==0) ROB_free0 = MAP[ROB_LogReg[ROB_Head]] ;

el se i f (ROB_LogReg[ROB_Head] ! =0) ROB_free0 = ROB_PhyReg[ROB_Head] ;
i f (ROB_FIl ushed[ROB_Head] ==0) ROB_unr eady0 =
1<<MAP[ROB_LogReg[ROB_Head]] ;
el se i f(ROB_LogReg[ROB_Head] ! =0) ROB_unr eady0 =
1<<ROB_PhyReg[ROB_Head] ;
i f (ROB_FI ushed[ROB_Head] ==0) MAP[ROB_LogReg[ROB_Head]] =
ROB_PhyReg[ROB_Head] ;
i f (ROB_FI ushed[ROB_Head] ==0) begi n
end
ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;

67

ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head =
ROB_Head + 1;

end
end
el se begin

ROB free0 = 0;
end
/lretireDone = 1;

i f (ROB_Head==ROB_Tai | ||
(ROB_Dep[ROB_Head] &&! ROB_Ready[(ROB_Head+1) &' b11111] &&! ROB_Fl ushed[ROB_Head])) retireDone = 1,
if(retireDone !'= 1 && (ROB_Ready[ROB_Head] == 1 || ROB_Fl ushed[ROB_Head] ==
1)) begin
i f (ROB_i sSys[ROB_Head] && ROB_Fl ushed[ROB_Head] == 0)begin
i f (oneCycl eDel ay! =0) begi n
oneCycl eDel ay = oneCycl eDel ay - 1;
retireDone = 1;
end
el se begin
num sys = numsys + 1;
oneCycl eDel ay = 1;
num.instructions_retired = numinstructions_retired + 1;nunRetired
= nunRetired + 1;
/**retireDone = 1;**/doi ngSyscall = 1;
num flushes = num flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
correct Target = ROB_debug_PC ROB_Head] +4;

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head =
ROB_Head + 1;
ROB freel = O;
begi n
/] store register file state to the C
interface functions!
for (j=1; j<32;j=j+1)
begi n
/1 Changed to setreg instead of
setregval ue
$syscal | _setreg
(j,CPU reg_file.RegFil e[CPU. MAP[j]]);
end
$syscal | _set pc (ROB_debug_PC[ROB_Head]);
/1 store PC

/1 do the systemcall
if ($emul ate_syscall) begin
/1 exit called
$display ("-----------"-"“"------------

$di splay ("Program Term nated.");

$display ("Retired %l instructions,
%l entered ROB", num.instructions_retired, numinstructions_inserted);

$di splay ("Nunmber of flushes:
%", num f | ushes);

$di splay ("Ran for %
cycles", $tinme/ "cycle);

$di splay ("I Cache Accesses: %
\'nl Cache M sses: %", i_cache_d_cache.num.icache_accesses, num M sses);

$di spl ay ("DCache Accesses: %
\ nDCache M sses: %l", num.d_accesses, nhunDM sses);

$di spl ay ("Average Fullness: \nROB
%l \nALUQ % \nCFQ % \ nLDSTAQ % \nLDSTQ %d \nFreelist(avg. free regs)
%", (10*ROB_t ot al _occupancy)/ ($time/ cycle), (10*ALUqueue. t ot al _occupancy)/ ($ti me/ “cycle), (10*BRIR
queue. t ot al _occupancy)/ ($ti me/ "cycle), (10*LDSTqueue. t ot al _occupancy)/ ($time/ cycle), (10*LDSTQ t ot
al _occupancy)/ ($time/ "cycle), (10*free_bird. nunFree)/ ($tine/ "cycle));

$di splay ("RAS
%", (10*ras. total _occupancy)/ ($tinme/ cycle));

$di splay ("Max Full ness: \nALUQ %
\nCFQ % \ nLDSTAQ % \ nLDSTQ %\ nRAS

68

%", ALUgueue. max_f ul | ness, BRIRqueue. max_f ul | ness, LDSTqueue. max_f ul | ness, LDSTQ max_ful | ness, ras. na
x_full ness);

$di splay ("BR Predictions: %
\nlncorrect: %\ nJR Predictions: % \nlncorrect:
%", num BR predictions, num BR i ncorrect, num JR predictions, numJR_incorrect);

$di splay ("Correct Path: \nMem %
\nCF % \nSys % \nALU & NOPS %", num nmem num cf, num sys, num.i nstructions_retired-
(num_nmemtnum cf +num sys)) ;

$display ("Retired 0 1 2 3 4: % %
%l %l
%", numtimes_retire[0], numtimes_retire[1], numtimes_retire[2],numtimes_retire[3],numtimes_ret
ire[4]);

$di splay ("Renaned 0 1 2 3 4: % %
% %l
%", num tines_renane[0], num times_renane[1], numtinmes_renanme[2], numtinmes_renanme[3], numtinmes_ren
ame[4]);

$display ("Cycles Stalled: \nlStall
%l \nRenanme % \nROB %", num cycl es_istall,numcycl es_renanestal |, numcycl es_robstall);

$di splay ("Forwarded Data: %d\nWote
Forwards Early: %\ nPerforned Early Loads: %\ nForwarded Data But No Early Wite: %\ nROB Head
Loads: %\ nLoads Already Witten Before Retire:
%", num dat a_f orwar ded, num data_forwarded_witten_ahead_of tine, numearly_ | oad_accesses, num data_
forwarded_not _written, numrob_head_| oads, num | oads_witten_before_retire);

$display ("-----------“““““““-------

$fini sh;
end

/! restore register file state fromthe C
interface
for (j=1; j<32;j=j+1)
begi n
/1 Changed to syscall _getreg

nstead of syscall _regval ue

CPU.reg_file.RegFile[CPU.MAP[j]] = $syscall _getreg(j);
end
end
end
end
el se i f(ROB_i sCF[ROB_Head] [0] && ROB_Fl ushed[ROB_Head] == 0)begin
if(/**!11Stall && **/updatePredictor_WE == 0)begin
numcf = numecf + 1;
i f (ROB_Op[ROB_Head] =="sel ect_qc_j ||
ROB_(Op[ROB_Head] =="sel ect _qc_j al) begi n
//regular junps cant be wong
end
el se i f(ROB_Op[ROB_Head] =="sel ect_qc_jalr ||
ROB_(Op[ROB_Head] =="sel ect _qc_jr) begin
num JR predictions = numJR predictions + 1;

i f (ROB_Pred_Tar get [ROB_Head] ! =ROB_Ef f Addr _Tar get _PC8[ROB_Head]) begi n
numJR incorrect = numJR incorrect + 1;
correct Target =
ROB_Ef f Addr _Tar get _PC8[ROB_Head] ;
num fl ushes = num flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
/**retireDone = 1;**/
end
end
el se begin
i f(ROB_Dir[ROB_Head] ! =ROB_Pr ed[ROB_Head]) begi n
num BR i ncorrect = numBR incorrect + 1;
i f(ROB_Dir[ROB_Head])correct Target =
ROB_Pred_Tar get [ROB_Head] ;
el se correct Target =
ROB_Ef f Addr _Tar get _PC8[ROB_Head] ;
num flushes = num flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
/**retireDone = 1;**/

69

= ROB_Head + 1;

1;nunRetired = nunRetired + 1;

end
num BR predictions = numBR predictions + 1;

updat ePredi ctor _WE = 1;
updat ePr edi ct or PC = ROB_debug_PC[ROB_Head] ;
updat ePredicti on = ROB_Di r[ROB_Head];
end
/11ink
i f (ROB_i sCF[ROB_Head] [2]) begi n
ROB freel = MAP[ROB_LogReg[ROB_Head]];
ROB_unreadyl = 1<<MAP[ROB_LogReg[ROB_Head]];
MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head] ;
end
el se ROB freel = 0;

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head

num.instructions_retired = num.instructions_retired +

end
el se begin

retirebDone = 1;
end

end

el se if(ROB_i sMen{ ROB_Head] && ROB_Fl ushed[ROB_Head] == 0)begin
if(isMenRetire==0 && (((ROB_Op[ROB_Head] =="sel ect_nmem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sh ||

ROB_(Op[ROB_Head] =="sel ect _nem sb) &&(LDSTQ _hasAddr [0] &&LDSTQ hasDat a[0]))
|] (! (ROB_Op[ROB_Head] =="sel ect _mem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sh ||

ROB_Op[ROB_Head] =="sel ect _nem sb) &L DSTQ hasAddr [0] &&(| oadDone==1)))) begi n

ROB_(Op[ROB_Head] =="sel ect _nem sh ||

num | oads_witten_before_retire+l;

yet

num data_forwarded_not_witten + 1;

i f(!(ROB_Op[ROB_Head] =="sel ect_nmem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sb)) begi n

/11 oad
i f (LDSTQ hasDat a[0] && LDSTQ wr ot eVal ue[0]) begi n
num | oads_witten_before retire =
end
el se i f(LDSTQ hasDat a[0]) begi n
//got data through forwarding but didnt get to wite
pre_l oad = LDSTQ Data[0] ;
|l oad_reg = LDSTQ Data_Reg[0];
pre_load_VE = 1;
| oadDone = O0;
num dat a_forwarded_not_witten =
end
el se begin
//doesnt have its data, need to issue cache access
isMenRetire = 1;
menOp = ROB_Op[ROB_Head] ;
MAR = LDSTQ Addr[O0];
| oad_reg = ROB_PhyReg[ROB_Head] ;
| oadDone = O0;
num rob_head_| oads = num rob_head_| oads + 1,
num d_accesses = num d_accesses + 1;
end
ROB _freel = MAP[ROB_LogReg[ROB_Head]];
ROB_unreadyl = 1<<MAP[ROB_LogReg[ROB_Head]];
MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head] ;
end
el se begin
/lstore

SMDR = LDSTQ Dat a[0] ;
isMenRetire = 1;

memp = ROB_Op[ROB_Head];
MAR = LDSTQ Addr[O0];

70

ROB freel = 0;
num d_accesses = num d_accesses + 1;

end

/1shift LDSTQ forward

for(i=0;i<31;i=i+1)begin
LDSTQ Addr _Reg[i] LDSTQ Addr_Reg[i +1];
LDSTQ Dat a_Reg[i] LDSTQ Dat a_Reg[i +1];
LDSTQ Addr[i] = LDSTQ Addr[i +1];
LDSTQ Data[i] = LDSTQ Datali +1];
LDSTQ hasAddr[i] = LDSTQ hasAddr[i +1];
LDSTQ Val id[i] = LDSTQ Valid[i+1];
LDSTQ i sStore[i] = LDSTQ.isStore[i+1];
LDSTQ i sLoad[i] = LDSTQ.isLoad[i +1];
LDSTQ hasData[i] = LDSTQ hasData[i +1];
LDSTQ ROB[i] = LDSTQ ROB[i +1];
LDSTQ Si ze[i] = LDSTQ Si ze[i +1];
LDSTQ woteVal ue[i] = LDSTQ wr oteVal ue[i +1];

end

LDSTQ_Addr _Reg[31] =0;

LDSTQ Dat a_Reg[31] =0;

LDSTQ_Addr [31] =0;

LDSTQ Dat a[31] =0;

LDSTQ hasAddr [31] =0;

LDSTQ Val i d[31] =0;

LDSTQ i sSt or e[31] =0;

LDSTQ i sLoad[31] =0;

LDSTQ hasDat a[31] =0;

LDSTQ_ROB[31] =0;

LDSTQ Si ze[31] =0;

LDSTQ wr ot eVal ue[31] =0;

LDSTQ next Free = LDSTQ nextFree - 1,
dat a_snooper = data_snooper - 1;

num mem = numnmem + 1;
num.instructions_retired = num.instructions_retired +
1;nunRetired = nunRetired + 1;
/**retireDone = 1;**/
ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = O0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head
= ROB_Head + 1;
end
el se begin
retireDone = 1;
ROB freel = O;
end
end
el se begin
i f (ROB_Fl ushed[ROB_Head] ==0) num_i nstructions_retired =
num.instructions_retired + 1;
i f (ROB_i sCF[ROB_Head] [0]) begi n

i f (ROB_i sCF[ROB_Head] [2] &&ROB_LogReg[ROB_Head] ==31) i ncorrect _pushes = incorrect_pushes +
1;
i f((ROB_Op[ROB_Head] =="select_qc_jalr ||

ROB_Op[ROB_Head] =="sel ect _qc_j r) &&(ROB_debug_i nstr[ROB_Head] ["rs]==31))i ncorrect _pops =
incorrect_pops + 1;

end

nunRetired = nunRetired + 1,

i f (ROB_FIl ushed[ROB_Head] ==0) ROB_freel = MAP[ROB_LogReg[ROB_Head]];

el se i f(ROB_LogReg[ROB_Head] ! =0) ROB_freel = ROB_PhyReg[ROB_Head] ;

i f (ROB_FI ushed[ROB_Head] ==0) ROB_unr eadyl =
1<<MAP[ROB_LogReg[ROB_Head]] ;

el se i f(ROB_LogReg[ROB_Head]! =0) ROB_unreadyl =
1<<ROB_PhyReg[ROB_Head] ;

i f (ROB_FI ushed[ROB_Head] ==0) MAP[ROB_LogReg[ROB_Head]] =
ROB_PhyReg[ROB_Head] ;

i f (ROB_FI ushed[ROB_Head] ==0) begi n

end
ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;

71

ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head

ROB_Head + 1;
end
end
el se begin
ROB freel = 0;
end
/1 retirebDone = 1;

i f(ROB_Head==ROB_Tail ||
(ROB_Dep[ROB_Head] &&! ROB_Ready[(ROB_Head+1) &' b11111] &&! ROB_Fl ushed[ROB_Head])) retireDone
if(retireDone !'= 1 & (ROB_Ready[ROB_Head] == 1 || ROB_Fl ushed[ROB_Head] ==

Il
=

1)) begin
i f (ROB_i sSys[ROB_Head] && ROB_Fl ushed[ROB_Head] == 0)begin
i f (oneCycl eDel ay! =0) begi n
oneCycl eDel ay = oneCycl eDel ay - 1;
retireDone = 1;
end
el se begin
numsys = numsys + 1;
oneCycl eDel ay = 1;
num.instructions_retired = num.instructions_retired + 1;nunRetired
= nunRetired + 1;
/**retireDone = 1;**/doi ngSyscall = 1;
num flushes = numflushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1) ROB_Flushed[i] = 1,
correct Target = ROB_debug_PC ROB_Head] +4;

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head =
ROB_Head + 1;
ROB free2 = 0;
begi n
/] store register file state to the C
interface functions!
for (j=1; j<32;j=j+1)
begi n
/1 Changed to setreg instead of
setregval ue
$syscal | _setreg
(j,CPU reg_file.RegFil e[CPU. MAP[j]]);
end
$syscal | _set pc (ROB_debug_PC[ROB_Head]);
/1 store PC

/1 do the systemcall
if ($emul ate_syscall) begin
/1 exit called
$display ("-----------"-"“"------------

$di splay ("Program Term nated.");

$display ("Retired %l instructions,
%l entered ROB", num.instructions_retired, numinstructions_inserted);

$di splay ("Nunmber of flushes:
%", num f | ushes);

$di splay ("Ran for %
cycles", $tinme/ "cycle);

$di splay ("I Cache Accesses: %
\'nl Cache M sses: %", i_cache_d_cache.num.icache_accesses, num M sses);

$di spl ay ("DCache Accesses: %
\ nDCache M sses: %l", num.d_accesses, nhunDM sses);

$di spl ay ("Average Fullness: \nROB
%l \nALUQ % \nCFQ % \ nLDSTAQ % \nLDSTQ %d \nFreelist(avg. free regs)
%", (10*ROB_t ot al _occupancy)/ ($time/ cycle), (10*ALUqueue. t ot al _occupancy)/ ($ti me/ “cycle), (10*BRIR
queue. t ot al _occupancy)/ ($ti me/ "cycle), (10*LDSTqueue. t ot al _occupancy)/ ($time/ cycle), (10*LDSTQ t ot
al _occupancy)/ ($time/ "cycle), (10*free_bird. nunFree)/ ($tine/ "cycle));

$di splay ("RAS
%", (10*ras. total _occupancy)/ ($tinme/ cycle));

$di splay ("Max Full ness: \nALUQ %
\nCFQ % \ nLDSTAQ % \ nLDSTQ %\ nRAS

72

%", ALUgueue. max_f ul | ness, BRIRqueue. max_f ul | ness, LDSTqueue. max_f ul | ness, LDSTQ max_ful | ness, ras. na
x_full ness);

$di splay ("BR Predictions: %
\nlncorrect: %\ nJR Predictions: % \nlncorrect:
%", num BR predictions, num BR i ncorrect, num JR predictions, numJR_incorrect);

$di splay ("Correct Path: \nMem %
\nCF % \nSys % \nALU & NOPS %", num nmem num cf, num sys, num.i nstructions_retired-
(num_nmemtnum cf +num sys)) ;

$display ("Retired 0 1 2 3 4: % %
%l %l
%", numtimes_retire[0], numtimes_retire[1], numtimes_retire[2],numtimes_retire[3],numtimes_ret
ire[4]);

$di splay ("Renaned 0 1 2 3 4: % %
% %l
%", num tines_renane[0], num times_renane[1], numtinmes_renanme[2], numtinmes_renanme[3], numtinmes_ren
ame[4]);

$display ("Cycles Stalled: \nlStall
%l \nRenanme % \nROB %", num cycl es_istall,numcycl es_renanestal |, numcycl es_robstall);

$di splay ("Forwarded Data: %d\nWote
Forwards Early: %\ nPerforned Early Loads: %\ nForwarded Data But No Early Wite: %\ nROB Head
Loads: %\ nLoads Already Witten Before Retire:
%", num dat a_f orwar ded, num data_forwarded_witten_ahead_of tine, numearly_ | oad_accesses, num data_
forwarded_not _written, numrob_head_| oads, num | oads_witten_before_retire);

$display ("-----------“““““““-------

$fini sh;
end

/! restore register file state fromthe C
interface
for (j=1; j<32;j=j+1)
begi n
/1 Changed to syscall _getreg

nstead of syscall _regval ue

CPU.reg_file.RegFile[CPU.MAP[j]] = $syscall _getreg(j);
end
end
end
end
el se i f(ROB_i sCF[ROB_Head] [0] && ROB_Fl ushed[ROB_Head] == 0)begin
if(/**!11Stall &&**/ updatePredictor_WE == 0)begin
numcf = numecf + 1;
i f (ROB_Op[ROB_Head] =="sel ect_qc_j ||
ROB_(Op[ROB_Head] =="sel ect _qc_j al) begi n
//regular junps cant be wong
end
el se i f(ROB_Op[ROB_Head] =="sel ect_qc_jalr ||
ROB_(Op[ROB_Head] =="sel ect _qc_jr) begin
num JR predictions = numJR predictions + 1;

i f (ROB_Pred_Tar get [ROB_Head] ! =ROB_Ef f Addr _Tar get _PC8[ROB_Head]) begi n
numJR incorrect = numJR incorrect + 1;
correct Target =
ROB_Ef f Addr _Tar get _PC8[ROB_Head] ;
num fl ushes = num flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
/**retireDone = 1;**/
end
end
el se begin
i f(ROB_Dir[ROB_Head] ! =ROB_Pr ed[ROB_Head]) begi n
num BR i ncorrect = numBR incorrect + 1;
i f(ROB_Dir[ROB_Head])correct Target =
ROB_Pred_Tar get [ROB_Head] ;
el se correct Target =
ROB_Ef f Addr _Tar get _PC8[ROB_Head] ;
num flushes = num flushes + 1;fullFlush =
1;for(i=0;i<32;i=i+1)ROB_Flushed[i] = 1;
/**retireDone = 1;**/

73

= ROB_Head + 1;

1;nunRetired = nunRetired + 1;

end
num BR predictions = numBR predictions + 1;

updat ePredi ctor _WE = 1;
updat ePr edi ct or PC = ROB_debug_PC[ROB_Head] ;
updat ePredicti on = ROB_Di r[ROB_Head];
end
/11ink
i f (ROB_i sCF[ROB_Head] [2]) begi n
ROB free2 = MAP[ROB_LogReg[ROB_Head]];
ROB_unready2 = 1<<MAP[ROB_LogReg[ROB_Head]];
MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head] ;
end
el se ROB free2 = 0;

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head

num.instructions_retired = num.instructions_retired +

end
el se begin

retirebDone = 1;
end

end

el se if(ROB_i sMen{ ROB_Head] && ROB_Fl ushed[ROB_Head] == 0)begin
if(isMenRetire==0 && (((ROB_Op[ROB_Head] =="sel ect_nmem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sh ||

ROB_(Op[ROB_Head] =="sel ect _nem sb) &&(LDSTQ _hasAddr [0] &&LDSTQ hasDat a[0]))
|] (! (ROB_Op[ROB_Head] =="sel ect _mem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sh ||

ROB_Op[ROB_Head] =="sel ect _nem sb) &L DSTQ hasAddr [0] &&(| oadDone==1)))) begi n

ROB_(Op[ROB_Head] =="sel ect _nem sh ||

num | oads_witten_before_retire+l;

yet

num data_forwarded_not_witten + 1;

i f(!(ROB_Op[ROB_Head] =="sel ect_nmem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sb)) begi n

/11 oad
i f (LDSTQ hasDat a[0] && LDSTQ wr ot eVal ue[0]) begi n
num | oads_witten_before retire =
end
el se i f(LDSTQ hasDat a[0]) begi n
//got data through forwarding but didnt get to wite
pre_l oad = LDSTQ Data[0] ;
|l oad_reg = LDSTQ Data_Reg[0];
pre_load_VE = 1;
| oadDone = O0;
num dat a_forwarded_not_witten =
end
el se begin
//doesnt have its data, need to issue cache access
isMenRetire = 1;
menOp = ROB_Op[ROB_Head] ;
MAR = LDSTQ Addr[O0];
| oad_reg = ROB_PhyReg[ROB_Head] ;
| oadDone = O0;
num rob_head_| oads = num rob_head_| oads + 1,
num d_accesses = num d_accesses + 1;
end
ROB_free2 = MAP[ROB_LogReg[ROB_Head]];
ROB_unready2 = 1<<MAP[ROB_LogReg[ROB_Head]];
MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head] ;
end
el se begin
/lstore

SMDR = LDSTQ Dat a[0] ;
isMenRetire = 1;

memp = ROB_Op[ROB_Head];
MAR = LDSTQ Addr[O0];

74

ROB free2 = 0;
num d_accesses = num d_accesses + 1;

end

/1shift LDSTQ forward

for(i=0;i<31;i=i+1)begin
LDSTQ Addr _Reg[i] LDSTQ Addr_Reg[i +1];
LDSTQ Dat a_Reg[i] LDSTQ Dat a_Reg[i +1];
LDSTQ Addr[i] = LDSTQ Addr[i +1];
LDSTQ Data[i] = LDSTQ Datali +1];
LDSTQ hasAddr[i] = LDSTQ hasAddr[i +1];
LDSTQ Val id[i] = LDSTQ Valid[i+1];
LDSTQ i sStore[i] = LDSTQ.isStore[i+1];
LDSTQ i sLoad[i] = LDSTQ.isLoad[i +1];
LDSTQ hasData[i] = LDSTQ hasData[i +1];
LDSTQ ROB[i] = LDSTQ ROB[i +1];
LDSTQ Si ze[i] = LDSTQ Si ze[i +1];
LDSTQ woteVal ue[i] = LDSTQ wr oteVal ue[i +1];

end

LDSTQ_Addr _Reg[31] =0;

LDSTQ Dat a_Reg[31] =0;

LDSTQ_Addr [31] =0;

LDSTQ Dat a[31] =0;

LDSTQ hasAddr [31] =0;

LDSTQ Val i d[31] =0;

LDSTQ i sSt or e[31] =0;

LDSTQ i sLoad[31] =0;

LDSTQ hasDat a[31] =0;

LDSTQ_ROB[31] =0;

LDSTQ Si ze[31] =0;

LDSTQ wr ot eVal ue[31] =0;

LDSTQ next Free = LDSTQ nextFree - 1,
dat a_snooper = data_snooper - 1;

num mem = numnmem + 1;
num.instructions_retired = num.instructions_retired +
1;nunRetired = nunRetired + 1;
/**retireDone = 1;**/
ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = O0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head
= ROB_Head + 1;
end
el se begin

retireDone = 1;
ROB free2 = 0;
end
end
el se begin
i f (ROB_FI ushed[ROB_Head] ==0) num_i nstructions_retired =
num.instructions_retired + 1;
i f (ROB_i sCF[ROB_Head] [0]) begi n

i f (ROB_i sCF[ROB_Head] [2] &&ROB_LogReg[ROB_Head] ==31) i ncorrect _pushes = incorrect_pushes +
1;
i f((ROB_Op[ROB_Head] =="select_qc_jalr ||
ROB_Op[ROB_Head] =="sel ect _qc_j r) &(ROB_debug_i nstr[ROB_Head] ["rs]==31))i ncorrect _pops =
i ncorrect_pops + 1;
end
nunRetired = nunRetired + 1,
i f (ROB_FI ushed[ROB_Head] ==0) ROB_free2 = MAP[ROB_LogReg[ROB_Head]];
el se i f(ROB_LogReg[ROB_Head] ! =0) ROB_free2 = ROB_PhyReg[ROB_Head] ;
i f (ROB_FI ushed[ROB_Head] ==0) ROB_unr eady2 =
1<<MAP[ROB_LogReg[ROB_Head]] ;
el se i f(ROB_LogReg[ROB_Head]! =0) ROB_unr eady2 =
1<<ROB_PhyReg[ROB_Head] ;
i f (ROB_FI ushed[ROB_Head] ==0) MAP[ROB_LogReg[ROB_Head]] =
ROB_PhyReg[ROB_Head] ;
i f (ROB_FI ushed[ROB_Head] ==0) begi n

end
ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;

75

ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head
ROB_Head + 1;
end
end
el se begin
ROB free2 = 0;
end
i f(ROB_Head==ROB_Tail ||
(ROB_Dep[ROB_Head] &&! ROB_Ready[(ROB_Head+1) &' b11111] &&! ROB_Fl ushed[ROB_Head])) retireDone
if(retireDone != 1 & (ROB_Ready[ROB_Head] == 1 || ROB_Fl ushed[ROB_Head] ==

I
=

1)) begin
i f (ROB_i sSys[ROB_Head] && ROB_Fl ushed[ROB_Head] == 0)begin
i f (oneCycl eDel ay! =0) begi n
oneCycl eDel ay = oneCycl eDel ay - 1;
retireDone = 1;
end
el se begin
numsys = numsys + 1;
oneCycl eDel ay = 1;
num.instructions_retired = numinstructions_retired + 1;nunRetired
= nunRetired + 1;
/**retireDone = 1;**/doi ngSyscall = 1;
num flushes = numflushes + 1;fullFlush =
1; for(i=0;i<32;i=i+1) ROB_Flushed[i] = 1;
correct Target = ROB_debug_PC ROB_Head] +4;

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head =
ROB_Head + 1;
ROB free3 = 0;
begi n
Il store register file state to the C
interface functions!
for (j=1; j<32;j=j+1)
begi n
/1 Changed to setreg instead of
setregval ue
$syscal | _setreg
(j,CPU.reg_file.RegFile[CPU MAP[j]]);
end
$syscal | _set pc (ROB_debug_PC[ROB_Head]) ;
/1l store PC

/1 do the system call
if ($enul ate_syscall) begin
/1 exit called
$display ("--------------"-"----------

$di splay ("Program Terminated.");

$display ("Retired %l instructions,
%l entered ROB", num.instructions_retired, numinstructions_inserted);

$di splay ("Nunmber of flushes:
%", num f | ushes);

$di splay ("Ran for %l
cycles", $tinme/ cycle);

$di splay ("1Cache Accesses: %
\'nl Cache M sses: %", i_cache_d_cache. num.icache_accesses, num M sses);

$di spl ay ("DCache Accesses: %
\ nDCache M sses: %", num.d_accesses, nunDM sses);

$di splay ("Average Ful |l ness: \nROB
%l \nALUQ % \ nCFQ %l \ nLDSTAQ % \nLDSTQ %d \nFreelist(avg. free regs)
%", (10*ROB_t ot al _occupancy)/ ($time/ cycle), (10*ALUqueue. t ot al _occupancy)/ ($tine/ “cycle), (10*BRIR
queue. total _occupancy)/ ($tinme/ cycle), (10*LDSTqueue. t ot al _occupancy)/ ($ti me/ "cycle), (10*LDSTQ t ot
al _occupancy)/ ($time/ "cycle), (10*free_bird. nunFree)/ ($ti ne/ “cycle));

$di spl ay ("RAS
%", (10*ras. total _occupancy)/($time/ cycle));

$di splay ("Max Full ness: \nALUQ %d
\nCFQ % \ nLDSTAQ % \ nLDSTQ %\ nRAS
%", ALUgueue. max_f ul | ness, BRIRqueue. max_f ul | ness, LDSTqueue. max_f ul | ness, LDSTQ max_ful | ness, ras. na
x_full ness);

76

$di splay ("BR Predictions: %
\nlncorrect: %\ nJR Predictions: % \nlncorrect:
%", num BR predictions,num BR i ncorrect, num JR predictions, numJR incorrect);

$di splay ("Correct Path: \nMem %l
\nCF % \nSys % \nALU & NOPS %", num mem num cf, num sys, num.i nstructions_retired-
(num_nem-num cf +num sys)) ;

$display ("Retired 0 1 2 3 4: % %
%l %
%", numtines_retire[0],numtimes_retire[1],numtimes_retire[2],numtimes_retire[3], numtimnmes_ret
iref[4]);

$display ("Renaned 0 1 2 3 4. % %
% %
%", num times_renane[0], num times_renanme[1], numti mes_renanme[2], numtinmes_rename[3], numtinmes_ren
ame[4]);

$di splay ("Cycles Stalled: \nlStall
%l \nRenane %l \nROB %", num cycl es_istall,numcycl es_renanestal |, numcycles_robstall);

$di spl ay ("Forwarded Data: %\ nWote
Forwards Early: %\ nPerforned Early Loads: %d\nForwarded Data But No Early Wite: %\ nROB Head
Loads: %\ nLoads Already Witten Before Retire:
%", num dat a_f or war ded, num dat a_f orwarded_witten_ahead_of _tine, numearly_| oad_accesses, num data_
forwarded_not _written, numrob_head_| oads, num | oads_witten_before_retire);

$display ("----------“““““-“--------

$fini sh;
end

/'l restore register file state fromthe C
interface
for (j=1; j<32;j=j+1)
begi n
/1 Changed to syscall _getreg

nstead of syscall _regval ue

CPU.reg file.RegFile[CPU. MAP[j]] = $syscall _getreg(j);
end
end
end
end
el se i f(ROB_i sCF[ROB_Head] [0] && ROB_Fl ushed[ROB_Head] == 0)begin
if(/**11sStall &&**/ updatePredictor_WE == 0)begin
numcf = numcf + 1;
i f (ROB_Op[ROB_Head]=="select_qc_j ||
ROB_Op[ROB_Head] =="sel ect _qc_j al) begi n
//regular junps cant be wong
end
el se i f(ROB_Op[ROB_Head] =="select_qc_jalr ||
ROB_Op[ROB_Head] =="sel ect _qc_j r) begin
num JR predictions = numJR predictions + 1;

i f (ROB_Pred_Target [ROB_Head] ! =ROB_Ef f Addr _Tar get _PC8[ROB_Head]) begi n
num JR incorrect = numJR incorrect + 1;
correct Target =
ROB_Ef f Addr _Tar get _PC8[ROB_Head] ;
num flushes = numflushes + 1;fullFlush =

1; for(i=0;i<32;i=i+1)ROB_Flushed[i] 1;
/**retireDone = 1;**/
end
end
el se begin
i f (ROB_Di r[ROB_Head] ! =ROB_Pr ed[ROB_Head]) begi n
num BR i ncorrect = numBR incorrect + 1;
if(ROB_Dir[ROB_Head])correct Target =
ROB_Pred_Tar get [ROB_Head] ;
el se correctTarget =
ROB_Ef f Addr _Tar get _PC8[ROB_Head] ;
num flushes = numflushes + 1;fullFlush =
1; for(i=0;i<32;i=i+1)ROB_Flushed[i]

1l
=

/**retireDone = 1;**/
end
num BR predictions = numBR predictions + 1;

77

= ROB_Head + 1;
1;nunRetired = nunRetired + 1;

end

updat ePredi ctor _WE = 1;
updat ePr edi ct or PC = ROB_debug_PC[ROB_Head] ;
updat ePredi cti on = ROB_Di r[ROB_Head] ;
end
[11ink
i f (ROB_i sCF[ROB_Head] [2]) begin
ROB_free3 = MAP[ROB_LogReg[ROB_Head]] ;
ROB_unready3 = 1<<MAP[ROB_LogReg[ROB_Head]];
MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head] ;
end
el se ROB_free3 = 0;

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = O0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head

num.instructions_retired = num.instructions_retired +

el se begin

end
end

retireDone = 1;

el se if(ROB_i sMen]{ ROB_Head] && ROB_Fl ushed[ROB_Head] == 0)begin
if(isMenRetire==0 && (((ROB_Op[ROB_Head] =="sel ect_nmem sw | |

ROB_(Op[ROB_Head] =="sel ect _nem sh ||

ROB_Op[ROB_Head] =="sel ect _nem sb) &&(LDSTQ hasAddr [0] &&LDSTQ hasDat a[0]))
|] (! (ROB_Op[ROB_Head] =="sel ect _nem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sh ||

ROB_Op[ROB_Head] =="sel ect _nem sb) &L DSTQ hasAddr [0] &&(| oadDone==1)))) begi n

ROB_Op[ROB_Head] =="sel ect _nem sh ||

num | oads_written_before_retire+l;

yet

num data_forwarded_not_witten + 1;

i f(!(ROB_Op[ROB_Head] =="sel ect_nmem sw | |

ROB_Op[ROB_Head] =="sel ect _nem sb)) begi n

/11 oad
i f (LDSTQ hasDat a[0] && LDSTQ wr ot eVal ue[0]) begi n
num | oads_witten_before_retire =
end
el se i f(LDSTQ hasDat a[0]) begi n
/1 got data through forwarding but didnt get to wite
pre_load = LDSTQ Data[0];
| oad_reg = LDSTQ Data_Reg[0] ;
pre_l oad_VE = 1;
| oadDone = 0;
num data_forwarded_not_witten =
end
el se begin
//doesnt have its data, need to issue cache access
isMenRetire = 1;
menOp = ROB_Op[ROB_Head] ;
MAR = LDSTQ Addr[O0];
| oad_reg = ROB_PhyReg[ROB_Head] ;
| oadDone = O0;
num rob_head_| oads = numrob_head_| oads + 1;
num d_accesses = num d_accesses + 1;
end
ROB_free3 = MAP[ROB_LogReg[ROB_Head]] ;
ROB_unready3 = 1<<MAP[ROB_LogReg[ROB_Head]];
MAP[ROB_LogReg[ROB_Head]] = ROB_PhyReg[ROB_Head] ;
end
el se begin
/lstore

SMDR = LDSTQ Dat a[0] ;

isMenRetire = 1;

memOp = ROB_Op[ROB_Head] ;

MAR = LDSTQ Addr[O0];

ROB free3 = 0;

num d_accesses = num d_accesses + 1;

78

end

//shift LDSTQ forward

for(i=0;i<31;i=i+1)begin
LDSTQ Addr _Reg[i] LDSTQ Addr _Reg[i +1];
LDSTQ Dat a_Reg[i] LDSTQ Data_Reg[i +1];
LDSTQ Addr[i] = LDSTQ Addr[i +1];
LDSTQ Data[i] = LDSTQ Data[i +1];
LDSTQ hasAddr[i] = LDSTQ hasAddr[i +1];
LDSTQ Val id[i] = LDSTQ Valid[i+1];
LDSTQ i sStore[i] = LDSTQ.isStore[i+1];
LDSTQ i sLoad[i] = LDSTQ_ isLoad[i +1];
LDSTQ hasData[i] = LDSTQ hasData[i +1];
LDSTQ ROB[i] = LDSTQ ROB[i +1];
LDSTQ Size[i] = LDSTQ Size[i +1];
LDSTQ woteVal ue[i] = LDSTQ wr oteVal ue[i +1];

end

LDSTQ Addr _Reg[31] =0;

LDSTQ Dat a_Reg[31] =0;

LDSTQ Addr [31] =0;

LDSTQ Dat a[31] =0;

LDSTQ hasAddr [31] =0;

LDSTQ Val i d[31] =0;

LDSTQ i sSt or e[31] =0;

LDSTQ i sLoad[31] =0;

LDSTQ hasDat a[31] =0;

LDSTQ ROB[31] =0;

LDSTQ Si ze[31] =0;

LDSTQ wr ot eVal ue[31] =0;

LDSTQ next Free = LDSTQ next Free - 1;
dat a_snooper = data_snooper - 1;

num. nmem = num.nem + 1;

num.instructions_retired = num.instructions_retired +
1;nunRetired = nunRetired + 1;

/**retireDone = 1;**/

ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;

ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head
= ROB_Head + 1;

end
el se begin

retireDone = 1;
ROB free3 = 0;
end
end
el se begin
i f (ROB_Fl ushed[ROB_Head] ==0) num_i nstructions_retired =
num.instructions_retired + 1;
i f (ROB_i sCF[ROB_Head] [0]) begi n

i f (ROB_i sCF[ROB_Head] [2] &ROB_LogReg[ROB_Head] ==31) i ncorrect _pushes = incorrect_pushes +
1;
i f((ROB_Op[ROB_Head] =="sel ect_qc_jalr ||

ROB_Op[ROB_Head] =="sel ect _qc_j r) &&(ROB_debug_i nstr[ROB_Head] ["rs]==31))i ncorrect _pops =
incorrect_pops + 1;

end

nunRetired = nunRetired + 1;

i f (ROB_FI ushed[ROB_Head] ==0) ROB_free3 = MAP[ROB_LogReg[ROB_Head]] ;

el se i f (ROB_LogReg[ROB_Head] ! =0) ROB_free3 = ROB_PhyReg[ROB_Head] ;

i f (ROB_FI ushed[ROB_Head] ==0) ROB_unr eady3 =
1<<MAP[ROB_LogReg[ROB_Head]] ;

el se i f (ROB_LogReg[ROB_Head] ! =0) ROB_unr eady3 =
1<<ROB_PhyReg[ROB_Head] ;

i f (ROB_FI ushed[ROB_Head] ==0) MAP[ROB_LogReg[ROB_Head]] =
ROB_PhyReg[ROB_Head] ;

i f (ROB_FI ushed[ROB_Head] ==0) begi n

end
ROB_Ready[ROB_Head] = 0; ROB_Fl ushed[ROB_Head] = 0;
ROB_LogReg[ROB_Head] = 0; ROB_PhyReg[ROB_Head] = 0; ROB_Head =
ROB_Head + 1;

79

end

end
el se begin

ROB free3 = 0;
end

ROB_Free = nunRetired + ROB_Free;
numtimes_retire[nunRetired] =numtimes_retire[nunRetired]+1;
unresol ved_store = 0;
earl yaccess = 0;
/1 Fl ush LDSTQ
i f(fullFlush)begin
for(i=0;i<32;i=i+1)begin
LDSTQ Valid[i] = 0;
end
LDSTQ next Free = 0;
end
el se begin
//1ssue Loads if nothing else is using the WB reg or d$
for(i=0;i<32;i=i+1)begin
if(loadDone == 1 && (isMenRetire == 0 || !isLoad &&
LDSTQ hasData[i]) && LDSTQ isLoad[i] && LDSTQ Valid[i] && LDSTQ hasAddr[i] &&
I LDSTQ wr ot eVal ue[i]) begin
i f (LDSTQ hasData[i])begin
/1 got data through forwarding but didnt get to wite yet
pre_load = LDSTQ Datali];
|l oad_reg = LDSTQ Data_Reg[i];
pre_l oad_VE = 1;
| oadDone = O0;
LDSTQ woteVal ue[i] = 1;
num data_forwarded_written_ahead_of _tine =
num dat a_forwarded_written_ahead_of _tine + 1;
end
el se begin
//dont issue the load until you know noone overl aps,
if they can forward the data, wait til they do
unresol ved_store = 0;
for(j=0;j<ij;j=j+1)begin

if(LDSTQ isStore[j]&&(!'LDSTQ hasAddr[j]]]| ((LDSTQ Addr[j] &32' hFFFFFFFC) ==(LDSTQ Addr[i] &32
" hFFFFFFFC)))) begi n
unresol ved_store = 1;

end

end

//doesnt have its data, need to issue cache access

i f(unresolved_store == 0)begin
earlyaccess = 1;
isMenRetire = 1;
menOp = ROB_Op[LDSTQ ROB[i]];
MAR = LDSTQ Addr[i];
|l oad_reg = LDSTQ Data_Reg[i];
| oadDone = O0;
LDSTQ woteVal ue[i] = 1;
LDSTQ hasData[i] = 1;
num early_| oad_accesses =

num early_| oad_accesses + 1;

num d_accesses = num d_accesses + 1;

end

end
end
end
end/ /1 dstq

end
end
al ways @*) begin

if(r_i SCFA[2]

) begi
i nk_VE =

n
1;

80

link_reg = r_rdA;
link_value = r_i mmA
link_ready = 1 << r_rdA
end
else if(r_i sCFB[2])begin
link_WE = 1;
link_reg = r_rdB;
link_value = r_i mB;
link_ready = 1 << r_rdB;
end
else if(r_isCFC2])begin
link_VE = 1;
link_reg = r_rdGC
link_value = r_i mC,
link_ready = 1 << r_rdC
end
else if(r_isCFD[2])begin
link_WE = 1;
link_reg = r_rdD
link_value = r_i mD,
link_ready = 1 << r_rdD;
end
el se begin
link_VWE = 0;
link_ready = 0;
link_value = 0;
link_reg = 0;
end

end
wire [63:0] i_readyA i _readyB,i_readyC, i _readyD,
ready_register_list ready_regs(
. RESET(RESET) ,
. CLK(CLK),
.toBeReadyO(i _readyA),
.toBeReadyl(i _readyB),
.toBeReady?2(I i nk_r eady),
.t oBeReady3(| oad_r eady),
. cl ear ReadyO(ROB_unr eadyO0) ,
. cl ear Ready1(ROB_unr eadyl),
. ¢l ear Ready2(ROB_unr eady?),
. ¢l ear Ready3(ROB_unr eady3),
. ReadyLi st (readylLi st),
.full Flush(ful |l Fl ush)
)

/11ssue Queues

//output wires fromissue queue/reg file

re [7:0] i_opA i_opB,i_opC, i_opDh

re [5:0] i_rsAi_rsB,i_rsCi_rsDi_rtAi_rtB,i_rtCi_rtD

re [5:0] i_rdA i_rdB,i_rdC i_rdD

re [31:0] iv_rsAiv_rsB,iv_rsCiv_rsDiv_rtAiv_rtB,iv_rtCiv_rtD
re i _useslmm i_usesl mB, i _usesl nmC, i _usesl mb,

re [31:0] i_immAi_imB,i_imC i_imb,

re [4:0] i_ROBA i _ROBB,i_ROBC, i _ROBD,

£ 222228

wi re ALUQueueFul I, LDSTQueueFul |, BRIRQueueFul | ;

wire [1:0] ALUNum ssued, LDSTNum ssued, BRIRNum ssued;

//registers piping to execution units

reg [7:0] ir_opAir_opB,ir_opC ir_opD

reg [5:0] ir_rsAjir_rsByir_rsCir_rsDiir_rtAir_rtB,ir_rtCir_rtD
reg [5:0] ir_rdAir_rdB,ir_rdC ir_rdD,

reg [31:0] irv_rsAirv_rsB,irv_rsCirv_rsDirv_rtAirv_rtB,irv_rtCirv_rtD
reg ir_useslnmA ir_useslmB,ir_useslmtC, ir_usesl mb,

reg [31:0] ir_immAir_imB,ir_imC, ir_imD;

reg [4:0] ir_ROBA ir_ROBB,ir_ROBC, ir_ROBD;

reg [1:0] ir_ALUNum ssued,ir_LDSTNum ssued, i r_BRIRNum ssued;

/'l pipeline registers

al ways @ posedge CLK) begin
ir_OopA =i _opA ir_opB
ir_rsA=1i_rsAir_rsB

i _opD;
i _rsh;

i_opB;ir_opC =i_opC ir_opD
i_rsB;ir_rsC=1i_rsCir_rsD

81

ir rtA=i_rtAir_rtB=i_rtBjir_rtC=1i_rtCir_rtD=1i_rtD

ir_ rdA=1i_rdAir_rdB =i _rdB;ir_rdC =i _rdCir_rdD = i_rdD

irv_rsA=1iv_rsAirv_rsB =iv_rsB;irv_rsC=iv_rsCirv_rsD = iv_rsD
irv_rtA=iv_rtAirv_rtB=iv_rtBjirv_rtC=iv_rtCirv_rtD=1iv_rtD;

ir_useslnmmA = i _usesInmA;ir_useslmB = i _useslmB;ir_useslmC = i_useslmC;ir_useslmbD =

i _usesl mmD;
ir_immA =i_imAir_imB=i_imBir_imC=i_imCir_imD=i_imD,
ir ROBA = i _ROBA;ir_ROBB = i _ROBB;ir_ROBC = i _ROBC;ir_ROBD = i _ROBD,

i r:ALUNum ssued = ALUNumi ssugd; i r_LD§TNun1 ssued = LDSTNumi ssued; i r _BRIRNuml ssued =
BRIRNum ssued;
end

i ssue_queue ALUgueue (

. RESET(RESET) ,

. CLK(CLK) ,

.full Flush(full Flush),

. maxl| ssue(2' b10),

. queueNun{ * ALUQueue) ,

. readyFl ags(readylLi st),

.inQperationO(r_opA),.inlmediateO(r_imhA),.inRTO(r_rtA),.inRSO(r_rsA),.inRDO(r_rdA),.inQ
ueueO(r_queueA), . i NROBO(ROB_sl ot 0), . i nU mO(r _uses| nm),

.inQperationl(r_opB),.inlmediatel(r_imB),.inRT1(r_rtB),.inRS1(r_rsB),.inRD1(r_rdB),.inQ
ueuel(r_queueB),.i nROB1(ROB_slot1l),.inU ml(r_usesl mB),

.inQperation2(r_opQ,.inlmediate2(r_imC),.inRT2(r_rtC),.inRS2(r_rsC),.inRD2(r_rdC),.inQ
ueue2(r_queueC), . i NnROB2(ROB_sl ot 2), . i nU m2(r _usesl mT),

.inQperation3(r_opD),.inlmediate3(r_imD),.inRT3(r_rtD),.inRS3(r_rsD),.inRD3(r_rdD),.inQ
ueue3(r_queueD), .i nROB3(ROB_sl ot 3), . i nU mB(r _usesl mD),

.out Operation0O(i_opA), .outlnmedi ate0(i _i nmA), . out RTO(i _rtA),.outRSO(i_rsA),.out RDO(i_rdA)
, . out ROBO(i _ROBA), . out U mO(i _usesl mm),

.out Qperationl(i_opB),.outlnmediatel(i_inmB),.outRT1(i_rtB),.outRS1(i_rsB),.outRD1(i_rdB)
, . out ROB1(i _ROBB), . out U nml(i_usesl mB),

.out ReadyFl ag0(i _readyA), . out ReadyFl agl(i _readyB),

. QueueTooFul | (ALUQueueFul I'),

. num ssued(ALUNum ssued)
)i
i ssue_queue LDSTqueue(

. RESET(RESET) ,

. CLK(CLK),

.ful I Flush(ful I Fl ush),

. maxl| ssue(2' b01),

. queueNun(* MEMQueue) ,

.readyFl ags(readylLi st),

.inOperation0(r_opA), .inlmediateO(r_i mA), .inRTO(6"' b0), .inRSO(r_rsA),.inRDO(r_rdA), .inQu
eueO(r_queueA), . i nROBO(ROB_sl ot0), . i nU mO(r_usesl mm),

.inQperationl(r_opB),.inlmediatel(r_imB),.inRT1(6' b0),.inRS1(r_rsB),.inRD1(r_rdB),.inQu
euel(r_queueB), .i nROBL(ROB sl ot1),.inU mml(r_usesl mB),

.inOperation2(r_opQ), .inlmediate2(r_imC), .inRT2(6"'b0), .inRS2(r_rsC,.inRD2(r_rdQ), .inQu
eue2(r_queueC), . i nROB2(ROB_sl ot 2), . i nU mR2(r_usesl mQC),

.inQperation3(r_opD),.inlmediate3(r_imD),.inRT3(6"b0),.inRS3(r_rsD),.inRD3(r_rdD), .inQu
eue3(r_queueD), . i nROB3(ROB_sl ot 3),.inU mB(r_usesl mD),

.out Qperation0(i_opC), .outlnediate0(i_i mC),.outRTO(i_rtC),.outRSO(i_rsC),.outRDO(i_rdC)
, . out ROBO(i _ROBC), . out U mO(i _usesl mQ),

.out Operationl(),.outlnmediatel(),.outRT1(),.outRS1(),.outRDL(), .outROBL(),.outU mml(),//

NC
. out ReadyFl ag0(i _readyC),
.out ReadyFl ag1(),//NC
. QueueTooFul | (LDSTQueueFul I'),
. nunl ssued(LDSTNum ssued)

)

i ssue_queue BRIRqueue(

. RESET(RESET) ,

. CLK(CLK),

.ful I Flush(full Fl ush),

. maxl| ssue(2' b01),

. queueNun(* BRQueue) ,

.readyFl ags(readylLi st),

.inOperation0(r_opA), .inlmediateO(r_imA),.inRTO(r_rtA),.inRSO(r_rsA),.inRDO(r_rdA),.inQ
ueueO(r_queueA), . i nNROBO(ROB_sl ot 0), . i nU mO(r _uses| nmA) ,

.inQperationl(r_opB),.inlmediatel(r_imB),.inRT1(r_rtB),.inRS1(r_rsB),.inRD1(r_rdB),.inQ
ueuel(r_queueB), .i nROB1(ROB_sl ot 1), .inU mmi(r_usesl mB),

82

.inQperation2(r_opQ),.inlmediate2(r_imC),.inRT2(r_rtC),.inRS2(r_rsC,.inRD2(r_rdC),.inQ
ueue2(r_queueC), .i nROB2(ROB_sl ot 2), . i nU m®2(r _usesl mT),

.inOperation3(r_opD), .inlmediate3(r_imD),.inRT3(r_rtD),.inRS3(r_rsD),.inRD3(r_rdD),.inQ
ueue3(r_queueD), .i nROB3(ROB_sl ot 3), . i nU mB(r _usesl mD),

.out OperationO(i_opD), . outlnmedi ate0(i _i D), .out RTO(i _rtD),.outRSO(i_rsD),.outRDO(i_rdD)
, . out ROBO(i _ROBD), . out U mO(i _usesl mD),

.out Qperationl(),.outlmrediatel(),.outRT1(),.outRS1(),.outRDL(), .out ROBL(),.outU mm(),//

NC
. out ReadyFl agO(i _readyD),
.out ReadyFl agl1(),//NC
. QueueTooFul | (BRIRQueueFul I'),
. num ssued(BRIRNum ssued)

)i

// Execution Units
/I bypassing/ forwarding logic to all ow dependant instructions to issue back to back
wire [31:0] aluO_rs_v,alu0_rt_v,alul_rs_v,alul_rt_v,ldst_rs_v,brjr_rs_v,brjr_rt_v;

forwarding al u0_rs(
.rfValue(irv_rsA),.rfAddr(ir_rsA),
. wbOVal ue(exv_rdA), . woOAddr (ex_rdA), // ALUO
.wblVal ue(exv_rdB), . wblAddr (ex_rdB),//ALUL
.wb2Val ue(cacheQut), . wb2Addr (1 oad_reg),// Load?
.wb3Val ue(link_val ue),.wb3Addr (link_reg),//Link
.out Val ue(al u0_rs_v)

)i

forwarding al u0_rt(
.rfValue(irv_rtA),.rfAddr(ir_rtA),
. whOVal ue(exv_rdA), . woOAddr (ex_rdA), // ALUO
.wblVal ue(exv_rdB), . wblAddr (ex_rdB),// ALUL
.wb2Val ue(cacheQut), . wb2Addr (1 oad_reg),// Load?
.wb3Val ue(link_val ue),.wb3Addr (link_reg),//Link
.out Val ue(al u0_rt_v)

)

forwarding al ul_rs(
.rfValue(irv_rsB),.rfAddr(ir_rsB),
. wbOVal ue(exv_rdA), . woOAddr (ex_rdA), // ALUO
.wb1lVal ue(exv_rdB), . wb1lAddr (ex_rdB),//ALUL
.wh2Val ue(cacheQut), . wo2Addr (1 oad_reg),// Load?
.wb3Val ue(link_val ue),.wb3Addr (link_reg),//Link
.outVal ue(al ul_rs_v)

)

forwarding alul_rt(
.rfValue(irv_rtB),.rfAddr(ir_rtB),
. wbOVal ue(exv_rdA), . woOAddr (ex_rdA), // ALUO
.wblVal ue(exv_rdB), . wblAddr (ex_rdB),// ALUL
.wb2Val ue(cacheQut), . wb2Addr (1 oad_reg),// Load?
.wb3Val ue(link_val ue),.wb3Addr (link_reg),//Link
.outValue(alul_rt_v)

)i

forwardi ng addr _rs(
.rfValue(irv_rsC,.rfAddr(ir_rsQ),
. wbOVal ue(exv_rdA), . woOAddr (ex_rdA), // ALUO
.wblVal ue(exv_rdB), . wblAddr (ex_rdB),//ALUL
.wb2Val ue(cacheQut), . wb2Addr (1 oad_reg),// Load?
.wb3Val ue(link_val ue),.wb3Addr (link_reg),//Link
.out Val ue(l dst _rs_v)

)i

forwarding br_rs(
.rfValue(irv_rsD),.rfAddr(ir_rsD),
. wbOVal ue(exv_rdA), . woOAddr (ex_rdA), // ALUO
.wb1lVal ue(exv_rdB), .wb1lAddr (ex_rdB),//ALUL
.wb2Val ue(cacheQut), . wo2Addr (1 oad_reg),// Load?
.wb3Val ue(link_val ue),.wb3Addr (link_reg),//Link
.outValue(brjr_rs_v)

)

forwarding br_rt(
.rfValue(irv_rtD),.rfAddr(ir_rtD),
. wbOVal ue(exv_rdA), . woOAddr (ex_rdA), // ALUO
.wblVal ue(exv_rdB), . wblAddr (ex_rdB),// ALUL
.wb2Val ue(cacheQut), . wb2Addr (1 oad_reg),// Load?

83

.wb3Val ue(link_val ue),.wb3Addr (link_reg),//Link
.out Val ue(brjr_rt_v)

)i

forwardi ng store_val ue_fwd(
.rfVal ue(pre_store_value),.rfAddr(store_reg),
. wbOVal ue(exv_rdA), . woOAddr (ex_rdA), // ALUO
.wb1lVal ue(exv_rdB), . wb1lAddr (ex_rdB),//ALUL
. wb2Val ue(cacheQut), . wb2Addr (1 oad_reg),// Load?
.whb3Val ue(link_val ue),.wb3Addr (| ink_reg),//Link
.out Val ue(store_val ue)

al ways @ posedge CLK)begin
ex_rdA = ir_rdA;
ex_rdB = ir_rdB;
exv_rdA = ALUO_out;
exv_rdB = ALUl_out;

if(ir_ALUNum ssued == 2)begin

ALUO_VE = 1;
ALUL_VE = 1,
end
else if(ir_ALUNum ssued == 1)begin
ALUO_VE = 1,
ALUL_WE = 0;
end
el se begin
ALUO_VE = 0;
ALUL_WE = 0;
end
got Fl ushed = ful |l Fl ush;
LDST _Done = ir_LDSTNum ssued;
BRIJR _Done = ir_BRIJRNunml ssued;

i

i
ex_BRIR taken = BRIR_t aken;
ex_Eff Addr = Eff Addr;
ex_BRIR target = BRIR target;
ex_ROBA = ir_ROBA
ex_ROBB = ir_ROBB;
ex_ROBC = i r_ROBC,
ex_ROBD = i r_ROBD,

end

al u al uo(
. RSOper and(al u0d_rs_v),
. RTOperand(al u0_rt_v),
I mmedi ate(ir_i mA),
. Usel medi at e(i r_usesl mm),
. ALUOp(i r_opA),
. ALUout (ALUO_out)
)
al u al ul(
. RSOperand(al ul_rs_v),
. RTOperand(al ul_rt_v),
.Imedi ate(ir_i mB),
. Usel medi at e(i r_usesl mB),
. ALUOp(i r _opB),
. ALUout (ALUL_out)

addr _cal ¢ | dst_addr (
.RegVval (I dst_rs_v),
.Immedi ate(ir_i mOC),
. Ef f Addr (Ef f Addr)

)

branch_conpare br_qc_jr(
. RSOperand(brjr_rs_v),
.RTOQperand(brjr_rt_v),
. Conpari sonType(ir_opD),
. Taken(BRIR_t aken),
. Target (BRIR t arget)

84

reg [5:0] phy_to_log0, phy_to_| ogl, phy_to_l og2, phy_to_l 0g3;

al ways @*)begin
for(i=0;i<34;i=i+1)begin
if(MAP[i] == ex_rdA) phy_to_log0 =i
if(MAP[i] == ex_rdB) phy_to_logl =i
if(MAP[i] == link_reg) phy_to_log2 =i;
if(MAP[i] == load_reg) phy_to_log3 =
end
end

wire [31:0] pre_l oad_data;
assign pre_l oad_data = (pre_|l oad_VE) ?pre_| oad: cacheCQut ;

/I Witeback / RegFile
physical _register_file reg_file(
. RESET(RESET) ,
. CLK(CLK) ,
. ReadAddr 0(i _rsA), . ReadVal ue0O(iv_rsA),
. ReadAddr 1(i _rsB), . ReadVal uel(iv_rsB),
. ReadAddr 2(i _rsC), . ReadVal ue2(iv_rsQC),
. ReadAddr 3(i _rsD), . ReadVal ue3(iv_rsD),
. ReadAddr4(i _rtA),.ReadVal ue4(iv_rtA),
. ReadAddr 5(i _rtB), . ReadVal ue5(iv_rtB),
. ReadAddr 6(store_reg), . ReadVal ue6(pre_store_val ue),
. ReadAddr 7(i _rtD), . ReadVal ue7(iv_rtD),
.WiteVal ue0O(exv_rdA),. WiteAddrO(ex_rdA),.WiteEnabl eO(ALUO_VE),
.WiteVal uel(exv_rdB),.WiteAddr1l(ex_rdB),.WiteEnabl el(ALUL_VE),
.WiteVval ue2(link_value),.WiteAddr2(link_reg),.WiteEnabl e2(link_\E),
.WiteVal ue3(pre_l oad_data),.WiteAddr3(l oad_reg),.WiteEnabl e3(isLoad|| pre_l oad_\VE)
)i

initial begin

/| $shm open();

/1 $shm probe(CPU, "AMC");
end

endnodul e

Khkkhkhkhkhhkhhkhhkhhhhhhhkhhhkhhhhhdhkhhkhhkhdkhkkkhx

rename. v
“include "mps.h"

nodul e
renanme(RESET, CLK, ful | Fl ush, num nstr, repl acement MAP, nunfr ee, renaneSt al | , nunRenaned, i St al | ed,

i NRSO, i nRTO, i nRDO, out RSO, out RTO, out RDO, f r ee0,
i nRS1, i nRT1, i nRD1, out RS1, out RT1, out RD1, freel,
i NRS2, i nRT2, i nRD2, out RS2, out RT2, out RD2, f r ee2,
i NRS3, i NRT3, i nRD3, out RS3, out RT3, out RD3, free3,

ab_swap, bc_swap, cd_swap, ab_dependant, bc_dependant, cd_dependant) ;

i nput RESET, CLK, ful | Flush,i Stall ed;

input [2:0] numnstr;

i nput [203:0] replacenment MAP;

input [7:0] nunFree;

i nput ab_swap, bc_swap, cd_swap;

out put renaneStall;

reg [5:0] newMAP[33:0];

i nput [5:0]

i NRSO, i nRTO, i nRDO, i nRS1, i nRT1, i nRDL, i nRS2, i nRT2, i nRD2, i nRS3, i nRT3, i nRD3, free0, freel, free2, free3;
output reg [5:0]

out RSO, out RTO, out RDO, out RS1, out RT1, out RD1, out RS2, out RT2, out RD2, out RS3, out RT3, out RD3;
output reg [2:0] numRenaned;

out put reg ab_dependant, bc_dependant, cd_dependant ;

reg [5:0] MAP[33:0];

85

reg ab_|,bc_I,cd_l|;
wi re bot hab, bot hbc, bot hed;

assign
assi gn
assign
assign

al ways

end

i nt eger

al ways

bot hab = ab_dependant &b _I ;
bot hbc = bc_dependant &c_| ;
bot hcd = cd_dependant &d_| ;
renameStal |l = nunfFree < 4
@*)begin
ab_dependant = 0
bc_dependant = 0
cd_dependant = 0
ab | =0
bc | =0
cd_ Il =0
i f (ab_swap) begi n
if(inRDO && (i NRDO ==
el se ab_dependant = 0
if(inRDL && (i nRD1 ==
else ab | =0
end
i f (bc_swap) begin
if(inRDL && (i nRD1 ==
el se bc_dependant = 0
if(inRD2 && (inRD2
else bc_| =0
end
i f(cd_swap) begin
if(inRD2 && (i nRD2 ==
el se cd_dependant =
if(inRD3 && (i nRD3 ==
elsecd |l =0
end
i
@*) begin
newMAP[0] = repl acenent MAP[5: 0] ;
newMAP[1] = repl acenent VAP[11
newMAP[2] = repl acenment MAP[17
newMAP[3] = repl acenent MAP[23
newMAP[4] = repl acenent VAP[29
newMAP[5] = repl acenent MAP[35
newMAP[6] = repl acenent VAP[41
newMAP[7] = repl acenment MAP[47
newMAP[8] = repl acenent MAP[53
newMAP[9] = repl acenent VAP[59
newMAP[10] = repl acenent MAP[65
newMAP[11] = repl acenment MAP[71
newMAP[12] = repl acement MAP[77:
newMAP[13] = repl acenment MAP[83
newMAP[14] = repl acenent MAP[89
newMAP[15] = repl acenment MAP[95
newMAP[16] = repl acenment MAP[101
newMAP[17] = repl acenment MAP[107
newMAP[18] = repl acement MAP[113
newMAP[19] = repl acenment MAP[119
newVAP[20] = repl acenment MAP[125
newMAP[21] = repl acenment MAP[131
newMAP[22] = repl acenent MAP[137
newMAP[23] = repl acement MAP[143
newMAP[24] = repl acenent MAP[149
newVAP[25] = repl acenment MAP[155
newMAP[26] = repl acenment MAP[161
newMAP[27] = repl acenment MAP[167
newAP[28] = repl acement MAP[173
newMAP[29] = repl acenment MAP[179
newMAP[30] = repl acenent MAP[185
newMAP[31] = repl acenment MAP[191

nRDO

nRD1

nRD1

nRD2

nRD2

nRD3

86

nRDO

nRD1

nRD1

nRD2

nRD2

nRD3

nRD1)) ab_dependant

nRDO))ab_| =1

nRD2)) bc_dependant

nRD1))bc_ | =1

nRD3)) cd_dependant

nRD2))cd_| =1

newiVAP[32]
newiVAP[33]

repl acement MAP[197: 192] ;
repl acenment MAP[203: 198] ;

end

al ways @ posedge CLK) begin
i f (RESET) begin
for(i=0;i<34;i=i+1)begin

MAP[i] =1;
end
Out RSO = 0; outRTO = 0; outRDO = O;
OUtRS1 = 0; outRT1 = 0; outRDl1 = O;
OUtRS2 = 0; outRT2 = 0; outRD2 = O;
OUtRS3 = 0; OutRT3 = 0; outRD3 = 0;
numRenaned = 0;
end
el se begin
i f(fullFlush)begin
for(i=0;i<34;i=i+1)begin
MAP[i] = newMAP[i];
end
Out RSO = 0; outRTO = 0; outRDO = O;
OutRS1 = 0; outRT1 = 0; outRDl1 = O;
OUtRS2 = 0; OutRT2 = 0; outRD2 = 0;
OUutRS3 = 0; OutRT3 = 0; outRD3 = 0;
numRenanmed = 0;
end
el se begin
if(renameStall)begin
Out RSO = 0; outRTO = 0; outRDO = O;
OutRS1 = 0; outRT1 = 0; outRDl1 = O;
OUtRS2 = 0; OutRT2 = 0; outRD2 = 0;
OutRS3 = 0; OutRT3 = 0; outRD3 = 0;
numRenanmed = 0;
end
el se begin
Out RSO = 0; outRTO = 0; outRDO = O;
OutRS1 = 0; OoutRT1l = 0; outRDL = O;
OUtRS2 = 0; outRT2 = 0; outRD2 = O;
OUtRS3 = 0; outRT3 = 0; outRD3 = O;
case(numl nstr)
3' d0: begin
nunRenanmed = O;
end
3'dl: begin
numRenaned = 0;
out RSO = MAP[i nRSO0] ;
out RTO = MAP[i nRTO] ;
i f (i nRDO) begin
case(nunmRenaned)
3' dO: begi n
out RDO = free0O;
MAP[i nRDO] = free0;
end
3'dl: begin
end
3'd2: begin
end
3'd3: begin
end
def aul t: begin
end
endcase
nunRenanmed = nunRenaned + 1;
end
el se begin
out RDO = O;
end
end
3'd2: begin

87

i f (ab_swap) begi n
nunRenaned = 0
out RS1 = MAP[i nRS1];
out RT1 = MAP[i nRT1];
i f (i nRD1) begi n
case(nunmRenaned)
3' d0: begin
out RD1 = free0
MAP[i nRD1] = free0
end
3' d1: begin
end
3'd2: begin
end
3'd3: begin
end
def aul t: begi n
end
endcase
numRenanmed = nunmRenanmed + 1
end
el se begin
outRD1 = O;
end
out RSO = MAP[i nRSO] ;
out RTO = MAP[i nRTO] ;
i f (i nRDO) begi n
case(nunmRenaned)

3'dO: begin
out RDO = free0
MAP[i nRDO] = free0
end
3'dl: begin
out RDO = freel
MAP[i nRDO] = freel
end
3'd2: begin
end
3'd3: begin
end
def aul t: begi n
end
endcase
nunRenanmed = nunRenaned + 1
end
el se begin
OutRDO = 0
end

end
el se begin
nunRenaned = 0
out RSO = MAP[i nRSO0] ;
out RTO = MAP[i nRTO] ;
i f (i nRDO) begi n
case(nunmRenaned)
3' dO: begin
out RDO = free0
MAP[i nRDO] = freeO;
end
3'dl: begin
end
3' d2: begin
end
3'd3: begin
end
def aul t: begin
end
endcase
numRenanmed = nunRenanmed + 1
end
el se begin

88

end
3'd3: begin

outRDO = 0
end
out RS1 = MAP[i nRS1];
out RT1 = MAP[i nRT1];
i f (i nRD1) begi n
case(nunmRenaned)

numRenanmed = 0

out RSO

3' d0: begin
out RD1 = free0
MAP[i nRD1] = free0
end
3' d1: begin
outRD1L = freel
MAP[i nRD1] = freel
end
3' d2: begin
end
3'd3: begin
end
def aul t: begin
end
endcase
numRenanmed = nunRenanmed + 1
end
el se begin
out RD1 = O;
end
end
= MAP[i nRSO0] ;

out RTO = MAP[i nRTO] ;

89

i f (i NRDO) begi n
case(nunmRenaned)
3' d0: begi n
out RDO = free0
MAP[i nRDO] = free0
end
3' d1: begin
end
3'd2: begin
end
3'd3: begin
end
def aul t: begin
end
endcase
numRenanmed = nunmRenanmed + 1
end
el se begin
outRDO = 0
end
i f (bc_swap) begin
out RS2 = MAP[i nRS2] ;
out RT2 = MAP[i nRT2];
i f (i nRD2) begi n
case(nunRenaned)

3' d0: begin
out RD2 =
MAP[i nRD2]
end
3'dl: begin
out RD2 =
MAP[i nRD2]
end
3'd2: begin
end

3'd3: begin
end
def aul t: begin
end
endcase
nunRenaned = nunRenaned + 1
end
el se begin
outRD2 = 0
end
out RS1 = MAP[i nRS1];
out RT1 = MAP[i nRT1];
i f (i nRD1) begi n
case(nunRenaned)

3' d0: begin
out RD1 =
free0;
MAP[i nRD1] =
free0;
end
3'dl: begin
out RD1 =
freel;
MAP[i nRD1] =
freel;
end
3'd2: begin
out RD1 =
free2;
MAP[i nRD1] =
free2;
end
3'd3: begin
end
def aul t: begin
end
endcase
numRenaned = nunRenanmed + 1
end
el se begin
out RD1 = O;
end
end
el se begin
out RS1 = MAP[i nRS1];
out RT1 = MAP[i nRT1];
i f(inRDl)begin
case(nunmRenaned)
3' dO: begin
out RD1 =
free0;
MAP[i nRD1] =
free0;
end
3' d1: begin
out RD1 =
freel;
MAP[i nNRD1] =
freel;
end
3'd2: begin
end
3'd3: begin
end
def aul t: begi n
end
endcase
nunRenanmed = nunRenaned + 1
end
el se begin
out RD1 = O;

90

end
out RS2 = MAP[i nRS2] ;
out RT2 = MAP[i nRT2];
i f (i nRD2) begi n
case(nunmRenaned)

3' d0: begin
out RD2 =
free0;
MAP[i nRD2] =
free0;
end
3'dl: begin
out RD2 =
freel;
MAP[i NRD2] =
freel;
end
3'd2: begin
out RD2 =
free2;
MAP[i nRD2] =
free2;
end
3'd3: begin
end
def aul t: begi n
end
endcase
nunRenanmed = nunRenaned + 1
end
el se begin
outRD2 = 0
end
end
end
3'd4: begin

numRenanmed = 0
out RSO = MAP[i nRSO] ;
out RTO = MAP[i nRTO] ;
i f (i nRDO) begi n
case(nunmRenaned)
3' d0: begin
out RDO = free0
MAP[i nRDO] = free0;
end
3'dl: begin
end
3'd2: begin
end
3'd3: begin
end
def aul t: begin
end
endcase
nunRenaned = nunRenanmed + 1
end
el se begin
outRDO = 0
end
out RS1 = MAP[i nRS1];
out RT1 = MAP[i nRT1];
i f(inRDl)begin
case(nunmRenaned)

3' d0: begin
out RD1 = free0
MAP[i nRD1] = free0
end
3'dl: begin
outRD1 = freel
MAP[i nRD1] = freel
end

91

3'd2: begin
end
3'd3: begin
end
def aul t: begin
end
endcase
numRenanmed = nunmRenanmed + 1
end
el se begin
out RD1 = O;
end
i f(cd_swap) begin
out RS3 = MAP[i nRS3];
out RT3 = MAP[i nRT3];
i f (i nRD3) begi n
case(nunmRenaned)

3' d0: begin
out RD3 =
free0;
MAP[i nNRD3] =
free0;
end
3'dl: begin
out RD3 =
freel;
MAP[i nRD3] =
freel;
end
3'd2: begin
out RD3 =
free2;
MAP[i nRD3] =
free2;
end
3'd3: begin
end
def aul t: begi n
end
endcase
nunRenanmed = nunRenaned + 1
end
el se begin
outRD3 = 0
end
out RS2 = MAP[i nRS2] ;
out RT2 = MAP[i nRT2];
i f (i nRD2) begi n
case(nunmRenaned)
3' d0: begin
out RD2 =
free0;
MAP[i nRD2] =
free0;
end
3'dl: begin
out RD2 =
freel;
MAP[i nNRD2] =
freel;
end
3' d2: begin
out RD2 =
free2;
MAP[i nRD2] =
free2;
end
3'd3: begin
out RD2 =
free3;

92

MAP[i NRD2] =
free3;

end
def aul t: begi n
end
endcase
numRenanmed = nunmRenanmed + 1
end
el se begin
outRD2 = 0
end
end
el se begin
out RS2 = MAP[i nRS2] ;
out RT2 = MAP[i nRT2] ;
i f (i nRD2) begi n
case(nunRenaned)

3' d0: begin
out RD2 = free0
MAP[i nRD2] = free0
end
3' d1: begin
out RD2 = freel
MAP[i nRD2] = freel
end
3'd2: begin
out RD2 = free2
MAP[i nRD2] = free2
end
3'd3: begin
end
def aul t: begin
end
endcase
nunRenanmed = nunRenaned + 1
end
el se begin
outRD2 = 0
end

out RS3 = MAP[i nRS3];
out RT3 = MAP[i nRT3];
i f (i nRD3) begi n
case(nunmRenaned)

3' d0: begin
out RD3 = free0
MAP[i nRD3] = free0;
end
3'dl: begin
out RD3 = freel
MAP[i nRD3] = freel
end
3'd2: begin
out RD3 = free2
MAP[i nRD3] = free2
end
3' d3: begin
out RD3 = free3
MAP[i nRD3] = free3
end
def aul t: begi n
end
endcase
numRenanmed = nunmRenanmed + 1
end
el se begin
OutRD3 = 0
end

93

end
end
defaul t: begin
nunRenanmed = O;

end
endcase
end
end

end
end
endnodul e
khkkkkhkhkkhkkhkhkkhhkkhhkhhhkhhkhhkkhhhhhkdhdhhhhkdhdhhhhxxx*k
freelist.v
“include "m ps.h"
nodul e
freeli st (RESET, CLK, nunRequest, nunfree, free0, freel, free2, free3, numAdd, nowFr ee0, nowFr eel, nowFr ee2, n
owFr ee3)

i nput RESET, CLK

input [2:0] nunRequest;

output reg [7:0] nunfFree

output [5:0] freeO,freel,free2,free3d

input [2:0] nunmAdd

input [5:0] nowFreeO0, nowrr eel, nowrr ee2, nowrr ee3

reg [31:0] total _free

reg [5:0] freeRegisters[29:0];

reg [5:0] head,tail;//add at tail, renove from head
reg [2:0] nonZero

assign free3
assign free2
assign freel
assign free0

freeRegi sters[head];

freeRegi st ers[(head+30- 1) 9%30] ;
freeRegi st er s[(head+30- 2) %30] ;
freeRegi st er s[(head+30- 3) 9%30] ;

integer i;

al ways @ negedge CLK)begin

i f (RESET) begi n
for(i=0;i<30;i=i+l)freeRegisters[i]=i+34
head = 3
tail =0
nunfFree = 30
total _free = 0;

end

el se begin

nonZero = 0

i f (nowFr ee0) begi n
freeRegisters[tail] = nowFree0
tail =tail + 1
if(tail==30)tail=0
nonZero = nonZero + 1

end

i f (nowFr eel) begin
freeRegisters[tail] = nowFreel
tail =tail + 1
if(tail==30)tail=0
nonZero = nonZero + 1

end

i f (nowFree2) begin
freeRegisters[tail] = nowFree2
tail =tail + 1
if(tail==30)tail=0
nonZero = nonZero + 1

end

i f (nowFr ee3) begi n
freeRegisters[tail] = nowFree3
tail =tail + 1

94

if(tail==30)tail =0;
nonZero = nonZero + 1,
end

nunfree = nunfFree - nunRequest + nonZero;
total _free = total _free + nunfree;
head = head + nunRequest;
i f (head>=30) head=head- 30;
end
end

endnodul e

Khhkhhhhhkhhkhhhhhkhhhhkhhkhhhkhhkhhkhhhkhhkhhkkhkhk k%

return_address_stack.v
“include "m ps.h"

nmodul e return_address_stack(RESET, CLK, push, pop, Li nkPC, PredPC, i ncorrect _pushes, i ncorrect_pops);
i nput RESET;

i nput CLK;

i nput push;

i nput pop;

input [31:0] LinkPC

output reg [31:0] PredPC

reg [31:0] predStack[15:0];

reg [3:0] count;

reg [31:0] m ssed;

input [2:0] incorrect_pops,incorrect_pushes;
reg [2: 0] add_pops, renove_pushes;

reg [31:0] total _occupancy, max_full ness;

integer i;

al ways @ posedge CLK) begin
i f (RESET) begi n
count = O;
m ssed = O;
for(i=0;i<16;i=i +1)begin
predStack[i] = 0;
end
PredPC = 0;
total _occupancy = O;
max_full ness = 0;

end

el se begin
add_pops = incorrect_pops;
remove_pushes = incorrect_pushes;

for(i=0;i<4;i=i+1)begin
i f (add_pops) begi n
if(count !'= 15)begin
count = count + 1;

end
el se begin

m ssed = nissed + 1;
end

add_pops = add_pops - 1;
end
end
for(i=0;i<4;i=i+1)begin
i f (renobve_pushes) begin
if(mssed != 0)begin
m ssed = missed - 1;
end
el se begin
if(count !'= 0)begin
count = count - 1;
end
end
renove_pushes = renove_pushes - 1;

95

end
end
i f(count!=0)PredPC = predStack[count-1];
i f (pop) begi n
if(mssed !'= 0)begin
m ssed = missed - 1;
end
el se begin
if(count !'= 0)begin
count = count - 1;

end
end
end
i f (push) begin
if(count != 15)begin
predSt ack[count] =Li nkPC;
count = count + 1;
end
el se begin
m ssed = nissed + 1;
end
end

total _occupancy = total _occupancy + count+m ssed;
i f(count+m ssed > max_full ness)max_ful |l ness = count +m ssed;
end
end

endnodul e

Khhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhkhhkhhkkhkhhkhkhkkhkhkkx

branch_predictor.v
“include "m ps.h"

nodul e

branch_pr edi ct or (RESET, CLK, PC, Predi cti on, Updat eEnabl e, Updat ePC, Updat eVal ue, Predi ct or Sel ect, Di r ect
ion);

i nput RESET;

i nput CLK;

input [31:0] PC

out put Prediction;

i nput Updat eEnabl e;

input [31:0] UpdatePC;

i nput Updat eVal ue;

input [2:0] PredictorSelect;
input Direction;

wi re DPred;
w re GPred;
wire PPred;
wre TPred,;
w re VPred;

reg [7:0] GHR

reg [7:0] LHR [255:0];

reg [1:0] GSatCnt [255:0];
reg [1:0] PSatCnt [255:0];
reg [1:0] TSatCnt [255:0];

integer i;

assign DPred = (Direction)? 1'bl : 1'b0;//If direction is backwards, predict taken, if direction
is forward, predict not taken

assign GPred = GSatCnt[GHR][1];// 1 ndexed by GHR, top nmost bit of sat cnt is prediction

assign PPred = PSatCnt[PC[9:2]][1];//1ndexed by |ower bits of PC (not the two LSB, =0),top nost
bit of sat cnt is prediction

assign TPred = TSatCnt [LHRIPC[9: 2]]]1[1];//1ndex first table of history registers with pc, index
sat cnt table with that history

assign VPred = ((TPred&GPred)| (TPred&PPred)| (GPred&PPred));

/1 Sel ect the Prediction to Use

96

assign Prediction = (PredictorSel ect == “sel ect_pred_dpred)?DPred: 1' bz

Predi ction = (PredictorSel ect == “sel ect_pred_gpred)?GPred: 1' bz

Prediction = (PredictorSelect == “sel ect_pred_ppred)?PPred: 1' bz
Prediction = (PredictorSelect == “select_pred_tpred)?TPred: 1' bz

Prediction = (PredictorSelect == “sel ect_pred_vpred)?VPred: 1' bz

al ways @ posedge CLK or RESET) begin
i f (RESET) begi n
//Clear table on Reset; Shouldn't need to but sinmulator will conplain undefined

ot herw se
GHR = 0
for(i=0;i<256;i=i+1) LHR[i] =0
for(i=0;i<256;i=i+1) GSatCnt[i] = 2'b01
for(i=0;i<256;i=i+1l) PSatCnt[i] = 2'b01
for(i=0;i<256;i=i+1) TSatCnt[i] = 2' b0l
end
el se if(Updat eEnabl e) begi n
/1 GPred
case(GSatCnt[GHR])
2' b00: begi n
i f (Updat eVal ue) GSat Cnt [GHR] = 2' b01
el se GSatCnt[GHR] = 2' b00
end
2' b01: begin
i f (Updat eVal ue) GSat Cnt [GHR] = 2' b10
el se GSatCnt[GHR] = 2' b0O;
end
2' b10: begin
i f (Updat eVal ue) GSatCnt [GHR] = 2' b1l
else GSatCnt [GHR] = 2' b0l
end
2' b1l: begin
i f (Updat eVal ue) GSatCnt [GHR] = 2' b1l
el se GSatCnt[GHR] = 2' b10
end
endcase

GHR = (GHR << 1) | Updat eVal ue

/1 PPred
case(PSat Cnt [Updat ePC[9: 2]])
2' b00: begi n
i f (Updat eVal ue) PSat Cnt [Updat ePC[9: 2]] = 2' b0l
el se PSat Cnt[UpdatePC[9:2]] = 2'b00
end
2' b01: begin
i f (Updat eVal ue) PSat Cnt [Updat ePC[9: 2]] = 2'bl0
el se PSat Cnt[UpdatePC[9:2]] = 2'b00
end
2' b10: begi n
i f (Updat eVal ue) PSat Cnt [Updat ePC[9: 2]] = 2'bll
el se PSat Cnt[UpdatePC[9:2]] = 2'b01
end
2' b1l: begin
i f (Updat eVal ue) PSat Cnt [Updat ePC[9: 2]] = 2'bll
el se PSat Cnt[UpdatePC[9:2]] = 2'bl0
end
endcase
/1 TPred
case(TSat Cnt [LHR[Updat ePC[9: 2]1])
2' b00: begi n
i f (Updat eVal ue) TSat Cnt [LHR[Updat ePC[9: 2]]] = 2' b0l
el se TSat Cnt[LHR[UpdatePC[9:2]]] = 2' b00
end
2' b01: begin
i f (Updat eVal ue) TSat Cnt [LHR[Updat ePC[9: 2]]] = 2' bl0
el se TSat Cnt[LHR[UpdatePC[9:2]]] = 2' b00
end
2' b10: begi n

i f (Updat eVal ue) TSat Cnt [LHR[Updat ePC[9: 2]]]
el se TSat Cnt[LHR[UpdatePC[9:2]]] = 2'b01

2' b11;

97

end
2' bll: begin
i f (Updat eVal ue) TSat Cnt [LHR[Updat ePC[9: 2]]] = 2' b1l
el se TSat Cnt[LHR[UpdatePC[9:2]]] = 2'bl0
end
endcase
LHR[Updat ePC[9: 2]] = (LHR][Updat ePC[9: 2]] <<1) | Updat eVal ue

end
end

endnodul e

khkkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkhkkhkhkhkkhkkhkkhkkkkkkkkk*x*%

decode. v
“include "m ps.h"

nmodul e
decode(instr, operation, operation2, queue,rs,rt,rd, rd2, usesl medi ate, i nmedi ate, i sSyscal | ,i sMem i sMu
ItDiv,isCF, isALU, PC target, full Flush);

input [31:0] instr

input [31:0] PC

input full Flush

output reg [7:0] operation, operation2
output reg [1:0] queue

output reg [5:0] rs,rt,rd, rd2

out put reg usesl nmedi ate

output reg [31:0] inmediate

output reg isSyscall,isMemisMiltDiv,isALU
output reg [2:0] isCF;

output reg [31:0] target;

wire [31:0] PC4

assign PC4 = PC+4

al wvays @*) begin
i f(fullFlush)begin
operation = 0
operation2 = 0
queue = 0
rs 0;
rt 0;
rd 0;
rd2 = 0;
medi at e
sSyscal
sMem = 0
sMil tDi v
sCF =0
SALU = 0
target = 0

0; useslmediate = 0;
0

i
i
i
i 0;
i
i

end
el se begin
casex({instr[op], instr[function], instr[rt]})
{ SPECI AL, " ADD, “dc5 }:begin
operation = “select_al u_add
operation2 = 0
queue = "~ ALUQueue

rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
i mredi ate = 0; useslmediate = 0
isSyscall =0
isMem = 0;
isMultDiv = 0
isCF =0
isALU = 1
target = PC+4

98

end

{> SPECI AL, " ADDU, “dc5 }:begin
operation = “sel ect_al u_add;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
imedi ate = 0; useslmmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1,
target = PC+4,
end
{ SPECI AL, " SUB, “dc5 }:begin
operation = “sel ect_al u_sub;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
i medi ate = 0; useslmmediate = 0;
isSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PC+4,
end
{* SPECI AL, " SUBU, “dc5 }:begin
operation = “sel ect_al u_sub;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
i medi ate = 0; useslmmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PC+4,
end
{ SPECI AL, "SLT, “dc5 }:begin
operation = “select_alu_slt;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
i medi ate = 0; useslmmediate = 0;
isSyscall = 0;
isMem = 0;
ismultDiv = 0;
i sCF = 0;
i SALU = 1;
target = PC+4,
end
{ SPECI AL, " SLTU, “dc5 }:begin
operation = “select_alu_sltu;

operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];

99

rd = instr[rd];

rd2 = 0;
imediate = 0; useslmmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PCt+4;
end
{" SPECI AL, " AND, “dc5 }:begin
operation = “sel ect_al u_and;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
imediate = 0; useslmediate = 0;
isSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PCt+4;
end
{" SPECI AL, "OR, “dc5 }:begin
operation = “select_alu_or;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
imediate = 0; useslmmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PC+4,
end
{" SPECI AL, " XOR, “dc5 }:begin
operation = “sel ect_al u_xor;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr['rt];
rd = instr[rd];
rd2 = 0;
imediate = 0; useslmmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PCt+4;
end
{ SPECI AL, " NOR, “dc5 }:begin
operation = “sel ect_al u_nor;

operation2 = 0;
queue = "~ ALUQueue;

rs =instr[rs];

rt =instr[rt];

rd = instr[rd];

rd2 = 0;

imediate = 0; useslmediate = 0;
isSyscall = 0;

isMem = 0;

ismultDiv = 0;

isCF = 0;

100

i SALU = 1;
target = PC+4,
end
{ " SPECI AL, " SRL, “dc5 }:begin
operation = “select_alu_srl;

operation2 = 0;
queue = "~ ALUQueue;

rs = 0;
rt =instr[rt];
rd = instr[rd];
rd2 = 0;

i mredi ate = {16' b0,
instr[inmmediate]}; useslmediate = 1;

i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i sALU = 1;

target = PC+4;

end

{ SPECI AL, " SRA, “dc5 }:begin

operation = “select_alu_sra;

operation2 = 0;
queue = "~ ALUQueue;

rs = 0;
rt =instr['rt];
rd = instr[rd];

rd2 = 0;
i mredi ate = {16' b0,
instr[immediate]}; useslnmediate = 1;

isSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;

target = PC+4,

end

{ SPECI AL, " SLL, “dc5 }:begin

operation = “select_alu_sll;

operation2 = 0;
queue = "~ ALUQueue;

rs = 0;
rt =instr[rt];
rd = instr[rd];
rd2 = 0;

i mredi ate = {16' b0,
instr[imediate]}; useslmediate = 1;

i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;

target = PCt+4;

end

{" SPECI AL, "SLLV, “dc5 }:begin

operation = “select_alu_sll;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr['rt];
rd = instr[rd];
rd2 = 0;
imediate = 0; useslmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;

target = PC+4,

end

{ " SPECI AL, "SRLV, “dc5 }:begin

101

operation = “select_alu_srl;
operation2 = 0;
queue = "~ ALUQueue;

rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
i mredi ate = 0; useslmediate = 0;
isSyscall = 0;
isMem = 0;
isMultDiv = 0;
isCF = 0;
i SALU = 1;
target = PCt+4;
end
{" SPECI AL, " SRAV, “dc5 }:begin
operation = “select_alu_sra;
operation2 = 0;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];
rd = instr[rd];
rd2 = 0;
i mredi ate = 0; useslmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PC+4,
end
{ SPECI AL, "JR, “dc5 }:begin
operation = “select_qc_jr;
operation2 = 0;
queue = "~ BRQueue;
rs =instr[rs];
rt = 0;
rd = 0;
rd2 = 0;
i mredi ate = 0; useslnmediate = O;
i sSyscall = 0;
isMem = 0;
isMmultDiv = 0;
isCF = 1;
i SALU = 0;
target = 0;
end
{ " SPECI AL, "JALR, “dc5 }:begin
operation = “select_qc_jalr;

operation2 = 0;
queue = "~ BRQueue;

rs =instr[rs];
rt = 0;

rd = instr[rd];
rd2 = 0;

i mredi ate = PC+8; useslmediate = 0;
i sSyscal |l = 0;
isMem = 0;
ismultDiv = 0;

i sCF = 3'bl101;

i SALU = 0;
target = 0;

end

{ SPECI AL, "~ SYSCALL, “dc5 }:begin

operation = 0;
operation2 = 0;
queue = 0;

rs
rt
rd
rd2 = 0;

0;
0;
0;

102

i mredi ate = 0; useslmediate = O;
i sSyscall = 1;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i sALU = 0;
target = PC+4,
end
{ SPECI AL, " BREAK, “dc5 }:begin
operation = O;
operation2 = 0;
queue = O;
rs = 0;
re = 0;
rd = 0;
rd2 = 0;
i mredi ate = 0; useslmediate = O;
i sSyscal |l = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i sALU = 0;
target = PC+4;
end
{ " SPECI AL, * MULT, “dc5 }:begin
operation = “select_alu_mult_h;
operation2 = “select_alu_mult_I;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr['rt];
rd = 32;
rd2 = 33;
i mredi ate = 0; useslmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 1,
isCF = 0;
i sALU = 1;
target = PC+4;
end
{ SPECI AL, "~ MJULTU, “dc5 }:begin
operation = “select_alu_nul tu_h;
operation2 = “select_alu_multu_l;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr['rt];
rd = 32;
rd2 = 33;
i mredi ate = 0; useslmediate = O;
i sSyscall = 0;
isMem = 0;
ismultDiv = 1;
isCF = 0;
i sALU = 1;
target = PC+4,
end
{ SPECI AL, “DIV, “dc5 }:begin
operation = “select_alu_div_h;
operation2 = “select_alu_div_|;
queue = "~ ALUQueue;
rs =instr[rs];
rt =instr[rt];
rd = 32;
rd2 = 33;
i mredi ate = 0; useslmediate = 0;
i sSyscal |l = 0;
isMem = 0;
ismultDiv = 1;
isCF = 0;
i sALU = 1;
target = PCt+4;

103

end

{ " SPECI AL, "DI VU, “dc5 }:begin

operation = “select_al u_divu_h;

operation2 = “select_alu_divu_l;

queue = "~ ALUQueue;

rs instr[rs];

rt instr[rt];

rd 32;

rd2 = 33;
i medi ate
i sSyscal |
isMem = 0;
isMultDiv
i
i

0; useslmediate = 0;
0;

1
sCF = 0;
1

sALU ;
PC+4;

target
end

{ " SPECI AL, "~ MFHI, “dc5 }:begin

operation = “select_alu_nfhi;

operation2 = 0;

queue = "~ ALUQueue;

rs 32;

rt 0;

rd instr[rd];

rd2 = 0;
i medi ate = 0; useslmmediate = 0;
isSyscall = 0;
isMem = 0;
i
i
i

sMultDi v
sCF = 0;

1;
PC+4;

0;

SALU
target
end

{" SPECI AL, "~ MFLO, “dc5 }:begin
operation = “select_alu_nflo;
operation2 = 0;
queue = "~ ALUQueue;

rs = 33;
rt = 0;
rd = instr[rd];
rd2 = 0;
i mredi ate = 0; useslmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PC+4,
end
{"REG MM "dc6, "BLTZ}:begin
operation = “select_qc_Itz;

operation2 = 0;
queue = "~ BRQueue;

rs =instr[rs];
rt = 0;
rd = 0;
rd2 = 0;
imediate = 0; useslmediate = 0;
isSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = {1' b0, instr[15], 1" bl};
i sSALU = 0;
target = PC4 + {{14{instr[15]}},
instr[imediate], 2'b0};
end
{ REG MM "dc6, “BGEZ}:begin
operation = “select_qc_gez;

operation2 = 0;
queue = "~ BRQueue;
rs =instr[rs];

104

t 0;
d 0;
d2 = 0;
nmedi at e

i
i sSyscal |
i sMem = 0;
i

is

i

usesl medi ate = 0;

0
0;
sl\/UItDlv 0;

= {1' b0, instr[15], 1" bl};

sALU = 0;
target = PC4 + {{14{instr[15]}},

instr[inmmediate], 2'b0};
end
{"REG MM "dc6, "BGEZAL}: begin
operation = “sel ect_qc_gez;
operation2 = 0;
queue = "~ BRQueue;

rs =instr[rs];
rt = 0;
rd = instr[rd];
rd2 = 0;
i mredi ate = PC+8; useslmediate = 0;
i sSyscall = 0;
isMem = 0;
|sI\/UItD|v = 0;
is = {1'bl,instr[15], 1" bl};
|sALU= 0;
target = PC4 + {{14{instr[15]}},
instr[i mediate], 2'b0};
end
{"REG MM "dc6, "BLTZAL}: begin
operation = “select_qc_ltz;

operation2 = 0;
queue = "~ BRQueue;

rs =instr[rs];

rt = 0;

rd = instr[rd];

rd2 = 0;

i medi ate = PC+8; useslmediate = 0;

i sSyscall = 0;

isMem = 0;

isl\/uItDiv = 0;

is = {1'bl,instr[15], 1" bl};

|sALU=O

target = PC4 + {{14{instr[15]}},
instr[imediate], 2'b0};

end

{ ADDI, “dc6, "dc5 }: begin
operation = “sel ect_al u_add;
operation2 = 0;
queue = "~ ALUQueue;
rs instr[rs];
rt 0;
rd instr[rt];
rd2 = 0;
i medi ate

{{16{instr[15]}},

instr[immediate]}; useslmediate = 1;
i sSyscal |
isMem = 0;
isMultDiv
isCF = 0;
i SALU = 1,
target = PCt+4;
end

0;

0;

{ADDI U, “dc6, "dc5 }: begin
operation = “sel ect_al u_add;
operation2 = 0;
queue = "~ ALUQueue;

rs =instr[rs];
rt = 0;
rd = instr[rt];
rd2 = 0;

105

instr[imediate]}; useslnmediate =

{"SLTI, “dc6, “dc5 }: begin

instr[immediate]}; useslnmediate =

{"SLTIU, “dc6, “dc5 }: begin

instr[inmmediate]}; useslmediate =

{"ANDI, “dc6, "dc5 }: begin

instr[inmmediate]}; useslmediate =

{ ORI, “dc6, “dc5 }: begin

instr[imediate]}; useslnmediate =

1;

1;

1;

1;

1;

106

i mrediate = {{16{instr[15]}},

isSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;
i SALU = 1;
target = PC+4,
end
operation = “select_alu_slt;

operation2 = 0;
queue = "~ ALUQueue;

rs =instr[rs];
re = 0;

rd =instr[rt];
rd2 = 0;
imediate = {{16{instr[15]}},
isSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;

i SALU = 1,
target = PCt+4;
end

operation = “select_alu_sltu;
operation2 = 0;

queue = "~ ALUQueue;

rs instr[rs];

rt 0;

rd instr[rt];

rd2 = 0;

imediate = {{16{instr[15]}},

i sSyscall = 0;
isMem = 0;
isMultDiv
isCF = 0;
i sALU = 1,
target = PCt+4;
end

0;

operation = “sel ect_al u_and;
operation2 = 0;

queue = "~ ALUQueue;

rs instr[rs];

rt ;

rd instr[rt];

rd2 = 0;

i mredi ate = {16' b0,

i sSyscal |

isMem = 0;

ismultDiv = 0;

isCF = 0;

i SALU 1;
target PC+4,
end

0;

operation = “select_alu_or;
operation2 = 0;
queue = "~ ALUQueue;

rs =instr[rs];
rt = 0;
rd = instr[rt];
rd2 = 0;

i mredi ate = {16' b0,

i sSyscall = 0;

{"XORI, “dc6, "dc5 }: begin

instr[imrediate]}; useslnmediate = 1;

{ LU, “dc6, “dc5 }: begin

16' b0}; usesl mrediate = 1,

{"Lw “dc6, “dc5 }: begin

instr[immediate]}; useslnmediate = 1;

{" LHY, “dc6, “dc5 }: begin

instr[imediate]}; useslmediate = 1;

107

isMem = 0;
ismultDiv = 0;
isCF = 0;

i sALU 1;
target PC+4;
end

operation = “sel ect_al u_xor;
operation2 = 0;

queue = "~ ALUQueue;

rs =instr[rs];

rt 0;

rd instr[rt];

rd2 = 0;

i mredi ate = {16' b0,

i sSyscal |
isMem = 0;
isMultDiv
isCF = 0;
i SALU = 1,
target = PC+4,
end

0;

0;

operation = “select_alu_or;
operation2 = 0;

queue = "~ ALUQueue;

rs = instr[rs];

rt 0;

rd instr[rt];

rd2 = 0;

imediate = {instr[i medi ate],

i sSyscal |

i sMem = 0;

isMultDiv

isCF = 0;

i SALU 1;
target PC+4;
end

0;

0;

operation = “select_memlw,
operation2 = 0;

queue = " MEMQueue;

rs instr[rs];

rt 0;

rd instr[rt];

rd2 = 0;

imrediate = {{16{instr[15]}},

i sSyscal |

isMem = 1,

isMultDiv

isCF = 0;

i SALU 0;
target PC+4;
end

0;

0,

operation = “sel ect_mem.| hu;
operation2 = 0;
queue = " MEMQueue;

rs =instr[rs];

rt = 0;

rd =instr[rt];

rd2 = 0;
imediate = {{16{instr[15]}},
isSyscall = 0;

isMem = 1,

ismultDiv = 0;

isCF = 0;

{ LH, “dc6, “dc5 }: begin

instr[immediate]}; useslmmediate

{ LBU, “dc6, “dc5 }: begi

instr[imediate]}; useslnmediate

{ LB, “dc6, “dc5 }: begi

instr[inmmediate]}; useslnmediate

{"sw “dc6, “dc5 }: begi

instr[imrediate]}; useslnmediate

108

i SALU = 0;
target = PC+4,
end
operation = “select_nmem| h;

operation2 = 0;
queue = " MEMQueue;
rs instr[rs];
rt ;
rd instr[rt];
rd2 = 0;
i mredi at e

{{16{instr[15]}},

i sSyscal |
isMem = 1,
isMultDiv
isCF = 0;
i SALU = 0;
target = PC+4;
end

0

0;

operation = “sel ect_nmem| bu;
operation2 = 0;

queue = " MEMQueue;

rs instr[rs];

rt ;
rd instr[rt];
rd2 = 0;

i mredi ate

{{16{instr[15]}},

0;

i sSyscal |

isMem = 1,

isMultDiv

isCF = 0;

i SALU 0;
target PC+4;
end

0

operation = “select_mem.| b;
operation2 = 0;

queue = " MEMQueue;

rs instr[rs];

rt ;
rd instr[rt];
rd2 = 0;
i medi ate

{{16{instr[15]}},

i sSyscal |
isMem = 1;
isMultDiv
isCF = 0;
i SALU = 0;
target = PCt+4;
end

0;

0

operation = "sel ect_nmem sw,
operation2 = 0;
queue = " MEMQueue;

rs =instr[rs];
rt =instr['rt];
rd = 0;

rd2 = 0;
imrediate = {{16{instr[15]}},
isSyscall = 0;
isMem = 1;
ismultDiv = 0;
isCF = 0;

i SALU = 0;
target = PC+4,
end

{" SH, “dc6, “dc5 }: begin
operation = “sel ect_mem sh;
operation2 = 0;
queue = " MEMQueue;

rs =instr[rs];
re =instr[rt];
rd = 0;
rd2 = 0;
imrediate = {{16{instr[15]}},
instr[imediate]}; useslmediate = 1;
i sSyscall = 0;
isMem = 1;
ismultDiv = 0;
isCF = 0;
i sALU = 0;
target = PC+4,
end
{" SB, “dc6, "dc5 }: begin
operation = “sel ect_mem sb;

operation2 = 0;
queue = " MEMQueue;

rs =instr[rs];
rt =instr[rt];
rd = 0;
rd2 = 0;
imrediate = {{16{instr[15]}},
instr[imediate]}; useslmediate = 1;
isSyscall = 0;
isMem = 1;
ismultDiv = 0;
isCF = 0;
i SALU = 0;
target = PCt+4;
end
{3, “dc6, "dc5 }: begin
operation = “select_qc_j;
operation2 = 0;
queue = O;
rs = 0;
rt = 0;
rd = 0;
rd2 = 0;
i medi ate = 0; useslmediate = 0;
isSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 1;
i SALU = 0;
target =
{PC4[31:28],instr[target], 2' b0};
end
{ JAL, “dc6, “dc5 }: begin
operation = “select_qc_jal;
operation2 = 0;
queue = 0;
rs = 0;
rt = 0;
rd = 31;
rd2 = 0;
i mredi ate = PC+8; useslmediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
i sCF = 3'bl101;
i SALU = 0;
target =
{PC4[31:28],instr[target], 2' b0};
end
{" BNE, “dc6, “dc5 }: begin
operation = “select_qc_ne;

operation2 = 0;

109

queue = " BRQueue;

rs =instr[rs];

rt =instr[rt];

rd = 0;

rd2 = 0;

imrediate = {{14{instr[15]}},
instr[imrediate], 2'b0}; useslmmediate = O;

i sSyscall = 0;

isMem = 0;

ismultDiv = 0;

isCF = {1' b0, instr[15], 1" bl};

i SALU = 0;

target = PC4 + {{14{instr[15]}},
instr[i mediate], 2'b0};

end

{" BEQ “dc6, “dc5 }: begin
operation = “sel ect_qc_eq;

operation2 = 0;
queue = "~ BRQueue;

rs =instr[rs];

rt =instr[rt];

rd = 0;

rd2 = 0;

imrediate = {{14{instr[15]}},
instr[i mediate], 2'b0}; useslmmediate = 0;

i sSyscall = 0;

isMem = 0;

ismultDiv = 0;
isCF = {1'b0,instr[15], 1" bl};

i sALU = 0;
target = PC4 + {{14{instr[15]}},
instr[imediate], 2'b0};
end
{"BLEZ, “dc6, “dc5 }: begin
operation = “select_qc_lez;

operation2 = 0;
queue = " BRQueue;

rs =instr[rs];
re = 0;
rd = 0;
rd2 = 0;

imediate = {{14{instr[15]}},
instr[imrediate], 2'b0}; useslmmediate = O;

isSyscall = 0;

isMem = 0;

ismultDiv = 0;

isCF = {1'b0,instr[15], 1" bl};
i sALU = 0;

target = PC4 + {{14{instr[15]}},
instr[imrediate], 2'b0};
end
{"BGTZ, “dc6, “dc5 }: begin
operation = “sel ect_qc_gtz;
operation2 = 0;
queue = "~ BRQueue;

rs =instr[rs];

rt = 0;

rd = 0;

rd2 = 0;

i mredi ate = {{14{instr[15]}},
instr[i mediate], 2'b0}; useslmediate = 0;

i sSyscall = 0;

isMem = 0;

isMmultDiv = 0;

isCF = {1'b0,instr[15], 1" bl};
i SALU ;
target

PC4 + {{14{instr[15]}},
instr[imrediate], 2'b0};
end

/'l These are passed thru as NOPs so that real

110

/'l program may run.
{"LWC1, °“dc6, “dc5 }: begin

{"SWC1, °dc6, “dc5 }: begin

{"COP1, “dc6, “dc5 }: begin

defaul t:
begi n

end
endcase

end
end

111

operation = 0;
operation2 = 0;

queue = O;

rs = 0;

re = 0;

rd = 0;

rd2 = 0;

i medi ate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;

i sALU = 0;
target = PC+4,
end

operation = 0;
operation2 = 0;

queue = 0;

rs = 0;

rt = 0;

rd = 0;

rd2 = 0;

i medi ate = 0;
isSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;

i SALU = 0;
target = PC+4,
end

operation = 0;
operation2 = 0;

queue = 0;

rs = 0;

rt = 0;

rd = 0;

rd2 = 0;

i medi ate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;

i sALU = 0;
target = PC+4,
end

operation = 0;
operation2 = 0;

queue = 0;

rs = 0;

rt = 0;

rd = 0;

rd2 = 0;

i mediate = 0;
i sSyscall = 0;
isMem = 0;
ismultDiv = 0;
isCF = 0;

i sALU = 0;
target = PCt+4;

uses| medi ate = 0;

uses| medi ate = 0;

uses| nmedi ate = 0;

usesl medi ate = 0;

endnodul e

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkk*x*%

branch_conpare. v
“include "mps.h"

nmodul e branch_conpar e(RSOper and, RTQper and, Conpari sonType, Taken, Target);
i nput [31: 0] RSOperand;

i nput [31: 0] RTOperand;

i nput [7:0] Conpari sonType;

out put reg Taken;

output reg [31:0] Target;

al ways @*) begin
case (ConparisonType)
“sel ect_gc_ne: begin
Taken = (RSOperand ! = RTQOperand);

Target = 0;
end
“sel ect_gc_eq: begin
Taken = (RSOperand == RTQper and);
Target = O;
end

“select_qc_l ez:begin
Taken = (RSOperand[31] == 1) | (RSOperand ==
Target = O;
end

“sel ect_qgc_gtz:begin

Taken = (RSOperand[31] == 0) & (RSOperand != 0);

Target = O;
end

“sel ect_qgc_gez: begin
Taken = (RSOperand[31] == 0);
Target = O;
end

“select_qgc_ltz:begin
Taken = (RSOperand[31] == 1);
Target = 0;
end

“select_qgc_jr: begin
Target = RSOper and;
Taken = 1;
end
“select_qgc_jalr:begin

Target = RSOper and;

Taken = 1
end
defaul t: begi n
Target = 0
Taken = 0
end
endcase
end
endnodul e

kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkk*x*

physical _register_file.v
“include "m ps. h"

nodul e physi cal _register_fil e(RESET, CLK, ReadAddr 0, ReadVal ue0, ReadAddr 1, ReadVal uel,
ReadAddr 2, ReadVal ue2, ReadAddr 3, ReadVal ue3,
ReadAddr 4, ReadVal ue4, ReadAddr 5, ReadVal ueb5,
ReadAddr 6, ReadVal ue6, ReadAddr 7, ReadVal ue7,

Wi teVal ue0, WiteAddr0, Wit eEnabl €0,

112

WiteVal uel, WiteAddr1, WiteEnabl el,
WiteVal ue2, WiteAddr2, Wit eEnabl e2,
WiteVal ue3, WiteAddr3, WiteEnabl e3);

// Read0, 1 ALUO

// Read2, 3 ALUL

// Read4, 5 LDST

// Read6, 7 Br/Jr

//WiteO ALUO, two cycle wite for mult/div
//Witel ALUL, two cycle wite for mult/div
/IWite2 LD

//Wite3 Link, could conbine with | oad

i nput RESET, CLK;

i nput [5:0] ReadAddrO0;

output reg [31:0] ReadVal ue0;
input [5:0] ReadAddr1;

output reg [31:0] ReadVal uel;
input [5:0] ReadAddr2;

output reg [31:0] ReadVal ue2;
input [5:0] ReadAddr3;

output reg [31:0] ReadVal ue3;
i nput [5:0] ReadAddr4;

output reg [31:0] ReadVal ue4;
input [5:0] ReadAddr5;

output reg [31:0] ReadVal ue5;
input [5:0] ReadAddr6;

output reg [31:0] ReadVal ue6;
input [5:0] ReadAddr7;

output reg [31:0] ReadVal ue7;
i nput WiteEnabl e0;

input [5:0] WiteAddrO;
input [31:0] WiteVal ueO;
i nput WiteEnabl el;

input [5:0] WiteAddr1;
input [31:0] WiteValuel;
i nput WiteEnabl e2;

input [5:0] WiteAddr2;
input [31:0] WiteVal ue2;
i nput WiteEnabl e3;

input [5:0] WiteAddr3;
input [31:0] WiteVal ue3;

reg [31: 0] RegFile [63:0];

al ways @ RegFi | e[ReadAddr 0]) begi n
ReadVal ue0 = RegFi | e[ReadAddr 0] ;

end

al ways @ RegFi | e[ReadAddr 1]) begi n
ReadVal uel = RegFi | e[ReadAddr 1] ;

end

al ways @ RegFi | e[ReadAddr 2]) begi n
ReadVal ue2 = RegFi | e[ReadAddr 2] ;

end

al ways @ RegFi | e[ReadAddr 3]) begi n
ReadVal ue3 = RegFi | e[ReadAddr 3] ;

end

al ways @ RegFi | e[ReadAddr 4]) begi n
ReadVal ue4 = RegFi |l e[ReadAddr 4] ;

end

al ways @ RegFi | e[ReadAddr 5]) begi n
ReadVal ue5 = RegFi | e[ReadAddr 5] ;

end

al ways @ RegFi | e[ReadAddr 6]) begi n
ReadVal ue6 = RegFi | e[ReadAddr 6] ;

end

al ways @ RegFi | e[ReadAddr 7]) begi n
ReadVal ue7 = RegFi | e[ReadAddr 7] ;

113

end
integer i;

al ways @ negedge CLK) begin

i f (RESET) begin
for(i=0;i<64;i=i+1)RegFile[i]=0;

end

el se begin
if(WiteEnabl e0 & Wit eAddr 0! =0) RegFi |l e[Wit eAddr0] =Wi t eVal ueO;
if(WiteEnabl el & WiteAddr1!=0)RegFil e[WiteAddr1] =WiteVal uel,;
if(WiteEnabl e2 && Wi teAddr2! =0) RegFil e[WiteAddr2] =WiteVal ue2;
if(WiteEnabl e3 & Wi teAddr 3! =0) RegFil e[WiteAddr3] =WiteVal ue3;

end
end
endnodul e
nmodul e

ready_regi ster_list(RESET, CLK, t oBeReadyO, t oBeReady1, t oBeReady?2, t oBeReady3, cl ear ReadyO0, cl ear Ready1
, cl ear Ready?2, cl ear Ready3, ReadylLi st, ful | Fl ush);
i nput RESET;

i nput CLK;

input [63:0] toBeReadyO;

input [63:0] toBeReadyl;

input [63:0] toBeReady2;

input [63:0] toBeReady3;

input [63:0] clearReadyO;

input [63:0] clearReadyl;

input [63:0] clearReady2;

input [63:0] clearReady3;

i nput full Flush;

output reg [63:0] ReadylList;

al ways @ posedge CLK)begin
i f (RESET) begi n
ReadyLi st = O;
end
el se begin
if(!full Flush)ReadyLi st = ReadyList | toBeReadyO | toBeReadyl | toBeReady2;
ReadyLi st = ReadyLi st | toBeReady3;//add new ready registers
ReadyLi st = ReadyList & ~cl ear Ready0 & ~cl ear Readyl & ~cl ear Ready2 &
~cl ear Ready3;//clear retired registers (or flush)
ReadyLi st = ReadyList | 64' h0000000000000001;
end
end

endnodul e

khkhhkhhhkhhkhhkhhhhhkhhkhhhkhhkhkhkkkh*x

menmory. v

/1 Copyright (c) 1999 Cornell University
/1 Conputer Systems Laboratory

/1 Cornell University, Ithaca, NY 14853
/1 Al Rights Reserved

/1l Permssion to use, copy, nodify, and distribute this software

/1 and its docunentation for any purpose and without fee is hereby

/1 granted, provided that the above copyright notice appear in all

/1 copies. Cornell University makes no representations

/1 about the suitability of this software for any purpose. It is

/1l provided "as is" without express or inplied warranty. Export of this
/1 software outside of the United States of Anerica nay require an

/'l export license.

/1 $ld: memv,v 1.8 2000/10/14 19:21:49 heinrich Exp $

“include "mps.h"
“include "cache. h"

nmodul e mem (CLK, nenOperation, isMem RESET, MAR, Valid, SMDR, laddrA, |addrB, |addrC, [|addrD,

Bus, Read, Wite, Addr, cacheQut, linA 1inB, 1inC 1linD Istall, Dstall, isLoad);
i nput CLK;
input [7:0] memOperation;
i nput i sMem
i nput RESET;
input [31:0] MAR;

i
i
i
i
i
i nput Val i d;
input [31:0] SMDR;

input [31:0] |addrA

input [31:0] |addrB;

input [31:0] laddrC,

input [31:0] |addrD

inout [31:0] Bus;

reg [31:0] BusReg;

out put Read;
reg Read;
out put Wite;
reg Wite;

output reg [31:0] Addr;
out put [31:0] cacheCQut;

out put [31:0] i nA;
out put [31:0] i nB;
out put [31:0] 1inC;
out put [31:0] i nD;

reg [31:0] preCacheQut;
reg [| _TAG W DTH-1: 0] i TagA,

reg [| _TAG WDTH 1: 0] i TagB;
reg [| _TAG WDTH 1: 0] i TagC,
reg [| _TAG WDTH 1: 0] i TagD,
reg [D TAG WDTH 1: 0] dTag;

reg [1:0] iStateA

reg [1:0] iStateB;

reg [1:0] i StateC

reg [1:0] iStateD,

reg [1:0] dState;

reg rDstall;

reg ristall A rlstallB,ristallCrlstallD

reg deferred_rlstall A deferred_rlstallB,deferred_ristallC deferred_rlstallD;

reg retry;

out put reg isLoad;

reg isStore;

reg [D WO WDTH 1: 0] of fset;

reg witeDone;

reg readDone;

reg [1:0] Dsize;

reg [31:0] iCacheCQutA;

reg [31:0] iCacheCQutB;

reg [31:0] i CacheCQutC,

reg [31:0] iCacheQutD;

reg [4:0] dcount;

reg [4:0] icount;

reg [31:0] num.icache_accesses;

reg hit;

wire [31:0] mmgi c_nunber;

assi gn magi c_nunber = 32' h0043BFF4;

Wi re googl e;

assi gn google =
(laddr A 31: 5] ==magi c_nunber [31: 5])| (I addr B[31: 5] ==nmgi ¢_nunber [31: 5])| (| addr ([31: 5] ==magi c_nunber
[31:5])] (I addr O 31: 5] ==magi c_nunber[31:5]);

out put Dstall;
output Istall;

115

/1l These wires are for performing sub-word stores
wire [4:0] sa;

wire [31:0] mask;

wire [31:0] val ue;

/1 This is a good place to keep track of the cache stats
al ways @ posedge CLK) begin
/1 This information is for STATs only
if (RESET) begin
CPU. nunmLoads ="TI CK 32' b0;
CPU. nuntt ores ="TI CK 32' b0;
end

if (isLoad & ~Dstall) begin
CPU. nunLoads =TI CK CPU. nunLoads + 1;
end
if (isStore & ~Dstall) begin
CPU. nunStores =" TI CK CPU. nunttores + 1;
end
end

/1 This always bl ock handl es sinple decoding of isLoad or isStore
al ways @*) begin

if ((isMenm) &&(nmenOperation=="select_nmem|w || nenOperation=="select_neml|h ||
menOper ati on=="sel ect_nmem | hu || nmenOperation=="sel ect_nem.|bu ||
memOper ati on=="sel ect _mem | b)) begi n
isLoad = 1;
end
el se begin
i sLoad = 0;
end

if ((isMen)&&(nmenOperation=="select_nmemsw || nmenOperation=="select_nemsh ||
memOper ati on=="sel ect _mem sb)) begi n
isStore = 1;
end
el se begin
isStore = 0;
end

/1 Set the data size correctly

if (menmOperation=="sel ect_nmem sh) begin
Dsi ze = "SI ZE_HALF;

end

else if (memOperation=="sel ect _nmem sbh) begin
Dsi ze = " Sl ZE_BYTE;

end

el se begin
Dsi ze = "SI ZE_WORD;

end

end

/1 Main I'$ control signals
assign Istall =
ristall AjristallBlristallCristallD deferred_rlstall Aldeferred_rlstallB|deferred_rlstallC deferre
d_ristallD;
assign linA = i CacheCut A
assign linB = i CacheCut B;
assign linC = i CacheCQut C
assign linD = i CacheCQut D

/1 Main D$ control signals
assign Dstall = rDstall;

wire [31:0] preLoadDatalB, preLoadDatalH;

assi gn preLoadDat aLB = (preCacheCut >> ((~MAR & 32'h3) << 3)) & 32' hff;
assi gn preLoadDat aLH = (preCacheCut >> (((~MAR >> 1) & 32'hl) << 4)) & 32'hffff;
assign

cacheQut = (menmOperation == “select_memlw) ? preCacheQut : 32'bz,

116

cacheQut = (menOperation == “select_nmem|hu) ? (preCacheQut >> (((~MAR >> 1) &

32" hl) << 4)) & 32" hffff : 32' bz,

cacheQut = (nmenOperation == “select_neml|bu) ? (preCacheQut >> ((~MAR & 32' h3) <<

3)) & 32'hff : 32 bz,

cacheQut = (menmOperation == “select_memlb) ? {{24{preLoadDatalLB[7]}},

preLoadDataLB[7: 0]} : 32' bz,
cacheQut = (memOperation == “select_memlh) ?
{{16{preLoadDat aLH 15]}}, preLoadDat aLH 15: 0] }: 32' bz;

/1 This always bl ock handl es the D$ cache access, we trigger on |3 because unknown MAR s

seened to be causing probl enms

/!l Wth the isStore||isLoad block we won't do nore than triggering on MAR other than the if

st at ement
al ways @*) begin
if(isStore || isLoad)begin
/1 This should set cacheCut appropriately
/! Read tag and state
dTag = $dcache_tag_read(MAR " D_| NDEX], 0) ;
dState = $dcache_state_read(MAR[" D_| NDEX], 0);

/1 DCache Hit, tags match, and is valid
if((dState[D VALID ==1'bl) && (dTag == MAR["D TAG)) begin
hit =1'b1,;
i f(isLoad)begin

preCacheQut =$dcache_data_read(MAR "D_| NDEX], 0, MAR["D WO) ;

end
end
// DCache M ss
el se begin
hit =1'b0;
rDstall =1'bl;

//Dirty and Valid, witeback to nenory then read

if(dState == 2'bll)begin
dcount ="TI CK 4' b0000;

end

el se begin

/I Not dirty so just read bl ock from nmenory
dcount ="TICK 4' b1000;

end

end
end
end

//Retry Logic - WIIl always be a hit
//Handle I'$ miss before D$ miss if both m ssed

/] Separated fromother triggered cache al ways bl ocks for easier debuggi ng/reading

al ways @ posedge retry)begin
if(ristallAl|rlstallB||rlstallC|rlstallD)begin

i TagA = $icache_tag_read(laddrAl | _I NDEX], 0);

i StateA = $i cache_state_read(laddrA["I _I NDEX], 0);
i TagB = $i cache_tag_read(laddrB[|_I NDEX], 0);

i StateB = $icache_state_read(laddrB[| _I NDEX], 0);
i TagC = $icache_tag_read(laddrC | _I NDEX], 0);

i StateC = $i cache_state_read(laddrC " I_I NDEX], 0);
i TagD = $i cache_tag _read(laddrD[| _I| NDEX], 0);

i StateD = $i cache_state_read(laddrD[" I_I NDEX], 0);
/11 Cache Hit

if((iStateAl | _VALID ==1"bl) && (i TagA == laddrA[| _TAG)) begin
i CacheQut A = $i cache_data_read(laddrAl "1 _I NDEX], O, laddrA[" | _W]);

end
el se $finish;

if((iStateB[| _VALID ==1'bl) && (i TagB == laddrB[| _TAG)) begin
i CacheQut B = $i cache_data_read(laddrB[| _I NDEX], O, laddrB[| _W]);

end
el se $finish;

if((iStateC | _VALID ==1"bl) && (i TagC == laddrC[| _TAG)) begin
i CacheCQut C = $i cache_data_read(laddrC[| _INDEX],O0,laddrC | _WJ);

end

117

end

el se $finish;
if((iStateD["I _VALID ==1'bl) && (i TagD == laddrD | _TAG)) begin
i CacheQut D = $i cache_data_read(laddrD{ | _INDEX], 0, laddrD{ | _WJ);
end
el se $finish;

else if(rDstall)begin

dTag = $dcache_tag_read(MAR[" D_| NDEX], 0) ;
dState = $dcache_state_read(MAR] " D_| NDEX], 0) ;

/1 DCache Hit
if((dState[D _VALID ==1'bl) && (dTag == MAR["D _TAQ)) begin
hit =1'b1;
i f(isLoad)begin
pr eCacheQut

=$dcache_data_read(MAR["D_I NDEX], 0, MAR["D WO) ;

end

end

end

if(deferred_rlstallA)begin
ristall A = deferred_rlstallA;
deferred_rlstall A = 0;

end

if(deferred_rlstall B)begin
ristall B = deferred_rlstallB;
deferred_rlstall B = O;

end

if(deferred_rlstall C)begin
rlstall C = deferred_rlstallC;
deferred_rlstallC = O;

end

if(deferred_rlstallD)begin
ristall D = deferred_rlstallD
deferred_rlstallD = O;

end

retry = TICK 0;

end

/1 This always block handles the I$ access

al ways @ addr A or

laddrB or laddrC or |addrD) begin

/'l This should set iCacheCut appropriately

i TagA = $icache_tag_read(laddrAl | _I NDEX], 0);

i StateA = $icache_state_read(laddrAl "1 _I NDEX], 0);
i TagB = $icache_tag_read(laddrB[| _I NDEX], 0);

i StateB = $i cache_state_read(laddrB["I_I NDEX], 0);
i TagC = $i cache_tag_read(laddrC] " |_I NDEX], 0);

i StateC = $icache_state_read(laddrC "1 _I NDEX], 0);
i TagD = $icache_tag_read(laddrDf "I _I NDEX], 0);

i StateD = $i cache_state_read(laddrD["I _I NDEX], 0);
num i cache_accesses = num.i cache_accesses + 1;

/11 Cache Hit
if((iStateAl "I _VALID ==1'bl) && (i TagA == laddrA[| _TAG)
&&(i StateB[| _VALI D] ==1'bl) && (i TagB == laddrB[| _TAQ)
&&(i StateC | _VALI D] ==1' bl) && (i TagC == laddrC | _TAQ)
&&(i StateD | _VALID] ==1'bl) && (i TagD == laddrD{ | _TAG)) begin
i CacheQut A = $i cache_data_read(laddrAl "1 _I NDEX], O, laddrA[" | _W]);
i CacheQut B = $i cache_data_read(laddrB[| _I NDEX], O, laddrB[| _W]);
i CacheQut C = $i cache_data_read(laddr | _INDEX], O, laddrC[| _W]);
i CacheQut D = $i cache_data_read(laddrD "I _INDEX], 0, laddrD{ | _WJ);
end

/11 Cache Mss, we don't have dirty here because you only read |I$
el se begin

i CacheQut A =32' b0;

i CacheQut B =32' b0;

i CacheQut C =32' b0;

i CacheQut D =32' b0;

if((iStateA "I _VALID!'=1"bl) || (iTagA != laddrAl | _TAG))begin
if(rDstall)deferred_rlstall A = 1;
else ristall A =1'b1l;

end

if(((iStateB["I _VALID]!=1"bl) || (iTagB != laddrB[| _TAG))

118

&&(1addr Al " | _I NDEX] ! =l addr B[" | _I NDEX])) begin
if(rDstall)deferred_rlstallB = 1;
else rlistall B =1'b1l;

end

if(((istateC I _VALID!=1"bl) || (iTagC != laddr I _TAG))
&&(1addr Al "1 _I NDEX] ! =l addr C[" | _I NDEX])
&&(1addrB[" | _I NDEX] ! =l addr C[" | _I NDEX])) begin
if(rDstall)deferred_rlstallC = 1;
else ristall C =1"Db1l;

end

if(((iStateD["|_VALID|!=1'bl) || (iTagD != laddrD | _TAG))

!
&&(1 addr Al 1 _I NDEX] ! =l addr D[" | _I NDEX])
&&(1 addr B[| _I NDEX] ! =l addr D[" | _I NDEX])
&&(1addrC "I _I NDEX] ! =l addr D " | _I NDEX])) begin
= 1;

if(rDstall)deferred_rlstallD
else ristall D =1"b1l;
end
i count =0;
end
end

//Handle All Mss State Machi nes Here, POSEDGCE triggered
al ways @ posedge CLK) begin
/11$ miss
if(ristall A begin

/1 Set read and addr

i f (i count==0)begin
Read =1'b1;
Addr =l addr A;

end

//Wait for valid and read in words for 8 cycles

if(vValid & (icount < 8))begin
$i cache_tag_wite(laddrA[| _I NDEX], 0, laddrAl " | _TAG) ;
$i cache_state_wite(laddrAl | _I NDEX], O, 2' b01);
$i cache_data_write(laddrAl | _I NDEX], 0, icount[2:0], Bus);

end

I/ After 8 Cycles retry cache read

i f(icount==8)begin
Read =1'bO;
if(ristallB==0 & rlstallC==0 && rlstallD==0)retry ="TICK 1'bl;
icount ="TICK icount+1;
ristall A =1' b0;
CPU. num M sses =CPU. num M sses + 1;
icount ="TICK 0;

end
/1 After 9 cycles we unstall and go on
else if(icount == 9) begin
end
/1 Advance counter on valid signal
el se begin
i f(Valid)begin
icount = TICK icount+1;
end
end
end
/11$ mss

else if(rlstallB)begin
/1 Set read and addr
i f (i count==0)begin
Read =1'b1;
Addr =l addr B;
end
//Wait for valid and read in words for 8 cycles
if(valid & (icount < 8))begin
$i cache_tag_wite(laddrB[| _I NDEX], 0, laddrB[| _TAG);
$i cache_state_wite(laddrB[| _I NDEX], 0, 2' b01);
$i cache_data_write(laddrB[| _I NDEX], 0, icount[2:0], Bus);
end
/1 After 8 Cycles retry cache read
i f(icount==8)begin

119

Read =1'bO0;

if(ristall C==0 && rilstallD==0)retry =" TICK 1'bil;
icount ="TICK icount+1;

ristall B =1' bO;

CPU. nunm M sses =CPU. nhum M sses + 1;

icount =" TICK O;

end

/1 After 9 cycles we unstall and go on
el se if(icount == 9) begin

end

// Advance counter on valid signal
el se begin
i f(Valid)begin
icount ="TICK icount+1;
end
end
end
else if(rlstall C)begin
/] Set read and addr
i f (i count==0)begin
Read =1'b1;
Addr =l addr C,
end
//VWait for valid and read in words for 8 cycles
if(valid & & (icount < 8))begin
$i cache_tag wite(laddrC | _INDEX], 0, laddr "I _TAG);
$i cache_state_write(laddrC[" I_INDEX], O, 2' b01);
$i cache_data_write(laddrC[| _I NDEX], 0, i count[2:0], Bus);
end
/|l After 8 Cycles retry cache read
i f(icount==8)begin
Read =1'b0;
if(rlstallD==0)retry = TICK 1' bl;
icount ="TICK icount+1;
ristall C =1"b0;
CPU. num M sses =CPU. num M sses + 1;
i count = TICK 0;

end

/1 After 9 cycles we unstall and go on
el se if(icount == 9) begin

end

|/ Advance counter on valid signal
el se begin
if(Vvalid)begin
icount ="TICK icount+1;
end
end
end
else if(rlstallD)begin
/1 Set read and addr
i f (i count==0)begin
Read =1'b1;
Addr =l addr D
end
//Wait for valid and read in words for 8 cycles
if(Valid & (icount < 8))begin
$i cache_tag_wite(laddrD | _INDEX], O, laddrD "I _TAG);
$i cache_state_wite(laddrD] "I _I NDEX], O, 2' b01);
$i cache_data_write(laddrD["I _I NDEX], 0, i count[2:0], Bus);
end
/1 After 8 Cycles retry cache read
i f (i count==8)begin
Read =1'b0;
retry = TICK 1' bl;
icount ="TICK icount+1;
ristall D =1"b0;
CPU. num M sses =CPU. num M sses + 1;
icount = TICK 0;
end

120

/I After 9 cycles we unstall and go on
el se if(icount == 9) begin

end
/' Advance counter on valid signal
el se begin
i f(Valid)begin
icount ="TICK icount+1;
end
end
end
/1 D$ mss
else if(rDstall) begin
/I After witeback is done (if needed) read in the block, setting read and address
i f (dcount ==8) begi n
Read =1'b1;
Addr =MAR,
Wite = TICK 1' bO;
end
/1 Witeback block fromcache to nenory
i f(dcount <8) begin
Wite =1'b1;
Addr ={dTag, MAR[" D_I NDEX] , dcount [2: 0], 2' b00};
BusReg =$dcache_dat a_read(MAR[" D_I NDEX], O, dcount [2: 0]);
dcount ="TICK dcount +1;
end
/I Read bl ock fromnenory to cache
else if(Valid & (dcount < 16)) begin
$dcache_tag_wite(MAR " D_I NDEX], 0, MAR["D TAG);
$dcache_state_write(MAR "D_I| NDEX], 0, 2' b01);
$dcache_data_wite(MAR " D_I NDEX], O, dcount [2: 0], Bus) ;
dcount ="TI CK dcount +1;
end
/! Reread data after its updated
el se if(dcount == 16) begin
Read =1'b0;
retry = TICK 1' bl;
dcount ="TICK dcount +1;
rDstall ="TICK 1' bO;
CPU. nunDM sses =CPU. nunDM sses + 1;
dcount ="TICK O;
end
//Unstall and continue pipe
el se if(dcount == 17) begin

end

end
end

/1 Shift Anmount

assign sa = (Dsize == "SI ZE BYTE) ? ((~MAR & 32'h3) << 3) : 5'bz,
sa = (Dsize == "SIZE_HALF) ? (((~MAR >> 1) & 32'hl) << 4) : 5'bz,
sa = (Dsize == "SIZE WORD) ? 0 : 5'bgz;
/| Data Mask
assign
mask = (Dsize == "SI ZE BYTE) ? (32'hff << sa) : 32'bgz,
mask = (Dsize == "SI ZE HALF) ? (32'hffff << sa) : 32'bgz,
mask = (Dsize == "SIZE_WORD) ? 0 : 32'bz;

/1 Assune that stores wite the data array on the negedge of the clock
al ways @negedge CLK) begin
/1 This code is conplete and it works! Note how it uses the
/1 cache PLI calls for both reads and wites
if (hit & isStore) begin
/1 Need to wite the data array and the Dirty bit
/1 Handl e sub-word stores here
if (Dsize == "SI ZE_WORD) begin
$dcache_data_wite(MAR "D I NDEX], 0, MAR["D WO, SMDR);
end
else if (Dsize == "SI ZE _HALF) begin

121

$dcache_data_wite(MAR["D _INDEX], 0, MAR['D WJ,
($dcache_data_read(MAR["D_I NDEX], 0, VARl "D W)}) & ~mask)| ((SMDR & 32' hffff) << sa));
end
else if (Dsize == "SI ZE BYTE) begi n
$dcache_data_write(MAR["D _INDEX], 0, MAR["D WJ,
($dcache_data_read(MAR["D_| NDEX], 0, MARl "D WO}) & ~mask)| ((SMDR & 32' hff) << sa));
end
/!l Wite Dirty and Valid bits
$dcache_state_wite(MAR "D _INDEX], 0, 2'bll);
end
end

/1 This always bl ock handl es reset
/1 We noved miss state machines out of this block for easier reading/debugging
al ways @ posedge CLK) begin
if (RESET) begin

of fset = TICK O;

retry = TICK 1' b0;

writeDone =TI CK 1' bO;

readDone ="TICK 1' bO;

CPU. nunDM sses =" TI CK 32' b0;

CPU. num M sses ="TI CK 32' b0;

Read = 1'bO;

Wite = 1'b0;

/1 Addr = 32' b0;

rDstall = 0;

icount =

dcount =

ristall A

ristall B

ristall C ;
ristall D = 0;
deferred_rlstal
deferred_rlstal
deferred_rlstal
deferred_rlstal
isStore = 0;
i sLoad = 0;
preCacheQut = 0;
num i cache_accesses =

nnnoo

1
0;
0

eeee

A
B
Cc
D

|
e

end
end // always @ (posedge CLK)

/llnitialize sone signals
initial begin

Read = 1' b0;
Wite = 1'b0O;
Addr = 32' b0;
rDstall = 0O;
icount = O;

dcount = O;

ristall A = 0;
ristall B = 0;
ristall C = 0;
ristall D = 0;
isStore = 0;
isLoad = 0;

end

/1 Only drive Bus during wite back
assign Bus = (Wite) ? BusReg : 32'bz;

endnodul e

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkkkkkkkkkkk*x*%

i ssue_queue. v
“include "mps.h"

122

nmodul e i ssue_queue(RESET, CLK, ful | Fl ush, maxl ssue, queueNum r eadyFl ags,
i nOper ati on0, i nl nmedi at e0, i nRTO, i nRSO, i nRDO, i nQueueO, i NROBO, i nUI D,
inCperationl,inlmediatel,inRT1,inRSl,inRDL, inQueuel, i nROBL, i nUI nm,
i nOperation2,inlmediate2, i nRT2, i nRS2, i nRD2, i nQueue2, i nROB2, i nUl m2,
i nOperation3,inlmediate3,inRT3,inRS3,inRD3, i nQueue3, i nROB3, i nUl N8B,
out Oper at i on0, out | mredi at €0, out RTO, out RSO, out RDO, out ROBO, out Ul nmD,

out Oper ati onl, out | mredi at el, out RT1, out RS1, out RD1, out ROB1, out Ul nm,
out ReadyFl ag0, out ReadyFl agl, QueueTooFul | , numl ssued) ;

i nput RESET, CLK, ful | Fl ush;

input [1:0] nmaxlssue, queueNum

i nput [63:0] readyFl ags;

output reg [63:0] outReadyFl ago;

output reg [63:0] outReadyFl agl;

input [7:0] inQOperationO,inQperationl,inQperation2,inCperation3;
input [31:0] inlmediateO,inlmediatel,inlmediate2,inlmedi ate3;
input [4:0] inROBO,inROBL,inROB2,i nROB3;

input [5:0] inRTO,inRT1,inRT2,inRT3,inRS0,inRSL, inRS2,inRS3,inRD0,inRDL, inRD2,inRD3;
input [1:0] inQueueO,inQueuel,inQueue2,inQueue3;

i nput i nUImO, i nUI mL, i nUI m®2, i nUl nmB;

out put reg out U nmmoO, out Ul m;

out put reg[7: 0] outOperationO, out Operationl;

out put reg[31: 0] outlmedi at e0, out | nmedi at el;

out put reg[5: 0] outRTO, out RT1, out RSO, out RS1, out RDO, out RD1;

out put reg[4:0] out ROBO, out ROBI;

out put reg QueueTooFul | ;

reg [31:0] max_full ness;
reg [31:0] total _occupancy;

reg [7:0] Operation [31:0];
reg [31:0] |Immediate [31:0];
reg Valid [31:0];

reg [5:0] RT [31:0];

reg [5:0] RS [31:0];

reg [5:0] RD [31:0];

reg [4:0] ROB [31:0];

reg useslmi31:0];

output reg [1:0] numl ssued;
reg I nserted;

reg [5:0] FreeSlots;

//reg [31:0] wtfRS, wtfRT, wtfAND;
wire wtfRS, wtfRT, wtfAND;
integer i;

reg [31:0] entryReady;

al ways @*) begin

for(i=0;i<32;i=i+1)entryReady[i] = Valid[i] & ((readyFlags>>RS[i])&1l'bl) &
((readyFl ags>>RT[i]) &1' bl);

end

assign wfRS = ((readyFl ags>>RS[0]) &1' bl);
assign WwfRT = ((readyFl ags>>RT[0]) &1' bl);
assign MfAND = wtfRS & wt f RT;

al ways @ posedge CLK)begin
/] conpact issue queue
for(i=0;i<31;i=i+1)begin

if((Vvalid[i]==0) && (Valid[i+1]==1))begin
/1 $di spl ay("conpacting % to %d",i+1,i);
Valid[i]=1;
Operation[i] = Operation[i+1];
Inrediate[i] = |mrediate[i+1];
RT[i]
RS[i]

RT[i +1];
RS[i +1] ;

123

RO(i] = ROi+1];
ROB[i] = ROB[i +1];
useslmii] = useslmii +1];
Val i d[i +1] =0;
end
end
end

al ways @ negedge CLK) begin
i f(RESET || fullFlush)begin

for(i=0;i<32;i=i+1)Valid[i]=0;
FreeSlots = 32;
num ssued = O;
out ReadyFl ag0
out ReadyFl agl
out Oper ati on0
out | nredi at e0
out RTO 0;
out RSO 0;
out RDO 0;
out ROBO = O0;
outUmo = 0;
out ReadyFl ag0
out Operationl
out | mnredi at el

(IITINTINT
eeee

ee

outRS1 = 0
= 0;

out RD1
out Ul mmi 0;
out ROB1 = O0;

out ReadyFl agl =
t ot al _occupancy
max_full ness = 0;

no
e

end
el se begin

/linsert instructions
Inserted = 0;
for(i=0;i<32;i=i+1)begin
if((valid[i]==0) && (lnserted==0) && (inOperation0!=0) &&
(i nQueueO==queueNun)) begi n

Valid[i]=1,;

I nserted=1;

Operation[i] = inOperationO;
I nredi ate[i] = inlmedi at e0;
RT[i] = inRTO;

RS[i] = inRSO

RO{i] = inRDO;

ROB[i] = i nROBO;
useslmii] = inU mD;
FreeSlots = FreeSlots - 1;
end
end

Inserted = O;
for(i=0;i<32;i=i+1)begin
if((valid[i]==0) && (Inserted==0) && (inOperationl!=0) &&
(i nQueuel==queueNun)) begin

Valid[i]=1;

I nserted=1;

Operation[i] = inOperationi;
I nmredi ate[i] = inlmediatel;
RT[i] = inRT1;

RS[i] = inRS1;

RD[i] = inRDL;

ROB[i] = i nROBI;
useslmii] = inU mt;
FreeSlots = FreeSlots - 1;
end
end

124

Inserted = 0;
for(i=0;i<32;i=i+1)begin
if((valid[i]==0) && (lnserted==0) && (inOperation2!=0) &&
(i nQueue2==queueNun)) begi n

Valid[i]=1;

I nserted=1;

Operation[i] = inOperation2;
Imredi ate[i] = inlmediate2,
RT[i] = inRT2;

RS[i] = inRS2;

RO{i] = inRD2;

ROB[i] = i nROB2;
useslmii] = inU me;
FreeSlots = FreeSlots - 1;
end
end

Inserted = 0;
for(i=0;i<32;i=i+1)begin
if((valid[i]==0) && (Inserted==0) && (inCperation3!=0) &&
(i nQueue3==queueNun)) begi n

Valid[i]=1,;

I nserted=1;

Operation[i] = inOperation3;
I nredi ate[i] = inlmedi ate3;
RT[i] = inRT3;

RS[i] = inRS3;

RO{i] = inRD3;

ROB[i] = i nROBS;
useslmii] = inU mS;
FreeSlots = FreeSlots - 1;
end
end

total _occupancy = total _occupancy + (32-FreeSlots);
i f((32-FreeSlots)>max_full ness)max_full ness = (32-FreeSlots);

//find next ones to issue
num ssued = 0;

out ReadyFl ag0 = O0;
out ReadyFl agl = 0;
out Operation0 = O;
out | mmedi ate0 = O;
out RTO = O;

out RSO = 0;

out RDO = O;

out ROBO = 0;

outU nmd = 0;

out ReadyFl ag0 = 0;
out Operationl = O;
out | medi atel = 0;
Out RT1 = 0O;

out RS1 = O0;

out RD1 = 0;

outU ml = 0;

out ROB1 = 0;

out ReadyFl agl = 0;
for(i=0;i<32;i=i+1)begin
if(entryReady[i] && num ssued < maxl| ssue)begin
i f(num ssued == 0) begin
out Operation0 = Qperation[i];
out I nmedi ate0 = I medi ate[i];

OUt RTO = RT[i];
OUtRSO = RS[i];
outRDO = ROi];

out ROBO = ROB[i];

outU nm0 = useslmmii];

out ReadyFl ag0 = (1'bl << ROi]);
num ssued 1;

FreeSlots = FreeSlots + 1;

125

valid[i] = 0;

end

el se begin
out Operationl = Cperation[i];
out I mredi atel = Immediate[i];
OUtRT1 = RT[i];
outRS1 = RS[i];
outRD1L = RD[i];
outU mm = useslmmii];
out ROB1 = ROB[i];
out ReadyFl agl = (1'bl << RO i]);
num ssued = 2;
FreeSlots = FreeSlots + 1;
Valid[i] = 0;

end

end
end
end
QueueTooFul | = (FreeSlots < 4);
end
endnodul e

khkhhkhhhkhhkhhkhhhkhhhhkhhhkhhkhhkhhkhhkhk*

addr _calc.v
“include "m ps.h"

nmodul e addr _cal c(RegVal, | medi ate, EffAddr);
input [31:0] RegVal;

input [31:0] | nmrediate;

output reg [31:0] EffAddr;

al ways @*) begin
Ef f Addr = RegVal + | mmedi ate;
end

endnodul e

khkkkhkhkhhkhhkhhhhhhhhhhdhhhhhkhhhhkhkhx

alu.v
“include "m ps.h"

nmodul e al u(RSOper and, RTOperand, |nmmredi ate, Usel mredi ate, ALUOp, ALUout);
input [31:0] RSOperand;

i nput [31:0] RTOperand;

input [31:0] | nmediate;

i nput Usel medi at e;

input [7:0] ALUOp;

output reg [31:0] ALUout;

reg [31: 0] Tenp;

reg [4:0] ShiftAnmount;

wire [31:0]

si gned_di v, si gned_di v_t, unsi gned_di v, si gned_rem si gned_rem t, unsi gned_r em si gned_RS, si gned_RT;
wire [32:0] unsigned_RS, unsi gned_RT;

wire [63:0] signed_nult,signed_nult_t;

wire [63:0] unsigned_nult;

wi re signof RS, si gnof RT;

assi gn signof RS
assi gn si gnof RT

RSOper and[31] ;
RTOper and[31] ;

assign unsigned_RS
assign unsigned_RT
assign signed_RS
assign signed_RT

{1' b0, RSOper and};
{1' b0, RTOper and};
('si gnof RS) ?(~RSOper and) +1: RSOper and;
('si gnof RT) ?(~RTOper and) +1: RTOper and;

assign signed_nult_t signed_RS * signed_RT;
assi gn unsi gned_nul t unsi gned_RS * unsi gned_RT;
assign unsigned_div = {1' b0, RSOper and}/{1' b0, RTOper and};

126

assign signed_div_t = {signed_RS}/{signed_RT};

assign unsigned_rem = {1' b0, RSOper and} % 1' b0, RTQper and};

assign signed_remt = {signed_RS}%signed_RT};

assign signed_mult = (signof RS! =si gnof RT) ?(~signed_nult_t) + 1:signed_mult_t;
assign signed_div = (signofRS!=signofRT)?(~signed_div_t) + 1:signed_div_t;
assign signed_rem = (signof RS)?(~signed_remt) + 1l:signed_remt;

~~—

al ways @*) begin
Tenp = (Usel mredi ate) ? | mrediate : RTOperand;
Shi ft Amount = (Usel nmedi ate) ? | nmedi ate[10: 6] : RSOperand[4:0];

case (ALUOp)
“sel ect_alu_add: ALUout = RSOperand + Tenp;

“sel ect _al u_and: ALUout RSOper and & Tenp;
“sel ect _al u_xor: ALUout RSOperand ~ Tenp;
“select_alu_or: ALUout = RSOperand | Tenp;
“sel ect _al u_nor: ALUout ~(RSOperand | Tenp);
“sel ect _al u_sub: ALUout RSOper and - Tenp;

“select_alu_sltu: ALUout = ({1' b0, RSOperand} < {1'b0, Temp}) ? 1 : O;
“select_alu_slt: ALUout = (RSOperand[31] != Tenp[31]) ? RSOperand[31] : ((RSOperand < Temp)
?1: 0);
“select_alu_sra: ALUout = {{32{RTOperand[31]}}, RTOperand} >> ShiftAmount;
“select_alu_srl: ALUout = RTOperand >> Shift Anount;
“select_alu_sll: ALUout = RTOperand << ShiftAnount;
“select_alu_mult_h: ALUout = signed_nult[63:32];
“select_alu_nmult_|: ALUout = signed_mult[31:0];
“select_alu_nultu_h: ALUout = unsigned_mult[63:32];
“select_alu_multu_|: ALUout = unsigned_nult[31:0];

“sel ect_alu_div_h: ALUout = signed_rem
“select_alu_div_|: ALUout = signed_div;
“sel ect_alu_divu_h: ALUout = unsigned_rem
“select_alu_divu_|: ALUout = unsigned_div;
“select_alu_nfhi: ALUout = RSOperand;
“select_alu_nflo: ALUout = RSOperand;
defaul t: ALUout = O;
endcase

end

endnodul e

Khkhhkhhhkhhkhhkhhhkhhkhhkhhkkhhkhhkhhkkhhkhhkhkkk*x

forwarding. v
“include "mps.h"

nodul e

forwar di ng(rf Val ue, r f Addr, wbOVal ue, wobOAddr , wb1Val ue, wb1Addr, wb2Val ue, wb2Addr , wb3Val ue, wb3Addr, out
Val ue) ;

input [5:0] rfAddr, woOAddr, wol1Addr, wb2Addr , wb3Addr ;

input [31:0] rfVal ue, wb0OVal ue, wb1Val ue, wh2Val ue, wb3Val ue;

output reg [31:0] outVal ue;

al ways @ *) begin
if(rfAddr == 0)begin
out Val ue = 0;
end
el se begin
if(rfAddr == wbhOAddr) begin
out Val ue = whO0Val ue;
end
el se if(rfAddr == wbh1lAddr)begin
out Val ue = wb1Vval ue;
end
el se if(rfAddr == wh2Addr)begin
out Val ue = wh2Val ue;
end
el se if(rfAddr == wbh3Addr)begin
out Val ue = wb3Val ue;
end
el se begin
out Val ue = rfVal ue;

127

end
end
end

endnodul e

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkhkhkkkhkkkkkkk*x*%

/1 Copyright (c) 1999 Cornell University
/1 Conputer Systems Laboratory

/1 Cornell University, |thaca, NY 14853
/1 Al Rights Reserved

/1l Permssion to use, copy, nodify, and distribute this software

/1 and its docunmentation for any purpose and without fee is hereby

/1 granted, provided that the above copyright notice appear in all

/1 copies. Cornell University makes no representations

/1 about the suitability of this software for any purpose. It is

/1 provided "as is" without express or inplied warranty. Export of this
/1 software outside of the United States of Anerica nay require an

/'l export license.

/1 $ld: mips.v,v 1.6 1999/10/19 03:39:05 heinrich Exp $

“include "m ps.h"
“include "cache. h"

“define MEM DELAY #162
nodul e TOP;
wire [31:0] Bus;
reg [31:0] BusReg;
reg RESET, CLK;
wire [31:0] Addr ; /1 Address Bus between cpu & nmenory
wre Read; /1 Bus Read
wire Wite; /1 Bus Wite
reg Val i d; /1 Valid signal for cache fill
reg start Read;
reg [DWO WDTH 1:0] currentWrd;
reg schedul ed;

/1l Create a 50% duty cycle clock
initial begin

CLK = 1;
forever begin
" PHASE

CLK = 0;
" PHASE
CLK = 1,
end

end

/1 This holds reset long enough to clear all the machine state
initial begin

RESET = 1;

#86 RESET = O;
end

/1 This is the R10000
cpu CPU
(

128

. CLK (CLK),

. RESET (RESET),

. Bus (Bus),

. Addr (Addr),

.Wite (Wite),
. Read (Read),

.Valid (Valid)

);

/1 This block is a good place to put $nonitor or $dunp statenents
initial
begi n
$seed_mm
/1 1$ and D$ creation.
/'l The args are:
/1 associativity, linesize, nunber of I|ines
$create_i cache(1l, 32, 256);
$create_dcache(1l, 32, 256);
end
/1 Memory system
/1 The interface here is sinple:
/1
Il Wites:
/1
/1 At the posedge of the clock, if the Wite signal is asserted,
/] store the word on the Bus to nenobry at the address on the Addr bus.
/1
/'l Reads:
/1
/'l "Reads" are any kind of cache fill fromthe processor (note these
/'l could be triggered by a load miss or a store nmiss, it doesn't matter)
/'l At the posedge of the clock, if the Read signal is sensed the schedul ed
/1 signal is set, which indicates that a nenory request will be served.
/1l At the sane time, the startRead signal is scheduled to be asserted
/1 MEM DELAY ticks later. Wen startRead is high and Read signal is still set,
/'l the nenmory system places the word at Addr (which is still being driven
/1 by the cpu) onto the Bus. For |ength MAX_OFFSET+1 cycles, the nenory system
/1 increnents the local Addr by 4 and drives the next word on the Bus.
/1 The Valid line is asserted as long as the nmenory systemis producing
/1 Valid data. After the last word in the cache line is driven,
/1 the Valid line and schedul ed signal are de-asserted. At that tine
/1 (when the read of all values is conplete), the Read signal nust also be
Il set |ow.

al

ways @ BusReg) begin
/1 $di spl ay("bbb %", BusReg) ;

end

al

ways @ posedge CLK) begin
if (RESET) begin

Val i d <= "TICK 1' bO;
currentWord <= “TICK O;

st art Read <= "TICK 1' bO;
schedul ed <= "TICK 1' b0;

end

if (Read & !schedul ed) begin
start Read <= ~MEM DELAY 1'b3l;
schedul ed <= "TICK 1' bl;

end

if (startRead) begin
i f (Read) begin
/1 Note that this inplies a line size of 4 words. It is also
/1 what dictates that the 1$ and the D$ have the same |ine size.
/1 You can change the line size in the cache creation statenents

129

/1 above, but you nust also change the follow ng |ine, and
/1 the defines in cache.h
BusReg <= "TI CK $l oad_mm({Addr[31: 5], currentWrd[2:0], 2'b0});
Valid <= "TICK 1;
if (currentWord !'= " MAX_OFFSET) begin
currentWord <= “TICK currentWord + 1;
end
el se begin
startRead <= "TICK 1' b0;

end
end
el se begin
Val i d <= "TICK 1' b0
schedul ed <= "TICK 1' b0
st art Read <= "TICK 1' b0
currentWwrd <= "TICK 0
end
end
el se begin
Valid <= "TICK 1' b0
if(currentWord !'= 0) begin
schedul ed <= "TICK 1' b0
currentWord <= "TICK 0
end
end

/! Handle wites to the menory system Partial word wites are now
/1 handled in the cache
if (Wite) begin
/1 $display("Time: %", $tinme)
$st or e_mm{ Addr, Bus)
end
end // always @ (posedge CLK)
/1 Drive Bus with BusReg unless a wite is in progress
assign Bus =(~Wite) ? BusReg : 32'bz

endnodul e

Khkkhkhkhkhkhhkhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhkhkkk*k

m ps. h
[l-%-mode:veril O0g-%------o oo m oo oo oo

/1 Copyright (c) 1999 Cornell University
/1 Conputer Systens Laboratory

/1 Cornell University, Ithaca, NY 14853
/1 Al Rights Reserved

/1 Permssion to use, copy, nodify, and distribute this software

/1 and its docunentation for any purpose and without fee is hereby

/1l granted, provided that the above copyright notice appear in al

/1l copies. Cornell University makes no representations

/1 about the suitability of this software for any purpose. It is

/1 provided "as is" without express or inplied warranty. Export of this
/1 software outside of the United States of Anerica may require an

/1 export license

/1

// $ld: mips.h,v 1.2 1999/10/18 17:58:51 heinrich Exp $

/1
e e R E T
/1 O ock paraneters

“definecycle 10

“defi ne phase 5

“defineTICK #2

“define CYCLE # cycle

“define PHASE # phase

¥ e e e e e e e e e e eeeeeeeaaaos

130

Instruction Fields

Y
“defineop 31:26 // 6-bit operation code

“definers 25:21 /] 5-bit source register specifier

“definert 20:16 // 5-bit source/dest register spec or sub opcode
“defineinmedate 15: 0 /1 16-bit imrediate, branch or address disp

“definetarget 25:0 /1 26-bit junp target address

“definerd 15:11 // 5-bit destination register specifier

“definesa 10: 6 /1 5-bit shift anmount

“definefunction 5:0 /1 6-bit function field

“definesub 25:21 /] 5-bit sub-operation code

“defi ne coprocessor 20: 0 /1 21-bit coprocessor-specific field
e

Synbol i ¢ Regi ster Names for Hardware

*/
“definer0 5' b00000
“definerl 5' b00001
“definer2 5' b00010
“definer3 5' b00011
“definer4 5' b00100
“definer5s 5'b00101
“definer6 5'b00110
“definer?7 5'b00111
“definer8 5' b01000
“definer9 5'b01001
“definerl0 5'b01010
“definerll 5'b01011
“defineri12 5'b01100
“definer13 5'b01101
“definerl4 5'b01110
“defineril5 5'b01111
“defineri6 5' b10000
“definerl7 5' b10001
“definer18 5'b10010
“definer19 5'b10011
“definer20 5'b10100
“definer2l 5'b10101
“definer22 5'b10110
“definer23 5'b10111
“definer24 5'b11000
“definer25s 5'b11001
“definer26 5'b11010
“definer27 5'b11011
“definer28 5'b11100
“definer29 5'b11101
“definer30 5'b11110
“definer31 5'b11111
e

Synbol i ¢ Regi ster Names for Assenbler and Conpiler

--*/

“definezero 5' b00000 /1 Read only zero val ue
“define at 5' b00001 /'l Assenbl er tenporary
“definev0 5' b00010 /'l Integer function value
“definevl 5'b00011

“defineal 5' b00100 /'l Paraneters

“defineal 5'b00101

“definea2 5'b00110

“definea3 5' b00111

“definetO 5'b01000 /1 not preserved by subroutines
“definetl 5'b01001

131

“definet2 5' 01010

“definet3 5' b01011

“definet4d 5'b01100

“definet5s 5'b01101

“definet6 5' b01110

“definet?7 5'b01111

“defines0 5'b10000 /'l preserved by subroutines
“definesl 5'b10001

“defines2 5' b10010

“defines3 5'b10011

“defines4 5'b10100

“definesb 5'b10101

“defines6 5'b10110

“defines7 5'b10111

“definet8 5'b11000 /'l preserved by subroutines
“definet9 5'b11001

“define kO 5'b11010 /'l Kernel

“define k1l 5'b11011

“definegp 5'b11100 /1 d obal pointer

“definesp 5'b11101 /1 Stack pointer

“defines8 5'b11110 /'l preserved by subroutines
“definera 5'b11111 /'l Link register

| % c o o e eeeeaaooo.

Opcode Assignnments for “op Qperations

--*/

“defi ne SPECI AL 6' b000000
“defi ne REG MM 6' b000001
“defineld 6' b000010
“define JAL 6' b000011
“defi ne BEQ 6' b000100
“defi ne BNE 6' b000101
“define BLEZ 6' b000110
“define BGTzZ 6' b000111
“defi ne ADDI 6' b001000
“defi ne ADDI U 6' b001001
“define SLTI 6' b001010
“define SLTIU 6' b001011
“defi ne ANDI 6' b001100
“define ORI 6' b001101
“define XORI 6' b001110
“define LU 6' b001111
“defi ne COPO 6' b010000
“define COP1 6' b010001
“defi ne COP2 6' b010010
“defi ne COP3 6' b010011
“defi ne BEQL 6' b010100
*“defi ne BNEL 6' b010101
“defi ne BLEZL 6' b010110
“defi ne BGTZL 6' b010111
“definelLB 6' b100000
“definelLH 6' b100001
“define LML 6' b100010
“define LW 6' b100011
“define LBU 6' b100100
“define LHU 6' b100101
“define LMR 6' b100110
“define SB 6' b101000
“define SH 6' b101001
“define SW. 6' b101010
“define SW 6' b101011
“define SR 6' b101110
“defi ne CACHE 6' b101111

132

“definellL

“define LMC1
“define LWC2
“defi ne LWC3

“define LDC1
“defi ne LDC2
“defi ne LDC3

“defineSC

“defi ne SWC1
“defi ne SWC2
“defi ne SWC3

“defi ne SDC1
“defi ne SDC2
“defi ne SDC3

“define SLL
“define SRL
“defi ne SRA
“define SLLV
“define SRLV
" defi ne SRAV

“defineJR
“define JALR

“defi ne SYSCALL
*“def i ne BREAK

“define MFHI
“define MTHI
“define MFLO
“define MTLO

“define MULT
“define MULTU
“define DV
“define DI VU

“defi ne ADD
*“def i ne ADDU
“define SUB
“defi ne SUBU
“defi ne AND
“define OR
“define XOR
“define NOR

“define SLT
“define SLTU

“define TGE
“defi ne TGEU
“define TLT
“define TLTU
“define TEQ

“define TNE

6' b110000
6' b110001
6' b110010
6' b110011

6' b110101
6' b110110
6' b110111

' b111000
'b111001
'b111010
'b111011

6'b111101
6'b111110
6'b111111

6' b000000
6' b000010
6' b000011
6' b000100
6' b000110
6' b000111

6' b001000
6' b001001

6' b001100
6' b001101

' 010000
b010001
' b010010
' b010011

o oo o

b011000
'b011001
'b011010
'b011011

(o2 N e Ne)

' b100000
' b100001
' b100010
b100011
' b100100
'b100101
'b100110
b100111

[N NeNe>Ne e e Ne))

'b101010
b101011

o o

6' b110000
6' b110001
6' b110010
6' b110011
6' b110100

6' b110110

133

“defineBLTZ 5' b00000

“defi ne BGEZ 5' b00001
“define BLTZL 5' b00010
“defi ne BGEZL 5' b00011
“define TCEI 5' b01000
“define TGEI U 5'b01001
“define TLTI 5' b01010
“define TLTIU 5'b01011
“define TEQ 5'b01100
“define TNEI 5' b01110

“define BLTZAL ' b10000

5
" defi ne BGEZAL 5' b10001
“define BLTZALL 5'b10010
“defi ne BGEZALL 5'b10011
2
Opcode Assignments for “COPz rs Qperations
___ */
“define MF 5' b00000
“define CF 5' b00010
“define M 5' b00100
“defineCT 5' b00110
“define BC 5' b01000
¥ eeaaiiaas

Opcode Assignnments for “COPz rt QOperations

--%/

“defi ne BCF 5' b00000

“define BCT 5' b00001

“defi ne BCFL 5' b00010

“define BCTL 5' b00011
e
Encoded data path controls

--*/

“define select_pc_pc 5' b00000

“defineselect_pc_inc 5'b11110 /1 Next PC val ue sel ect
“define sel ect_pc_add 5'b11101

“defineselect_pc_junmp 5'b11011

“define sel ect_pc_vector 5'b10111

“defineselect_pc_register 5'b01111

“defineselect_bp_reg 3' b000

“define sel ect_bp_stage3A 3' b001

“define sel ect_bp_staged4A 3' b010

“define sel ect _bp_stage3B 3'b101

“define sel ect_bp_stage4B 3' b110

“define instr_sel_new 2'b00
“define instr_sel_olda 2'b01
“define instr_sel_oldb 2'bl0
“define instr_sel_nop 2'bll

“define instr_sel _sw zzle 2' b00
“define instr_sel_self 2' b01

“define pc_cf 2'bl1l
“define plus_8 2'bl0
“define plus_4 2'b01
“define no_change 2' b00

134

/'l Decoded ALU operation select (ALUsel) signals

defi
“defi
* def
" def
“def
“defi
* def
" def
“defi
“defi
* def
* def
" def
“defi
* def
* def
“defi
“defi
“defi
“defi
“defi
“defi

" def
“def
“defi
* def
" def
" def
“defi
* def

“defi
“defi
* def

ne sel ect _al u_add
ne sel ect _al u_and
ne sel ect _al u_xor
ne sel ect _al u_or
ne sel ect _al u_nor
ne sel ect _al u_sub
ne select_alu_sltu
ne sel ect _alu_slt
ne sel ect _al u_shift
ne sel ect_al u_sra
ne sel ect _al u_srl
ne sel ect _al u_sl |

ne select_alu_nmult_h
ne sel ect _alu_mult_
ne select_alu_multu_h
ne select_alu_mul tu_l
ne select_alu_div_h

ne sel ect _al u_div_

ne sel ect _alu_divu_h
ne sel ect _al u_di vu_l

ne sel ect _al u_nf hi
ne select_alu_nflo

ne sel ect _mem | w
ne sel ect _mem | hu
ne sel ect_nmem | h
ne sel ect _mem | bu
ne sel ect_meml|b
ne sel ect _nmem sw
ne sel ect _nmem sh
ne sel ect _nmem sb

ne ALUQueue
ne MEMQueue
ne BRQueue

8' b00000001
8' b00000010
8' b00000100
8' b00001000
8' b00010000
8' b00100001
8' b01000000
8' 01100000
8' b10000000
8' b10000001
8' b10000010
8' 10000100
8' b10001000
8' 10010000
8' 10100000
8' 11000000
8' b11000001
8' 11000010
8' 11000100
8' 11001000
8' b11010000
8' 11100000

8' b00000001
8' b00000010
8' b00000100
8' b00001000
8' b00010000
8' b00100000
8' b01000000
8' b10000000

2' b0l
2' b10
2' bl1l

/1 Decoded quick conpare condition select (QCsel) signals

" def
* def
* def
" def
" def
* def
“defi
“defi
“defi
“defi

ne sel ect _qc_ne
ne sel ect _qc_eq
ne select_qc_l ez
ne sel ect_qc_gtz
ne sel ect _qc_gez
neselect_qc_Itz
ne select_qc_jr
ne select_qc_jalr
ne select_qc_|j

ne select_qc_ja

8' b00000001
8' b00000010
8' b00000100
8' b00001000
8' b00010000
8' b00100000
8' b01000000
8' 10000000
8' b10000001
8' b10000010

/'l Select data to be witten back to register file

“defi
“defi
“defi

* def
" def
" def
" def
* def

ne sel ect _wb_al u
ne sel ect _wb_| oad
ne select_wb_link

3' b110
3' bl01
3' b011

ne sel ect_pred_dpred 3' b000
ne sel ect_pred_gpred 3' b001
ne sel ect_pred_ppred 3'b010
ne select_pred_tpred 3'b011
ne sel ect_pred_vpred 3' bl100

/1 Various width don't care

“definedc32
“defineinvalid
“defi ne undefi ned
“definedc8

and invalid val ues
32" bBXXXXXXXX
32" bXXXXXXXX
32" bXXXXXXXX
8" hXXXXXXXX

135

“definedc6 6' bXXXXXX

“definedch 5' bxxxxx
“definedc3 3' bxxx
“definedc2 2' bxx
“definedc 1' bx
“definenull 1' bx
“definetrue 1'bl
“definefal se 1' b0

/! State encodings for multi-cycle MPS
“define | F_STATE 3' hO

“define | D STATE 3'hl

“define EX_STATE 3' h2

“define MEM STATE 3' h3

“define WB_STATE 3' h4

/'l Dsize encoding for supporting sub-word wites
“define SIZE BYTE 2' hO

“define SIZE HALF 2' hl

“define SIZE_WORD 2' h2

Khkhhkhhhkhhkhhkhhhhhkhhkhhhhkhhkhhkhkhhkhhkhhkhhkhkhkkkx

cache. h
/1 Tag fields
“define D_BO W DTH 2

/1 1f you change the nunber of words in a $ line you nust change
/1 *all* of the followi ng defines, as well as the nenory system
/1 in mps.v

“define D WD W DTH 3

“define MAX_OFFSET 7

“define D | NDEX WDTH 9
‘define D TAG WDTH 18

“define D_BO 1
“define D WO 4
“define D_I NDEX 13:5

“define D_TAG 31: 14

10
12

/1 State fields
“define D VALID 0
“define D D RTY 1

/1 1f you change the nunber of words in a $ line you nust change
/1 *all* of the followi ng defines, as well as the nenory system
/1 in mps.v

“define | _WO W DTH 3

“define |_I NDEX_ WDTH 9
“define |_TAG WDTH 18

“define | _BO 1:0
“define | _WO 4:2
“define | _I NDEX 13:5
“define | _TAG 31: 14

/1 State fields

“define | _VALID 0

136

