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Introduction 

 This project implements a method for catching a ball rolling down an inclined plane.  It uses a 
webcam to capture the image data, computer vision algorithms to correctly identify the ball, and a PID 
controller to move a motor to receive the ball.  

Microcontroller Design 

The microcontroller, ATMEGA32, performs a very simple task in our project; take in a reference 
value sent in from the serial port and run a Single-Input-Single-Output controller with distance feedback 
from optical shaft encoders attached to the motor.  The output of the controller is fed into a PWM 
module, to control the speed of the motors via an H-bridge circuit.  

Motion Control 

While the microcontroller’s task is simple, it is not trivial.  The control loop must work almost 
flawlessly, otherwise the larger, ball tracking control loop will be unstable, or unreliable.  The 
microcontroller must implement a feedback control loop to operate the motors, and run interrupt-
driven serial communication and shaft encoder processing routines. 

Electronic Hardware 

The hardware involved with the low-level motion control is a 

 A microcontroller (ATMEGA32) 
 A motor with shaft-encoder feedback  
 A high source current power supply 
 A motor control (H-Bridge) IC (LMD18200) 
 A serial level converter (Max233) 

 
Specifications 

The control loop must run at a fixed frequency, so we must queue input, or reference values, as 
they come in.  If the control loop doesn’t run at a fixed frequency, the response of the system will 
change, as we are simulating a continuous system in a discrete, or sampled, fashion. 

Baud rate is set to 230400 bps, for the fastest, while still reliable, data transfer rate. 

 



Interrupts from the main control loop from the serial port and from updating the distance variable from 
the shaft encoder pulses must not significantly alter the main control loop’s operating frequency. 

 

Feedback Controller Design and Specs 

The specifications of the controller are: 

 Zero steady state error 
 All closed-loop poles are real, meaning that there are no damped oscillations in the output of 

the system.  All closed loop poles must lie on the negative real axis. 
 Robust to slightly uneven response along track length, due to physical setup 
 Reliable, i.e. little drift, over time 

 

We decided to use a simple PI controller because it is both fast, robust when used with stable open-
loop poles, and produces a zero steady-state error.  The system before feedback control is stable, or, in 
other words, the open loop poles of the system are stable. A proportional controller would meet spec, 
and performs very well, with a quick response time, Tr.  As a matter of fact, our first approach was to 
simply increase K, the proportional control constant, until the steady state error was close enough to 
zero and the response was quick enough. 

 However, several problems arise from this approach.  Firstly, there is a time delay, partially from 
the time it takes to compute the sensor output, and partially from the inertia of the motor and the 
system.  This time delay, when used with a proportional controller with high gain K, will produce 
complex poles as K increases, and these complex poles will slowly, as K increases even more, wander 
into the unstable territory (Closed loop poles in the RHP).   To solve this problem, we chose a Kp such 
that the closed loop poles of the system were real, i.e full damping, no damped oscillations, but were 
marginally real. 

We then added integral control to drive the steady state error of the system to zero.  We chose a KI, 
integration constant, to be much smaller than Kp so that it didn’t affect the response by driving the 
closed loop poles to be complex (damped oscillations in the output), but still large enough to 
compensate for steady state error.  We also implemented an integral wind-up checker, so that the 
integral would not build up too large and overflow in the microcontroller. 

Our final expression for the controller is K(s)= Kp + Ki / s . Or in a proper-fraction format: K(s) = 
(Kp*s+Ki) / s .  The controller, however, must be brought into the discrete domain, which is very 
straightforward for the simple PI controller we chose.  If we chose a more complicated controller, one 
would have to use matlab to make a straightforward conversion from the continous s-domain into a 
discrete time domain. 

 K(errori)= Kp*error +Ki * SUM(errorj, j=0 to i-1).  The sum approximates the integral.  The dt time step 
from the integral is rolled up into the KI constant. 



 

The experimentally determined constants, Ki = 0.00001 and Kp = 0.06 with a feedback loop 
frequency of Fclk /1024 where Fclk= 14.7456 MHz.  So, Loop Freq.  = 14.4 kHz , which is more than quick 
enough to update changes in inputs.  The shaft encoder will output pulses around 2 kHz max. 

Code 

All code for the ATMEGA32 was written using C and the WINAVR compiler. 

 

Object Recognition 

Capturing: 
 To capture the video we use a Logitech webcam.  The resolution is 320 x 240 pixels RGB color 
image.  Our client program is written in Java, and employs the Java Media Framework (JMF).  In this 
program we connect to the webcam input stream to pipe in the video and create a media player to 
process capture each frame as it comes in.  Once a frame is captured it is sent to be processed and 
filtered. 

Ball Detection: 
 In order to detect the ball we must go through a multi-stage process.  The general idea in the 
process is to convert the image to grayscale, determine the region of interest (ROI), canny edge detect, 
and then perform a circular Hough transform. 

 The first step is to convert the image to grayscale.  When we get the initial image is of 0-255 RGB 
value in an array of size 320 x 240.  To convert, we loop through this array and perform an RGB to 
grayscale conversion with the following code: 

float red  = (pixels[index] >> 16) & 0xff; 
float green  = (pixels[index] >>  8) & 0xff; 
float blue   = (pixels[index])  & 0xff; 
pixels_gray[index]= (int)(red*.3 + green*.59 + blue*.11); 

 After we have converted the image to grayscale, the next thing we want to do is define the 
region of interest.  In our setup we want the region of interest to be everything that pertains to the 
black sheet.  Due to variations in lighting, the fact that surrounding bodies may have colors of the same 
as the sheet, and other issues, determining the black sheet is not as easy as a simple black thresholding.  
In order to calculate the region of interest, we first have to make a few assumptions.  One assumption is 
that what the camera is currently looking at should be dominated by the black sheet, and that at the 
bottom of the cameras view we will always see the black sheet.  

 To account for the lighting in any given situation we take five regions in the image.  They are 
centered in the top, bottom, left, right, and center of the image.  Each region is 7 x 7 pixels big, and the 
average values of these pixels are computed.  We then take the highest and lowest average values and 



throw them out.  Out of the three remaining regions, we take the average of their values.  This value is 
what we believe to be representative of the black colored sheet in any lighting. 
 
 After we have the hypothesized average pixel value of the black sheet we then compute the 
Sobel operator in both the X and Y directions to compute the gradients of the gray scale image.  Next, 
using assumption number two that the bottom center of the camera will always be in the black region 
we implement a recursive function that starts at this point and searches for other similar intensity pixels 
and marks them as the black sheet or not.  The way this works is that it moves to the right checking to 
see if the pixel value is within a percentage of the average and that the X and Y gradients are less than a 
possible edge value (because we don’t want to continue off the edge of the sheet or into the ball).  Once 
it cannot go right, it searches up, then left, and then down.  The recursive search effectively marks the 
entire black sheet as the black sheet, with very little error.  However, to account for some error, and to 
compute the polygon region of interest, we have to perform the following steps.  The algorithm then 
starts in the bottom left of the image, and moves to the right, until it finds the third marked pixel as a 
sheet and adds that to its edge list.  Then it moves up until the top of the image.  Once it reaches the top 
it performs the same steps, but not starting from the left side and moving to the left until it reaches its 
third marked pixels to set as an edge for the polygon.  After this is all complete, we have defined what 
we believe to be the black sheet. 

 The next step in finding the ball is to perform edge detection on the image.  Our method of edge 
detection is a Canny edge detector.  This edge detector works by first convolving the image with a 
Gaussian slight blurring filter.  This helps to remove noise from the image that could give false edges, 
while preserving dominant edge structure.  Next, it calculates the X and Y gradients using the Sobel 
gradient operators.  After this, a gradient magnitude is computed at each point.  If the magnitude is 
greater than a threshold in which we are certain is an edge, it is marked as an edge, and if the 
magnitude is less than a certain threshold, it is marked as not an edge.  For the middle regions, we look 
in the local region of the pixel to see if it is the greatest for its given direction, and if it is locally the 
highest, we then mark it as an edge.  The end result is an array with two values, one indicating an edge, 
the other not an edge. 

 We use a circular Hough transform (CHT) to find the ball in our image.  The inputs to the CHT is 
the Canny edge detector array, a radius value, a threshold, and a region of interest. 
 
 A CHT works by going to each pixel marked as an edge and it then traces a circle with the 
specified radius, centered at that edge.  We have another accumulator array that has its array index 
incremented by one, every time a circle intersects that point.  So, if you have a perfectly edge detected 
image, with a circle of radius R, and you input this to the CHT, you will find that at the center of that 
circle the accumulator value will be a maximum, because the Hough circles of radius R have interested 
many times over while being drawn.  What we do to find these maximums is to split the image up into 
16 x 16 grids and mark all pixels with highest value as a regional max.  We then take the regional max 
pixels and check to see if their accumulator value is greater than the threshold.  If it is, we record this 
point, along with its accumulator value, as a possible circle that could be the ball.  The point list, along 



with the value list is returned at the end of the CHT. 
 
 We perform the CHT in a loop where the value of the radius increases from a lower bound to an 
upper bound, depending on where we believe the ball to be in the image.  During each loop we keep 
track of the highest accumulator value, and its corresponding x and y values and radius.  At the end of 
the loop we have a radius and an X and Y value that is with highest probability a circle in the desired 
image. 

 At this point we have determined where in the current image the ball lies and with what radius, 
assuming a ball is in the region of interest.  The next step is the output to the microcontroller a position 
to move to so that we can catch the ball. 

 

Figure: Shows the general processing steps for a given image, with wanted radius and threshold. 

 

 

Figure: Shows the basic idea behind how the CHT determines which ball, if any, is the ball we want. 

Speed Enhancements: 
 If we were to perform the ROI calculation, then the Canny edge detection on the entire image, 
then the CHT on the entire image, the result would be a frame rate of between 2-4 per second.  This is 
not an acceptable value for our real time calculations.  Therefore we developed a few techniques to 
speed up the processing. 



 First we had to determine what was taking the longest time in our processing.  Test benches 
showed that the Canny edge detector was taking a lot of time to process.  There were a few things 
wrong with how were using the edge detector.  First, it was taking as an input an image, and then taking 
the pixels out of the image into an array.  This was unnecessary, because when we determine our ROI, 
we have created the pixel array.  Therefore, we changed the code to just pass in grayscale pixel array.  
Also, on each iteration, the edge detector was recalculating its kernels.  Calculating the kernels only 
needs to be done on instantiation of the edge detector.  Changing this removed unnecessary looping in 
the code.  Also being done, is that it was outputting a binary image as its result, as opposed to a binary 
array. 
 Those were enhancements that we made directly to the edge detector, but at the time we were 
still operating on the entire image at a time and we thought there must be a smarter way.  The smarter 
way we determined was to use the knowledge of previous calculations that produced an X and Y and 
radius location for the input image.  The general idea of our state machine was that if no ball is found, 
we input the entire 320 x 240 image until a ball is found.  When a ball is found, we then check to see 
what it’s Y location is.  If it is in the upper third of the image, on our next iteration we will only Canny 
edge detect on the top half of the image, thus reducing the number of pixels to operate on in half.  If it is 
in the middle third, we will operate on the middle half of the image (1/4 to 3/4 of the height), and if it is 
in the bottom third, we will input the bottom half of the input image.  We also attempt to input a 
compressed image by a factor of two (half width and half height) after finding a ball in the ALL region.  
By separating the images into regions based on where the ball was previously, we were able to get rid of 
unnecessary edge calculations. 

 The next limiting factor in our processing is our circular Hough transform.  What we had been 
doing is computing the CHT on the entire input image result from the Canny edge detector, but this was 
slow.  To speed things up, we decided to employ another regional technique.  If we had a previous value 
for the ball’s center and radius, we would make the input to the CHT a rectangular region that has a 
minimum X and Y of the previous center X and Y minus three times the previous radius, and a maximum 
X and Y of the previous center X and Y plus three times the radius.  This we would box in the previous 
ball location with a guess of where the ball should be now.  If it turns out our guess is wrong, on our next 
loop we expand the box to encompass the entire input region. 

 These techniques were much needed and increased our speed significantly.  A table of the 
speed tests is included below.  CED stands for Canny Edge Detector (can be fast or normal version).  Fast 
Hough Regional is where we narrow down based on radius.  Overall (bolded) you can see that the speed 
up was approximately 4 times, but we still lose approximately 20 FPS due to processing. 

Applications FPS_min FPS_max FPS_avg 
Draw Image, Draw CED_fast, step down 2 28 32 31 
Draw image, no-CED 32 34 33 
Draw Nothing 32 34 33 
Draw Image, draw CED_normal 12 14 13 
Draw Image, no draw CED_normal 12 14 13 
Draw Image, CED_fast, 1/3 image 25 27 26 



Draw Image, Draw CED_Fast, 1/2 image edge detect 16 19 18.25 
Draw Image, draw ced_fast, 1/2 image, scale down by 2 26 28 27.25 
draw image, hough, ced_fast, 1/2 image, no scale, 9 rad 7 9 8 
draw image, hough, ced_fast, 1/2 image, no scale, 5 rad 10 11 10.5 
draw image/CED, regional CED_fast, compute ROI, no scale 9 11 10 
draw image/CED, regional CED_fast, compute ROI, no scale, fast_hough 11 13 11.75 
Draw Image, Draw CED, Draw Regions, Draw Ball, fast_hough regional 9 15 12 
Original 2 4 3 

 

Catching the Ball 

 To catch the ball we had to position the plate that the camera sits on, a 3.5” wide platform so 
that the ball would land within its edges.  On screen we are able to determine an X position of the ball as 
well as a radius.  Since the image is 320 pixels wide, an X value greater than 160 means the ball is right 
of the camera, and anything less means the ball is left of the camera.  Now, if the ball has a smaller 
radius, that means the ball is farther away from the camera, than if the radius is large, and the ball is 
close to the camera.  Knowing these two values can help us guess where the ball is relative to the 
camera.  If the ball is P pixels away from 160 and has a radius of 10 (far away) versus (50) close we 
would want to move proportionally future for the radius of 10, than the radius of 50, because the ball is 
probably situated further out.  To imagine this, think about when you look down a long stretch of 
highway.  The further you see the closer both sides of the roads come to converging to one point.  So, if 
at the very end of your vision, where the road is perceptively more narrow than in front of you, you 
have see something that looks like it is one inch to you right, is it actually one inch?  No, since you are far 
this is only an illusion, and it is much more than one inch to your right.  Now, if you are looking at some 
object one foot in front of you, and it looks like it is one inch to your right, odds are it is very close to one 
inch to your right. 

GUI Design and Use 

 The GUI was written in Java using the Java Comm library (for serial communication), the Java 
Media Framework, and standard Java.  There are three main buttons to be concerned with.  The first is 
the capture video button.  This button initializes the connection with the camera and will start 
processing the data.  The start serial button will initialize the serial communication between the PC and 
the microcontroller and move the camera to the center of the board.  Lastly, the Track Ball button is a 
toggle button.  The initial press will make the camera now follow the ball, and a subsequent press will 
turn following off.  When initializing the camera, some error messages will print out to the console, but 
these can be ignored.  It is a result of the GUI trying to paint an image that hasn’t been received yet.  
Otherwise, the application is pretty robust.  Details on what you are viewing are included below in the 
images section. 

Physical Construction 

The physical layout is as shown below.  Drawings and modeling was done in Autodesk Inventor. 



 

Materials Used: 

 2’x3’ MDF (Fiberboard) 
 Clear Polycarbonate plastic 
 Delron blocks 
 3/8” Aluminum rods 
 Acrylic Matte-finished 

 

The original plan, shown above, included a pully-driven cart operating on aluminum guide rails.  We 
revised these plans, as shown below, to use a sliding, ball-bearing, track.  The ball is placed at the top of 
the ramp, and rolls down the ramp where it is caught, or tracked, by the cart.   Attached are more 
detailed plans, including dimensions, of the final project. 

Background (Black Matte-Finished Acrylic): 

The background, also the ramp, is a sheet of black acrylic.  The color and finish were chosen to 
make the problem of object detection simpler.  However, the costly piece of plastic turned out to be far 
less helpful that previously imagined.  We chose to use a black ramp so that the white ball would stand 
out significantly, and we could implement a simple thresholding algorithm to detect the bright ball. 
Unfortunately, shadows and uneven lighting made this approach unfeasible, so our choice of a black 
background made the problem only slightly easier.  The matte finish was intended to attenuate 



reflections.  However, what we found was the matte finish simply blurred reflections.  So, rather than 
seeing reflections, there would be bright spots, or dark spots, on the background.  Again, the matte 
finish was an improvement, but not enough of one to significantly simply the tracking algorithm.  A 
painted piece of wood would have worked equally as well, and would have saved us a significant 
amount of money. 

 

Images 

 

This is an image of the GUI that we wrote. 



 

This is the main image of our GUI.  It shows the status of a few important facts.  Right now it is 
processing on the entire image (Region = ALL).  The serial communication is not connected, and the ball 
has not been found.  The Camera Position is the position at which we will set the camera when we 
establish serial communication.  In our setup, 75 means center.  Also notice the yellow polygon that 
outlines what our algorithm believes to be the black sheet. 



 

This image shows what the processing looks like when we have found a ball.  There are a few 
interesting things to notice in this new image.  First see how the region specified is now TOP.  This shows 
that we have found the ball in the TOP region and for now, that is the only region worth processing on.  
Also, the green and yellow squares indicate what region we are performing our CHT on.  The blue circle, 
is indicating where the CHT has determined the ball is and with what radius.  This information is also 
printed on the right hand side of the window.  One important thing to also notice, is that the FPS has now 
risen to 13 per second.  This is due to our optimization of the region for the Canny edge detection and for 
the CHT. 



 

Image showing the gray scale input, the edge image, and the Hough Accumulator.  Notice on the 
Hough accumulator the center region where the concentration of pixels is much higher than in other 
regions.  This indicates that we are most likely looking at a circle of the inputted radius. 



 

Depicted is a rear image of the mechanical setup. 



 

Depicted is an isometric view of the mechanical setup, seen from the front. 


