
ECE 4999: INDEPENDENT STUDY

MANISH PATEL (mkp53)

SYED TAHMID MAHBUB (sm893)

CORNELL UNIVERSITY

Under the supervision of: Professor Bruce R. Land

Fall 2015

Page 2 of 38

Table of Contents
1 Introduction .. 3

2 Running Linux on the DE1-SoC ... 3

3 Tools for development ... 5

3.1 GHRD ... 6

3.2 GHRD Program Example ... 7

3.3 HWLIBs .. 10

4 Power Monitoring .. 11

5 Parareal Algorithm ... 12

6 Implementing and Testing Parareal in Java .. 14

7 Implementation and Testing of Parareal in Verilog .. 15

8 Major Obstacles.. 18

9 Acknowledgement ... 18

10 Conclusion .. 18

11 Code Listing... 19

11.1 Demo Application Code for GHRD using FPGA and HPS ... 19

11.2 Parareal Code ... 20

Page 3 of 38

1 Introduction
The DE1-SoC development board from Terasic uses the Altera Cyclone V SoC (System on

Chip) contains both an FPGA and a dual-core ARM Cortex A9 Hard Processor System (HPS). The
initial goal of the independent study was to use the SoC to develop a math co-processor,
specifically a differential equation solver, using the FPGA as the compute module and the ARM
as the control processor, while employing the ARM-to-FPGA communication bus to transfer data
within the SoC. However, given the struggles with development tools, the project goals were
scaled down to getting a more general familiarity with the system and development tools, as well
as developing a parallelized ordinary differential equations solver. This was seen as a reasonable
milestone since it would allow development towards the original goal with continued effort.

2 Running Linux on the DE1-SoC
The DE1-SoC supports running Linux, which presents several advantages in software

development. A first major advantage is that of running standard Linux applications on the SoC
that allows use as a general computer, while running other specific embedded tasks. Additionally,
software can be developed for Linux in a variety of languages. One overhead in development, as
compared to bare-metal development on a microcontroller, is that programs need to map
physical addresses of peripherals into virtual address space to access the peripherals.

The DE1-SoC Resources page presents the MicroSD Card Images for 4 Linux installations:

1. Linux Console – this is the simplest of the options; it runs the Yocto distribution
and the console is available over a serial port with USB interface (FTDI USB-to-
serial translator on the DE1-SoC board). With an Ethernet connection, it is also
possible to SSH into the DE1.

2. Linux Console with framebuffer – this also runs Yocto but forwards the console
onto the VGA output of the board so that it is available on an external monitor,
making it possible to connect an external keyboard to the board and use it as a
standalone computer. The framebuffer is implemented with the FPGA.1

3. Linux LXDE Desktop – this runs with the LXDE desktop environment, presenting a
full GUI to use. It is possible to connect a keyboard and mouse to the DE1-SoC and
use it as a standard computer.

4. Linux Ubuntu Desktop – this runs the Ubuntu desktop environment instead of
LXDE.

The desired Linux version was downloaded and an SD card image was formed by using
the software Win32 Disk Imager2. We used an 8GB microSDHC card. Win32 Disk Imager worked
fine on both Windows 7 and Windows 10. Before using Win32 Disk Imager, using the dd
command on Ubuntu was considered, but given the risk of deleting the primary Linux partition
upon incorrect device specification, this was not used.

Page 4 of 38

Figure 1-Win32 Disk Imager example

It is necessary to set the value of MSEL (JTAG chain) using a DIP switch mounted on the
underside of the DE1-SoC board. It is labelled as SW10 and as MSEL, as shown in the image
below3.

Figure 2-MSEL DIP Switch location

It must be set according to the following table4:

When running Linux Console and writing our own code that accessed FPGA peripherals,
we selected MSEL[4:0] = 01010. When running the Linux Console with framebuffer and the LXDE
desktop environment, we set it to 00000.

We ran the Linux Console, Linux Console with Framebuffer, and the Linux LXDE Desktop
versions. While running LXDE, we noticed occasional issues in operation, most notably that,
Firefox kept crashing repeatedly when more than one tab was open. Based on this and that LXDE
is lighter than Ubuntu, we decided not to attempt to run Ubuntu. On LXDE, we were able to play

Page 5 of 38

a pre-loaded video using the default video player. We connected the board to the internet using
an Ethernet connection, and were able to browse the web when Firefox wasn’t crashing. It must
be noted that on LXDE, it is necessary to login with a password: “terasic” for user: “root”.

Despite having running LXDE, we determined that we did not need the GUI. Additionally,
it was using the FPGA and we wanted to use the FPGA for our application. Hence, we ran the
Linux Console version.

3 Tools for development
 Altera Quartus II v 15.0 or higher

 Altera SoC Embedded Design Suite (EDS)

 DE1-SoC System Builder

 GHRD (Golden Hardware Reference Design), see below

 System CD5

To develop using only the FPGA (ie HPS is not required), a Quartus project was created
using the DE1-SoC System Builder (whose executable can be found in the CD under Tools-
>SystemBuilder or online6):

Figure 3-System Builder

To develop using the FPGA and the HPS, a Quartus project must obviously be created for
the FPGA, where the HPS is instantiated. The steps followed to do so are clearly outlined on a UC
Davis Lab document7.

There was one particular thing that we had to do to make it successfully work. After
running an “Analysis and Synthesis” (Ctrl+K), a folder named incremental_db is created in the

Page 6 of 38

project folder. This caused a full compile (Ctrl+L) to fail. Thus, it was necessary to remove the
incremental_db folder between running “Analysis and Synthesis” and performing a full compile.

3.1 GHRD
In the CD accompanying the DE1-SoC (that can be downloaded from the DE1-SoC

resources web page), there are several demonstration projects, one of which is the GHRD. This
can be located in the directory Demonstrations->SOC_FPGA->de1_soc_GHRD. This is a Quartus
project file that has the HPS instantiated and the required configurations done for using the HPS
with the FPGA for certain tasks. The project also has the ADC, GPIO, seven segment displays,
buttons, switches, LEDs, PS2 peripheral and VGA connections instantiated and ready to be used,
as would be the case if the project was created with the System Builder tool. More information
on GHRD is revealed on the Rocketboards website8 documenting the GHRD.

The GHRD can be used with the HPS running Linux and can allow the HPS to access the
peripherals on the FPGA side. It allows the HPS to access the pushbuttons, DIP switches, LEDs on
the DE1-SoC board.

One change was made to the default top level file ghrd_top.v. By default, it presents
LEDR1 through LEDR9 (on the board) to be accessed, but not LEDR0 since it was set to blink from
the FPGA end. This was changed by removing the always block and assign statement at the end
of the program that toggled LEDR0. Additionally, line 215 was changed from

 assign LEDR[9:1] = fpga_led_internal;

to

 assign LEDR[9:0] = fpga_led_internal;

The GHRD contains a file of type sopcinfo: soc_system.sopcinfo, which can be used to
generate a header file with the peripheral offsets required to access them from the HPS (see
example below). A script required to create the header file was found in a sub-directory in
another demo project: Demonstrations -> SOC_FPGA -> HPS_LED_HEX -> LED_HEX_hardware ->
generate_hps_qsys_header.sh

The contents of the script are:

#!/bin/sh
sopc-create-header-files \
"${SOCEDS_DEST_ROOT}/HPS_LED_HEX/LED_HEX_hardware/soc_system.sopcinfo
" \
--single hps_0.h \
--module hps_0

This was changed to:

Page 7 of 38

#!/bin/sh
sopc-create-header-files \
"./soc_system.sopcinfo" \
--single hps_0.h \
--module hps_0

It was then saved as generate.sh and moved to the required project directory.

This script can be executed using the SoC EDS Command Shell in the SoC EDS install
directory. Launching the command shell and using cd to navigate to the project directory, the
script can be run:

./generate.sh

In the generate.sh file, the 3rd line (with the sopcinfo file) tells the script which sopcinfo
file to use. Since there was one in the project directory from GHRD, it used that. The 4th line says
what the output header file should be. The resultant header file then allows access to FPGA
peripherals when writing code for the HPS. A small segment of the header file (for the LEDs) is
shown below:

#define LED_PIO_COMPONENT_TYPE altera_avalon_pio
#define LED_PIO_COMPONENT_NAME led_pio
#define LED_PIO_BASE 0x10040
#define LED_PIO_SPAN 64
#define LED_PIO_END 0x1007f
#define LED_PIO_BIT_CLEARING_EDGE_REGISTER 0
#define LED_PIO_BIT_MODIFYING_OUTPUT_REGISTER 0
#define LED_PIO_CAPTURE 0
#define LED_PIO_DATA_WIDTH 10
#define LED_PIO_DO_TEST_BENCH_WIRING 0
#define LED_PIO_DRIVEN_SIM_VALUE 0
#define LED_PIO_EDGE_TYPE NONE
#define LED_PIO_FREQ 50000000
#define LED_PIO_HAS_IN 0
#define LED_PIO_HAS_OUT 1
#define LED_PIO_HAS_TRI 0
#define LED_PIO_IRQ_TYPE NONE
#define LED_PIO_RESET_VALUE 15

3.2 GHRD Program Example
A demo program to increment the value output onto the LEDs, and print the value onto

the terminal was developed as an introductory example to allow building on top of the project
as more peripherals were used. GHRD was used for the project to simplify design.

The communication between the HPS and the FPGA required for the HPS to access FPGA
peripherals is done over the 32-bit wide lightweight HPS to FPGA (lwh2f) bridge.

Page 8 of 38

From a tutorial video online9, the following setup code was obtained:

#define REG_BASE 0xFF200000
// base address of h2f_lw bridge from datasheet

#define REG_SPAN 0x00200000
// 2MB long

void* virtual_base;
void* led;
int fd;
//--
fd = open("/dev/mem", (O_RDWR|O_SYNC));
virtual_base = mmap(NULL, REG_SPAN, (PROT_READ|PROT_WRITE),
MAP_SHARED, fd, REG_BASE);
led = virtual_base + LED_PIO_BASE;

As mentioned previously, it is necessary to map the FPGA peripherals to the running
program’s virtual memory. This is achieved by using the mmap function as shown above. This
assigns the base address for the lwh2f bridge to virtual_base. The offset to the peripherals is
included in the header file generated using the generate.sh script as mentioned above. Thus led
is assigned the base address to the PIO port driving the LEDs. It is easy to assign values to given
addresses using functions from Altera’s HW libraries (HWLIB):

alt_write_word(led, ledval);

The last significant part of the demo application is the use of the POSIX threads library:
pthread. While pthread has numerous options (eg setting scheduling parameter, priority, etc),
this application only made use of pthread in order to only create three threads to run
concurrently: one to write to the LED, one to increment an LED counter, and one to print the
value of the counter onto the terminal. While all these are very simple tasks and can be
accomplished through a single thread, three threads were created only to demonstrate the use
of pthread. A small section of the pthread use is shown below:

void* inc_count(void* args){
 while (1){
 if (++ledval >= 1024)
 ledval = 0;
 sleep(1);
 }
 pthread_exit(NULL);
}
//--
pthread_t count;
if (pthread_create(&count, NULL, inc_count, NULL)){

Page 9 of 38

 fprintf(stdout, "Error creating pthread! Aborting!\n");
 return 2;
}

In order to build the demo application, the SoC EDS Command Shell was used again; a

Makefile is required to build the program, and a simple Makefile for this was created by altering
the one shown in the tutorial video mentioned above and saved in the project directory as
“Makefile”:

TARGET = ghrd

CROSS_COMPILE = arm-linux-gnueabihf-
CFLAGS = -static -g -Wall -Dsoc_cv_av -
I${SOCEDS_DEST_ROOT}/ip/altera/hps/altera_hps/hwlib/include -
I${SOCEDS_DEST_ROOT}/ip/altera/hps/altera_hps/hwlib/include/soc_cv_av
LDFLAGS = -g -Wall -lpthread
CC = $(CROSS_COMPILE)gcc
ARCH= arm

build: $(TARGET)
$(TARGET): main.o
 $(CC) $(LDFLAGS) $^ -o $@
%.o : %.c
 $(CC) $(CFLAGS) -c $< -o $@

.PHONY: clean
clean:
 rm -f $(TARGET) *.a *.o *~

A key thing is that in the linker is provided the switch –lpthread since pthread was used

in the program. For compilation to be successful, it is also necessary to have soc_cv_av defined
(as done in CFLAGS) as well as defining the HWLIBs include paths as include paths for compilation.
The target name at the top of the Makefile is the name of the output file. By using the make
command in the SoC EDS Command Shell, the output file is generated if there are not build errors.
If there are errors or warnings, those are listed.

Once the output file was generated, it is required to transfer it to the DE1-SoC to run in
Linux. A simple way to do so is to SSH in with the board connected to an Ethernet cable. However,
due to logistic issues, it was not possible to use an Ethernet connection. Thus, the method used
was to use a flash drive to transfer the file. The generated file is copied to a USB flash drive, which

Page 10 of 38

is then plugged into a USB port on the DE1-SoC. The terminal shows that the flash drive is
recognized. For us, the device was /dev/sda. This was mounted, and the code run off of it:

mkdir /media/usb
mount /dev/sda /media/usb

./ghrd

3.3 HWLIBs

We attempted to continue exploring the hardware libraries. These can be located at
{SOCEDS_DEST_ROOT}/ip/altera/hps/altera_hps/hwlib, which on Windows 7 for us was
D:\Altera\15.0\embedded\ip\altera\hps\altera_hps\hwlib. Based on the include and source
files, it seemed like coding for the peripherals would not be too difficult. For example, the
following was conceptualized for testing a timer:

alt_gpt_all_tmr_init();
// 32-bit timer 0 connected to L4_SP bus clocked by l4_sp_clk
alt_gpt_mode_set(ALT_GPT_SP_TMR0, ALT_GPT_RESTART_MODE_PERIODIC);
alt_gpt_tmr_start(ALT_GPT_SP_TMR0);

fprintf(stdout, "counter = %u\n",
alt_gpt_counter_get(ALT_GPT_SP_TMR0));

However, we had troubles creating a Makefile to build the HWLIBs as well the main source

file. Thus, progress on the HWLIBs was halted. This is something we plan on addressing
immediately as we proceed from here.

Page 11 of 38

4 Power Monitoring
One of the subgoals of the project initially considered was to monitor the power

consumption of the SoC under different computation conditions when we were told by our
advisor that he had heard that the DE1-SoC had on-board power monitoring for the SoC.

However, upon observing the Power Tree10 for the DE1-SoC shown below (and visually
scanning the board), such a monitoring circuitry could not be identified. While it is possible that
this is still available on the board, we could not identify it and could not find any relevant
documentation detailing it.

Figure 4 - DE1-Soc Power Tree

Page 12 of 38

5 Parareal Algorithm

One of the goals of this project was to create a way to solve differential equations in parallel by
utilizing the capabilities of an FPGA. However, traditional, well-known methods for solving differential
equations are inherently serial – just consider the form of Euler’s Method, which is one of the simplest
ways to solve a first order ODE. Euler’s formula solves a differential equation of the following form using
the following iterative scheme:11

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)

𝑦𝑛+1 = 𝑦𝑛 + ℎ ∗ 𝑓𝑛

Obviously, Euler’s method would be slower to implement on an FPGA due to its serial nature –
each successive value in the approximation directly depends on the previous value. Only one computation
would be performed per clock cycle, which inherently defeats the purpose of using an FPGA for such a
task. Similar techniques, such as the fourth order Runge-Kutta, would also be ineffective on an FPGA
because they are also serial in nature.12

Despite this, algorithms do indeed exist for solving differential equations in a truly parallel
manner. The one that we chose to implement is known as Parareal. Parareal is an interesting algorithm
because it allows computations to be performed in parallel by splitting up the time axis into fragments
which, for the most part, can be treated as individual entities. This method is known as “parallel-in-time
integration” and will converge to the solution that is provided by more traditional serial methods for
solving differential equations.13 This will be shown experimentally in the next section.

The math underlying the Parareal algorithm is quite intense and we are not going to pretend as
though we understand everything that is involved with the theory. Instead, we will address this subject
purely from the standpoint of implementation details. Simplifying the algorithm to its implementation
details actually makes it quite intuitive to understand, even if the proofs are substantially more difficult
to comprehend. This document by Scott Field (see reference) from Brown University is perfect for
understanding the implementation of Parareal, and is what the following discussion on Parareal is based
upon, in addition to the helpful clarifications made by the Wikipedia page.14

The first step in the Parareal algorithm is to choose two different “operators,” which are simply
serial algorithms for solving the first order ODE’s that we are interested in. In this regard, there are many
viable options, such as Euler’s method or the Runge-Kutta. Any simple numerical ODE solver will do. The
first of the two operators is known as the coarse operator, because it provides only a coarse solution to
the differential equation. Remember that for numerical ODE solvers, the precision of the solution is
determined by two major factors – the algorithm itself and the chosen step size. With this in mind, the
coarse operator can be achieved by using a relatively low precision technique to approximate the
differential equation in question, namely by either changing the step size or the order of the operator.
The second operator is known as the fine operator, which has a much higher precision, again by either
decreasing the step size or increasing the operator order.15

Notice that both the coarse and fine operator are serial, and therefore would not see much
benefit to being implemented on an FPGA, as previously discussed. Individually, it is true that neither of
these solutions is viable for parallelization. However, the brilliance of Parareal comes from its ability to
combine these two inherently serial operators into an overall scheme that is, for the most part,
parallelized. The overarching idea is this – one can first use the coarse operator to create a rough
approximation to the differential equation, and then use the fine operator over individual slices in

Page 13 of 38

between the coarse operator solutions to refine the approximation. For example, if the step size of the
coarse operator was 0.1, and we are approximating a solution over the time scale from 0 to 10, then
solutions to the differential equation can be obtained for the values at the times 0, 0.1, 0.2, etc. At this
point, the fine operator is used. Assuming that the fine operator has a step size of 0.01, solutions can now
be found “in between” time slices by using the coarse operator solutions as initial conditions for the fine
operator. For example, to solve the differential equation for the values at time 0.11, 0.12, 0.13, … , 0.2,
we would simply use the fine operator with the initial condition f(0.1), which was already determined by
the coarse operator! The final approximation on this time slice will yield f(0.2), which should be more
precise than before, since it was computed on a finer time scale. Note that this isn’t entirely correct since
the initial condition itself was an approximation, so some mathematical alterations are necessary for the
algorithm to converge properly, and the explanation above is simply an intuitive attempt at a justification
for why a fine operator is necessary. (More details on the exact equation for computing the Parareal
solution will follow shortly.) Notice that when computed in this manner, each time slice for the fine
operator can be computed independently, since the initial conditions are just the coarse operator solution
values. Thus, while the fine operator itself is inherently serial, multiple fine operators can be running
simultaneously to speed up the computation. Notice that Parareal will converge to a solution with a
precision equivalent to the fine operator step size, since the fine operator is computed over the region
determined by the coarse operator. Using this technique allows one to compute solutions to a higher
degree of accuracy in a shorter amount of time by exploiting parallelism.16

The specific equation for computing Parareal approximations is as follows. Although the Field
document states the equation, the Wikipedia article shows it in a slightly clearer (but equivalent) manner,
so the Wikipedia form is what will be displayed here:17

𝑦𝑗+1
𝑘+1 = 𝐺(𝑦𝑗

𝑘+1, 𝑡𝑗, 𝑡𝑗+1) + 𝐹(𝑦𝑗
𝑘 , 𝑡𝑗, 𝑡𝑗+1) − 𝐺(𝑦𝑗

𝑘 , 𝑡𝑗, 𝑡𝑗+1)

Where 𝐺 represents the coarse operator, and 𝐹 represents the fine operator. The return value of
these operators is just the approximation yielded by the operator at time 𝑡𝑗+1. The first parameter is the

initial condition, the second parameter is the beginning of the time slice, and the third parameter is the
end of the time slice. Note that the values 𝑡𝑗 simply represent the values of time for which the coarse

operator solves the differential equation, and the values 𝑦𝑗 are these solutions. The index k is used to

represent repeated iterations of the algorithm; more details on this will be provided shortly.

In simpler terms, all this equation says is this – first, compute an initial coarse order approximation
in serial using the given initial condition. Next, compute all of the correction terms in parallel using the
values obtained by the coarse operator – this is the second two terms. Note that the first term in the
correction term is a fine operator over the time slice, and the second term in the correction term is a
coarse operator (single step) over the time slice. Finally, compute, in serial, the coarse order
approximation once more (term 1 in the equation).18 Repeating this process for K iterations, where K is
chosen by the user, will eventually lead to convergence of the Parareal algorithm. The index k is
incremented until it reaches K. As Wikipedia notes, the coarse computation (term 1 in the equation) must
be serial because the first coarse operator relies directly on the previous time value in the same iteration
stage.19

Each successive layer of approximations will yield better and better approximations. Clearly, the
value of K needed to reach convergence is going to be dependent on the operators chosen, and the
relative ratios of the step sizes of the fine and coarse operators.

Page 14 of 38

6 Implementing and Testing Parareal in Java
For our own sanity, Parareal was not immediately implemented in Verilog for the FPGA. Testing

such a complex piece of code and proving that it works is near impossible, and realizing this we decided
that it would be best to first create an implementation in Java. This made the initial debugging process
easier, at least from the perspective of available debugging tools for each language (Modelsim versus the
Eclipse IDE debugger).

For both the coarse and fine operator, a fourth order Runge-Kutta method was chosen. The step
sizes can be altered in the program as desired. For the purposes all tests performed here, assume that the
coarse operator step size is 0.001, and the fine operator step size is 0.00001.

Code for the Java implementation of Parareal can be found in the Appendix section of this
document. The following table documents some test results found when using the Parareal method. It
compares the Parareal solution to the standard fourth order Runge-Kutta solution, and compares the
execution times of each. For each of the test, assume the initial condition is y(0) = 1, and the value being
approximated is y(5). Note that both methods will actually return a large range of approximations
between the times 0 and 5, but for simplicity only the final value, y(5), is shown in the table. The “Actual”

column is the value of y(5) computed in closed form using Wolframalpha20 (e.g., for 𝑦′ = 𝑦, 𝑦(5) = 𝑒5).
The number of Parareal iterations is set to 7.

Differential

Eqn.

Standard RK4 Parareal Actual RK4 Time

(ns)

Parareal

Time (ns)

𝑦′ = 𝑦 148.413159 148.413159 148.413159 5948408 3550096520

𝑦′ =
𝑦 ∗ 𝑡

100

1.13314845 1.13314845 1.13314845 20712479 3567484803

𝑦′ = 𝑦 ∗ 𝑡2 1.2462451E18 1.2462451E18 1.2462449E18 11407033 3546461952

(Note that in the third test, the values between Standard RK4 and Parareal differed at the fourteenth
decimal place, but that was far too many decimals to write out. They were equivalent to a reasonable
degree of accuracy.)

From the above table, it can be seen that the approximations are quite good, and are consistent
with the expected result to a large number of decimal places. The Parareal solution generated by our code
also matches what one would expect from the Runge-Kutta solution using a step size equivalent to the
step size of the fine operator, which is what Parareal should converge to. Based on this, it would seem
that our implementation of the Parareal algorithm is correct.

However, there is one rather large anomaly in the above table – the Parareal solution takes longer
to execute by many orders of magnitude! This is an interesting result, since we expect Parareal to be
significantly faster. As it turns out, using threads in Java doesn’t always mean that the threads will execute
on the different cores of the computer. Furthermore, there is overhead in initializing the threads in the
first place. Essentially, this code adds additional overhead while still executing on the CPU in a serial
fashion, defeating the purpose of the Parareal algorithm. In order to rectify this, a truly parallelized
solution must be created using Verilog and an FPGA. The next section is devoted to the Verilog
implementation of the Parareal algorithm.

Page 15 of 38

7 Implementation and Testing of Parareal in Verilog
As noted in the previous section, implementing Parareal in Java on a laptop is somewhat tricky

because laptops are not always able to fully exploit parallelism. Thus, a Verilog implementation was
created. It uses 64-bit fixed point mathematics (a choice that eventually became a problem) rather than
floating point due to the ease of implementation. The project file was generated by the Terasic System
Builder.21 What follows is a description of the states of the finite state machine used to implement
Parareal in Verilog.

State_RESET – In this state, all variables are reset. TN is set to T0, and YN is set to Y0, the initial
condition. HCOARSE, the step size of the coarse operator, is set to the difference between the start and
end time (T1-T0) divided by N, the number of steps for the coarse operator. HFINE is set to HCOARSE
divided by NFINE, the number of fine operator steps.

STATE_INIT_COND – In this state, the first values in the arrays lastApprox and approx. are set to
the initial condition, Y0. START, the signal controlling the start of the parallel execution stage, is set to 0.

STATE_INIT_COARSE – In this state, the initial coarse approximation is computed and stored in
the lastApprox array.

STATE_PARALLEL – In this state, all of the correction terms are computed in parallel by separate
modules that were created using generate blocks.

STATE_CORRECT – In this state, the correction terms are added to the approx array.

STATE_SERIAL – In this state, the serial coarse operator is run again, in order to update the approx
array.

STATE_SETTLE – In this one cycle state, all of the values in approx. are copied into lastApprox for
the next iteration of the algorithm. The value of k is incremented since another iteration has been
completed.

STATE_END – This state, once entered, will stay here forever. It indicates that all iterations of the
Parareal algorithm have finished.

The following two pictures from ModelSim show two different tests that were run using the
Parareal Verilog code. Both tests output the value (in 64-bit fixed point, 32 bits after the decimal point) of
the solution to the differential equation 𝑦′ = 𝑦 with initial condition 𝑦(0) = 1. It returns the value of
𝑦(5).

In the first test, the number of steps for the coarse operator is set to 100, and the number of steps
for the fine operator is also set to 100. Note that this is slightly different than the notation used above for
the Java code, where a step size was specified. In the Verilog implementation it is easier to specify a fixed
number of steps instead. Step size and number of steps are inversely proportional, so a higher number of
steps indicates a higher degree of precision. The number of Parareal iterations was set to 5. The results of
this test are shown in the below image:

Page 16 of 38

Figure 5-Simulation Result 1

The fixed point value returned was 637421138302. In standard notation, this would correspond
to a value of:

𝑦(5) ≈
637421138302

232
= 148.4111739

The actual value that is expected is:

𝑦(5) = 𝑒5 = 148.4131591

Given that a relatively small number of steps was chosen for both the coarse and fine operator,
this approximation is fairly decent, though still not as good as we would expect.

Test 2 may help shed some light on why the approximation found in Test 1 was less accurate than
expected. In Test 2, everything is the same except the number of steps for the fine operator is not 1000
instead of 100. Given this, it is expected that accuracy should increase. The results are shown in the image
below:

Page 17 of 38

Figure 6 - Simulation Result 2

The fixed point value returned was 637393096911. In standard notation, this would correspond
to a value of:

𝑦(5) ≈
637393096911

232
= 148.404645

Again, the actual value that is expected is:

𝑦(5) = 𝑒5 = 148.4131591

Here something peculiar has occurred. The approximation yielded by increasing the number of
steps has actually decreased in accuracy, when it should have increased. Given that the first
approximation was also off by more than expected, it seems that a possible reason for this is that fixed
point mathematics is not nearly as precise as double mathematics, which is what was used in the Java
version. As the number of computations increases, as does when the number of steps is increased, the
more opportunity there is for errors to accumulate. Thus, given that we are using fixed point mathematics,
it seems reasonable that error could increase when the number of steps is increased, even though we
would prefer that it did not. The other possible explanation is that there is something wrong in the
implementation itself, but given that the approximations are very close to expected, this seems unlikely.
Numerical truncation errors seem more likely. Another error that should be mentioned is that occasionally
there are over and underflow errors when performing the floating point math, and these need to be
handled in a more robust manner. More work needs to be done in the future to make sure that the
implementation is as robust as possible, but for now it seems to be working moderately well. Future work
(over winter break of 2015-2016) will include thoroughly looking over the Verilog implementation for any
bugs and attempt to fix them.

Page 18 of 38

8 Major Obstacles
Getting all the required resources took us a while since we could not find an organized

set of documentation describing what was necessary. We eventually found that there was a lot
of documentation and references available from different sources. However, they were a bit all
over the place and finding them was not straightforward.

Initially, a lot of time was spent attempting to work with the DS-5 IDE for cross-compiling
source code. The Altera Edition DS-5 is installed as part of the Altera SoC EDS and can be installed
with a free community license22. After having done this, we attempted to create a test project in
DS-5 to enable us to develop within it. We had trouble getting it to correctly identify included
header files for programming, even standard C header files for development. Following the steps
listed out on the SoC EDS Wiki (which we had found later) did not result in successful build of the
project. Including a default demo application did not work either. Upon failing to solve the issue,
we decided to look for an alternate way of developing.

We used the SoC EDS Command Shell, along with a Makefile to build our code. This
required us to learn how to create and work with Makefiles. The one major issue we ran into with
this is that we had a folder named DE1-SOC in the project path and make would keep failing with
a permission denied error because of the hyphen in the path name. Removing the hyphen so that
the folder now read DE1SOC fixed the issue.

The Makefile required to interface with the HWLIBs that had us stuck. We haven’t yet
been able to complete that successfully and have spent a lot of time dealing with that.

A major hurdle was compiling the Verilog code for the Parareal implementation. The
Quartus project would get stuck at 46% when running “Analysis and Synthesis” on Tahmid’s
computer, two attempted desktops in Philips 238 Lab, as well as one in Carpenter Hall. However,
when testing was moved to Manish’s computer, the compilation completed successfully with no
issues. We were not able to identify the reason for this issue, except noticing that all attempted
computers that failed were running Windows 7, while Manish’s was running Windows 10 –
although that is not a conclusive cause, just an observation. The build time was still long. This was
later fixed by creating a new project and removing the HPS component from it since it was not
being used.

9 Acknowledgement
We would like to thank Professor Bruce Land for giving us the opportunity to be involved

with this project, as well as for his guidance and inspiration.

10 Conclusion
We have made progress in both sections of our independent study – the parallel

implementation of the ODE solver and the HPS programming section. Parareal has been tested
in Java and in Verilog, although the Verilog version has some computational error. We have
familiarized ourselves with the programming environment, although we would like to be able to
use DS-5. We have looked at other development tools such as the Mentor Graphics Sourcery
Codebench. However, we have stuck to SoC EDS. In both sections we are at an obstacle, which

Page 19 of 38

we believe we will be able to solve soon and accelerate progress. We hope to continue this next
semester.

11 Code Listing

11.1 Demo Application Code for GHRD using FPGA and HPS

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>

#include <hwlib.h>
#include "socal/socal.h"

#include "hps_0.h"
#include "pthread.h"

#define REG_BASE 0xFF200000 // base address of h2f_lw bridge from datasheet
#define REG_SPAN 0x00200000 // 2MB long

void* virtual_base;
void* led;
int fd;

unsigned int ledval = 0x55;

void* led_out(void* args){
 while (1){
 alt_write_word(led, ledval);
 }
 pthread_exit(NULL);
}

void* inc_count(void* args){
 while (1){
 if (++ledval >= 1024)
 ledval = 0;
 sleep(1);
 }
 pthread_exit(NULL);
}

void* print_out(void* args){
 while (1){
 fprintf(stdout, "ledval = %d\n", ledval);

Page 20 of 38

 //fprintf(stdout, "counter value = %u\n",
alt_gpt_counter_get(ALT_GPT_SP_TMR0));
 sleep(1);
 }
 pthread_exit(NULL);
}

int main(void){
 fd = open("/dev/mem", (O_RDWR|O_SYNC));
 virtual_base = mmap(NULL, REG_SPAN, (PROT_READ|PROT_WRITE),
MAP_SHARED, fd, REG_BASE);
 led = virtual_base + LED_PIO_BASE;

 fprintf(stdout, "Starting!\n");

 pthread_t blink;
 if (pthread_create(&blink, NULL, led_out, NULL)){
 fprintf(stdout, "Error creating pthread! Aborting!\n");
 return 1;
 }

 pthread_t count;
 if (pthread_create(&count, NULL, inc_count, NULL)){
 fprintf(stdout, "Error creating pthread! Aborting!\n");
 return 2;
 }

 pthread_t print;
 if (pthread_create(&print, NULL, print_out, NULL)){
 fprintf(stdout, "Error creating pthread! Aborting!\n");
 return 3;
 }

 fprintf(stdout, "All good!\n");
 while (1);
 return 0;
}

11.2 Parareal Code

The following is the Java code for the Parareal implementation and testing. It includes three major
functions, serialParareal, parallelParareal, and RK4. The first two functions are equivalent, with the only
difference being that parallelParareal uses threads for parallel computation (which, as previously stated,
ended up being serialized by the laptop.) RK4 simply computes a standard fourth order Runge-Kutta.
Another important function is eval, which is where the user can modify the differential equation they are
trying to solve.

Page 21 of 38

/*

 * Helpful Literature for Implementation

 * *** This one especially ***

http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.

pdf

 * *** Wikipedia *** https://en.wikipedia.org/wiki/Parareal

 */

public class Parareal {

 public static void main(String[]args) {

 //http://stackoverflow.com/questions/180158/how-do-i-time-a-

methods-execution-in-java

 //System.out.println(Runtime.getRuntime().availableProcessors());

 /*

 long startTime = System.nanoTime();

 double[]res = parallelParareal(.01, 0, 1, 3, 15);

 long endTime = System.nanoTime();

 long parallelTime = endTime - startTime;

 System.out.println("Parallel Parareal Execution Time = " +

(parallelTime));

 startTime = System.nanoTime();

 double[]res2 = serialParareal(.01, 0, 1, 3, 15);

 endTime = System.nanoTime();

 long serialTime = endTime - startTime;

 System.out.println("Serial Parareal Execution Time = " +

(serialTime));

 */

 long startTime = System.nanoTime();

 double[]res = parallelParareal(.001, 0, 1, 5, 7);

 System.out.println(res[res.length-1]);

 long endTime = System.nanoTime();

 long pararealTime = endTime - startTime;

 System.out.println("Parareal Execution Time = " +

(pararealTime));

 startTime = System.nanoTime();

 double res3 = RK4(.00001, 0, 1, 5);

 endTime = System.nanoTime();

 long fullySerialTime = endTime - startTime;

 System.out.println("Fully Serial Execution Time = " +

(fullySerialTime));

 System.out.println(res3);

 /*

 for(double x : res)

 System.out.println(x);

 */

 /*

 System.out.printf("%.20f", res[res.length-1]);

 System.out.println("");

Page 22 of 38

 System.out.printf("%.20f", res2[res2.length-1]);

 System.out.println("");

 System.out.printf("%.20f", res3);

 System.out.println("");

 System.out.println("Parallel Execution was " +

serialTime/parallelTime + " times faster.");

 */

 }

 /*

 * Computes the Parareal approximation to the differential equation

without using threads (so

 * this is effectiely a serialized version of Parareal that was

implemented initially to make

 * sure that the algorithm worked.)

 */

 public static double[] serialParareal(double hCoarse, double t0, double

y0, double t1, int K) {

 int N = (int)(Math.round((t1-t0)/hCoarse))+1;

 double hFine = hCoarse/100.0;

 double[][] approx = new double[K+1][N];

 // init y0's in positions approx[k][0]

 for(int k=0; k<K+1; k++) {

 approx[k][0] = y0;

 }

 // run coarse operator

 for(int n=0; n<N-1; n++) {

 approx[0][n+1] = RK4(hCoarse, t0+hCoarse*n, approx[0][n],

t0+hCoarse*(n+1));

 }

 for(int k=0; k<K; k++) {

 double[] correction = new double[N];

 for(int n=0; n<N-1; n++) {

 //approx[k+1][n+1] = approx[0][n+1];

 correction[n+1] = RK4(hFine, t0+hCoarse*n,

approx[k][n], t0+hCoarse*(n+1));

 correction[n+1] -= RK4(hCoarse, t0+hCoarse*n,

approx[k][n], t0+hCoarse*(n+1));

 approx[k+1][n+1] += correction[n+1];

 }

 for(int n=0; n<N-1; n++) {

 approx[k+1][n+1] += RK4(hCoarse, t0+hCoarse*n,

approx[k+1][n], t0+hCoarse*(n+1));

 }

 }

 /*

 for(int x=0; x<=K; x++) {

 System.out.println(approx[x][N-1]);

 }

 */

Page 23 of 38

 return approx[K];

 }

 /*

 * Parallelized version of Parareal that uses threads to compute the

correction terms in parallel.

 */

 public static double[] parallelParareal(double hCoarse, double t0,

double y0, double t1, int K) {

 int N = (int)(Math.round((t1-t0)/hCoarse))+1;

 double hFine = hCoarse/100.0;

 double[][] approx = new double[K+1][N];

 // init y0's in positions approx[0][n]

 for(int k=0; k<K+1; k++) {

 approx[k][0] = y0;

 }

 // run coarse operator

 for(int n=0; n<N-1; n++) {

 approx[0][n+1] = RK4(hCoarse, t0+hCoarse*n, approx[0][n],

t0+hCoarse*(n+1));

 }

 for(int k=0; k<K; k++) {

 double[] correction = new double[N];

 //CorrectionThread[]threads = new CorrectionThread[N-1];

 for(int n=0; n<N-1; n++) {

 Runnable r = new CorrectionThread(correction, hFine,

hCoarse, t0, approx[k][n], n);

 Thread thread = new Thread(r);

 thread.start();

 //threads[n] = (CorrectionThread)r;

 //System.out.println(Runtime.getRuntime().availableProcessors());

 //http://stackoverflow.com/questions/7939257/wait-

until-all-threads-finish-their-work-in-java

 try {

 thread.join();

 }

 catch(Exception e) {}

 }

 for(int n=0; n<N-1; n++) {

 approx[k+1][n+1] = RK4(hCoarse, t0+hCoarse*n,

approx[k+1][n], t0+hCoarse*(n+1)) + correction[n+1];

 }

 }

 return approx[K];

 }

 public static double RK4(double h, double t0, double y0, double t1) {

Page 24 of 38

 double yn = y0;

 int N = (int)(Math.round((t1-t0)/h));

 for(double index=0; index<N; index++) {

 double tn = t0 + index*h;

 double k1 = eval(tn, yn);

 double k2 = eval(tn+h/2, yn+h/2*k1);

 double k3 = eval(tn+h/2, yn+h/2*k2);

 double k4 = eval(tn+h, yn+h*k3);

 yn = yn + h/6.0*(k1 + 2*k3 + 2*k3 + k4);

 }

 return yn;

 }

 public static double eval(double tn, double yn) {

 return yn*tn*tn; // set this to whatever differential equation

you want to solve

 }

}

public class CorrectionThread implements Runnable {

 double[]correction;

 double hFine;

 double hCoarse;

 double t0;

 double y0;

 int n;

 //http://stackoverflow.com/questions/877096/how-can-i-pass-a-

parameter-to-a-java-thread

 public CorrectionThread(double[]correction, double hFine, double

hCoarse, double t0, double y0, int n) {

 this.correction = correction;

 this.hFine = hFine;

 this.hCoarse = hCoarse;

 this.t0 = t0;

 this.y0 = y0;

 this.n = n;

 }

 public void run() {

 correction[n+1] = RK4(hFine, t0+hCoarse*n, y0, t0+hCoarse*(n+1));

 correction[n+1] -= RK4(hCoarse, t0+hCoarse*n, y0,

t0+hCoarse*(n+1));

 }

 public static double RK4(double h, double t0, double y0, double t1) {

 double yn = y0;

 int N = (int)(Math.round((t1-t0)/h));

 for(double index=0; index<N; index++) {

 double tn = t0 + index*h;

 double k1 = eval(tn, yn);

 double k2 = eval(tn+h/2, yn+h/2*k1);

 double k3 = eval(tn+h/2, yn+h/2*k2);

 double k4 = eval(tn+h, yn+h*k3);

Page 25 of 38

 yn = yn + h/6.0*(k1 + 2*k3 + 2*k3 + k4);

 }

 return yn;

 }

 public static double eval(double tn, double yn) {

 return yn*tn*tn; // insert differential equation to be solved

here

 }

}

The following is the Verilog Code for the Parareal implementation.

//===

// This code is generated by Terasic System Builder

//===

module lab1attempt3(

 //////////// ADC //////////

 inout ADC_CS_N,

 output ADC_DIN,

 input ADC_DOUT,

 output ADC_SCLK,

 //////////// Audio //////////

 input AUD_ADCDAT,

 inout AUD_ADCLRCK,

 inout AUD_BCLK,

 output AUD_DACDAT,

 inout AUD_DACLRCK,

 output AUD_XCK,

 //////////// CLOCK //////////

 input CLOCK_50,

 input CLOCK2_50,

 input CLOCK3_50,

 input CLOCK4_50,

 //////////// SDRAM //////////

 output [12:0] DRAM_ADDR,

 output [1:0] DRAM_BA,

 output DRAM_CAS_N,

 output DRAM_CKE,

Page 26 of 38

 output DRAM_CLK,

 output DRAM_CS_N,

 inout [15:0] DRAM_DQ,

 output DRAM_LDQM,

 output DRAM_RAS_N,

 output DRAM_UDQM,

 output DRAM_WE_N,

 //////////// I2C for Audio and Video-In //////////

 output FPGA_I2C_SCLK,

 inout FPGA_I2C_SDAT,

 //////////// SEG7 //////////

 output [6:0] HEX0,

 output [6:0] HEX1,

 output [6:0] HEX2,

 output [6:0] HEX3,

 output [6:0] HEX4,

 output [6:0] HEX5,

 //////////// IR //////////

 input IRDA_RXD,

 output IRDA_TXD,

 //////////// KEY //////////

 input [3:0] KEY,

 //////////// LED //////////

 output [9:0] LEDR,

 //////////// PS2 //////////

 inout PS2_CLK,

 inout PS2_CLK2,

 inout PS2_DAT,

 inout PS2_DAT2,

 //////////// SW //////////

 input [9:0] SW,

 //////////// Video-In //////////

 input TD_CLK27,

 input [7:0] TD_DATA,

 input TD_HS,

 output TD_RESET_N,

 input TD_VS,

Page 27 of 38

 //////////// VGA //////////

 output [7:0] VGA_B,

 output VGA_BLANK_N,

 output VGA_CLK,

 output [7:0] VGA_G,

 output VGA_HS,

 output [7:0] VGA_R,

 output VGA_SYNC_N,

 output VGA_VS

);

//===

// REG/WIRE declarations

//===

//===

// Structural coding

//===

parareal para (

 .CLK(CLOCK_50),

 .RESET(0),

 .Y0(0),

 .T0(0),

 .T1(5),

 .value(approx)

);

endmodule

module parareal(CLK, RESET, Y0, T0, T1, value);

 //NEED TO DEAL WITH SIGNED NUMBERS - DEFAULT IS UNSIGNED

 `define STATE_RESET 0

 `define STATE_INIT_COND 1

 `define STATE_INIT_COARSE 2

 `define STATE_PARALLEL 3

 `define STATE_SERIAL 4

 `define STATE_CORRECT 5

 `define STATE_SETTLE 6

Page 28 of 38

 `define STATE_END 7

 `define K 10

 `define N 100

 `define NFINE 1000

 input CLK;

 input RESET;

 input [63:0] Y0;

 input [63:0] T0;

 input [63:0] T1;

 reg [3:0] STATE = 0;

 reg [3:0] NEXT_STATE = 0;

 // approx arrays

 reg [63:0] lastApprox [0:(`N)];

 reg [63:0] approx [0:(`N)];

 wire [63:0] correction [0:(`N)];

 wire [63:0] correction2[0:(`N)];

 output [63:0] value;

 assign value = approx[`N];

 // RK4 variables

 reg [63:0] TN;

 reg [63:0] YN;

 reg [63:0] HCOARSE = 1;

 reg [63:0] HFINE = 1;

 reg START = 0;

 wire [(`N):0] DONE;

 wire [63:0] RK4COARSE;

 // loop variables

 integer x;

 integer y;

 integer k;

 integer n;

 always @(*) begin

 if(RESET) begin

 STATE <= `STATE_RESET;

 end

 else begin

Page 29 of 38

 STATE <= NEXT_STATE;

 end

 end

 always @(posedge CLK) begin

 if(STATE == `STATE_RESET) begin

 k <= 0;

 n <= 0;

 TN <= T0;

 YN <= Y0;

 HCOARSE <= ((T1-T0)/`N);

 HFINE <= HCOARSE/`NFINE;

 START <= 0;

 NEXT_STATE <= `STATE_INIT_COND;

 end

 else if(STATE == `STATE_INIT_COND) begin

 lastApprox[0] <= Y0; // index = time

 approx[0] <= Y0;

 k <= 0;

 n <= 0;

 TN <= T0;

 YN <= Y0;

 HCOARSE <= ((T1-T0)/`N);

 HFINE <= HCOARSE/`NFINE;

 START <= 0;

 NEXT_STATE <= `STATE_INIT_COARSE;

 end

 else if(STATE == `STATE_INIT_COARSE) begin

 lastApprox[n+1] <= RK4COARSE;

 k <= 0;

 TN <= TN + HCOARSE;

 YN <= RK4COARSE;

 HCOARSE <= ((T1-T0)/`N);

 HFINE <= HCOARSE/`NFINE;

 START <= 0; // flag to start parallel computation of all modules

 if(n < `N-1) begin // check this is the right ending condition

 NEXT_STATE <= `STATE_INIT_COARSE;

 n <= n+1;

 end

Page 30 of 38

 else begin

 NEXT_STATE <= `STATE_PARALLEL;

 n <= 0;

 end

 end

 else if(STATE == `STATE_PARALLEL) begin

 k <= k;

 TN <= T0;

 YN <= Y0;

 HCOARSE <= ((T1-T0)/`N);

 HFINE <= HCOARSE/`NFINE;

 START <= 1;

 // until parallel computations are done spin in this state

 if(DONE[0] == 1) begin

 NEXT_STATE <= `STATE_CORRECT;

 n <= 0;

 end

 else begin

 NEXT_STATE <= `STATE_PARALLEL;

 n <= n+1;

 end

 end

 else if(STATE == `STATE_CORRECT) begin

 k <= k;

 n <= 0;

 TN <= T0;

 YN <= approx[0];

 HCOARSE <= ((T1-T0)/`N);

 HFINE <= HCOARSE/`NFINE;

 START <= 1;

 for(y=0; y<`N; y=y+1) begin

 approx[y+1] <= correction[y+1] - correction2[y+1];

 end

 NEXT_STATE <= `STATE_SERIAL;

 end

 else if(STATE == `STATE_SERIAL) begin

 approx[n+1] <= approx[n+1] + RK4COARSE;

 TN <= TN + HCOARSE;

 YN <= approx[n+1] + RK4COARSE; // originally

RK4COARSE

 HCOARSE <= ((T1-T0)/`N);

Page 31 of 38

 HFINE <= HCOARSE/`NFINE;

 START <= 0;

 // need to convert N to an integer

 // originally `N-1

 if(n < `N-1) begin

 NEXT_STATE <= `STATE_SERIAL;

 n <= n+1;

 end

 else begin

 NEXT_STATE <= `STATE_SETTLE;

 n <= 0;

 end

 end

 else if(STATE == `STATE_SETTLE) begin

 k <= k+1;

 n <= 0;

 TN <= T0;

 YN <= Y0;

 HCOARSE <= ((T1-T0)/`N);

 HFINE <= HCOARSE/`NFINE;

 START <= 0;

 for(y=0; y<=`N; y=y+1) begin

 lastApprox[y] <= approx[y];

 end

 if(k < `K) begin

 NEXT_STATE <= `STATE_PARALLEL;

 end

 else begin

 NEXT_STATE <= `STATE_END;

 end

 end

 else if(STATE == `STATE_END) begin

 // just outpu approx somewhere

 end

 end

 RK4 rk4coarse(

 .H(HCOARSE),

 .TN(TN),

 .YN(YN),

 .OUTPUT(RK4COARSE)

);

Page 32 of 38

 // change this to a simple RK4 module since it only does one iteration

 genvar a;

 generate

 for(a=0; a<`N; a=a+1) begin: test

 RK4Full coarse(

 .CLK(CLK),

 .START(START),

 .H(HCOARSE),

 .T0(T0+(HCOARSE*a)),

 .Y0(lastApprox[a]),

 .N(1),

 .YN(correction2[a+1]),

 .DONE()

);

 end

 endgenerate

 genvar b;

 generate

 for(b=0; b<`N; b=b+1) begin: test2

 RK4Full fine(

 .CLK(CLK),

 .START(START),

 .H(HFINE),

 .T0(T0+(HCOARSE*b)),

 .Y0(lastApprox[b]),

 .N(`NFINE), // originally `NFINE

 .YN(correction[b+1]),

 .DONE(DONE[b])

);

 end

 endgenerate

endmodule

module RK4Full(CLK, START, H, T0, Y0, N, YN, DONE);

 input CLK;

 input START;

 input [63:0] H;

 input [63:0] T0;

Page 33 of 38

 input [63:0] Y0;

 input [15:0] N;

 wire [63:0] YNP1;

 output reg [63:0] YN;

 output reg DONE = 0;

 reg [63:0] TN;

 integer n;

 reg processing = 0;

 always @(posedge CLK) begin

 if(!START) begin

 YN <= Y0;

 TN <= T0;

 processing <= 0;

 n <= 0;

 DONE <= 0;

 end

 else if(START && !processing && !DONE) begin

 YN <= Y0;

 TN <= T0;

 processing <= 1;

 n <= 0;

 DONE <= 0;

 end

 else if(processing) begin

 YN <= YNP1;

 TN <= TN + H;

 n <= n+1;

 // originally N-1

 if(n < N-1) begin // might want to change this to a specific number of

iterations for safety

 DONE <= 0;

 processing <= 1;

 end

 else begin

 DONE <= 1;

 processing <= 0;

 end

 end

 else begin

 YN <= YN;

 TN <= TN;

Page 34 of 38

 processing <= 0;

 DONE <= 1;

 end

 end

 RK4 rk4(

 .H(H),

 .TN(TN),

 .YN(YN),

 .OUTPUT(YNP1)

);

endmodule

module RK4(H, TN, YN, OUTPUT);

 input [63:0] H;

 input [63:0] TN;

 input [63:0] YN;

 output [63:0] OUTPUT;

 //wires

 wire [127:0] K1;

 wire [127:0] K2;

 wire [127:0] K3;

 wire [127:0] K4;

 wire [127:0] tempH;

 wire [127:0] tempTN;

 wire [127:0] tempYN;

 wire [127:0] tempOUT;

 // assign the temporary variables for mathematical calculations

 assign tempH[127:64] = 64'b0;

 assign tempH[63:0] = H;

 assign tempTN[127:64] = 64'b0;

 assign tempTN[63:0] = TN;

 assign tempYN[127:64] = 64'b0;

 assign tempYN[63:0] = YN;

 // http://stackoverflow.com/questions/5028986/c-emulated-fixed-point-division-

multiplication?rq=1

Page 35 of 38

 // REFER to MARTIN STONE's POST ON HOW FIXED POINT MULTIPLICATION

WORKS - IT'S NOT JUST A SIMPLE MULT AND SHIFT!

 fun k1(

 .T(tempTN),

 .Y(tempYN),

 .EVAL(K1)

);

 fun k2(

 .T(tempTN + tempH/2), // don't need to worry about shifting by 64 here

 .Y(tempYN + (((tempH/2)*K1)>>32)),

 .EVAL(K2)

);

 fun k3(

 .T(tempTN + tempH/2),

 .Y(tempYN + (((tempH/2)*K2)>>32)),

 .EVAL(K3)

);

 fun k4(

 .T(tempTN + tempH),

 .Y(tempYN + ((tempH*K3)>>32)),

 .EVAL(K4)

);

 //assign OUTPUT = YN + temp3[63:0];

 assign tempOUT = tempYN + ((tempH/6*(K1+2*K2+2*K3+K4))>>32);

 assign OUTPUT = tempOUT[63:0];

endmodule

module fun(T, Y, EVAL);

 input [127:0] T;

 input [127:0] Y;

 output [127:0] EVAL;

 //evaluate the function y' = yt

 assign EVAL = Y;

 //alu alu1(

 // .INPUT1(T),

 // .INPUT2(Y),

 // .OPCODE(4'b0010),

Page 36 of 38

 // .OUTPUT(EVAL)

 //);

endmodule

module alu(INPUT1, INPUT2, OPCODE, OUTPUT);

 input [63:0] INPUT1;

 input [63:0] INPUT2;

 input [3:0] OPCODE;

 output reg [63:0] OUTPUT;

 // OPCODE = 0 <- ADD

 // OPCODE = 1 <- SUB

 // OPCODE = 2 <- MUL

 // OPCODE = 3 <- DIV

 always @(*) begin

 if(OPCODE == 0) begin

 OUTPUT = INPUT1 + INPUT2;

 end

 else if(OPCODE == 1) begin

 OUTPUT = INPUT1 - INPUT2;

 end

 else if(OPCODE == 2) begin

 OUTPUT = (INPUT1*INPUT2) >> 32;

 end

 else begin // OPCODE == 3

 OUTPUT = (INPUT1/INPUT2) << 32;

 end

 end

endmodule

`timescale 1 ns / 1 ns

module FPGADiffEq_test();

 reg CLK;

 reg RESET;

 wire [63:0] value;

 parareal UUT(

Page 37 of 38

 .CLK(CLK),

 .RESET(RESET),

 .Y0(64'd1 << 32),

 .T0(64'd0 << 32),

 .T1(64'd5 << 32),

 .value(value)

);

 initial begin

 CLK = 1'b0;

 forever begin

 #10

 CLK = ~CLK;

 end

 end

 initial

 begin

 RESET = 1'b0;

 #100;

 $display("TESTING FPGADiffEq");

 RESET = 1'b1;

 #20;

 RESET = 1'b0;

 #20;

 // delay until Parareal is done running

 // length needs to be adjusted based on number of steps

 #100000;

 $display("%d", value);

 $stop;

 end

endmodule

1 http://www.terasic.com/downloads/training/de1-soc/1_DE1_SOC_Introduction.pdf
2 http://sourceforge.net/projects/win32diskimager/
3 ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE1-SoC/DE1_SoC_User_Manual.pdf
4 ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE1-SoC/DE1_SoC_User_Manual.pdf

http://www.terasic.com/downloads/training/de1-soc/1_DE1_SOC_Introduction.pdf
http://sourceforge.net/projects/win32diskimager/
ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE1-SoC/DE1_SoC_User_Manual.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE1-SoC/DE1_SoC_User_Manual.pdf

Page 38 of 38

5 http://www.terasic.com/downloads/cd-rom/de1-soc/
6 http://www.terasic.com/downloads/cd-rom/de1-soc/DE1SoC_SystemBuilder_V102.zip
7 https://goo.gl/1Qov15
8 http://rocketboards.org/foswiki/view/Documentation/GSRDGhrd
9 https://www.youtube.com/watch?v=2WUkEt4-Q7Q
10 http://www.linear.com/solutions/5176
11 http://tutorial.math.lamar.edu/Classes/DE/EulersMethod.aspx
12 https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
13 https://en.wikipedia.org/wiki/Parareal
14 http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.pdf
15 http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.pdf
16 http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.pdf
17 https://en.wikipedia.org/wiki/Parareal
18 http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.pdf
19 https://en.wikipedia.org/wiki/Parareal
20 http://www.wolframalpha.com/
21 http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=4
22 http://ds.arm.com/altera/altera-community-edition/

http://www.terasic.com/downloads/cd-rom/de1-soc/
http://www.terasic.com/downloads/cd-rom/de1-soc/DE1SoC_SystemBuilder_V102.zip
https://goo.gl/1Qov15
http://rocketboards.org/foswiki/view/Documentation/GSRDGhrd
https://www.youtube.com/watch?v=2WUkEt4-Q7Q
http://www.linear.com/solutions/5176
http://tutorial.math.lamar.edu/Classes/DE/EulersMethod.aspx
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Parareal
http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.pdf
http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.pdf
http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.pdf
https://en.wikipedia.org/wiki/Parareal
http://www.cfm.brown.edu/people/jansh/page5/page10/page40/assets/Field_Talk.pdf
https://en.wikipedia.org/wiki/Parareal
http://www.wolframalpha.com/
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=4
http://ds.arm.com/altera/altera-community-edition/

