

1

PIC32 DEVELOPMENT

-- SD CARD LIBRARY

A Design Project Report

Presented to the School of Electrical and Computer Engineering of

Cornell University in Partial Fulfillment of the Requirements for

the Degree of Master of Engineering, Electrical and Computer Engineering

Submitted by

Chang Liu (cl2428)

Pei Xu (px29)

MEng Field Advisor: Bruce R Land (brl4)

Degree Date: May 2017

2

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: PIC32 development -- SD card Library

Author: Chang Liu, Pei Xu

Abstract: This project aims to design and develop a secure digital (SD) card library based

on PIC32 microcontroller. The main function of this system is to read and store files from

the SD card. In addition, this system gives PIC32 developers access to large memory to

store image and files. It also serves for later projects need SD card implementation. Thus,

by using the library, the later PIC32 developers can get the information and write data to

the SD card easily. The basic functions in the SD card library are write and read functions.

The user can access the file stored in the SD card with calling a read function in the library.

3

Individual Contribution

Chang Liu

He researched the way how SD card communicate with the microcontroller. He created the

SPI communication from PIC32 to SD card. Then he coded sd_routines.c, sd_routines.h

and created a user test interface using UART.

Pei Xu

She set up the hardware connection of SD card and PIC32. Together with Chang, Pei

researched the way of implementing FAT file system on the SD card. Pei and Chang worked

together finishing the code of fat32.c and fat32.h.

4

Executive Summary

The current situation in ECE4760 PIC32 developers is that there is a lack of library for

them to directly access the file stored in an SD card. To enhance the feasibility and capability

of the use of PIC32, a SD card library is needed to be created. Therefore, the developers are

able to read, write or update information in the system directly.

According to our research, including the secondary research on the internet, we find that

it is feasible and potential to enrich this peripheral for PIC32 developers. This improvement

will contribute to the convenience for PIC32 developers in their work. Thus, this project aims

to design and develop a secure digital (SD) card library based on PIC32 microcontroller.

The SD card library offers a place to store data, images, sound and other information

which needs of large memory space. The main function of the library is to read and store files

from the SD card. In addition, this library provides the functionality to get the file list from the

root directory.

A user test interface is built based on the communication from computer and PIC32

via UART. Read or Write function selection and other basic functions can be selected from

the user interface. By typing the command on the test console, users can choose the mode,

select the files to open, read or write data to the file. As the SD card library is implemented

separately with the TFT screen, an independent SD card slot is used to design the hardware.

Various tests are designed to verify the functionality of the SD card library system.

By checking the data and information from both computer and PIC32, the tests guaranteed

the correctness of each function our group designed.

5

Table of Contents

1 Introduction... 6

2 Design Alternatives... 6

2.1 Components... 6

2.2 Project budget…...7

3 System Design……………………………………………………………………….8

3.1 SPI section…………………………………………………………………………9

3.2 SD command section……………………………………………………………...12

3.2.1 SD send command……………………………………………………………....13

3.2.2 SD initialization…………………………………………………………………13

3.2.3 SD Read single block……………………………………………………………13

3.2.4 SD write single block………………………………………………………...….14

3.3 FAT32 file system section……………………………………………….......…….15

4 Testing and results………………………………………………………………...…18

5 Conclusion…………………………………………………………………………...21

6 Appendix……………………………………………………………………………..22

6

1. Introduction

SD card is a common daily life erasable storage device, because of its large storage capacity

and low price, it is widely used in digital cameras, mobile phones and other digital products.

SD card supports two bus modes: SD mode and SPI mode. SD mode using 6-wire buses,

the use of CLK, CMD, DAT0, DAT1, DAT2, DAT3 for data communication, which has the

data transform rate at 4bits at a time. SPI mode using 4-wire buses, the use of CS, CLK,

DataIn, DataOut, these four ports for exchanging data only has 1 bit at a time which is

slower than the SD mode, but the communication protocol is simple and there is no need

to check the CRC, which is desirable for this project to read and write operations on the

SD card。

Figure 1. Pinout description of SD card

2. Design Alternatives

2.1 Components

MicrostickII

7

 8GB SDHC card SD card socket

UART Cable

Figure 2. Components of the design

2.2 Project budget

To interface the SD card with PIC32 microcontroller, the following parts and devices

are needed to build the circuit. And the total cost of the project has a budget of 50$.

❖ UART cable (5.00$)

❖ Bread board (10.00$)

❖ MicrostickII Pic32 kit (10.00$)

8

❖ Jumper wires 20 pieces (1.00$)

❖ SanDisk 8GB SDHC card (7.99$)

❖ Standard Adfruit SD card socket (8.99$)

Total cost is 42.98$.

3. System Design

The SD card contains two basic semiconductor sections, a ‘memory core’ and a ‘SD card

controller’. The ‘memory core’ is the flash memory region where the actual data of the file

is saved. When we format the SD card a file system will be written into this region. Hence

this is the region where the file system exists. The ‘SD card controller’ helps to

communicate the ‘memory core’ with the external devices like microcontrollers. It can

respond to certain set of standard SD commands and read or write data from the memory

core in for the external device. Thus, the ‘SD card controller’ is the device our PIC32 would

communicate with.

Figure 3. Block diagram of the system

As the figure listed above, to read or write data into the SD card. Our team divide the

project into three sections. They are SPI section, SD command section and FAT32 file

system section.

9

Figure 3. Three sections of the system

I. The PIC32 microcontroller needs to communicate with SD card controller using

SPI buses. The data transmitted and received via SPI can be written and read

through SPI1BUF from PIC32.

II. The internal SD card controller can decode the commands transmitted using SPI.

Those commands are called standard SD command which can read the registers of

the SD card, and also read/write the ‘Memory Core’.

III. A FAT32 file system is mapped into the flash memory. This enables the user to

directly access or modify the files. With FAT32 file system, it will be very useful

that the files can be read directly not only from PIC32 microcontroller but in

windows and other operating systems.

3.1 SPI section

The pin out for SD card and PIC32 for the SPI interfacing mode is shown in the following

figures.

Physical pin

Number on PIC32

Name Description

6 (RB2) CS Chip select (active low)

24 (RB13) MOSI(SDO1) Master out slave in

 FAT 32 File System

SD Command

 SPI

10

27 (GND) GND Ground

25 (RB14) SCK1 Clock

22 (RB11) MISO(SDI1) Master in slave out

3 (RA1) U2RX UART receive

21 (RB10) U2TX UART transmit

Table 1. Pinout for PIC32

Pin Number on SD

card

Name Description

1 CS Chip select (active low)

2 MOSI(DataIn) Master out slave in

3 VSS1 Ground

4 VDD Voltage supply

5 CLK Clock

6 VSS2 Ground

7 MISO(DataOut) Master in slave out

8 Reserved Reserved for SPI mode

9 Reserved Reserved for SPI mode

Table 2. Pinout for SD card

11

Figure 4. Connection for PIC32 and SD card

After setting up the circuit, the SPI communication needs to be initialized. The following

code is used to set up SPI. It is mandatory to set up the SPI with a lower clock rate, since

the initialization of SD card only allow low clock frequency. After initialization, the SPI

clock frequency is speeded up as 20MHz to

After initialization, our group is able to transmit and receive data by reading/writing to the

register called SPI1BUF in PIC32. Therefore, two functions are generated with the purpose

volatile SpiChannel spiChn = SPI_CHANNEL1; // the SPI channel to use

 volatile int spiClkDiv = 160; // 250k Hz speed for SD initialization

 SpiChnOpen(spiChn, SPI_OPEN_ON | SPI_OPEN_MODE8 | SPI_OPEN_MSTEN ,

spiClkDiv | SPI_OPEN_SMP_END);

12

which are called SPI_transmit and SPI_receive.

Basic functions in SPI section

Fuction name Description

SPI_transmit(unsigned char data) Transmit the 8 bits data to the spi buffer

SPI_receive(unsigned char data) Get the 8 bits data from the spi buffer

Table 2. Basic functions for SPI communication

3.2 SD command section

All the SD commands supported in the SPI mode are 6 bytes long. The MSB is transmitted

first and the actual command occupies the first byte. The command byte is followed by its

4 bytes long arguments. The last byte is the CRC byte respective of the command and the

argument bytes.

When the host sends a command to the SD card, the SD card will first send a corresponding

respond to the host, if the command is not wrong SD card will be followed by the

implementation of the host command.

The structure of a command block in the SPI interface mode of a SD card is shown in the

following figure.

Figure 5. Structure of a command block

Below is a list of the basic commands our team uses in the project.

13

SD card default read and write mode is SD mode. To use the SPI mode, our team need to

write CMD0 and CMD1 command to SD controller. After the two commands are written

successfully, we can use SPI mode, which can be easily used for microcontroller to read

and write operations. Our team follows listed below steps for SD initialization.

3.2.1 SD send command

I. We first send 0xff synchronous clock cycles. (any number above 74 in

decimal is preferred)

II. Send the CMD0 command to the SD card (since the highest order of the

command number is always 0 and the second bit is 1, the command sent to the

SD card is the result of 0 or 0x40 operation). The first, third, fifth, and fifth

bytes of the command word are 0x00. The sixth byte of the command word is

the CRC check byte, fixed to 0x95.

III. Checking the response of CMD58, then we can verify whether the SD card is

standard of SDHC card.

IV. If (0x00 && cmd == 58) is true, we send 8 extra clock cycles, and then desert

the chip select.

3.2.2 SD initialization

#define GO_IDLE_STATE 0

#define SEND_OP_COND 1

#define SEND_IF_COND 8

#define SEND_CSD 9

#define STOP_TRANSMISSION 12

#define SEND_STATUS 13

#define SET_BLOCK_LEN 16

#define READ_SINGLE_BLOCK 17

#define READ_MULTIPLE_BLOCKS 18

#define WRITE_MULTIPLE_BLOCKS 25

#define ERASE_BLOCK_START_ADDR 32

#define ERASE_BLOCK_END_ADDR 33

#define ERASE_SELECTED_BLOCKS 38

#define SD_SEND_OP_COND 41

#define APP_CMD 55

#define READ_OCR 58

#define CRC_ON_OFF 59

#define WRITE_SINGLE_BLOCK 24

14

I. First send the instruction number CMD1 (0x01 | 0x40 = 0x41), and then send

four 0x00 bytes, and finally send the CRC check code, here 0xFF.

II. Since SD card has been working in SPI mode, SD card does not default to

CRC, so we write a 0xFF byte to fill the entire command word.

III. When the CMD1 instruction is sent to the SD card, we send 8 clock cycles

until the SD card gives a response byte 0x00.

IV. After receiving the response byte of the SD card, the CS line is pulled high

and then send 8 extra clock cycles.

3.2.3 SD Read single block

I. Send SD read command CMD17 (0x11 | 0x40 = 0x51).

II. Write four address parameters, 4 bytes into a 32-bit address value, the first byte

is 32-bit address value of the highest 8-bit data, the first four bytes is the lowest

32-bit value 8-bit data.

III. Write CRC check bit 0xFF.

IV. Write a number of 0xFF empty operations.

V. Check SD card 0x00 response.

VI. Write a number of 0xFF empty operations.

VII. SD card sends 0x FE data header.

VIII. The SD card sends a 512-byte data block with the specified address.

IX. Since the SPI mode does not require the default CRC check, so the two bytes of

data can be discarded.

X. Pull CS high, send 8 empty clock cycles.

3.2.4 SD write single block

I. Send SD write command CMD24 (0x18 | 0x40 = 0x58).

II. Write four address parameters, 4 bytes into a 32-bit address value, the first byte

is the lowest 8-bit address 8-bit data, the fourth byte is the highest 32-bit

15

address value 8-bit data.

III. Write CRC check bit 0xFF.

IV. Write a number of 0xFF empty operation.

V. Check SD 0x00 response.

VI. Write a number of 0xFF empty operations.

VII. Write 512 bytes of data blocks.

VIII. Write two bytes of 0xFF as the CRC bytes.

IX. SD card sends x00101B response.

X. The CS line pulled low if the SD card writes 512 bytes of data to the specified

address get interrupted.

XI. Pull CS high, send 8 empty clock cycles.

Basic functions in SD command section

Fuction name Description

char SD_init(void); SD card initialization

SD_sendCommand(unsigned char

cmd, unsigned long arg);
Send SD command to SD controller

SD_readSingleBlock(unsigned long

startBlock);
Read data from a specific block

SD_writeSingleBlock(unsigned long

startBlock);
Write data to a specific block

Table 3. Basic functions for SD command

3.3 FAT32 file system section

FAT file system is widely used in the windows operating system. FAT32 file system is

employed to store the files in this project. With FAT32 file system, it will be very useful

16

that the files can be read directly not only from PIC32 microcontroller but in windows

and other operating systems.

From our research and reading FAT file system manual, our group define the

consecutive 8 bit memory locations into ‘Sectors’ and The consecutive Sectors are

grouped to form ‘Clusters’ by regulation. Our team implement FAT32 file system inside

the Memory Core in a particular defined format. There are certain defined Sectors at

the beginning of the Memory Core which are then followed by Clusters. The format of

a FAT32 file system is as shown below:

Figure 6. FAT32 format

The very first Sector is the MBR (Master Boot Record) which follows significant number

of Unused Sectors. The Unused Sectors are followed by Reserved Sectors among which

the first Sector is the BOOT Sector. The Reserved Sectors are followed by the FAT Sectors.

The number of FAT Sectors depends upon the size of the file system. The FAT sectors are

followed by few Hidden Sectors. The Hidden Sectors are followed by the Clusters. A File

with a specific name can be read from the FAT32 formatted file system using the logic

shown below; Take a closer look and it can be found that every process finally ends with a

Sector read. This Sector read from the Memory Core of the SD card can be achieved by

using the SD_readSingleBlock command from the SD Command section.

17

Figure 7. Logic workflow from FAT32

Basic functions in FAT32 file system section

Fuction name Description

appendFile (void); Write data to an exsisting file

memoryStatistics (void); Get the memory usage of the SD card

writeFile (unsigned char *fileName);

Create a file in FAT32 format in the root

directory if given file name does not exist;

if the file already exists then append the

data

18

deleteFile (unsigned char *fileName); Delete the file

findFiles (unsigned char flag, unsigned

char *fileName);

Print file/dir list of the root directory, if

flag = GET_LIST Delete the file, if flag

= DELETE

readFile (unsigned char flag, unsigned

char *fileName);

Read file from SD card if flag=READ;

Verify whether a specified file is already

existing if flag=VERIFY

Table 4. Basic functions for FAT32 file system

4. Testing and results

To test the accuracy and reliability of the SD card library two major tests are performed in

the debugging stage.

I. Winhex is employed to read the information from the SD card on the personal

computer. For instance, if we write data to a specific block on the SD card from

UART of PIC32, the information can be checked using winhex. To evaluate the

accuracy and debug during the design, our team verify the information of SD card

library read and write functions by checking the block data using winhex.

Following is figure when we read the detailed information from a specific block on

the SD card using winhex.

19

Figure 8. SD data information read from Winhex

II. To evaluate the reliability of the SD card library, a testing user interface is designed

to test important function in the library. The test interface can communicate from

the computer to PIC32 using UART. In our test baud rate of 9600 is chosen from

putty to transmit and receive data from PIC32. The user interface is shown as

follows including read/ write function to a single block and read/ write data from a

file in the file system.

20

Figure 9. Test interface from Putty

As a result, all the functions are running properly without exceptions and all the

information read from Winhex is identical as the information our team write using the

library.

The speed of using SD_readSingleBlock and SD_writeSingleBlock functions are

measured by running each function 1000 times. A timer is opened to measure the total

running time. The function used to read or write from a single block has the data size

of 512 Bytes. The result is shown as follows.

Function name
Total running

time

Single block

Write/Read

time

Read/ Write

rate(Bytes/s)

SD_readSingleBlock(unsigned

long startBlock);
1225ms 1.225ms 417.96KB/s

SD_writeSingleBlock(unsigned

long startBlock);
1343ms 1.343ms 381.23KB/s

Table 5. SD card speed performance

21

5. Conclusion

Overall, SD card library is reliable and is accurate enough to store large files using PIC32.

During the design process, our team faced with various issues and bugs. One of the biggest

issue was that when define the struct using MPLAB IDE, the compiler didn’t allocate each

variable in the struct within a consecutive memory location. To fix the problem, #pragma

pack(1) is needed to be set, so that the compiler would compile the struct in a correct

allocation. The measured speed of write or read data from PIC32 to SD card is roughly

400KB per second. This result is decent, since the 4 bit high speed SD protocol was not

employed. Given 400KB/s read/ write speed from SPI mode, a speed of 2MB/s from SD

mode could be estimated. This is identical as the rate provided from the datasheet driven

by SPI clock frequency of 20MHz by PIC32. To summarize the project design, the

functions our team designed could be easily implemented. With the reliability and decent

transmit speed, the SD card library for PIC32 will enrich design alternatives for PIC users

who need large space to store files.

22

6. Code Appendix

6.1 sd_routines.c

23

24

25

26

27

28

29

30

6.2 sd_routines.h

31

6.3 fat32.c

32

33

34

35

36

37

38

39

40

41

42

43

44

45

6.4 fat32.h

46

47

48

6.5 meng_test.c

49

50

51

52

53

