PIC32 DEVELOPMENT
--SD CARD LIBRARY

A Design Project Report
Presented to the School of Electrical and Computer Engineering of
Cornell University in Partial Fulfillment of the Requirements for

the Degree of Master of Engineering, Electrical and Computer Engineering

Submitted by

Chang Liu (cl2428)

Pei Xu (px29)

MEng Field Advisor: Bruce R Land (brl4)

Degree Date: May 2017
1

Abstract

Master of Engineering Program
School of Electrical and Computer Engineering
Cornell University

Design Project Report

Project Title: PIC32 development -- SD card Library

Author: Chang Liu, Pei Xu

Abstract: This project aims to design and develop a secure digital (SD) card library based
on PIC32 microcontroller. The main function of this system is to read and store files from
the SD card. In addition, this system gives PIC32 developers access to large memory to
store image and files. It also serves for later projects need SD card implementation. Thus,
by using the library, the later PIC32 developers can get the information and write data to
the SD card easily. The basic functions in the SD card library are write and read functions.
The user can access the file stored in the SD card with calling a read function in the library.

Individual Contribution

Chang Liu

He researched the way how SD card communicate with the microcontroller. He created the
SPI communication from PIC32 to SD card. Then he coded sd routines.c, sd_routines.h

and created a user test interface using UART.
Pei Xu

She set up the hardware connection of SD card and PIC32. Together with Chang, Pei
researched the way of implementing FAT file system on the SD card. Pei and Chang worked
together finishing the code of fat32.c and fat32.h.

Executive Summary

The current situation in ECE4760 PIC32 developers is that there is a lack of library for
them to directly access the file stored in an SD card. To enhance the feasibility and capability
of the use of PIC32, a SD card library is needed to be created. Therefore, the developers are

able to read, write or update information in the system directly.

According to our research, including the secondary research on the internet, we find that
it is feasible and potential to enrich this peripheral for PIC32 developers. This improvement
will contribute to the convenience for PIC32 developers in their work. Thus, this project aims

to design and develop a secure digital (SD) card library based on PIC32 microcontroller.

The SD card library offers a place to store data, images, sound and other information
which needs of large memory space. The main function of the library is to read and store files
from the SD card. In addition, this library provides the functionality to get the file list from the

root directory.

A user test interface is built based on the communication from computer and PIC32
via UART. Read or Write function selection and other basic functions can be selected from
the user interface. By typing the command on the test console, users can choose the mode,
select the files to open, read or write data to the file. As the SD card library is implemented

separately with the TFT screen, an independent SD card slot is used to design the hardware.

Various tests are designed to verify the functionality of the SD card library system.
By checking the data and information from both computer and PIC32, the tests guaranteed

the correctness of each function our group designed.

Table of Contents

I INEOAUCTION. ...ttt ettt ettt e beesbeenaeeens 6
2 DESIZN AILCTNALIVES. .. veiiiiiieeiiieeiiee et e eeeeeeee e st e e et e e e e e eaeeesseeesssaeesseeessseeensseeenns 6
B B 0] 101 10) 1 1<) 1 O RRUPSPR 6
2.2 PrOJECt DUAZEL. . ..oeiieeiieeieeieeeie ettt ettt ettt et ssaeebeeeaaeenbeennneenseenn 7
3 SYStEM DESIZN. .. ettt 8
T B0 (11T [) 9
3.2 SD coOmMMANA SECHOM. uetttte ettt et e 12
3.2.1 SD send command...........oouiiuiniiniiii e 13
3.2.2 SD InTtaliZatION. . ..o eeee e e 13
3.2.3 SD Read single block.o 13
3.2.4 SD write single bloCK.........ooii i 14
3.3 FAT32 file SYStem SECION. ...uuteneie ettt e e e et e e e e e veenien e e e 15
4 Testing and TeSULLS. ...t e 18
5 CONCIUSION. . .t ettt e e 21
O APPEIAIX . . ettt e 22

1. Introduction

SD card is a common daily life erasable storage device, because of its large storage capacity
and low price, it is widely used in digital cameras, mobile phones and other digital products.
SD card supports two bus modes: SD mode and SPI mode. SD mode using 6-wire buses,
the use of CLK, CMD, DATO0, DAT1, DAT2, DAT3 for data communication, which has the
data transform rate at 4bits at a time. SPI mode using 4-wire buses, the use of CS, CLK,
Dataln, DataOut, these four ports for exchanging data only has 1 bit at a time which is
slower than the SD mode, but the communication protocol is simple and there is no need

to check the CRC, which is desirable for this project to read and write operations on the

SD card.

Pin SD SPI

1 8 1 DAT2 X
2 |comata| cs
3 CMD D
4 VDD VDD
5 CLK | SCLK
6 VSS VsS
7 DATO DO
8 DATH X

—— e

Figure 1. Pinout description of SD card

2. Design Alternatives

2.1 Components

»
©
L)
5 @)

MicrostickIl
6

SDHC Card

-~

== I

@

]
San)isk

8GB SDHC card SD card socket

UART Cable

Figure 2. Components of the design

2.2 Project budget

To interface the SD card with PIC32 microcontroller, the following parts and devices

are needed to build the circuit. And the total cost of the project has a budget of 508$.
% UART cable (5.009)

¢+ Bread board (10.00%)

¢ MicrostickII Pic32 kit (10.009)

% Jumper wires 20 pieces (1.003)

% SanDisk 8GB SDHC card (7.99%)

% Standard Adfruit SD card socket (8.99%)

Total cost is 42.988.

3. System Design

The SD card contains two basic semiconductor sections, a ‘memory core’ and a ‘SD card
controller’. The ‘memory core’ is the flash memory region where the actual data of the file
is saved. When we format the SD card a file system will be written into this region. Hence
this is the region where the file system exists. The ‘SD card controller’ helps to
communicate the ‘memory core’ with the external devices like microcontrollers. It can
respond to certain set of standard SD commands and read or write data from the memory

core in for the external device. Thus, the ‘SD card controller’ is the device our PIC32 would

communicate with.

PIC32

SPI

Microcontroller

As the figure listed above, to read or write data into the SD card. Our team divide the

project into three sections. They are SPI section, SD command section and FAT32 file

system section.

Figure 3. Block diagram of the system

SD card controller

SD Card

Data In/Out

Control

Flash Memory

FAT 32 File System

SD Command

SPI

Figure 3. Three sections of the system

The PIC32 microcontroller needs to communicate with SD card controller using
SPI buses. The data transmitted and received via SPI can be written and read
through SP//BUF from PIC32.

The internal SD card controller can decode the commands transmitted using SPIL.
Those commands are called standard SD command which can read the registers of
the SD card, and also read/write the ‘Memory Core’.

A FAT32 file system is mapped into the flash memory. This enables the user to
directly access or modify the files. With FAT32 file system, it will be very useful
that the files can be read directly not only from PIC32 microcontroller but in

windows and other operating systems.

3.1 SPI section

The pin out for SD card and PIC32 for the SPI interfacing mode is shown in the following

figures.
Physical pin Name Description
Number on PIC32
6 (RB2) CS Chip select (active low)
24 (RB13) MOSI(SDO1) Master out slave in

27 (GND) GND Ground

25 (RB14) SCK1 Clock

22 (RBI11) MISO(SDIN) Master in slave out

3 (RA1) U2RX UART receive
21 (RB10) U2TX UART transmit
Table 1. Pinout for PIC32
Pin Number on SD Name Description
card

1 CS Chip select (active low)
2 MOSI(Dataln) Master out slave in
3 Vssi Ground
4 Vbbp Voltage supply
5 CLK Clock
6 Vssa Ground
7 MISO(DataOut) Master in slave out
8 Reserved Reserved for SPI mode
9 Reserved Reserved for SPI mode

Table 2. Pinout for SD card

10

W
U

ra 7 7" 7 4
| .| VDD(3.3V
U2RX
7 7 4 > } -
| | SCK1
_ .| Reserved i _.|_MOsI(sDa1)
£ h G5l ol
DI | e MISO(SDI1)
GND 1. | vt
SO Card I F .
.| vDD(5Vv) 1. 1 u b
CLK] i
GND | | i
DO] B
.| Reserved VDD(3.3V) | .. B

Figure 4. Connection for PIC32 and SD card

After setting up the circuit, the SPI communication needs to be initialized. The following
code is used to set up SPI. It is mandatory to set up the SPI with a lower clock rate, since
the initialization of SD card only allow low clock frequency. After initialization, the SPI

clock frequency is speeded up as 20MHz to

volatile SpiChannel spiChn = SPI CHANNEL1; // the SPI channel to use
volatile int spiClkDiv = 160; // 250k Hz speed for SD initialization

SpiChnOpen(spiChn, SPI OPEN_ON | SPI OPEN_MODES$ | SPI OPEN MSTEN ,
spiCIkDiv | SPI_OPEN_SMP_END);

After initialization, our group is able to transmit and receive data by reading/writing to the

register called SP//BUF in PIC32. Therefore, two functions are generated with the purpose

11

which are called SPI transmit and SPI receive.

Basic functions in SPI section

Fuction name Description
SPI transmit(unsigned char data) Transmit the 8 bits data to the spi buffer
SPI receive(unsigned char data) Get the 8 bits data from the spi buffer

Table 2. Basic functions for SPI communication

3.2 SD command section

All the SD commands supported in the SPI mode are 6 bytes long. The MSB is transmitted
first and the actual command occupies the first byte. The command byte is followed by its
4 bytes long arguments. The last byte is the CRC byte respective of the command and the

argument bytes.

When the host sends a command to the SD card, the SD card will first send a corresponding
respond to the host, if the command is not wrong SD card will be followed by the

implementation of the host command.

The structure of a command block in the SPI interface mode of a SD card is shown in the

following figure.

Byte 1 Bytes 2—5 Byte &
T|6 |5 0)| 0 7 0
0|1 Command Command Argument CRC 1

Figure 5. Structure of a command block

Below is a list of the basic commands our team uses in the project.

12

#define GO _IDLE STATE

#define SEND OP_ COND

#define SEND _CSD

#define STOP_ TRANSMISSION
#define SEND STATUS

#define SET_BLOCK_LEN
#define READ SINGLE BLOCK

#define READ MULTIPLE BLOCKS

#define SEND _IF COND 8

12

13

16

17

18

#define WRITE_ MULTIPLE BLOCKS 25
#define ERASE_BLOCK_START ADDR 32
#define ERASE_ BLOCK_END ADDR 33

#define ERASE_SELECTED BLOCKS 38

#define SD_SEND_OP_COND 41
#define APP_CMD 55

#define READ_OCR 58

#define CRC_ON_OFF 59
#define WRITE_SINGLE BLOCK 24

SD card default read and write mode is SD mode. To use the SPI mode, our team need to
write CMDO0 and CMD1 command to SD controller. After the two commands are written

successfully, we can use SPI mode, which can be easily used for microcontroller to read

and write operations. Our team follows listed below steps for SD initialization.

3.2.1 SD send command

I. We first send Oxff synchronous clock cycles. (any number above 74 in

decimal is preferred)

Il. Send the CMDO command to the SD card (since the highest order of the
command number is always 0 and the second bit is 1, the command sent to the
SD card is the result of 0 or 0x40 operation). The first, third, fifth, and fifth

bytes of the command word are 0x00. The sixth byte of the command word is

the CRC check byte, fixed to 0x95.

I1l. Checking the response of CMDS58, then we can verify whether the SD card is

standard of SDHC card.

IV. If (0x00 && cmd == 58) is true, we send 8 extra clock cycles, and then desert

the chip select.

3.2.2 SD initialization

13

I. First send the instruction number CMDI1 (0x01 | 0x40 = 0x41), and then send
four 0x00 bytes, and finally send the CRC check code, here OxFF.
Il. Since SD card has been working in SPI mode, SD card does not default to

CRC, so we write a OxFF byte to fill the entire command word.

I1l. When the CMDI1 instruction is sent to the SD card, we send 8 clock cycles
until the SD card gives a response byte 0x00.

IV. After receiving the response byte of the SD card, the CS line is pulled high
and then send 8 extra clock cycles.

3.2.3 SD Read single block

I. Send SD read command CMD17 (0x11 | 0x40 = 0x51).

Il. Write four address parameters, 4 bytes into a 32-bit address value, the first byte
is 32-bit address value of the highest 8-bit data, the first four bytes is the lowest
32-bit value 8-bit data.

1. Write CRC check bit OxFF.

IV. Write a number of O0xFF empty operations.

V. Check SD card 0x00 response.

VI. Write a number of OxFF empty operations.

VII. SD card sends Ox FE data header.
VIIl. The SD card sends a 512-byte data block with the specified address.
IX. Since the SPI mode does not require the default CRC check, so the two bytes of
data can be discarded.
X. Pull CS high, send 8 empty clock cycles.
3.2.4 SD write single block
I. Send SD write command CMD24 (0x18 | 0x40 = 0x58).

Il. Write four address parameters, 4 bytes into a 32-bit address value, the first byte

is the lowest 8-bit address 8-bit data, the fourth byte is the highest 32-bit

14

address value 8-bit data.
1. Write CRC check bit OxFF.
IV. Write a number of OxFF empty operation.
V. Check SD 0x00 response.
VI. Write a number of OxFF empty operations.
VII. Write 512 bytes of data blocks.
VIIl. Write two bytes of OxFF as the CRC bytes.
IX. SD card sends x00101B response.
X. The CS line pulled low if the SD card writes 512 bytes of data to the specified
address get interrupted.

XI. Pull CS high, send 8 empty clock cycles.

Basic functions in SD command section

Fuction name Description

char SD _init(void); SD card initialization

SD sendCommand(unsigned char
Send SD command to SD controller
cmd, unsigned long arg);

SD_readSingleBlock(unsigned long
Read data from a specific block
startBlock);

SD_writeSingleBlock(unsigned long
Write data to a specific block
startBlock);

Table 3. Basic functions for SD command

3.3 FAT32 file system section

FAT file system is widely used in the windows operating system. FAT32 file system is
employed to store the files in this project. With FAT32 file system, it will be very useful
15

that the files can be read directly not only from PIC32 microcontroller but in windows

and other operating systems.

From our research and reading FAT file system manual, our group define the
consecutive 8 bit memory locations into ‘Sectors’ and The consecutive Sectors are
grouped to form ‘Clusters’ by regulation. Our team implement FAT32 file system inside
the Memory Core in a particular defined format. There are certain defined Sectors at

the beginning of the Memory Core which are then followed by Clusters. The format of

a FAT32 file system is as shown below:

Figure 6. FAT32 format

The very first Sector is the MBR (Master Boot Record) which follows significant number
of Unused Sectors. The Unused Sectors are followed by Reserved Sectors among which
the first Sector is the BOOT Sector. The Reserved Sectors are followed by the FAT Sectors.
The number of FAT Sectors depends upon the size of the file system. The FAT sectors are
followed by few Hidden Sectors. The Hidden Sectors are followed by the Clusters. A File
with a specific name can be read from the FAT32 formatted file system using the logic
shown below; Take a closer look and it can be found that every process finally ends with a
Sector read. This Sector read from the Memory Core of the SD card can be achieved by

using the SD readSingleBlock command from the SD Command section.

16

YES

NO

C o

Figure 7. Logic workflow from FAT32

Basic functions in FAT32 file system section

Fuction name Description
appendFile (void); Write data to an exsisting file
memoryStatistics (void); Get the memory usage of the SD card

Create a file in FAT32 format in the root
directory if given file name does not exist;
writeFile (unsigned char *fileName);
if the file already exists then append the

data

17

deleteFile (unsigned char *fileName); Delete the file

Print file/dir list of the root directory, if
findFiles (unsigned char flag, unsigned
flag=GET LIST Delete the file, if flag
char *fileName);
=DELETE

Read file from SD card if flag=READ;
readFile (unsigned char flag, unsigned
Verify whether a specified file is already
char *fileName);
existing if flag=VERIFY

Table 4. Basic functions for FAT32 file system

4. Testing and results

To test the accuracy and reliability of the SD card library two major tests are performed in

the debugging stage.

I. Winhex is employed to read the information from the SD card on the personal
computer. For instance, if we write data to a specific block on the SD card from
UART of PIC32, the information can be checked using winhex. To evaluate the
accuracy and debug during the design, our team verify the information of SD card
library read and write functions by checking the block data using winhex.
Following is figure when we read the detailed information from a specific block on

the SD card using winhex.

18

nooooooooo Fa 33 CO 8E DO BC 00 7C 8B F4 S50 07 50 1F FB FC
nooooooole BF 00 0O BS 00 01 F2 45 EA 1D 06 00 00 BE BE 07
nooooogo3z B3 04 80 3C 80 74 OE 80 3C 00 75 1C 83 Cé 10 FE
nooooooo4g CB 75 EF CD 18 8B 14 8B 4C 02 8B EE 83 C6 10 FE
noooooooe4 CB 74 14 80 3C 00 74 F4 BE 8B 06 AC 3C 00 74 OB
nooooooos0 S5e BE OY 00 B4 OE CD 10 GSE EBE Fo EB FE BE 05 00
nooooooo%e BE 00 ?C BE 01 02 57 CD 13 S5F 73 0C 33 C0 CD 13
nooooooll? 4F 75 ED BE A3 06 EE D3 BE C2 06 BF FE YD B1 3D
noooooolzg 55 A4 Y5 CF 8B FS EA 00 7C 00 00 49 6E 76 61 6C
nooooool44 69 64 20 70 61 72 74 69 74 69 6F 6E 20 Y4 61 B2
nooooooled 6C 65 00 45 72 72 eF Y2 20 6C 6F 61 64 69 BE E7
nooooool?e 20 6F 70 65 72 61 74 69 6E 67 20 73 79 73 74 65
nooooooils2 6D 00 4D 69 73 73 69 BE 67 20 BF 70 85 72 Bl ¥4
noooooozog 69 6E &Y 20 73 79 73 Y4 65 6D 00 00 00 0o o0 o0
nooooooz2z4 00 00 OO0 Q0 00 00 00 00 00 00 00 Q0 Ao oo oo oo
nooooooz40 00 00 00 00 OO0 OO OO OO 0O OO OO OO OO0 OO OO OO0
noooooo256 00 00 OO0 Q0 00 00 o0 00 00 00 00 00 4o oo oo oo
nooooooz2?2 00 00 00 00 oo oo o0 00 00 00 00 00 4o oo oo oo
noooooozsg 00 00 OO0 OO OO0 OO OO0 00 0O 00 OO0 00 0o oo oo oo
noooooo304 00 00 00 Q0 00 00 00 00 00 00 00 OO0 Qo oo oo oo
noooooo3z0 00 00 00 Qo0 oo oo o0 00 00 00 00 00 Ao oo oo oo
nooooooz336 00 00 OO0 OO0 OO0 OO0 00 00 0O 00 OO0 00 0o oo oo oo
noooooo3s2 00 00 00 00 oo Oo0 o0 00 00 00 00 00 Qo oo oo oo
noooooo03es 00 00 OO0 00 OO0 OO OO OO 0O OO0 OO0 00 OO0 OO0 OO0 OO0
noooooo3g84 00 00 OO0 Q0 00 00 00 00 00 00 00 00 Qo oo oo oo
noooooo400 00 00 OO0 Q0 o0 0o o0 00 00 00 00 Q0 4o oo oo oo
noooooo416 00 00 OO0 00 OO0 OO OO OO 0O OO OO OO OO0 OO OO OO0
noooooo432 00 00 00 OO0 00 00 o0 00 00 00 00 Q0 Qo oo oo 20
noooooo44g 21 00 OB 04 OE 7C 00 08 00 00 00 60 1E 00 00 00
noooooo464 0O OO0 OO0 OO0 OO0 OO 00 00O 0O OO OO OO0 OO0 OO0 o0 oo
noooooo4s80 00 00 OO0 Q0 00 00 00 00 00 00 00 Q0 Qo oo oo oo
nooooo0496 00 00 OO0 00 00 00 00 OO0 0O 00 00 00 o0 00 55 Ad

Figure 8. SD data information read from Winhex
To evaluate the reliability of the SD card library, a testing user interface is designed
to test important function in the library. The test interface can communicate from
the computer to PIC32 using UART. In our test baud rate of 9600 is chosen from
putty to transmit and receive data from PIC32. The user interface is shown as
follows including read/ write function to a single block and read/ write data from a

file in the file system.

19

£® COM4 - PuTTY

Figure 9. Test interface from Putty

As a result, all the functions are running properly without exceptions and all the

information read from Winhex is identical as the information our team write using the

library.

The speed of using SD_readSingleBlock and SD_writeSingleBlock functions are
measured by running each function 1000 times. A timer is opened to measure the total

running time. The function used to read or write from a single block has the data size

of 512 Bytes. The result is shown as follows.

Single block
Total running Read/ Write
Function name Write/Read
time rate(Bytes/s)
time
SD readSingleBlock(unsigned
1225ms 1.225ms 417.96KB/s
long startBlock);
SD_writeSingleBlock(unsigned
1343ms 1.343ms 381.23KB/s

long startBlock);

Table 5. SD card speed performance

20

5. Conclusion

Overall, SD card library is reliable and is accurate enough to store large files using PIC32.
During the design process, our team faced with various issues and bugs. One of the biggest
issue was that when define the struct using MPLAB IDE, the compiler didn’t allocate each
variable in the struct within a consecutive memory location. To fix the problem, #pragma
pack(1) is needed to be set, so that the compiler would compile the struct in a correct
allocation. The measured speed of write or read data from PIC32 to SD card is roughly
400KB per second. This result is decent, since the 4 bit high speed SD protocol was not
employed. Given 400KB/s read/ write speed from SPI mode, a speed of 2MB/s from SD
mode could be estimated. This is identical as the rate provided from the datasheet driven
by SPI clock frequency of 20MHz by PIC32. To summarize the project design, the
functions our team designed could be easily implemented. With the reliability and decent
transmit speed, the SD card library for PIC32 will enrich design alternatives for PIC users

who need large space to store files.

21

6. Code Appendix

6.1 sd_routines.c

C:/Users/changliu/Desktop/lab3.X/sd_routines.c

ffdefine clearPutty() printf("\x1lb[2J")
ffdefine homePutty () printf("\x1b[H")
lidefine PB_CLK sys_clock

f#include "config.h"

ffinclude <stdlib.h>
ffinclude <math.h>
f#include "plib.h"
ffinclude <xc.h>

ffinclude "sd_routines.h"
ffinclude "fat32.h"

oid setupUART(void) {
PPSInput (2, U2RX, RPAl); //Assign U2RX to pin RPAl -- Physical pin 3 on 28 PDIPS
PPSOutput (4, RPB10, U2TX); //Assign U2TX to pin RPB10 -- Physical pin 21 on 28 PDIP

// white on adafruit 954 is RX in - so connect to pin 21
// green on adafruit 954 is TX out - so connect to pin 3

UARTConfigure (UART2, UART_ENABLE_PINS_TX_RX_ONLY);

UARTSetLineControl (UART2, UART_DATA_SIZE_8 BITS | UART_PARITY NONE | UART_STOP_BITS 1);
UARTSetDataRate (UART2, PB_CLK, BAUDRATE);

UARTEnable (UART2, UART_ENABLE_FLAGS (UART_PERIPHERAL | UART RX | UART_TX));

e

/Function to receive a single byte

B TP
pnsigned char receiveByte(void)

{
pnsigned char data;

While (!DataRdyUART2()); // Wait for incomming data
data = ReadUART2();

freturn (data) ;
}

A
/Function to transmit a single byte
e
oid transmitByte(unsigned char data)

{
do{while (!U2STAbits.TRMT); WriteUART2 (data);}while(0);
|

R R R AR R R R AR R R AR AR AR AR A AR AR KA AR AR R R AR AR

/Function to transmit a string in RAM

R e

oid transmitString(unsigned char* string)

while (*string)

1.1 0f8 2017.05.22 09:09:54

22

C:/Users/changliu/Desktop/lab3.X/sd_routines.c

transmitByte (*stringt+);

e L LT T T T T

oid transmitHex(unsigned char dataType, unsigned long data)
{
pnsigned char count, i, temp;

nsigned char dataString[] = "0x]

ff (dataType == 0) count = 2;
ff (dataType == 1) count = 4;
ff (dataType == 2) count = 8;

ffor (i=count; i>0; i--)
i
temp = data % 16;
if((temp>=0) && (temp<10)) dataString [i+1] = temp + 0x30;
else dataString [i+l] = (temp - 10) + Oxdl;

data = data/16;

transmitString (dataString);
i
S L R E s S s s T e
/Function to transmit a string in Flash

T e e

* S5DO: RB13 (TRIS defined in HardwareProfile.h and PPS defined in SD-SPI.c)
* physical pin 24

* SDI: RB11 (TRIS defined in HardwareProfile.h and PPS defined in SD-SPI.c)
* physical pin 22

* SCK: RB14 (TRIS defined in HardwareProfie.h

* physical pin 25

* Bg= RB2 (defined in HardwareProfile.h)*

* #define TRIS SCK TRISBbits.TRISB14
* #define TRIS_SDI TRISBbits.TRISB1l
* #define TRIS_SDO TRISBbits.TRISB13
* 4define TRIS_CS TRISBbits.TRISB2 &

oid setupSPI() {
volatile SpiChannel spiChn = SPI_CHANNEL1; // the SPI channel to use
volatile int spiClkDiv = 160; // 250k Hz speed for SD initialization
PPSOutput (3, RPB13, SDO1); // RB13 as SDO1
PPSInput (2, SDI1, RPB11); // RB11 as SDI1

mPORTBSetPinsDigitalOut (BIT_2); //RB2 as CS
mPORTBSetBits (BIT 2); //High for deselect
SpiChnOpen (spiChn, SPI_OPEN_ON | SPI_OPEN MODE8 | SPI_OPEN MSTEN , spiClkDiv | SPI_OPEN_SMP_END);

unsigned char SPI_transmit (unsigned char data)
i

s

2.10f8 2017.05.22 09:09:54

23

C:/Users/changliu/Desktop/lab3.X/sd_routines.c

SPILBUF = data;

/ Wait for transmission complete
while (!SPI1STATbits.SPITBE);
data = SPI1BUF ;
return data;

pnsigned char SPI_receive (void)

i
unsigned char data;

/ Wait for reception complete
SPI1BUF = Oxff;

while (!SPI1STATbits.SPIRBF);
data = SPI1BUF;

return data;

Jrx
JEEE AR AR R KA AR AR AR KA AR R AR A AR AR AR KA AR AR A R AR A AR AR R A A A AR
pnsigned char SD_init (void)

i
nsigned char i, response, SD_version;
nsigned int retry=0 ;

for (1=0;1i<10;1i++)

SPI_transmit (Oxff); //80 clock pulses spent before sending the first command

BD_CS_ASSERT;
/printf("sd_cs assert\n\r");

do
i
response = SD_sendCommand (GO_IDLE_STATE, 0): //send 'reset & go idle' command
retryt+i
if (retry>0x20){
printf("time out, card not detected\n\:r");
return 1; //time out, card not detected
}
| while (response != 0x01);

BD_CS_DEASSERT;

/transmitString("sd deassert\n");

BPI_transmit (Ox£ff);
BPI_transmit (Oxff);

fretry = 0;
BD_version = 2; //default set to SD compliance with ver2.x;

/this may change after checking the next command
do

3.10f8 2017.05.22 09:09:54

24

C:/Users/changliu/Desktop/lab3.X/sd_routines.c

i

retry++;
Lf(retry>0xfe)

{
//TX_NEWLINE;
SD_version = 1;
cardType = 1;
break;

} //time out

jwhile (response != 0x01);
retry = 0;
Hdo

(

response = SD_sendCommand (SD_SEND_OP_COND, 0x40000000) ; //ACMD41

retry++;
Lf(retry>0xfe)
{

return 2; //time out, card initialization failed
}

}while (response != 0x00);

retry = 0;
SDHC_flag = 0;

Lf (SD_version == 2)
{

do

{
response = SD_sendCommand (READ_OCR, 0) ;
retryt++;
if (retry>0Oxfe)

{

//TX_NEWLINE;
cardType = 0;
break;

} //time out

jwhile (response != 0x00);
if (SDHC_flag == 1) cardType = 2;

else cardType = 3;

printf("sd version = %d, cardType = %d\n\r",SD_version,cardType);
printf ("\n");
Li //disable CRC; deafault - CRC disabled in SPI mode

[response = SD_sendCommand (SEND_IF_COND, 0x000001AA); //Check power supply status, mendatory for SDHC card

response = SD_sendCommand (APP_CMD,0); //CMD55, must be sent before sending any ACMD command

4.10f8

25

2017.05.22 09:09:54

C:/Users/changliu/Desktop/lab3.X/sd_routines.c
/SD_sendCommand (SET_BLOCK_LEN, 512); //set block size to 512; default size is 512

feturn 0; //successful return
i

J R R Rk kR A kR AR KRR KRR R KRR R KRR R R R AR R AR R R R KR KRR R AR R
bnsigned char SD_sendCommand(unsigned char cmd, unsigned long arg)
i

unsigned char response, retry=0, status;

/SD card accepts byte address while SDHC accepts block address in multiples of 512

/so, if it's SD card we need to convert block address into corresponding byte address by
/multipying it with 512. which is equivalent to shifting it left 9 times

/following 'if' loop does that

lif (SDHC_flag == 0)

{if (cmd == READ_SINGLE BLOCK I
cmd == READ MULTIPLE_BLOCKS ||
cmd == WRITE_SINGLE_BLOCK I

WRITE_MULTIPLE BLOCKS | |

ERASE_BLOCK_START_ADDR| |

ERASE_BLOCK_END_ADDR)

arg = arg << 9;

}
ED_CS_ASSERT;

BPI_transmit(cmd | 0x40); //send command, first two bits always '01'
BPI_transmit (arg>>24);

BPI_transmit (arg>>16);

BPI_transmit (arg>>8);

BPI_transmit (arg);

HEf(emd SEND_IF COND) //it is compulsory to send correct CRC for CMD8 (CRC=0x87) & CMDO (CRC=0x95
SPI_transmit (0x87); //for remaining commands, CRC is ignored in SPI mode
eplse

SPI_transmit (0x95);
while ((response = SPI_receive())== Oxff){ //wait response
if (retry++ > Oxfe) break; //time cut error

}

/printf("cmd = %d , response = %d in SD_sendCommand\n\r",cmd, response);

if (response == 0x00 && cmd == 58) //checking response of CMD58

i
status = SPI_receive() & 0x40; //first byte of the OCR register (bit 31:24)
if(status == 0x40) SDHC_flag = 1; //we need it to verify SDHC card

else SDHC_flag = 0;

SPI_receive(); //remaining 3 bytes of the OCR register are ignored here

DI Szt s T b Tasct i hack Lo T igmas £ on

5.10f8 2017.05.22 09:09:54

26

C:/Users/changliu/Desktop/lab3.X/sd_routines.c

SPI_receive();

BPI_receive(); //extra 8 CLK
SD_CS_DEASSERT;

freturn response; //return state
i

unsigned char SD_erase (unsigned long startBlock, unsigned long totalBlocks)
{

unsigned char response;

lresponse = SD_sendCommand (ERASE_BLOCK START_ADDR, startBlock); //send starting block address
Lif(response != 0x00) //check for SD status: 0x00 - OK (No flags set)
return response;

response = SD_sendCommand (ERASE_BLOCK_END_ADDR, (startBlock + totalBlocks - 1)); //send end block address|
if(response != 0x00)

return response;

lresponse = SD_sendCommand (ERASE_SELECTED_BLOCKS, 0); //erase all selected blocks
if (response != 0x00)
return response;

return 0; //normal return
i

unsigned char SD_readSingleBlock(unsigned long startBlock
{
unsigned char response;
unsigned int i, retry=0;

= SD_sendC d(READ_SINGLE BLOCK, startBlock); //read a Block command

if (response != 0x00)
{
printf("no response in SD_readSingleBlock\n\zr");
return response; //check for SD status: 0x00 - OK (No flags set)

5D_CS_ASSERT;
fretry = 0;
While (SPI_receive() != Oxfe) //wait for start block token Oxfe (0x11111110

if (retry++ > Oxfffe) {SD_CS_DEASSERT; return 1;} //return if time-out

for (i=0; i<512; i++) //read 512 bytes
buffer[i] = SPI_receive();

BPI_receive(); //receive incoming CRC (16-bit), CRC is ignored here

6.1 0f8 2017.05.22 09:09:54

27

C:/Users/changliu/Desktop/lab3.X/sd_routines.c

BPI_receive():

SPI_receive(); //extra 8 clock pulses
ISD_CS_DEASSERT;

freturn 0;
i

/tt'tnttttnn"lt"ﬁk'tttt'"ntt'ttttntnttnttttittttn'tnlt'i'ttt"'t
unsigned char SD_writeSingleBlock(unsigned long startBlock)

i
unsigned char response;
unsigned int i, retry=0;

response = SD_sendCommand (WRITE SINGLE BLOCK, startBlock); //write a Block command

if (response != 0x00)

{

printf("no response in SD_writeSingleBlock\n\r");

return response; //check for SD status: 0x00 - OK (No flags set)
}

BD_CS_ASSERT; // CS set to low

/SPI_transmit (Oxff);
/SPI_transmit (Oxff);
SPI_transmit (Oxfe); //send start block token Oxfe (0x11111110)

[for (i=0; 1<512; i++) //send 512 bytes data
SPI_transmit (buffer([i]);

SPI_transmit (Oxff); //transmit dummy CRC (16-bit), CRC is ignored here
BPI_transmit (0xff);

response = SPI_receive();
lresponse = SPI_receive();

Lf((response & 0x1f) != 0x05) //response= 0xXXXOAAAl ; AAA='010' - data accepted

{ //AAA='101"'-data rejected due to CRC error
SD_CS_DEASSERT; //AAR="'110"'-data rejected due to write error

// printf("a xi ba");

return response;

while (!SPI_receive()) //wait for SD card to complete writing and get idle
if (retry++ > Oxfffe) {SD_CS_DEASSERT; return 1;}

SD_CS_DEASSERT;
SPI_transmit (Ox£f); //just spend 8 clock cycle delay before reasserting the CS line
[SD_CS_ASSERT; //re-asserting the CS line to verify if card is still busy

while (!SPI_receive()) //wait for SD card to complete writing and get idle
if (retry++ > Oxfffe) (SD_CS_DEASSERT; return 1;}
SD_CS_DEASSERT;

7.10f8

28

2017.05.22 09:09:54

C:/Users/changliu/Desktop/lab3.X/sd_routines.c
freturn 0;

}

8.10f8 2017.05.22 09:09:54

29

6.2 sd_routines.h

C:/Users/changliu/Desktop/lab3.X/sd_routines.h
finclude "plib.h"
ffinclude <xc.h>

R R R R AR R R R KRR AR R R AR AR AR AR AR KRR R KRR AR R AR

/ ***** HEADER FILE : SD_routines.h **##*#x

e

#ifndef _SD_ROUTINES_H_
idefine _SD_ROUTINES_H_

/Use following macro if you don't want to activate the multiple block access functions
/those functions are not required for FAT32

ffdefine FAT_TESTING_ONLY
/use following macros if PBl pin is used for Chip Select of SD
ffdefine SD_CS_ASSERT mPORTBClearBits (BIT_2

ffdefine SD_CS_DEASSERT mPORTBSetBits(BIT_ 2)

/SD commands, many of these are not used here

fdefine GO_IDLE_STATE 0
ldefine SEND_OP_COND 1
ffdefine SEND_IF_COND 8

fidefine SEND_CSD 9
ffdefine STOP_TRANSMISSION 12
lidefine SEND_STATUS 13
fdefine SET_BLOCK LEN 16
fidefine READ_SINGLE_BLOCK 17
ffdefine READ_MULTIPLE_BLOCKS 18
fidefine WRITE_SINGLE_BLOCK 24

fidefine WRITE_MULTIPLE BLOCKS 25
lidefine ERASE_BLOCK_START ADDR 32
fidefine ERASE_BLOCK_END_ADDR 33
ffdefine ERASE_SELECTED BLOCKS 38
fkdefine SD_SEND_OP_COND 41

idefine APP_CMD 55

ffdefine READ_OCR 58

fidefine CRC_ON_OFF 59

ffdefine ON 1
ffdefine OFF 0

olatile unsigned long startBlock, totalBlocks;

olatile unsigned char SDHC_flag, cardType, buffer[512];

unsigned char SD_init (void);

munsigned char SD_sendCommand (unsigned char cmd, unsigned long arg);

unsigned char SD_readSingleBlock(unsigned long startBlock):

unsigned char SD_writeSingleBlock(unsigned long startBlock);

unsigned char SD_readMultipleBlock (unsigned long startBlock, unsigned long totalBlocks);
unsigned char SD_writeMultipleBlock (unsigned long startBlock, unsigned long totalBlocks);
unsigned char SD_erase (unsigned long startBlock, unsigned long totalBlocks);

ffendif

I.1of1 2017.05.22 11:38:48

30

6.3 fat32.c

C:/Users/changliu/Desktop/lab3.X/fat32.c

finclude "sd_routines.h"
ffinclude "fat32.h"

e

B LR T T P T
unsigned char getBootSectorData (void)

i
struct BS_Structure *bpb; //mapping the buffer onto the structure
struct MBRinfo Structure *mbr;

struct partitionInfo_Structure *partition;

unsigned long dataSectors;

int k;

unusedSectors = 0;

ED_readSingleBlock(0);
bpb = (struct BS_Structure *)buffer;

lif (bpb->jumpBoot [0] !=0xXE9 && bpb->jumpBoot [0] !=0xEB) //check if it is boot sector
i

mbr = (struct MBRinfo_Structure *) buffer; //if it is not boot sector, it must be MBR mbr =512
if (mbr->signature != 0xaa55) return 1; //if it is not even MBR then it's not FAT32

unsigned char mama[l6];
for (k=0;k<16;k++) {mama[k] = mbr->partitionDatal(k];}

partition = (struct partitionInfo_Structure *) mama;//first partition
// partition = (struct partitionInfo_Structure *) (mbr->partitionData);

printf("\n");
/ printf("firstSector = %d",partition->firstSector);printf("\n"); //first sectot = 8192
unusedSectors = partition->firstSector; //the unused sectors, hidden to the FAT

SD_readSingleBlock (partition->firstSector);//read the bpb sector
bpb = (struct BS_Structure *) buffer;

if (bpb->jumpBoot [0] !=0xE9 && bpb->jumpBoot[0] !=0xEB) return 1;

pytesPerSector = bpb->bytesPerSector;
/bytesPerSector = 512;

/transmitHex (INT, bytesPerSector); transmitByte(' ');
sectorPerCluster = bpb->sectorPerCluster;

/transmitHex (INT, sectorPerCluster); transmitByte(' ');
reservedSectorCount = bpb->reservedSectorCount;

rootCluster = bpb->rootCluster;// + (sector / sectorPerCluster) +1;

printf ("rootCluster = $d",rootCluster);

1.1 of 28 2017.05.22 10:31:32

31

C:/Users/changliu/Desktop/lab3.X/fat32.c

HataSectors = bpb->totalSectors_F32

- bpb->reservedSectorCount

- (bpb->numberofFATs * bpb->FATsize_ F32);
totalClusters = dataSectors / sectorPerCluster;
/transmitHex (LONG, totalClusters); transmitByte(' ');

Lif((getSetFreeCluster (TOTAL_FREE, GET, 0)) > totalClusters) //check if FSinfo free clusters count is v
freeClusterCountUpdated = 0;
else

freeClusterCountUpdated = 1;
return 0;

i

G T
unsigned long getFirstSector (unsigned long clusterNumber)

(
return (((clusterNumber - 2) * sectorPerCluster) + firstDataSector);

e
unsigned long getSetNextCluster (unsigned long clusterNumber,

unsigned char get_set,

unsigned long clusterEntry)

i

unsigned short FATEntryOffset;
unsigned long *FATEntryValue;
unsigned long FATEntrySector;
unsigned char retry = 0;

/get sector number of the cluster entry in the FAT
FATEntrySector = unusedSectors + reservedSectorCount + ((clusterNumber * 4) / bytesPerSector) ;

/get the offset address in that sector number
FATEntryOffset = (unsigned short) ((clusterNumber * 4) % bytesPerSector):;

/read the sector into a buffer
while (retry <10)

{ if (!SD_readSingleBlock (FATEntrySector)) break; retry++;}

/get the cluster address from the buffer
FATEntryValue = (unsigned long *) &buffer[FATEntryOffset];

if(get_set == GET)

return ((*FATEntryValue) & OxOfffffff);

[FFATEntryValue = clusterEntry; //for setting new value in cluster entry in FAT
ISD_writeSingleBlock (FATEntrySector);

freturn (0);

2.10f28 2017.05.22 10:31:32

32

C:/Users/changliu/Desktop/lab3.X/fat32.c

{
struct FSInfo_Structure *FS = (struct FSInfo_Structure *) &buffer;
unsigned char error;

BD_readSingleBlock (unusedSectors + 1);

Lif((FS->leadSignature != 0x41615252) || (FS->structureSignature != 0x61417272)
return Oxffffffff;

if (get_set == GET)
{
if (totOrNext == TOTAL_FREE)
return(FS->freeClusterCount);
else // when totOrNext = NEXT_FREE
return(FS->nextFreeCluster) ;
)
else
{
if (totOrNext == TOTAL_FREE)
FS->freeClusterCount = FSEntry;
else // when totOrNext = NEXT_FREE
FS->nextFreeCluster = FSEntry;

error = SD_writeSingleBlock (unusedSectors + 1);//update FSinfo
}
return Oxffffffff;
i

AR R KRR R AR AR kAR KRR kAR kKRR KRRk R Rk R R R R A
struct dir Structure* findFiles (unsigned char flag, unsigned char *fileName)
{
punsigned long cluster, sector, firstSector, firstCluster, nextCluster;
ptruct dir Structure *dir;

unsigned short i;

unsigned char j;

kcluster = rootCluster; //root cluster

int k;
while (1)
i
/ printf("\n");
7
/ printf ("cluster = %d", cluster);
/ printf("\n");

firstSector = getFirstSector (cluster);

for (sector = 0; sector < sectorPerCluster; sector++
{

G

unsigned long getSetFreeCluster (unsigned char totOrNext, unsigned char get_set, unsigned long FSEntry)

|| (FS->trailSignature !+

3.10f28

33

2017.05.22

10:31:32

C:/Users/changliu/Desktop/lab3.X/fat32.c

printf("\n");

SD_readSingleBlock (firstSector + sector);

for(i=0; i<bytesPerSector; i+=32)
{
dir = (struct dir_ Structure *) &buffer[i];

if (dir->name[0] == EMPTY) //indicates end of the file list of the directory
i
if((flag == GET_FILE) || (flag == DELETE))
printf("File does not exist!");
return 0;

i
Lf((dir->name[0] != DELETED) && (dir->attrib != ATTR_LONG_NAME))
{
if ((flag == GET_FILE) || (flag == DELETE))
{
for (3=0; 3<11; j++)
if (dir->name[j] != fileName[j]) break;
if () == 11)

if(flag == GET_FILE)
{
appendFileSector = firstSector + sector;
pppendFileLocation = i;
pppendStartCluster = (((unsigned long) dir->firstClusterHI) << 16) | dir->firstClusterLO;
fileSize = dir->fileSize;
return (dir);
}
else //when flag = DELETE
{

printf("Deleting..");

firstCluster = (((unsigned long) dir->firstClusterHI) << 16) | dir->firstClusterLO;

//mark file as 'deleted' in FAT table
dir->name[0] = DELETED;
SD_writeSingleBlock (firstSector+sector);

freeMemoryUpdate (ADD, dir->fileSize);

//update next free cluster entry in FSinfo sector
cluster = getSetFreeCluster (NEXT_FREE, GET, 0);
if (firstCluster < cluster)

getSetFreeCluster (NEXT_FREE, SET, firstCluster);

//mark all the clusters allocated to the file as 'free'
while (1)

4.1 0f 28 2017.05.22

34

10:31:32

C:/Users/changliu/Desktop/lab3.X/fat32.c

{
nextCluster = getSetNextCluster (firstCluster, GET, 0);

getSetNextCluster (firstCluster, SET, 0);
lif (nextCluster > OxQffffffe6)
{printf("File deleted!");return 0;}
firstCluster = nextCluster;

}
}

}
else //when flag = GET_LIST

for(j=0; j<11; j++)
{
if(j == B) transmitByte(' ');
transmitByte (dir->name(j]);

printf (")2
if ((dir->attrib != 0x10) && (dir->attrib != 0x08))

printf ("FILE");
printf (" ")
displayMemory (LOW, dir->fileSize);
printf("\n");
}
else

printf ((dir->attrib == 0x10)? "DIR" : "ROOT");
)

cluster = (getSetNextCluster (cluster, GET, 0));

if (cluster > OxO0ffffff6)

return 0;

if (cluster == 0)

{printf("Error in getting cluster"); return 0;}
}
freturn 0;
i

A

unsigned char readfFile (unsigned char flag, unsigned char *fileName)
i
struct dir_ Structure *dir;

unsigned long cluster, byteCounter = 0, fileSize, firstSector;
unsigned short k;

unsigned char j, error;

prror = convertFileName (fileName); //convert fileName into FAT format
£y) 2

5.10f28 2017.05.22

35

10:31:32

C:/Users/changliu/Desktop/lab3.X/fat32.c

dir = findFiles (GET_FILE, fileName); //get the file location
Lf(dir == 0)
return (0);

if (flag == VERIFY) return (1);//specified file name is already existing
cluster = (((unsigned long) dir->firstClusterHI) << 16) | dir->firstClusterLO;

fileSize = dir->fileSize;

while (1)
i
firstSector = getFirstSector (cluster);

for (j=0; j<sectorPerCluster; j++)
{
SD_readSingleBlock(firstSector + j);

for (k=0; k<512; k++)
{
transmitByte (buffer(k]):
if ((byteCounter++) >= fileSize) return 0;

}

cluster = getSetNextCluster (cluster, GET, 0);

if(cluster == 0) ({(printf("Error in getting cluster"); return 0;}
i
freturn 0;
i

T Y
unsigned char convertFileName (unsigned char *fileName)

i
unsigned char fileNameFAT[11];
unsigned char j, k;

for (3=0; 3<12; j++)
Lf(fileName[j] == '.') break;

Lf(3>8) {printf("Invalid fileName.."); return 1;}

[for (k=0; k<j; k++) //setting file name
fileNameFAT [k] = fileName(k];

for (k=j; k<=7; k++) //filling file name trail with blanks

fileNameFAT([k] = ' ';
4+
[for (k=8; k<11; k++) //setting file extention
6.1 of 28 2017.05.22 10:31:32

36

C:/Users/changliu/Desktop/lab3.X/fat32.c
(

if (fileName([j] != 0)
fileNameFAT[k] = fileName[j++];
else //filling extension trail with blanks
while (k<11)
fileNameFAT [k++] = ' ';

[for (j=0; 3j<11; j++) //converting small letters to caps
if((fileNameFAT[j] >= 0x61) && (fileNameFAT[j] <= Ox7a))
fileNameFAT[j] -= 0x20;

lFor (§=0; 3j<11; j++)
fileName[j] = fileNameFAT(j];

freturn 0;

i

R
oid writeFile (unsigned char *fileName)

(
unsigned char j, data, error, fileCreatedFlag = 0, start = 0, appendFile = 0, sectorEndFlag = 0, sector;
unsigned short i, firstClusterHigh, firstClusterLow;
struct dir Structure *dir;

unsigned long cluster, nextCluster, prevCluster, firstSector, clusterCount, extraMemory;
i = readFile (VERIFY, fileName);

HE(3 == 1)
{
printf(" File already existing, appending data..");
appendFile = 1;
cluster = appendStartCluster;
clusterCount=0;
while (1)
{
nextCluster = getSetNextCluster (cluster, GET, 0);
if (nextCluster == EOF) break;
cluster = nextCluster;
clusterCount++;

}

sector = (fileSize - (clusterCount * sectorPerCluster * bytesPerSector)) / bytesPerSector; //last sect]
start = 1;
/ appendFile();
/ return;
i
else if(j == 2)
return; //invalid file name
else

{

printf(" Creating File..");

7.1 0f28 2017.05.22 10:31:32

37

C:/Users/changliu/Desktop/lab3.X/fat32.c

cluster = getSetFreeCluster (NEXT_FREE, GET, 0);
if(cluster > totalClusters)
cluster = rootCluster;

cluster = searchNextFreeCluster (cluster);
if (cluster == 0)
{

printf(" No free cluster!");
return;
}
getSetNextCluster (cluster, SET, EOF); //last cluster of the file, marked EOF

firstClusterHigh = (unsigned short) ((cluster & Oxffff0000) >> 16);
firstClusterLow = (unsigned short) (cluster & Ox0000ffff);
fileSize = 0;

while (1)
{
if (start)
{
start = 0;
startBlock = getFirstSector (cluster) + sector;
SD_readSingleBlock (startBlock);
i = fileSize % bytesPerSector;
j = sector;

}
else
{
startBlock = getFirstSector (cluster);
i=0;
3=0;
}

printf(" Enter text (end with ~):");

do
{
if (sectorEndFlag == 1) //special case when the last character in previous sector was '\r'
{
transmitByte ('\n');
buffer[i++] = '\n'; //appending 'Line Feed (LF)' character
fileSize++;
}

sectorEndFlag = 0;

data = receiveByte();
if (data == 0x08) //'Back Space' key pressed
{

if(i != 0)

8.1 0f28 2017.05.22

38

10:31:32

C:/Users/changliu/Desktop/lab3.X/fat32.c

transmitByte (data) ;
transmitByte(' ');
transmitByte (data) ;

Ty
fileSize--;
}
continue;
}
transmitByte (data) ;
buffer[i++] = data;
fileSize++;
if(data == '\r') //'Carriege Return (CR)' character
{
if(i == 512)
sectorEndFlag = 1; //flag to indicate that the appended '\n' char should be put in the next sector
else

transmitByte ('\n');
buffer[i++] = '\n'; //appending 'Line Feed (LF)' character
fileSizet+;
}
}

if (i >= 512) //though 'i' will never become greater than 512, it's kept here to avoid
{//infinite loop in case it happens to be greater than 512 due to some data corruption
i=0;
error = SD_writeSingleBlock (startBlock);
j++;
if (j == sectorPerCluster) {j = 0; break;}
startBlock++;
}
iwhile (data != '~');

if (data == '~')
{
fileSize--;//to remove the last entered '~' character
A==y
for(;i<512;i++) //fill the rest of the buffer with 0x00
buffer([i]= 0x00;
error = SD writeSingleBlock (startBlock);

break;

prevCluster = cluster;
cluster = searchNextFreeCluster (prevCluster); //look for a free cluster starting from the current cluy

if (cluster == 0)
{

printf(" No free cluster!");
return;
}

9.1 0f28 2017.05.22 10:31:32

39

C:/Users/changliu/Desktop/lab3.X/fat32.c

getSetNextCluster (prevCluster, SET, cluster);
getSetNextCluster (cluster, SET, EOF); //last cluster of the file, marked EOF

getSetFreeCluster (NEXT FREE, SET, cluster); //update FSinfo next free cluster entry

lif (appendFile) //executes this loop if file is to be appended
i
SD_readSingleBlock (appendFileSector);

dir = (struct dir Structure *) &buffer[appendFileLocation];

extraMemory = fileSize - dir->fileSize;

dir->fileSize = fileSize;

SD_writeSingleBlock (appendFileSector);

freeMemoryUpdate (REMOVE, extraMemory); //updating free memory count in FSinfo sector;

printf(" File appended!");

return;

/executes following portion when new file is created
prevCluster = rootCluster; //root cluster

while (1)
(
firstSector = getFirstSector (prevCluster);

for(sector = 0; sector < sectorPerCluster; sector++)
(
SD_readSingleBlock (firstSector + sector);

for (i=0; i<bytesPerSector; i+=32)
{
dir = (struct dir_Structure *) sbuffer([i];

if (fileCreatedFlag) //to mark last directory entry with 0x00 (empty) mark

{ //indicating end of the directory file list
dir->name (0] = 0x00;
return;

if ((dir->name(0] == EMPTY) || (dir->name[0] == DELETED)) //looking for an empty slot to enter f

for (j=0; j<11; j++)

dir->name(j] = fileName([j];

dir->attrib = ATTR_ARCHIVE;//settting file attribute as 'archive'
dir->NTreserved = 0;//always set to 0

dir->timeTenth = 0;//always set to 0

dir->createTime = 0x9684;//fixed time of creation
dir->createDate = 0x3a37;//fixed date of creation

10.1 of 28 2017.05.22 10:31:32

40

C:/Users/changliu/Desktop/lab3.X/fat32.c

dir->lastAccessDate = 0x3a37;//fixed date of last access
dir->writeTime = 0x9684;//fixed time of last write
dir->writeDate = 0x3a37;//fixed date of last write
dir->firstClusterHI = firstClusterHigh;
dir->firstClusterLO = firstClusterLow;

dir->fileSize = fileSize;

SD_writeSingleBlock (firstSector + sector);
fileCreatedFlag = 1;

printf(" File Created!");

freeMemoryUpdate (REMOVE, fileSize); //updating free memory count in FSinfo sector

cluster = getSetNextCluster (prevCluster, GET, 0);

if (cluster > OxOffffffe)
{
if (cluster == EOF) //this situation will come when total files in root is multiple of (32*sector]

{

cluster = searchNextFreeCluster (prevCluster); //find next cluster for root directory entries

pgetSetNextCluster (prevCluster, SET, cluster); //link the new cluster of root to the previous cluster
petSetNextCluster (cluster, SET, EOF); //set the new cluster as end of the root directory
}

else

{
printf("End of Cluster Chain");
return;

}

}
if (cluster == 0) {printf("Error in getting cluster"); return;}

prevCluster = cluster;

return;

}

T e
unsigned long searchNextFreeCluster (unsigned long startCluster)

i

unsigned long cluster, *value, sector;

unsigned char i;

startCluster -= (startCluster % 128); //to start with the first file in a FAT sector
for (cluster =startCluster; cluster <totalClusters; cluster+=128

{

a + e 4 o (loluct 2 AN [b A

11.1 0of 28 2017.05.22 10:31:32

41

C:/Users/changliu/Desktop/lab3.X/fat32.c

SD_readSingleBlock (sector) ;
for (i=0; i<128; i++)
{
value = (unsigned long *) &buffer[i*4];
if (((*value) & OxOfffffff) == 0
return(cluster+i);

return 0;

}

e
oid memoryStatistics (void)

i
unsigned long freeClusters, totalClusterCount, cluster;
unsigned long totalMemory, freeMemory;

unsigned long sector, *value;

unsigned short i;

totalMemory = totalClusters * sectorPerCluster / 1024;
totalMemory *= bytesPerSector;

printf("Total Memory: ");

displayMemory (HIGH, totalMemory);

freeClusters = getSetFreeCluster (TOTAL_FREE, GET, 0);
/freeClusters = Oxffffffff;

lif (freeClusters > totalClusters)
i
freeClusterCountUpdated = 0;
freeClusters = 0;
totalClusterCount = 0;
cluster = rootCluster;
while (1)
{
sector = unusedSectors + reservedSectorCount + ((cluster * 4) / bytesPerSector)
SD_readSingleBlock(sector);
for (i=0; i<128; i++)
{
value = (unsigned long *) &buffer([i*4];
if (((*value) & OxOfffffff) == 0)
freeClusters++;;

totalClusterCount++;

if (totalClusterCount == (totalClusters+2)) break;
}
if (i < 128) break;

i

12.1 of 28

42

2017.05.22

10:31:32

C:/Users/changliu/Desktop/lab3.X/fat32.c

cluster+=128;

lif (!freeClusterCountUpdated)

getSetFreeCluster (TOTAL_FREE, SET, freeClusters); //update FSinfo next free cluster entry
freeClusterCountUpdated = 1; //set flag

freeMemory = freeClusters * sectorPerCluster / 1024;

IfreeMemory *= bytesPerSector ;

printf(" Free Memory: ");
displayMemory (HIGH, freeMemory):

SRR KRR R KRR KRR AR R Rk R KRR KRR KKK R R AR R R R AR R AR KR Rk R Rk

oid displayMemory (unsigned char flag, unsigned long memory
i

unsigned char memoryString[] = " Bytes"; //19 character long string for memory display
unsigned char i;
for(i=12; i>0; i--) //converting freeMemory into ASCII string
{
if (i==5 || i==9)
(
memoryString[i-1] = ',"';
E==3

memoryString[i-1] = (memory % 10) | 0x30;
memory /= 10;

if (memory == 0) break;

}

if(flag == HIGH) memoryString[l13] = 'K';
transmitString(memoryString);

T
oid deleteFile (unsigned char *fileName)
{

unsigned char error;

error = convertFileName (fileName);
if (error) return;

findFiles (DELETE, fileName);

D

oid freeMemoryUpdate (unsigned char flag, unsigned long size)
{
unsigned long freeClusters;

L_//convert file size into pumber of clusters occupied

13.1 of 28 2017.05.22 10:31:32

43

C:/Users/changliu/Desktop/lab3.X/fat32.c

if((size % 512) == 0) size = size / 512;
else size = (size / 512) +1;

if((size % 8) == 0) size = size / 8;
else size = (size / 8) +1;

if (freeClusterCountUpdated)

{

[freeClusters = getSetFreeCluster (TOTAL_FREE, GET,
lif(flag == ADD)

freeClusters = freeClusters + size;

else //when flag = REMOVE

freeClusters = freeClusters - size;
petSetFreeCluster (TOTAL_FREE, SET, freeClusters);

}

0);

14.1 of 28

44

2017.05.22 10:31:32

6.4 fat32.h

C:/Users/changliu/Desktop/lab3.X/fat32.h

R KR KRR R AR R KRR R R R KRR R R R KRR R R R AR KR Rk Rk R
/ ***%* HEADER FILE : FAT32.h **#*%%
D e

fifndef _FAT32 H_

ffdefine FAT32 H_

ffinclude <stdlib.h>
ffinclude <math.h>

ffinclude "plib.h"

ffinclude <xc.h>
LIIITHETELLILLLLLIEEL L eieery
ffinclude "sd_routines.h"

fipragma pack (1)

/Structure to access Master Boot Record for getting info about partioions
struct MBRinfo_Structure(

unsigned charnothing[446];//ignore, placed here to fill the gap in the structure
unsigned charpartitionData[64];//partition records (16x4)

unsigned shortsignature;//0xaa55

}:

/Structure to access info of the first partioion of the disk 16 bytes
struct partitionInfo_Structure{

unsigned charstatus;//0x80 - active partition

unsigned char headStart;//starting head

unsigned shortcylSectStart;//starting cylinder and sector

unsigned chartype;//partition type

unsigned charheadEnd;//ending head of the partition

unsigned shortcylSectEnd;//ending cylinder and sector

munsigned longfirstSector;//total sectors between MBR & the first sector of the partition
unsigned longsectorsTotal;//size of this partition in sectors

/unsigned char notused_data[48];

I

/Structure to access boot sector data 512 bytes
struct BS_Structure(
unsigned char jumpBoot([3]; //default: 0x009000EB

unsigned char OEMName (8]

unsigned short bytesPerSector; //deafault: 512
unsigned char sectorPerCluster;

unsigned short reservedSectorCount;

unsigned char numberofFATSs;

unsigned short rootEntryCount;

unsigned short totalSectors_F16; //must be 0 for FAT32
unsigned char mediaType;

unsigned short FATsize F16; //must be 0 for FAT32
unsigned short sectorsPerTrack;

unsigned short numberofHeads;

unsigned long hiddenSectors;

unsigned long totalSectors F32;

1.10f6 2017.03.29 20:03:23

45

C:/Users/changliu/Desktop/lab3.X/fat32.h

nnsigned short extFlags;

unsigned short FSversion; //0x0000 (defines version 0.0)
unsigned long rootCluster; //first cluster of root directory (=2)
unsigned short FSinfo; //sector number of FSinfo structure (=1)
pnsigned short BackupBootSector;

unsigned char reserved([12];

unsigned char driveNumber;

unsigned char reservedl;

unsigned char bootSignature;

unsigned long volumeID;

unsigned char volumeLabel[11]; //"NO NAME "

unsigned char fileSystemType[8]; //"FAT32"

unsigned char bootData[420];

unsigned short bootEndSignature; //0xaa55

1 bpb;

/Structure to access FSinfo sector data
struct FSInfo_Structure

i
pnsigned long leadSignature; //0x41615252

unsigned char reservedl([480];

unsigned long structureSignature; //0x61417272
unsigned long freeClusterCount; //initial: Oxffffffff
unsigned long nextFreeCluster; //initial: Oxffffffff
unsigned char reserved2([12];

unsigned long trailSignature; //0xaa550000

1

/Structure to access Directory Entry in the FAT

struct dir_Structure{

unsigned char name[11];

unsigned char attrib; //file attributes

pnsigned char NTreserved; //always 0

unsigned char timeTenth; //tenths of seconds, set to 0 here

unsigned short createTime; //time file was created

unsigned short createDate; //date file was created

unsigned short lastAccessDate;

unsigned short firstClusterHI; //higher word of the first cluster number
unsigned short writeTime; //time of last write

unsigned short writeDate; //date of last write

unsigned short firstClusterLO; //lower word of the first cluster number
mnsigned long fileSize; //size of file in bytes

}:

/Attribute definitions for file/directory

ffdefine ATTR_READ_ONLY 0x01
ffdefine ATTR HIDDEN 0x02
ffdefine ATTR SYSTEM 0x04
ffdefine ATTR_VOLUME_ID 0x08
ffdefine ATTR_DIRECTORY 0x10
ffdefine ATTR_ARCHIVE 0x20
ffdefine ATTR_LONG_NAME Ox0f
2.1 0f6 2017.03.29 20:03:23

46

C:/Users/changliu/Desktop/lab3.X/fat32.h

lfdefine DIR_ENTRY_SIZE 0x32
ffdefine EMPTY 0x00
lfdefine DELETED OxeS
ltdefine GET 0
ffdefine SET 1

ff[define READO

ffdefine VERIFY 1
ffdefine ADDO

ffdefine REMOVEl
ffdefine LOWO

ffdefine HIGH1

ffdefine TOTAL_FREE 1
fidefine NEXT FREE 2

ffdefine GET_LIST 0
ffdefine GET_FILE &
fidefine DELETE 2

ffdefine EOFOxOfffffff

Jrrrrrrekrrrrk external variables **keskkdokssss
olatile unsigned long firstDataSector, rootCluster, totalClusters;

olatile unsigned short bytesPerSector, reservedSectorCount;

olatile unsigned char sectorPerCluster;

unsigned long unusedSectors, appendFileSector, appendFilelocation, fileSize, appendStartCluster;

/global flag to keep track of free cluster count updating in FSinfo sector
punsigned char freeClusterCountUpdated:

JrrrkrrrRrrrrr Funotions FAAAERAAEEERE
unsigned char getBootSectorData (void);

unsigned long getFirstSector (unsigned long clusterNumber);

unsigned long getSetFreeCluster (unsigned char totOrNext, unsigned char get_set, unsigned long FSEntry);
struct dir_Structure* findFiles (unsigned char flag, unsigned char *fileName);

unsigned long getSetNextCluster (unsigned long clusterNumber,unsigned char get_set,unsigned long cluster|
unsigned char readFile (unsigned char flag, unsigned char *fileName);

unsigned char convertFileName (unsigned char *fileName);

oid writeFile (unsigned char *fileName);

oid appendFile (void);

nnsigned long searchNextFreeCluster (unsigned long startCluster);

oid memoryStatistics (void):

oid displayMemory (unsigned char flag, unsigned long memory);

oid deleteFile (unsigned char *fileName);

oid freeMemoryUpdate (unsigned char flag, unsigned long size);

ffendif

3.10f6 2017.03.29 20:03:23

47

6.5 meng_test.c

C:/Users/changliu/Desktop/lab3.X/meng_test.c

oid main(void) {

INTEnableSystemMultiVectoredInt () ;
ANSELA = 0; ANSELB = 0; // Disable analog inputs
CMI1CON = 0; CM2CON = 0; CM3CON = 0; // Disable analog comparators

setupUART () 7
homePutty () ;
clearPutty();
setupSPI();

R R R R R KRR R Rk AT KRR Rk Rk R Rk R kR Rk

nsigned char option, error, data, FAT32_active = 1;
upnsigned int i;
unsigned char fileName[13];

3 A A e AY L)

3 G e AN L)

printf (" Meng project microSD Card Testing.. \n");

P A L e e AN Lo

PEANEE (R h kbbb ok ok kR R Rk N\)

printf("\n");

cardType = 0;

ffor (i=0; i<10; i++)
i
error = SD_init();
if(!error) break;

fif(error)

i
if(error == 1) printf("SD card not detected..");
if(error == 2) printf("Card Initialization failed.."});
while(1); //wait here forever if error in SD init

SpiChnClose (1) ;

switch (cardType)
i
case l:printf("Standard Capacity Card (Ver 1l.x) Detected!"):

// SpiChnOpen(l, SPI OPEN ON | SPI_OPEN MODES | SPI OPEN MSTEN , 4 | SPI_OPEN SMP END);// change the

SpiChnOpen(l, SPI_OPEN ON | SPI_OPEN MODE8 | SPI_OPEN MSTEN , 4 | SPI_OPEN_SMP END);// change the SP

break;
case 2:printf("High Capacity Card Detected!");
break;
case J:priptf(“Standard Capacitv Card (Ver) _Detectedlit);
1.10f 12 2017.05.22 09:09:41

48

C:/Users/changliu/Desktop/lab3.X/meng_test.c

break;
default:printf ("Unknown SD Card Detected!"):
break;

printf ("\n");

prror = getBootSectorData(); //read boot sector and keep necessary data in global variables

printf ("getBootSectorData_error = %d",error);

Lf(error)

(
printf("\n");
printf ("FAT32 not found!"); //FAT32 incompatible drive
FAT32_active = 0;

while (1)
(
printf ("\n");

printf ("Press any key to start...");
printf ("\n");

pption = receiveByte();

printf ("\n");

printf ("> 0 : Erase Blocks");

printf ("\n");

printf ("> 1 : Write single Block");
printf ("\n");

printf("> 2 : Read single Block");

[fifndef FAT_TESTING_ONLY

printf ("\n");

printf ("> 3 : Write multiple Blocks");
printf ("\n");

printf ("> 4 : Read multiple Blocks");
ffendif

printf ("\n");

printf("> 5 : Get file list");

printf("\n");

printf("> 6 : Read File");

printf ("\n");

printf ("> 7 : Write File");

printf("\n");

printf ("> 8 : Delete File");

printf ("\n");

printf("> 9 : Read SD Memory Capacity (Total/Free)"):;

printf("\n");
printf("\n");
printf ("> Select Option (0-9): ");

2.10f12 2017.05.22 09:09:41

49

C:/Users/changliu/Desktop/lab3.X/meng_test.c

*WARNING: If option 0, 1 or 3 is selected, the card may not be detected by PC/Laptop again,
ps it disturbs the FAT format, and you may have to format it again with FAT32.

This options are given for learnig the raw data transfer to & from the SD Card*/

pption = receiveByte();

transmitByte (option);

if(option >=0x35 && option <=0x39) //options 5 to 9 disabled if FAT32 not found
{
if(!FAT32_active)
{
printf ("\n")

printf ("\n");
printf ("FAT32 options disabled!");
continue;

lif{(option >= 0x30) && (option <=0x34)) //get starting block address for options 0 to 4
i
printf ("\n");

printf("\n");

printf ("Enter the Block number (0000-9999):");
data = receiveByte(); transmitByte(data);
startBlock = (data & 0x0f) * 1000;

data = receiveByte(); transmitByte(data);
startBlock += (data & 0Ox0f) * 100;

data = receiveByte(); transmitByte(data);
startBlock += (data & 0x0f) * 10;

data = receiveByte(); transmitByte (data);
ptartBlock += (data & Ox0f);

printf("\n");

printf("start_block_addr = %d" , startBlock)
printf("\n");

fotalBlocks = 1;

#ifndef FAT TESTING_ONLY

Lf((option == 0x30) || (option == 0x33) || (option == 0x34)) //get total number of blocks for options 0
i
printf("\n");

printf ("\n");

printf("How many blocks? (000-999):");
data = receiveByte(); transmitByte(data);
totalBlocks = (data & Ox0f) * 100;

data = receiveByte(); transmitByte(data);
fotalBlocks += (data & O0x0f) * 10;

data = receiveByte(); transmitByte(data);
fotalBlocks += (data & 0x0f);
3.10f12 2017.05.22 09:09:41

50

C:/Users/changliu/Desktop/lab3.X/meng_test.c

printf ("\n");
i
ffendif

pwitch (option)
{
case '0': //error = SD_erase (block, totalBlocks);

error = SD_erase (startBlock, totalBlocks):
printf("\n");
if (error)
printf("Erase failed..
else

printf ("Erased!");
break;

case '1':
printf("\n");;
printf(" Enter text (End with ~)
i=0;
do
{

data = receiveByte();
transmitByte (data);
buffer[i++] = data;
if (data == 0x0d)
{
transmitByte (0x0a) ;
buffer[i++] = Ox0a;
}
if (i == 512) break;
Jwhile (data != '~');

error = SD_writeSingleBlock (startBlock);
printf("\n");
printf ("\n");
if (error)
printf ("Write failed..");
else
printf ("Write successful!");

break;

case '2': error = SD_readSingleBlock (startBlock); //SD_readSingleBlock (74100588);
printf("\n");
if (error)
printf ("Read failed.."):
else
{
for (i=0;i<512;i++)
{
if (buffer[i) == '~') break;
transmitByte (buffer(i]);
}
printf("\p");

4.10f 12 2017.05.22

51

09:09:41

C:/Users/changliu/Desktop/lab3.X/meng_test.c
printf("\n");
printf ("Read successful!

break;
/next two options will work only if following macro is cleared from SD_routines.h
#ifndef FAT TESTING_ONLY

case '3':
error = SD_writeMultipleBlock (startBlock, totalBlocks);
printf("\n");
if (error)
printf ("Write failed..");
else
printf ("Write successful!");
break;

case '4': error = SD_readMultipleBlock (startBlock, totalBlocks);
printf("\n");
if (error)
printf("Read failed..");
else
printf ("Read successful!");
break;
ffendif

case '5': printf("\n");

printf("\n");

findFiles (GET_LIST,0);

break;

case '6':
case '7':
case '8': printf("\n");
printf("\n");
printf("Enter file name: ");
for (i=0; i<13; i++)
[fileName[i] = 0x00; //clearing any previously stored file name
i=0;
while (1)
{
data = receiveByte();
if(data == 0x0d) break; //'ENTER' key pressed
Lf(data == 0x08)//'Back Space' key pressed
{
if(i != 0)
{
transmitByte (data) ;
transmitByte(' ');

itQurafdatal .

5.10f12 2017.05.22 09:09:41

52

C:/Users/changliu/Desktop/lab3.X/meng_test.c

]

}

continue;
}
[if (data <0x20 || data > Ox7e) continue; //check for valid English text character
transmitByte (data);

fileName[i++] = data;

if(i==13) {printf(" file name too long.."); break;}
}
if(i>12) break;

printf("\a") ;
if(option == '6")}

readFile(READ, fileName);
if({option == '7')
writeFile (fileName) ;
if (option == '8')

deleteFile (fileName) ;

break;

case '9': memoryStatistics();
data = receiveByte();

break;

default: printf ("\n");
printf ("\n");
printf (" Invalid option!");
printf ("\n");

printf("\n");
}
return 0;
}

6.10f 12 2017.05.22 09:09:41

53

