ECE 4999: INDEPENDENT STUDY ON
PORTING AMBER CPU TO DE1-SOC AND
ALTERA BUS

Mohammad Saifee Dohadwala

Under the supervision of: Professor Bruce R. Land
Fall 2016

Table of Contents

QLI Lo Lo T U =TSR 2
Lo INEFOTUCTION ...ttt b et b e bbb s e e b et et et ese e st ebe e b e saenne e 3
R o NSO PSSO P PSP 3
3. AIMIDET COT ...ttt bbbt h bbbttt bttt 5
3.1 Amber 23 Pipeling ArChItECIUIEocveeieieceeeeeteee ettt st e 6
3.2 REOISIEIS. ..ttt bbbt b e bt a et r e b nnenren 6
3.3 CBCNE bbbt b e et et n ettt ea bt 7
4. AMDET FPGA SYSTEIM ..ottt ettt sttt b e sttt b e bt b et e sa e e e e et e e ebenseenenten 7
4.1 ClOCKS GNU RESEL.....c.eiiuiieiiieiirtctete ettt ettt b s 8
4.2 BOOT IMEIMOIY ..ottt eeee ettt etee sttt e st e st ee e st essbeeesateeebeeessseesnseeesssesanseasnsseesssessnseeesnsensnns 10
4.3 MAIN IMEIMOIY ..ottt ettt ettt ae bbbttt et ae bt ebe e b e s b b et et eneenesbesbennenaens 12
4.4 Unified Instruction and Data CaACNE...........ccerieieiiiririnerierieete e 13
R B =1 o 11 o TR 17
4.6 U A R T ettt ettt b e h e s bt e s a et s a bt et e et e e b e e ebe e sa et e a bt et e e be e eheesae e sareeabe e beenes 17
O A (I o] o1 o PO USROS 17
5. SYSIEM AUUIESSESeevieiiriietestestet ettt sttt sttt ettt b e bt bbbt e et e st e bt sbese et et et et e st eneesenbenaennen 18
5.1 AJUIESS VAP .ttt sttt b bt b ettt n e ae b renre st 18
6. SOFIWAIE SUPPOIT ..ottt ettt ettt et e et et e s te et e be e s e sbesbeeasesteesaenbesbeessebesssestessaensessesseans 18
6.1 INStAlliNG the COMPIIET ...t sttt et e s beeaesteenaens 18
6.4 Standalone APPLICALIONcc.ociiiee ettt et sae et reeanas 22
8.5 LINMUX ettt et b e 22
R YT 10 G 1) 7- T [PPSR 24
8. ACKNOWIBAGEIMENT ..ottt ettt et e e te et e s te et et e e e e tesbeeabesteebaenbesbeessesbesssestesseensessesseans 25
9. CONCIUSION ..ttt b e bbbt e bt st e sttt b ettt e bt ene s enes 25
AL RETEIBNCES. ...ttt bbb 25

Table of Figures

Figure 1: DE1-S0C development DOAIG..........coeeivieieiiiiieres e e 4
Figure 2: Block diagram 0f DEL-SOC..........ccceviiieiieiieeeitieeete sttt sttt s aesteera e besreetesreennas 4
Figure 3: Amber 23 Core PIPEliNg SLAGES.eveiveeciereeteiteeeete st et e st ste et et estesreebesteesaebesreesaesseeanas 5
Figure 4: Amber 23 C0ore COUE SIIUCTUIEovuirtirieieieieteie ettt sttt sb e e sne e 7
FIgure 5: AMDEI FPGA SYSIEIM.....cciiiiieieitieiesie sttt ettt ettt e st st este et et e e aeestesbeensesteessebesseensesrenneas 8
Figure 6: ALTPLL INPUL CIOCK SEIHINGScvervirteieieieieiiei sttt s 9
Figure 7: ALTPLL CONErOl SIGNAIS......couiiiiiiiieeeetee ettt sttt 9
Figure 8: ALTPLL OULPUL CIOCK SEILINGSeveeeeeiieiecterte ettt st sre s 10
Figure 9: Boot Memory cONfigUration WIZAIdcc.coveeeiririenienienieieieeeeeie st 11
Figure 10: Boot Memory port CONFIGUIALION.ccviiieierieceee ettt et e aa b s reens 11
Figure 11: Boot Memory INItHaliZatiONcooiuiiiiiiiiicececeee et s 12
Figure 12: Main Memory INIHAIIZATIONooveriiieieiiieee et 12
Figure 13: Data Array Size CONFIGUIAtIONcooviiuieiiiiieceecie ettt st e s 13
Figure 14: Data Array port CONTIGUIATIONcc.eoverieieieieietiri sttt sae e see s 14
Figure 15: Data Array INIAlIZATION.cooiiiriieiec et 15
Figure 16: Tag Array Size CONFIQUIALION........ccveiiiiieiicieeeete ettt s reera et sreenes 15
Figure 17: Tag Array port CONFIQUIALION.........cvuirtirieieieieieet ettt sttt nes 16
Figure 18: Tag Array INItIaliZAtIONc.ecoviiiiieicecece et bbb e s teeaa b e sanenes 16
Figure 19: Pin Mapping of Amber FPGA System on DE2-115D0ardcccoeevevvevieeceneeeecie e 17
Figure 20: Steps to compile DOOtIOAdET SEITaAl..........ccveiiiririiriereeeee s 19
Figure 21: DOOIOAUEr OPLIONScveeveieciecece ettt sttt a et s re et e b e e e e sbesbeentesteenaenbesrnenes 20
Figure 22: .mem file to .Mif file CONVEISIONcocviieieiiiicee e e 21
Figure 23: Hello-world appliCation COUEocviuiiieiicieceee ettt st st re s 22
Figure 24: Steps to compile hello-world appliCationccocvecieiieeeiicecec e e 22
Figure 25: Linux boot print on AmDer FPGA SYSIEM.........ccviieeerieeeeieseetese ettt s 24
LI Lo L I e] (T =) TS 6
Table 2: Status Bits - Part 0F the PC.......oueoiiecieeeeeeesee ettt re e ne s 6
Table 3: SySteM AGAIESS IMIAPocvieieieciieecte ettt ettt te st e e be et e s teebesbe e s e stesbeenbesteessebesnsensesseennas 18
Table 4: Files required fOr DOOLING LINUXc.oeveriiririeiieieie ettt enee s ennas 22

1. Introduction

The Amber processor core is an ARM-compatible 32-bit RISC processor. The Amber core is fully compatible with
the ARM® v2a instruction set architecture (ISA) and is therefore supported by the GNU toolset. The Amber project
is a complete embedded system implemented on the Xilinx Spartan-6 SP605 FPGA development board. The project
is hosted on opencores.org. The project provides a complete hardware and software development system based around
the Amber processor core. Several applications, with C source code, are provided as examples of what the system can
be used for. The embedded system includes the Amber core and several peripherals, including a UART, a timer and
an Ethernet MAC.

There are two versions of the core provided in the Amber project. The Amber 23 has a 3-stage pipeline, a unified
instruction & data cache, a 32-bit Wishbone interface, and is capable of 0.75 DMIPS per MHz. The Amber 25 has a
5-stage pipeline, separate data and instruction caches, a 128-bit Wishbone interface, and is capable of 1.05 DMIPS
per Mhz. Both cores implement the same ISA and are 100% software compatible. The cores do not contain a memory
management unit (MMU) so they can only run the non-virtual memory variant of Linux. The cores have been verified
by booting a 2.4 Linux kernel.

The cores were developed in Verilog 2001, and are optimized for FPGA synthesis. For example, there is no reset
logic, all registers are reset as part of FPGA initialization. The complete system has been tested extensively on the
Xilinx SP605 Spartan-6 FPGA board. The full Amber system with the A23 core uses 32% of the Spartan-6
XC6SLX45T-3 FPGA Look Up Tables (LUTS), with the core itself occupying less than 20% of the device using the
default configuration, and running at 40MHz. It has also been synthesized to a Virtex-6 device at 80MHz, but not yet
tested on a real Virtex-6 device. The maximum frequency is limited by the execution stage of the pipline which
includes a 32-bit barrel shifter, 32-bit ALU and address incrementing logic.

The goal of this project is to port the design to Cyclone V FPGA, and interface it to Avalon bus to establish
communication with ARM Hard Processing System. The idea is to be able to have a microcontroller on the FPGA
with real-time response characteristics, but running the same tool chain as the ARM processors which are running
Linux. However, given the struggles with development tools, the project goals were scaled down to getting a more
general familiarity with the Amber system, GNU tools and Quartus development tools. This project made an attempt
to port Amber system on DE2-115 board Cyclone IV FPGA board. This was a reasonable milestone since it would
allow development towards the original goal with continued effort.

2. FPGA

The FPGA board used for the course of this project was DE1-SoC, which is equipped with Altera Cyclone® V SE
5CSEMASF31C6N device. The FPGA is part of the Cyclone V SoC family from the Altera family. The photograph
for DE1-SoC board is shown in Figure 1. The DE1-SoC board has many features that allow users to implement a wide
range of designed circuits, from simple circuits to various multimedia projects.

The FPGA consists of a Hard Processor System (HPS) composed of Dual-core ARM Cortex-A9 MPCore processor.
The HPS made this FPGA an ideal choice for this project to allow students to explore the ever-growing field of
embedded systems. Each core runs at 800MHz and has 1GB of DDR3 SDRAM connected to HPS on board. The
FPGA fabric is equipped with 85K programmable logic elements, 4450 Kbits of embedded memory, 6 fractional
PLL’s, and 2 hard memory controllers. All the connections on the DE1-SoC board is shown in Figure 2. The figure
shows which hardware components are connected to the ARM HPS and the FPGA fabric.

Cyclone V FPGA consists of large logic elements and hence is a good candidate to port a processor system. Also, the
processor in HPS belong to ARM family (ARM® v7a), therefore running the same toolchain as that of the Amber
core (ARM® v23).

Mic Line Line
In In

H Frea
. Systen

JTAG Header

Audio Codec
Video Decoder

64MB SDRAM
ADC
ADC Header

7-Segment Display
LED x10

Switch x10

VGA Out
VGA

Out Video-In 24-bit DAC

Cyuosp;ce% v

T

JE

Button x4

— 2x20 GPIO x2

Altera 28-nm
— Cyclone VFPGA
with ARM Cortex-A9

IR-out
IR-in

2 -
Normal Ty;;e-B

7-Segment Di spl y X6

- @
[——>
- x6
SDRAMx1664 MB |amEssass
s B
40 pin GPIO
e
40 pin GPIO @
' x2 Cycl%ne; =~V
M_ Video DAC Ry oC e~
VGA (8 bit)
Video x12_, 5CSEMAS5F31C6N
V;deo-ln‘—#’
Audio T
x72
W —— (coneo
0| FPGA
tnelln HPS 12C 12C
: y‘—xz d le——
From HPS _Tswitch Control x3
Ll ——>
1
IRTX hamieemy D
Clock(Clock Generator) —xd
FPGA HPS
x4 [x10 |x42 X6 lﬂ x1 x1 Tm
»
o pla plo pla
[e] [e] e o] é n:s, v
Push Button x4 r Button
RERXZLRTE, dddndgannn
" LED x10
BERERERREN x
Slide Switch x10 ;
(A) !J

m
Micro
SO Card

GbE __ lﬂj | Ethernet

use |_[uss|_|
H ﬁi o=
USB Host
Normal Type-A| =
DDR3
SDRAM x32 1 GB

USB Mini-B

2x7 LTC Header

Figure 2: Block diagram of DE1-SoC

3. Amber Core

There are two versions of the core provided in the Amber project. The project focuses on implementation of Amber
23 system. Amber 23 has following features:

e 3-stage pipeline.

e 32-bit Wishbone system bus.

e Unified instruction and data cache, with write through and a read-miss replacement policy. The cache can
have 2, 3, 4 or 8 ways and each way is 4kB.

e Multiply and multiply-accumulate operations with 32-bit inputs and 32-bit output in 34 clock cycles using
the Booth algorithm. This is a small and slow multiplier implementation.

e Little endian only, i.e. Byte 0 is stored in bits 7:0 and byte 3 in bits 31:24.

The following diagram shows the data flow through the 3-stage core.

Stage 1 - Fetch

Read Instruction / Data

Stage 2 - Decode

Read Data

4 Ji\J{-\/V—W\\L
5)
¢ Instruction Decode /

L)
-
h

———

ajeis epodag

Control Signals

Stage 3 - Execute

P e —7_1'\

X

4 L]

(- =

> Instruction))

| S -
_ Execute < g

-)
s

Figure 3: Amber 23 Core pipeline stages

3.1 Amber 23 Pipeline Architecture

The Amber 2 core has a 3-stage pipeline architecture. The best way to think of the pipeline structure is of a circle.
There is no start-point or end-point. The output from each stage is registered and fed into the next stage. The three
stages are;

Fetch — The cache tag and data RAMs receive an unregistered version of the address output by the execution
stage. The registered version of the address is compared to the tag RAM outputs one cycle later to decide if
the cache hits or misses. If the cache misses, then the pipeline is stalled while the instruction is fetched from
either boot memory or main memory via the Wishbone bus. The cache always does 4-word reads so a
complete cache line gets filled. In the case of a cache hit, the output from the cache data RAM goes to the
decode stage. This can either be an instruction or data word.

Decode - The instruction is received from the fetch stage and registered. One cycle later it is decoded and the
datapath/control signals prepared for the next cycle. This stage contains a state machine that handles multi-
cycle instructions and interrupts.

Execute — The control signals from the decode stage are registered and passed into the execute stage, along
with any read data from the fetch stage. The operands are read from the register bank, shifted, combined in
the ALU and the result written back. The next address for the fetch stage is generated.

3.2 Registers

Table 1: Register Sets

User Supervisor Interrupt Fast Interrupt
(USR) (SvC) (IRQ) (FIRQ)
0
r
r2
r3
4
5
6
13]

7

8 r8_firq

r9 r9_firq

r10 r10_firg

rM1(fp) r11_firq

r2 (ip) r12_firq

M3 (sp) - r13_svc r3_irq r13_firg
r4(lp) r14_svec r14_irq r14_firq

r5(pc)

Table 2: Status Bits - part of the PC

Field Position Type Description
flags [31:28] User Writable { Negative, Zero, Carry, oVerflow }
| 27 Privileged IRQ mask, disables IRQs when high
F 26 Privileged FIRQ Mask, disables FIRQs when high
mode [1:0] Privileged Processor mode
3 - Supervisor
2 - Interrupt
1 - Fast Interrupt
0 - User

3.3 Cache

The Amber cache size is optimized to use FPGA Block RAMs. Each way has 256 lines of 16 bytes. 256 lines x 16
bytes x 2 ways = 8k bytes. The address tag is 20 bits. Each cache can be configured with either 2, 3, 4 or 8 ways.

More details about Amber core can be obtained from the Amber 2 core specification. Figure 4 shows how the amber

core is divided into modules located in different files.

a23 _core.v

: a23 fetch.v '
: Address & Write Data
! A 4 A
! a23_cache.v
! Unified a23_wishbone.v
I instruction Wishbone
; and data Interface
. cache

v Read Data y

<

Wishbone I/F

IRQ

a23_decode.v
Instruction decode

FIRQ

Bl

l Control & Read Data

; execute.v :
' w3823 register_bank.v |
i 27 Registers
: a23_multiply.v a23_barrel_shift.v
32-bit Multiply & 32-bit Barrel Shifter
! Accumulate ¢
: P a23_alu.v
! -« 32-bit ALU

Figure 4: Amber 23 Core code Structure

4. Amber FPGA system

The FPGA system included with the Amber project is a complete embedded processor system which included all
peripherals needed to run Linux, including UART, timers and an Ethernet (MII) port. The following diagram shows

the entire system.

system.v
irq i firg
az2x_core.v interrupt_controller.v
Amber 2x Primary interrupt
processor core controller
Mii eth_top.v f dul
Ethemet B10/100 Ethernet imer_moalie.y
VE MAC Configurable timers
=
w
g
boot_mem.v S
8KB embedded Ig fest_module.v
SRAM - contains g Test and debug
boot loader code) SIS
<
uart.y
UART UART 0
IF Statically configurable
simple UART
uart.v main_mem.v
UART UART 1 8kB embedded
WF Statically configurable SRAM — contains
simple UART application code
clocks_resets.v
Instantiates PLL and
reset generation
logic

Figure 5: Amber FPGA system

Since the original project was developed for Xilinx FPGA, there were some mandatory changes required to port it to
Altera FPGA. Below sub-sections walk through the necessary changes made to port it to DE1-SoC board.

4.1 Clocks and Reset

The Amber FPGA system has a clock and reset module to take care of clocking and reset of the entire system. The
module takes in a 50MHz single ended clock from board, passes it to Altera PLL module that converts it to 33.33MHz
clock. Pushbutton key is used to reset the entire system. To make the system more robust, the clock and reset module
takes in the reset from board, passes it to DDR controller as well as PLL. Then using PLL lock and calibration done
signal, system ready signal is generated. There is also a synchronous reset generation module to synchronize external
asynchronous reset.

Figure 6, 7 and 8 illustrates how the ALTPLL is configured to generate the required clocking.

< MegaWizard Plug-In Manager [page 3 of 1/

Parameter

Settings

Bandwidth/SS Clock switchover

Currently selected device family: |cycone 1vE v

sys_pll
ys_pl [¥] Match project/default

Able to implement the requested PLL

o
locked |

General

Which device speed grade will you be using?

Use military temperature range devices only

What is the frequency of the inclk0 input? 50.000 @
Setup PLL in LVDS mode Datarate: [NotAvailable ~ Mbps
PLL Type
Which PLL type will you be using?
Fast PLL @ Select the PLL type automatically
Operation Mode

How will the PLL outputs be generated?
@ Use the feedback path inside the PLL
@ Innormal mode
() In source-synchronous compensation Mode
) In zero delay buffer mode
Connect the fbmimic port (bidirectional)
) with no compensation
Create an 'fbin" input for an external feedback (External Feedback Mode)

Which output clock will be compensated for?

[[cancel][<Back |[mext> | [mnish |

Figure 6: ALTPLL input clock settings

X MegaWizard Plug-In [page 4 of 14
m_ roumentah’on |

arameter
ettings

General/Modes

Able to implement the requested PLL

Optional Inputs
Create an 'pllena’ input to selectively

[¥] Create an ‘areset’ input to asynchronously reset the PLL
[Create an ‘pfdena’ input to selectively enable the phase/frequency detector

Lock Output
[¥] Create 'locked' output
[] Enable self-reset on loss lock

Advanced Parameters
Using these parameters is recommended for advanced users only

[Create output file(s) using the ‘Advanced' PLL parameters
- Configurations with output clock(s) that use cascade counters are not supported

[[cancel |[<Back |[exi> | [Ensh |

Figure 7: ALTPLL control signals

c0 - Core/External Output Clock
Able to implement the requested PLL

[¥] Use this dock
Clock Tap Settings

Requested Settings Actual Settings

@ Enter output clock frequency: 33.33000000 MHz ~¥ 33.333333
() Enter output dock parameters:

Clock multiplication factor

Clock division factor

Clock phase shift

Clock duty cyde (%)

Description Valu ~

Note: The displayed internal settings of the Primary dock VGO frequency (MHz) L
PLL is recommended for use by advanced Modulus for M counter 12 _

users only L o

Per Clock Feasibility Indicators
c0

[Cancel H < Back “ Next > |I Finish |

Figure 8: ALTPLL output clock settings

4.2 BOOT Memory

The Amber FPGA system has a separate memory (different from main memory) that contains the boot code. Boot
code is the sequence of code that is executed once the processor is out of reset. Next section will cover the
configurations done by bootloader code.

Boot memory is 32 bits wide, and has a depth of 4096 making it 16kBytes. This memory is inferred using 16 M9K
blocks. Figure 9, 10 and 11 shows how to configure the RAM 1-Port to generate 16kBytes boot memory. Also, note
that the boot memory needs to initialized with boot code. Altera FPGA supports only “.mif” or ““.hex” file for memory
initialization. Next section discusses how to convert “.elf” to “.mif” file. While configuring RAM 1-Port, a memory
initialization file can be provided as shown in Figure 11.

10

Megetizard Pug o Merage Ipeoe 3 i o A =2
'Zj RAM: 1-PORT

Parameter

Settings

Read During Write Option > Mem Init

s

Currently selected device family: |

[¥] Match project/default

ddress[11..0 How wide should the 'q’ output bus be? ~ bits
gzeenag 3] €

How many 32-bit words of memory?

v words

Note: You could enter arbitrary values for width and depth
What should the memory block type be?

@ Auto MLAB

M144K @ LCs

Set the maximum block depth to Auto v words

What docking method would you like to use?
@ Single cock

() Dual dock: use separate ‘input’ and ‘output’ clocks

Resource Usage

16 MSK

| Cancel ” < Back || Next > || Einish |

Figure 9: Boot Memory configuration wizard

[1]Parameter
Settings)
>' Regs/Clken/Byte Enable/Adrs ;Z:-

Read During Write Option Mem Init

Which ports should be registered?

wren
| address[11..0]
eenal3..0

lock

__ Create one dock enable signal for each dock signal.
[7] Note: All registered ports are controlled by the
enable signal(s)
[¥] Create byte enable for port A
What is the width of a byte for byte enables? | 8

- Create an 'adr’ asynchronous dear for X
O the registered ports _More Options...

[] Create a 'rden’ read enable signal

16 MOK

| Cancel || < Back || Next > Il Einish I

Figure 10: Boot Memory port configuration

11

> Read During Write Option _>[Mem Init_| >

mem 16kB Do you want to specify the initial content of the memory?
EEE ©) No, leave itblank
wren
|address[11..0] Initi 0 XX..X on
eena[3..0] o
@ Yes, use this file for the memory content data
ek (You can use a Hexadecmal (Intel-format) File [:hex] or a Memory
Initialization File [.mif])
File name: boot-Joader-serial.mif
i
PORT_A
= Allow In-System Memory Content Editor to capture and
! Update content independently of the system dlock
The 'Instance ID' of this RAM is: NONE
16 M9K [cancel][<Back | [ext>][Enish |

Figure 11: Boot Memory Initialization
4.3 Main Memory

In original Amber FPGA system, external DDR3 memory is used as main memory. That system consists of Wishbone
to DDR controller bridge, Xilinx DDR3 controller and external DDR3 on board. For simplicity, the new Amber FPGA
system uses on-chip M9K RAM as main memory. Due to limitation on number of MOK RAMSs, main memory of

16kByte is appropriate.

The steps to configure RAM 1-Port for main memory is same as that of Boot Memory. Only difference is that instead
of giving bootloader initialization file, either the main memory can be kept uninitialized or application initialization
file can be used. This is illustrated in Figure 12.

Parameter

Settings ,
Widths/Blk Type/Clks ; Regs/Clen/Byte Enable/Adrs > Read During Write Option

main_mem_16kB Do you want to spedify the initial content of the memory?

jatol31.0] s @ No, leave it blank
wiren d
ddress[11..0 B Initialize memory content data to XX..X on
yteena[3.0] ! power-up in simulation

@ Yes, use this file for the memory content data

ock | {You can use a Hexadecimal (Intel-format) Fie [.hex] or a Memory
=085 Y Initialization File [.mif])

7] Allow In-System Memory Content Editor to capture and
" Update content independently of the system clock

The 'Instance ID' of this RAM is:

[[cancel][<gack | [exi>][nish |

Figure 12: Main Memory Initialization

12

4.4 Unified Instruction and Data Cache

Amber 2 core has a unified instruction and data cache. The cache has 2 ways and each way has 256 lines of 16 bytes.
256 lines x 16 bytes x 2 ways = 8k bytes. The address tag is 20 bits.

To implement cache, two important data structures are required — tag array and data array. Since tag is 20 bits plus 1
bit for valid, tag array is 256x21. Since cache line size is 16 bytes or 128 bits, data array is 256x128.

Both Tag array and data array is implemented by using RAM 1-Port Megawizard IP. Since write and read to data
array could be byte-wise instead of word-wise, hence while configuring the IP byte enable port needs to be selected.

x MegaWizard Plug-In Manager [f

ra RAM: 1-PORT

Parameter

Settings

s Read During Write Option /“' Mem Init /)'

Currently selected device family: | cydone IV E
data_mem_256x128 Sl

data[127..0] 0 0L} [¥] Match project/default

WTren

address(7..0] =2 How wide should the 'q' output bus be? 128 v bits
yteena[15..0]

How many 128-bit words of memory? 256 v words

lock Note: You could enter arbitrary values for width and depth
: What should the memory block type be?

© Auto MLAB) MK
M144K @ LCs Opti
Set the maximum block depth to Auto v words

What docking method would you like to use?

@ Single clock
() Dual dock: use separate ‘input’ and 'output’ clocks

Resource Usage

4 MoK [cancel || <Back || mext> || Einish |

Figure 13: Data Array size configuration

13

Figure 13, 14 and 15 shows IP configuration to enable data array of the cache. Note that it requires 4 M9K memory
blocks.

Parameter

Settings

\. “ > 4 \ - \\)
/‘ Read During Write Option i Mem Init v

Which ports should be registered?

data_mem_256x128
data[127..0] B
wren
| address[7..0]
vteena[15..0]

a[127..01

'data’ and 'wren' input ports

'address’ input port

[¥] 'q' output port

lock

__ Create one dock enable signal for each clock signal.

[] Note: All registered ports are controlled by the More Options...

enable signal(s)

[V] Create byte enable for port A

What is the width of a byte for byte enables? | 8

Create an 'adr’ asynchronous dear for
8 the registered ports More. Oplions....

[7] create a 'rden’ read enable signal

o
Z
7

Resource Usage

4 M9K | cancel || <gack |[nNext> || Finish |

Figure 14: Data Array port configuration

Since a valid entry in cache is determined by valid bit in tag array, it is not necessary to initialize data array with all
0s.

Figure 16, 17 and 18 shows RAM 1-Port IP configuration to enable tag array for unified cache. As shown in Figure
16, tag array of size 256x21 is chosen. Also since tag array is always accessed word-wise hence byte enable is not
required for tag array. Note that tag array requires only 1 M9K memory block. Since it is necessary that cache is clean
before use, tag array is initialized to 0. This is shown in Figure 18. “tag_init.hex” file contains memory initialization
file (all 0s) for tag array.

14

Parameter

Settings . |
Widths/Blk Type/Clks Regs/Clken/Byte Enable/Adrs Read During Write Option
data mem 256x128 Do you want to specify the initial content of the memory?
data[127..0 g[127..0L

@ No, leave it blank
wren

ddress[7..0
eena[15..0] [

lock

Initialize memory content data to XX..X on
]
' power-up in simulation

() Yes, use this file for the memory content data

(You can use a Hexadecimal (Intel-format) File [.hex] or a Memory
Initialization File [.mif])

7 Allow In-System Memory Content Editor to capture and
“— update content independently of the system clock

The 'Instance ID' of this RAM is: NONE

Resource Usage
4 MSK

| Cancel || < Back || Next > || Finish |

Figure 15: Data Array Initialization

Parameter

Settings

Read During Write Option Mem Init

Currently selected device family: |cyclo

yclone IV E
> [¥] Match project/default
wren =
address(7..0 2 How wide should the 'q’ output bus be?

How many 21-bit words of memory?

21 v bits

256 v words
lock

Note: You could enter arbitrary values for width and depth

What should the memory block type be?
© Auto MLAB @) MK
M144K @) LCs Options...

Set the maximum block depth to Auto v words
What docking method would you like to use?
@ Single cdock

() Dual dock: use separate ‘input’ and 'output’ docks

Resource Usage
1 MSK

| Cancel || < Back || Next > ll Finish I

Figure 16: Tag Array size configuration

15

MegaWizard Plug-In Manager

Parameter

Settings

A

Read During Write Option Mem Init

Which ports should be registered?

‘data’ and 'wren' input ports

‘address' input port

[¥] 'q' output port

Create one dock enable signal for each dock signal.
[Note: Al registered ports are controlled by the More Options...
enable signal(s)
nable for port A

tis the width of a byte for byte enables? | 8

| Create an 'adlr' asynchronous dear for
0 the registered ports More Options...

[T Create a 'rden' read enable signal

Resource Usage
1 MSK

I Cancel || < Back || Next > || Finish I

Figure 17: Tag Array port configuration

MegaWizard Plug-In Mai
£} RAM: 1-PORT

Parameter
Settings

_~ Read During Write Option

Do you want to specify the initial content of the memory?

) No, leave it blank

Initialize mer ontent data to XX..X on
power-up in simulation

@ Yes, use this file for the memory content data

(You can use a Hexadecimal (Intel-format) File [.hex] or a Memory
Initialization File [.mif])

File name: tag_init.hex
The initial content file should conform to which port's
ons?
&l Allow In-System Memory Content Editor to capture and
* update content independently of the system dock

The 'Instance ID' of this RAM is: NONE

Resource Usage
1 MSK

| Cancel |I < Back || Next > || Einish l

Figure 18: Tag Array Initialization

4.5 Debug

The Amber FPGA system has multiple blocks. Hence, it becomes difficult to debug in case of failure. To ease system
level debug, few extra ports are added.

1. System Ready: This port is connected to LED on board. The LED shall glow indicating that the system is out
of reset, DDR (if present) calibration is done and Ethernet PHY (if present) configuration is done.

// Halt core until system is ready
assign system_rdy = phy_init_done && !sys_rst;

2. PLL Lock: This port is also connected to LED on board. The LED shall glow indicating that ALTPLL is
locked and that 33.33 MHz system clock is ready.

4.6 UART

The Amber FPGA system also has UART for external communication. By default, the baud rate of UART is set to
9600 Hz. Since DE1-SoC board doesn’t have a UART port on fabric side, so | decided to use DE2-115 Cyclone 1V
board for porting Amber system on FPGA.

4.7 Pin Mapping

Figure 19 shows pin mapping of Amber FPGA system for DE2-115 board.

Fie Edt View Processng Tools Window Hep 5 Sesrdvalteraioon ®
— [Report 18 x
2 e Top View - Wire Bond
= Cyclone IV E - EPACE115F29C8
© 0 s A e
£ A © e@@@é@ 7@@1‘;\@ O@e A\ @@é]~
0 *BY9 OOVOOOVOS a:
= . fo3610) OOV
PRy ° 8 O |
iz 2
&0}
i [Grous | Report
3 |[Tasks 18 x G OO0
i » Run Analysis and Elaboration - ¢ QAVA S 88 { -
& 4 [Early Pin Planning L 3 = &
3 1 Early Pin Planning... 1 "OOOOA OOVACOBE)
a # Run1/0 Assignment Analysis | ==l 8 O@O A @ O AQROE M
[~ Export Pin Assignments... \V iV 7
= 2
4 4 [Change View 2 e
74 # Show 1/0 Banks uO@O@@ @O0, @@O QOAOR @@iu
B2 B Show VREF Groups =DOVE 9O POV G
‘X@O@O @@@@@OOO@@@OO DOOOOOON
Show Edges o AVOOV (01010} DORVOOE O@X
4 [show DQ/DQS pins s OOA O@O E,\I:\ @@@ @@@ (020) -
| [- .
x| Named: = ~ (&) Edit:][« Fiter:{pins: al v
g [Node Name Direction Location 1/0 Bank VREF Group Fitter Location 1/0 Standard Reserved CurrentStrength Slew Rate Differential Pair
i brd_ck Input PIN_Y2 2 82_NO PIN_Y2 3.3V LVCMOS 2mA (default)
i, brd_rst Input PIN_M23 6 B65_N2 PIN_M23 3.3V LVCMOS 2mA (defauit)
Input PIN_G12 8 88_N1 PIN_G12 3.3V LVCMOS 2mA (defauit)
Output PIN_E24 7 B7_N1 PIN_E24 2.5V (default) 8mA (default) 2 (default)
Output PIN_E25 7 87.N1 PIN_E25 2.5V (default) 8mA (defoult) 2 (default)
Output PIN_E22 7 87.N0 PIN E22 2.5V (default) 8mA (defoult) 2 (default)
Ergrs] Output PIN_E21 7 87.N0 PIN_E21 2.5V (default) smA (defoult) 2 (defoult)
24 o_pll_locked Output PIN_G19 7 B7_N2 PIN_G19 2.5V (default) 8mA (default) 2 (default)
24 o_system_rdy Output PIN_F19 7 87_N0 PIN_F19 2.5V (default) SmA (default) 2 (default)
24 o_uartd_rx Output PIN_G3 8 88_N2 PIN_G3 3.3V LVCMOS mA (default) 2 (default)
<<new node>>
ol
[
=
0% 00:00:00)

Figure 19: Pin Mapping of Amber FPGA System on DE2-115 board

17

5. System Addresses
5.1 Address Map

The comprehensive system level address map is shown in Table 3. Note that Amber system on Xilinx FPGA has an
external DDR memory and hence has 128Mbytes of address space for main memory. The Amber system ported on
Altera FPGA in this project doesn’t have external main memory but on-chip MO9K RAM. Hence, the address space
for main memory is reduced to 16kBytes.

Table 3: System Address Map

Peripherals Address Space Size

0x0000_0000 — 0x0000_3FFF 16kBytes
0x2800_0000 — 0x2800_3FFF 16kBytes
0x0000_0000 — 0XO7FF_FFFF 128MBytes
0x1600_0000 — 0x1600_OFFF 4kBytes
0x1700_0000 — 0x1700_OFFF 4kBytes
0x1300_0000 — 0x1300_OFFF 4kBytes
0x1400_0000 — 0x01400_00FF 256Bytes

6. Software Support

Till this point, all discussion Amber FPGA system was made from hardware point of view. This section discusses all
the software tools and support necessary to run bootloader, standalone application or Linux.

6.1 Installing the compiler

Tests need to be compiled before running on board. To do this, it is necessary to install a GNU cross-compiler. The
easiest way to install the GNU tool chain is to download a readymade package. Code Sourcery provides a free one.
To download the Code Sourcery package, go to this page http://www.codesourcery.com/sgpp/lite/arm

Select the GNU/Linux version and then the 1A32 GNU/Linux Installer. Once the package is installed, add the
following to <. bashrc> file, where the PATH is set to where you install the Code Sourcery GNU package.

Change /opt/Sourcery to where the package is installed on your system
PATH=/<your code sourcery install path>/bin:${PATH}

AMBER_CROSSTOOL is the name added to the start of each GNU tool in

the Code Sourcery bin directory. This variable is used in various makefiles to set
the correct tool to compile code for the Amber core

export AMBER_CROSSTOOL=arm-none-linux-gnueabi

6.2 GNU Tools usage

It's important to remember to use the correct switches with the GNU tools to restrict the ISA to the set of instructions
supported by the Amber 2 core. The switches are already set in the makefiles included with the Amber 2 core. Here
are the switches to use with gcc (arm-none-linux-gnueabi-gcc).

18

http://www.codesourcery.com/sgpp/lite/arm

-march=armv2a -mno-thumb-interwork

These switches specify the correct version of the ISA, and tell the compiler not to create bx instructions. Here is the
switch to use with the GNU linker, arm-nonelinux-gnueabi-Id;

--fix-v4bx

This switch converts any bx instructions (which are not supported) to 'mov pc, Ir'. Here is an example usage from the
boot-loader make process;

arm-none-linux-gnueabi-gcc -c -0Os -march=armv2a -mno-thumb-interwork -ffreestanding
I../include -c -0 boot-loader.o boot-loader.c

arm-none-linux-gnueabi-gcc -I../include -c -0 start.o start.S
arm-none-linux-gnueabi-gcc -c -Os -march=armv2a -mno-thumb-interwork -ffreestanding -
I../include -Cc -0 crcl6.o0 crcl6.c

arm-none-linux-gnueabi-gcc -c -0Os -march=armv2a -mno-thumb-interwork -ffreestanding -
I../include -c -0 xmodem.o xmodem.c

arm-none-linux-gnueabi-gcc -c -0s -march=armv2a -mno-thumb-interwork -ffreestanding
I../include -c -0 elfsplitter.o elfsplitter.c

arm-none-linux-gnueabi-1ld -Bstatic -Map boot-loader.map --strip-debug --fix-v4dbx -o
bootloader.elf -T sections.lds boot-loader.o start.o crcl6.o xmodem.o elfsplitter.o
../mini-libc/printf.o ../mini-1libc/libc_asm.o ../mini-libc/memcpy.o
arm-none-linux-gnueabi-objcopy -R .comment -R .note boot-loader.elf
../tools/amber-elfsplitter boot-loader.elf > boot-loader.mem
../tools/amber-memparams.sh boot-loader.mem boot-loader_memparams.v
arm-none-linux-gnueabi-objdump -C -S -EL boot-loader.elf > boot-loader.dis

6.3 Bootloader

The boot loader is used to download longer applications onto the FPGA development board via the UART port and
using Putty on a host Windows PC. As shown in Figure 21, bootloader gives many options.

- Load an executable file

- Load binary file to a particular address

- Execute an already loaded application by jumping to that address
- Read/Write to main memory

- View core status

crcle.c elfsplitter.c Makefile sections.lds xmodem.c
-serial.c crcle.h fpga-version.h README.txt start.S
[md874@en-ec-ecelinux-01 boot-loader-seriall$ make
ake -s -C ../mini-libc MIN_SIZE=1
-linux-gnueabi-gcc -c -0s -march=armv2a -mno-thumb-interwork -ffreestanding -I../include -c -0 boot-loader-serial.o boot-1
rial.c
-linux-gnueabi-gcc -I../include -C start.o start.S
-linux-gnueabi-gcc -c -marc ri -mno-thumb-interwork -ffreestanding -I../include -c -0 crcl6.o crclb.c
-none-linux-gnueabi-gcc -c -mar rmv2a -mno-thumb-interwork -ffreestanding -I../include -c -0 xmodem.o xmodem.c
-none-linux-gnueabi-gcc - -mno-thumb-interwork -ffreestanding -I../include -c -o elfsplitter.o elfsplitter.c
-none-linux-gnueabi-1d -Bstatic -Map boot-loader-serial.map --strip-debug --fix-v4bx -o boot-loader-serial.elf -T sections.lds b
-loader-serial.o start.o crcl6.o xmodem.o elfsplitter.o ../mini-libc/printf.o ../mini-libc/libc_asm.o ../mini-libc/memcpy.o
-none-linux-gnueabi-objcopy -R .comment -R .note boot-loader-serial.elf
../tools/amber-elfsplitter boot-loader-serial.elf > boot-loader-serial.mem
/tools/amber-memparams32.sh boot-loader-serial.mem boot-loader-serial_memparams32.v
../tools/amber-memparams128.sh boot-loader-serial.mem boot-loader-serial_memparams128.v
arm-none-linux-gnueabi-objdump -C -S -EL boot-loader-serial.elf > boot-loader-serial.dis

boot-loader-serial.map boot-loader-serial.o elfsplitter.c README. txt xmodem. ¢
-serial.c boot-loader-serial.mem crclb.c elfsplitter.o sections.lds xmodem.o
-serial.dis boot-loader-serial_memparamsl28.v cr .h fpga-version.h start.o
er-serial.elf boot-loader-serial_memparams32.v crcl6.o Makefile start.S
[md874@en-ec-ecelinux-01 boot-loader-seriall$

Figure 20: Steps to compile bootloader serial

19

Figure 20 shows the steps to compile bootloader. The Makefile has necessary steps to generate executable file as well
as .mem file for Xilinx FPGA.

void print_help (void)
{
printf("Commands\n");
printf("1");
print_spaces(29);
printf(": Load elf file\n");
printf("b <address>");
print_spaces(19);
printf(": Load binary file to <address>\n");
printf("d <start address> <num bytes> : Dump mem\n");
printf("h");
print_spaces(29);
printf(": Print help message\n");
printf("j <address>");
print_spaces(19);
printf(": Execute loaded elf, jumping to <address>\n");
printf("p <address>");
print_spaces(19);
printf(": Print ascii mem until first 0\n");
printf("r <address>");
print_spaces(19);
printf(": Read mem\n");
printf("s");
print_spaces(29);
printf(": Core status\n");
printf("w <address> <value>");
print_spaces(11);
printf(": Write mem\n");

Figure 21: bootloader options

Since Altera FPGA support memory initialization in .mif or .hex file format. Since both memory initialization format
are readable, with slight difference in address and data format. Figure 22 shows equivalent .mif file for the .mem file
generated for bootloader code.

Memory Initialization file is an ASCII text file (with the extension .mif) that specifies the initial content of a memory
block (CAM, RAM, or ROM), that is, the initial values for each address. This file is used during project compilation
and/or simulation. A Memory Initialization File serves as an input file for memory initialization in the Compiler and
Simulator. A Hexadecimal (Intel-Format) File (.hex) to provide memory initialization data.

A Memory Initialization File contains the initial values for each address in the memory. A separate file is required for
each memory block. In a Memory Initialization File, the memory depth and width values must be specified. In
addition, data radixes can be specified as binary (BIN), hexadecimal (HEX), octal (OCT), signed decimal (DEC), or

20

unsigned decimal (UNS) to display and interpret addresses and data values. Data values must match the specified data

radix.

Tab "\t" and Space " " characters are used as separators, and multiple lines of comments can be inserted with the
percent "%" character, or a single comment with double dash "--" characters. Address : data pairs represent data
contained inside certain memory addresses and must place them between the CONTENT BEGIN and END keywords,
as shown in the following examples.

Q

multiple-line comment %

% multiple-line comment

[

-- single-line comment

DEPTH = 8; -- The size of memory in words
WIDTH = 8; -— The size of data in bits
ADDRESS RADIX = HEX; -—- The radix for address values
DATA RADIX = BIN; -— The radix for data values
CONTENT -- start of (address : data pairs)
BEGIN
00 00000000; -- memory address : data
01 00000001;
02 00000010;
03 00000011;
04 00000100;
05 00000101;
06 00000110;
07 00000111;
END

Ehcol loader-serial mif (~/bland) (1 of 2) - GVIMDIFF@en-ec-ecelinux-01.coecis.comell.edu o+ [=] X

file Edit Tools Syntax Buffers Window Help
=N~ = =) ® X B0 P%¢ BRO %NES BE

Section name .start Section name .start

Type SHT_PROGBITS, Size Ox180, Start address Ox00000000, File offset 0x80Q Type SHT_PROGBITS, Size 0x180, Start address Ox00000000, File offset 0x8000, bo

Section name .text Section name ,text v
Type SHT_PROGBITS, Size Ox19ac, Start address 0x00000180, File offset 0x8)| Type SHT_PROGBITS, Size Ox19ac, Start address 0x00000180, File offset 0x8180, b

Section name .rodata Section name .rodata

Type SHT_PROGBITS, Size 0x200, Start address 0x00001b2c, File offset Ox9b2) Type SHT_PROGBITS, Size 0x200, Start address 0x00001b2c, File offset OxSb2e, bo

Section name .rodata.strl.4 Section name .rodata.strl.4

Type SHT_PROGBITS, Size 0x298, Start address Ox00001d2c, File offset 0x9d2) Type SHT_PROGBITS, Size 0x298, Start address 0x00001d2c, File offset Ox9d2c, bo

Section name .bss Section name .bss

Type SHT_NOBITS, Size OxSO, Start address 0x00001fc4, File offset Ox9fcd,
.bss Dump Zeros

Section name .ARM.attributes

Type 777, Size Ox10, Start address 0x00000000, File offset OxSfcd, boffse
Section name .shstrtab

Type SHT_STRTAB, Size OxS4, Start address 0x00000000, File offset 0x9fd4,
Section name .symtab

Type SHT_SYMTAB, Size 0x710, Start address 0x00000000, File offset Oxalbs,|
Section name .strtab

Type SHT_STRTAB, Size 0x2d0, Start address 0x00000000, File offset Oxagcs,|

Type SHT_NOBITS, Size 0xS0, Start address 0x00001fc4, File offset 0x9fcd, boffs
.bss Dump Zeros

Section name .ARM.attributes

Type 777, Size Ox10, Start address Ox00000000, File offset 0x9fc4, boffset O
Section name .shstrtab

Type SHT_STRTAB, Size 0xS54, Start address 0x00000000, File offset 0x9fda, boffs
Section name .symtab

Type SHT_SYMTAB, Size 0x710, Start address 0x00000000, File offset Oxalbs, boff
Section name .strtab

Type SHT _STRTAB, Size 0x2d0, Start address 0x00000000, File offset Oxa8c8, boff

boot-loader-serial.mif

Figure 22: .mem file to .mif file conversion

21

6.4 Standalone Application

Once bootloader is run, then the processor would do the initialization and jump to main memory depending on the
option selected. Then any standalone application can be run. Figure 23 shows a hello-world application.

/* Mote that the stdio.h referred to here is the one 1in
mini-libec. This applications compiles in mini-libc
so 1t can run stand-alone.

o

#include "stdio.h"

main ()

{
printf ("Hello, world!iyn");
/* Flush out UART FIFD #*/
printf (" S

_testpass();

Figure 23: Hello-world application code

Figure 24 below shows the steps to compile standalone application. Note that .elf and .mem file are generated and
must be converted in .hex or .mif file.

[md874@en-ec-ecelinux-01 hello-world]$ 1s

hello-world.c Makefile sections.lds start.S

[md874@en-ec-ecelinux-01 hello-world]$ make

make -s -C ../mini-libc MIN_SIZE=1

arm-none-linux-gnueabi-gcc -c -03 -march=armv2a -mno-thumb-interwork -ffreestanding -I../include -c -o hello-world.o hello-world.c

arm-none-linux-gnueabi-gcc -I../include -c -0 start.o start.S

arm-none-linux-gnueabi-ld -Bstatic -Map hello-world.map --strip-debug --fix-v4bx -elf2flt=-v -elf2flt=-k -o hello-world.flt -T sect

ions.lds hello-world.o start.o ../mini-libc/printf.o ../mini-libc/libc_asm.o ../mini-libc/memcpy.o

arm-none-linux-gnueabi-ld: warning: cannot find entry symbol 1f2flt=-k; defaulting to 00008000

arm-none-linux-gnueabi-ld -Bstatic -Map hello-world.map --strip-debug --fix-v4bx -o hello-world.elf -T sections.lds hello-world.o s
../mini-libc/printf.o ../mini-libc/libc_asm.o ../mini-libc/memcpy.o

arm-none-linux-gnueabi-objcopy -R .comment -R .note hello-world.elf

../tools/amber-elfsplitter hello-world.elf > hello-world.mem

../tools/amber-memparams32.sh hello-world.mem hello-world_memparams32.v

../tools/amber-memparams128.sh hello-world.mem hello-world_memparams128.v

arm-none-linux-gnueabi-objdump -C -S -EL hello-world.elf > hello-world.dis

[md874@en-ec-ecelinux-01 hello-world]$ 1s

hello-world.c hello-world.elf hello-world.map hello-world _memparams128.v hello-world.o sections.lds start.S

hello-world.dis hello-world.flt hello-world.mem hello-world_memparams32.v Makefile start.o

[md874@en-ec-ecelinux-01 hello-world]s [l

Figure 24: Steps to compile hello-world application

6.5 Linux

List of necessary files required for booting Linux on Amber FPGA system is shown in Table 4 below: -

Table 4: Files required for booting Linux

A disk image needed to build the Amber Linux kernel from sources
Amber Linux patch file

ARM Linux patch file

Kernel executable file

Kernel disassembly file, bzip2 compressed

Kernel <.mem file> for Verilog simulations, bzip2 compressed

22

There are different steps to be followed to run Amber Linux kernel on a development board. These are listed below:

1. Download the bitfile (.sof) to configure the FPGA using JTAG programmer
2. Connect Putty to the serial port on the FPGA to get bootloader prints
3. Download the disk image

> b 800000
4. Then select one of the provided disk image files to transfer, e.g.
$AMBER_BASE/sw/vmlinux/initrd-200k-hello-world
5. Download the kernel image

> 1

6. Then select the file SAMBER_BASE/sw/vmlinux/vmlinux to transfer
7. Execute the kernel

> j 80000

Below are the steps to build Amber Linux kernel from source:
1. Set the location on the system where the Amber project is located
> export AMBER_BASE=/proj/opencores-svn/trunk
2. Pick adirectory on the system where to build Linux
> export LINUX_WORK_DIR=/proj/amber2-linux
3. Create the Linux build directory
> test -e ${LINUX_WORK_DIR} || mkdir ${LINUX_WORK_DIR}
> cd ${LINUX_WORK_DIR}
4. Download the kernel source
> wget http://www.kernel.org/pub/linux/kernel/v2.4/1linux-2.4.27.tar.gz
> tar zxf linux-2.4.27.tar.gz
> In -s linux-2.4.27 linux
> cd ${LINUX_WORK_DIR}/linux
5. Apply 2 patch files
> cp ${AMBER_BASE}/sw/vmlinux/patch-2.4.27-vrsl.bz2 .
> cp ${AMBER_BASE}/sw/vmlinux/patch-2.4.27-amber2.bz2 .

> bzip2 -d patch-2.4.27-vrsl.bz2

23

> bzip2 -d patch-2.4.27-amber2.bz2
> patch -pl < patch-2.4.27-vrsl
> patch -pl < patch-2.4.27-amber2
6. Build the kernel
> make dep
> make vmlinux
> ¢cp vmlinux vmlinux_unstripped
> ${AMBER_CROSSTOOL}-objcopy -R .comment -R .note vmlinux

> ${AMBER_CROSSTOOL}-objcopy --change-addresses -0x02000000 vmlinux

Amber Boot Loader v20110117211518
j 0x2080000

H k4

Linux version 2.4.27-vrsl (conor@server) (gcc version 4.5.1 (Sourcery G++ Lite 2010.09-
50)) #354 Tue Feb 1 17:56:00 GMT 2011

CPU: Amber 2 revision 0

Machine: Amber-FPGA-System

On node 0 totalpages: 1024

zone (0) : 1024 pages.

zone (1) : 0 pages.

zone (2) : 0 pages.

Kernel command line: console=ttyAM0O mem=32M root=/dev/ram

Calibrating delay loop... 19.91 BogcoMIPS

Memory: 32MB = 32MB total

Memory: 31136KB available (493K code, 195K data, 32K init)

Dentry cache hash table entries: 4096 (order: 0, 32768 bytes)

Inode cache hash table entries: 4096 (order: 0, 32768 bytes)

Mount cache hash table entries: 4096 (order: 0, 32768 bytes)

Buffer cache hash table entries: 8192 (order: 0, 32768 bytes)

Page-cache hash table entries: 8192 (order: 0, 32768 bytes)

POSIX conformance testing by UNIFIX

Linux NET4.0 for Linux 2.4

Based upon Swansea University Computer Society NET3.039

Starting kswapd

ttyAMO at MMIO 0x16000000 (irg = 1) is a WSBN

pty: 256 Unix98 ptys configured

RAMDISK driver initialized: 16 RAM disks of 208K size 1024 blocksize

NetWinder Floating Point Emulator V0.97 (double precision)

RAMDISK: ext2 filesystem found at block 8388608

RAMDISK: Loading 200 blocks [1 disk] into ram disk... done.

Freeing initrd memory: 200K

S o e e SR R R R H S FR SR SR R 9k 9k 9k 3R R R R R 9 R 4R 9

Figure 25: Linux boot print on Amber FPGA system

7. Major Obstacles

Getting all the required resources took us a while since | could not find an organized set of documentation describing
what was necessary. | eventually found that there was a lot of documentation and references available from different
sources. However, they were a bit all over the place and finding them was not straightforward. Also, | had trouble
getting the Amber source code from opencores.

It took some time for me to get familiar with Altera tools since I didn’t have any prior experience on them. Once |
started exploring the system I figured few major obstacles. | used an incremental approach and decided to first port
the Amber system on FPGA and then later focus on interfacing it with ARM HPS. First obstacle was that there are no
UART port on DE1-SoC fabric. There were different ways to resolve the issue — make custom GPIO to RS-232

24

daughter board or use separate FPGA board. Since the idea was to implement the system first on FPGA fabric, so |
chose to use DE2-115 Cyclone IV FPGA board. Once the porting is successful then the next step would be to build
Wishbone Master to Avalon slave and then use ARM HPS UART controller for serial communication.

Another major obstacle was that the software tools provided to compile bootloader and standalone applications
generates “.elf” and “.mem?” files. No tool support for “.mif” file generation. Since MO9K RAM in Altera FPGA only
supports “.mif” or “.hex” file format for memory initialization, I had to convert from “.mem” file format to “.mif” file
format.

One of the biggest obstacle was that Amber FPGA system had a bridge to support interface with Xilinx DDR controller
from the Wishbone Bus interface. However, since Altera has different controller the same bridge wouldn’t work. So
one task was to write a bridge to interface Altera SDRAM/DDR controller with Wishbone and test it independently
before integrating it into the main system. For simplicity, | used on-chip MO9K RAM as main memory but with small
size of 16kBytes as compared to 128Mbytes in original system.

After integrating the entire system, when | download the bitfile on FPGA, PLL lock LED and system ready LED glow.
This indicates that system is completely out of reset and PLL is completely locked. But I didn’t see any print on UART
port. I built a small project to test the UART port independently. On looking at the bootloader startup code, I realized
the cause of system hang. In startup code, after configuring caches and interrupts, the processor would then set the
stack pointerto 0x0200 0000 location. Since this points to location in main memory which doesn’t exist, the system
would raise exception and get stuck. One probable solution is to change the startup and bootloader code not to use any
address space beyond 0x0000 3FFF. Another solution is to integrate SDRAM/DDR controller into the system to
get the exact address space from 0x0000 0000 to OxO07FF_FFFF for main memory.

8. Acknowledgement

I would like to thank Professor Bruce Land for giving me the opportunity to be involved with this project, as well as
for his guidance and inspiration.

9. Conclusion

I have made progress in both sections of the independent study — the hardware implementation of the Amber System
and the software programming section. | have created an Amber FPGA system for Altera that also contains memory
initialization file for bootloader code. | have familiarized myself with the Quartus tools and the software tools for
cross-compiling application for Amber. I am currently stuck with an obstacle, which | believe | would be able to solve
soon and accelerate progress. | hope to continue this next semester

A. References

=

http://opencores.org/project,amber

http://www.terasic.com.tw/cqgi-
bin/page/archive.pl?Language=English&CategoryNo=205&N0=836&PartNo=4
ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE2-115/DE2 115 User Manual.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/ ARM-Options.html#ARM-Options
http://sourceware.org/binutils/docs-2.21/Id/ARM.htmI#ARM
http://quartushelp.altera.com/15.0/mergedProjects/reference/glossary/def mif.htm
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/HPS peripherials/index.html
https://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
https://people.ece.cornell.edu/land/courses/ece5760/DE1 _SOC/External Bus _to Avalon_ Bridge.pdf
10 http://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/index.html

N

©ooNO O W

25

http://opencores.org/project,amber
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=4
ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE2-115/DE2_115_User_Manual.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/ARM-Options.html#ARM-Options
http://sourceware.org/binutils/docs-2.21/ld/ARM.html#ARM
http://quartushelp.altera.com/15.0/mergedProjects/reference/glossary/def_mif.htm
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/HPS_peripherials/index.html
https://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/External_Bus_to_Avalon_Bridge.pdf
http://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/index.html

