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EXECUTIVE SUMMARY 

  

Our project is a novel teaching tool designed to help students learn about cardiac 

neurophysiology. This paper highlights the iterative design decisions and model choices that we 

made on our way to our end product. We begin with the needs-based criterion that prompted 

our design as well as the materials/methods that we used to create the project. We then provide 

a brief literature review, with a background into how action potentials work and how they differ 

from cardiac action potentials. Additionally, we give an overview of how neurons are modeled as 

per Hodgkin Huxley, how cardiac neurons are modeled as per Dennis Noble, and how human 

ventricle cells are modeled as per Priebe-Beuckelmann.  

 

This literature review leads directly to the Matlab implementations of these three models as well 

as the design choices for our final reduced Priebe-Beuckelmann model. The implementation of 

each of these three models in C on a PIC32 microcontroller are detailed, with more emphasis 

on the design decisions for our final model implementation. Particular attention is given to how 

we implemented complex differential equations on a time-sensitive system and how the 

implementation of these three models differed from each other. All of the equations and state 

machine logic for each of the models are provided through the text and appendices.  

 

The user interface is detailed according to the three Protothreads threads within our code: 

protothread_tft, protothread_update, protothread_button. Each section and design decision is 

aimed at ensuring our user has an experience that is educational, user-friendly, and 

computationally accurate. Explanations include both block diagrams and real-life images for the 

reader’s convenience. The protothread_tft section highlights the navigation of the first four 

screens while protothread_update focuses on the final TFT oscilloscope screen. Each screen 

was created to be as intuitive as possible with considerable time spent beta-testing with random 

strangers to ensure robustness. The protothread_button thread contains our debouncing state 

machine. 

 

Finally, integration is briefly highlighted through an overview of our code structure as well as 

pictures of our schematic and PCB design. The appendices primarily provide the equations 

within each of our models. However, a “lab handout” is provided in Appendix 4 as an example of 

how students can interface with our product and learn about cardiac arrhythmia, cardiac arrest, 

and cardiac neurophysiology. We hope that this paper alongside our code and final PCB will 

allow this product to be used as a teaching tool for cross-listed courses within the 

ECE/Neurobiology curriculum. 

 

 

ABSTRACT 

  

Our project is a novel teaching tool designed to help students learn about cardiac 

neurophysiology. More specifically, we have created a microcontroller-based “cardiac cell” that 

can be used in the lab sections of ECE/BME/BIONB 4910. The “cardiac cell” is based on a 

reduced Priebe-Beuckelmann model and uses differential equations to describe Potassium, 



Sodium, and Calcium ionic currents. Our end product is designed such that students are able to 

manipulate the ion concentrations/conductance across the cell membrane, choose which ion 

currents they would like to view, and then watch the voltage/current traces vs. time both on-

board as well as through an oscilloscope. Examples of how students can interface with our 

product and learn about cardiac arrhythmia, cardiac arrest, and cardiac neurophysiology are 

highlighted. From a teacher’s perspective, this project will be useful for any ECE/Neurobiology 

cross-listed courses and can also be used as a teaching tool for when Cornell’s Neurobiology 

Department travels internationally. 

 

 

INTRODUCTION 

 

For students in biology classes, one of the most valuable experiences is hands-on work with 

biologic systems. In neurophysiology classes such as ECE 4910, students dissect, stimulate, 

and record from invertebrates such as crayfish or snails in order to understand the ionic basis of 

action potentials (Wyttenbach, et al, 2011). While this experience is valuable in teaching 

students the process of neural recordings, it is also time-consuming and expensive. Students 

are often unable to gather reliable data without guidance from experienced instructors. 

Additionally, hands-on exploration of cardiac neurophysiology requires the use of vertebrate 

animals, an option which is currently not available for students in the class. 

 

Within the aforementioned scope, we defined several needs for our product: educational, user-

friendly, and computationally accurate. Firstly, our product needed to be designed to showcase 

and highlight educational information. As such, all of our model and user-interface choices were 

based upon ensuring that students could learn the most about cardiac neurophysiology. Three 

ion current traces (Sodium, Potassium, and Calcium) can be displayed on the on-board TFT 

alongside the voltage trace. The traces can be paused at any time and cursors used to record 

differences in voltage, current, and time. Additionally, the total current or membrane voltage can 

output to an off-board oscilloscope for further analysis through Labchart or other analysis 

software. A sample lab handout containing the information students could learn about with our 

product can be seen in Appendix 4 and 5.  

 

Secondly, our product needed to be user-friendly. There are six variables that the user can 

change within the model: concentrations and conductance for the Sodium, Potassium, and 

Calcium ion channels respectively. Each screen for the on-board input is intuitive with four-

arrow scrolling, an enter button for selection, and a slider for changing values. The addition of 

both on board and off board data output allows the user to view and analyze the data in 

whichever manner most convenient for them. This is especially critical for international cases 

where access to an oscilloscope may not be as convenient as within the ECE 4910 class 

setting. 

 

Thirdly, our product needed to be computationally accurate to human neurophysiology. The 

data provided by our product will be analyzed computationally by students in order to learn 

about cardiac neurophysiology. As such, our differential equation model needs to accurately 



match true physiology while still being implementable on a time-sensitive microcontroller 

platform.  

 

A picture of the labeled final product can be seen in Figure 1 below 

 

 
Figure 1: Labeled Printed Circuit Board 

 

DESIGN STEPS & MATERIALS 
 

Our design process had three facets: creation of the cardiac cell model, creation of the user 

interface, and integration of the total product. The cardiac cell model was initially implemented in 

Matlab and required significant testing to realize the most accurate and stable system. Once 

finalized, the cardiac cell model was then implemented in C on a PIC-32 microcontroller through 

the MPLAB IDE. Testing of this C implementation was accomplished through the external 

oscilloscope to check for stability and accuracy. The user interface was immediately 

implemented in C on a PIC-32 microcontroller using the MPLAB IDE. Publicly available libraries 

for threading and TFT display were integrated into the user interface from the beginning 

(Mahbub, 2014 & Dunkels, 2006). Finally, integration of the total product involved considerable 

timing analysis and debugging to ensure proper functionality of the user interface and cardiac 

cell model together. An initial prototype used for debugging as well as a completed printed 

circuit board (PCB) were created as the final steps towards integration. 

 

The final product PCB requires several simple components and takes approximately 30 minutes 

to solder. A list of these materials can be seen in Table 1 below. 

 

 



Component Number 

Microcontroller (PIC32MX250F128B) 1 

Adafruit TFT LCD Screen 1 

100 KΩ Sliding Potentiometer 1 

100 nF Surface-mount Ceramic Capacitor 3 

10 uF Surface-mount Ceramic Capacitor 1 

1 uF Surface-mount Ceramic Capacitor 2 

10 KΩ Surface-mount Resistor 2 

Single-pole Double-throw Switch 1 

Push Button 6 

1 Amp Rectifying Diode (1N4007) 1 

12-bit Digital-Analog Converter (MCP4822) 1 

3.3 V LDO Voltage Regulator (MCP1702) 1 

BNC Connector 1 

Power Jack Connector 1 

28 Pin DIP Header 1 

8 Pin DIP Header 1 

 

Table 1: List of materials on final PCB 

 

 

BACKGROUND 
 

Action Potentials 

Action potentials are the cellular impulses that control messaging in the nervous system. These 

action potentials are shaped by a series of steps involving the opening and closing of ion 

channels.  



 

Figure 2: Ionic basis for action potentials (Chudler) 

In a typical action potential, when a neuron is stimulated, sodium channels begin to open. Given 

the concentration gradient, sodium ions begin to rush into the cell and increase its voltage. This 

process is called depolarization. If the cell is depolarized to a threshold level, many voltage 

gated sodium channels open, leading to a sharp spike in the cell’s voltage. Once a peak voltage 

is reached, the sodium channels close, and the open potassium channels take over. Given the 

potassium concentration gradient, open potassium channels lead to positive potassium ions 

leaving the cell and lowering the cell’s voltage (repolarizing/hyperpolarizing).  Since these 

channels are slow to close, the voltage eventually dips below the resting potential. Finally, when 

the potassium channels close, the cell returns to resting potential. (Silverthorn, 2013) 

 

Cardiac Action Potentials 

 

Cardiac cells have similar behavior as neuron action potentials with two key differences. Firstly, 

cardiac cells do not require a stimulus to fire. Instead, cardiac cells spontaneously fire at a 

regular pace in order to control the heartbeat (Luo et al, 1991). Secondly, cardiac action 

potentials have a significantly different shape from neuron action potentials. The depolarizing 

spike is extremely fast with a plateau phase causing repolarization to take far longer than in a 

neuron action potential. This increased repolarization time allows the cell to maintain a constant 

heartbeat on a second timescale (Ramanathan et al, 2006)  



 

Figure 3: Ionic Basis of Cardiac Action Potential 

 

A cardiac action potential labeled with the five phases can be seen in Figure 3 above 

(Ikonnikov, 1993). The five phases showcased in Figure 3 above are briefly explained below: 

Phase 0: An action potential from a neighboring pacemaker cell causes the membrane potential 

to rise above -90 mV. Fast Sodium channels start to open, leaking Sodium ions into the cell and 

further increasing the membrane potential. As the membrane potential crosses the “threshold 

potential”, there are enough fast Sodium channels to generate a self-sustaining inward current. 

The membrane potential crosses above 0 mV briefly at which point fast Sodium channels start 

to close. 

Phase 1: Potassium channels briefly open, causing an outward flow of Potassium ions and 

returning the membrane potential closer to 0 mV 

Phase 2: Calcium channels activated during depolarization cause a constant inward current of 

Calcium ions. Potassium ions leak out the cell through delayed rectifier Potassium channels. 

The balance of these currents causes a plateau of the membrane potential. 

Phase 3/4: Calcium channels start to inactivate and Potassium ions flow through inward rectifier 

channels. This causes the membrane potential to come back to its resting potential and prepare 

for another depolarization. (Silverthorn, 2013) 

 

Modeling Neurons 

In 1952, Alan Hodgkin and Alfred Huxley published the model of neurons that is still used as a 

gold standard for computational models of the nervous system. This model theorizes a neuron 

as an RC Circuit: the cell membrane is modeled as a capacitor and ion channels are modeled 

as variable conductors. The conductance depend on cell voltage, cell current, ion 



concentrations, among other factors. To define these interactions, Hodgkin and Huxley derived 

a series of differential equations. In their model, Hodgkin and Huxley included three different 

conductance: Na, K, and Leak. For each of these conductance, Hodgkin and Huxley defined 

behavior through the use of gating variables. These gating variables are what change behavior 

based on the aforementioned cellular factors. (Hodgkin and Huxley, 1952) 

 

Figure 4: Hodgkin Huxley model of Neuron. Noble Model has the same conductance. 

 

The first mammalian model of cardiac cells was developed in 1962 by Denis Noble. This model 

was very similar to Hodgkin Huxley in the currents and conductance involved. However, the 

Denis Noble model introduces a slow acting potassium current. Since this second current acts 

slowly, the leakage current is able to take over and lead to regular, spontaneous, firing of the 

cells without an external stimulus (Noble, 1962). The general current equation is very similar, 

and can be found in (1). In addition, the base conductance and equilibrium potentials had 

changed. Finally, there were slight changes in the rate functions that controlled the action of the 

neurons.  

 

 

 

In this model, the initial conditions for conductance and equilibrium potential changed as well 

(Appendix 2, Table 1). Finally, all of the rate equations changed to represent cardiac neuron 

dynamics (Appendix 2, Table 2).  

 

In Figure 5, we show the graph of a Denis Noble based neuron. This neuron has a steep spike, 

and generally lower frequency. However, these neurons do not exhibit the typical calcium 

channel plateau as would be expected in human heart cells. Hence, the Noble model, while a 

strong basis for cardiac cells was incomplete in defining cell behavior.  



 

Figure 5: Spontaneous firing of Noble neurons (Fink & Noble, 2006) 

 

Modeling Human Ventricle Cell 

In 1998, Leo Priebe and Dirk Beuckelmann developed the first model of the human ventricle 

cell. While the Noble model was simpler in that it included only 4 currents and 3 gating 

variables, the Priebe-Beuckelmann model was far more complete. This model, instead includes 

a total of 10 total currents with 17 total variables. These include the L-type Calcium current, a 

transient outward potassium current, a fast and slow delayed rectifier potassium current, an 

inward rectifier potassium current, a transient outward potassium current, a fast sodium current, 

a sodium/calcium exchange current, a sodium/potassium pump, and background sodium and 

calcium currents. In total the voltage, 9 gate variables, intracellular sodium and potassium 

concentrations, and several variable calcium concentrations were involved in the calculation. 

The interactions between these currents bubbled into many equations to control the shape of 

the model (Priebe and Beuckelmann., 1988). 

  

Figure 6: All currents involved in Priebe Beuckelmann 

 



 

Figure 7: Priebe Beuckelmann Shape (Fenton & Cherry) 

 

MODEL DESIGN 

 

Matlab Implementation of Hodgkin Huxley 

 

The Hodgkin Huxley model neuron was first implemented in Matlab by the following sets of 

equations. First, each ion has a base conductance and equilibrium potential (Appendix 1, Table 

1). The base conductance is a constant coefficient for each term. The current is determined as 

the sum of products, the gating variables, and the difference between membrane voltage and 

equilibrium potential. Hodgkin and Huxley updated the gating variables in an exponential sense, 

dividing the changing of the variables into two rate functions, 𝛼 and𝛽. These are changed as in 

Appendix 1 Table 2, and Appendix 1, Equations 1-5. 

Finally, the change in voltage is solved for by dividing the current by membrane capacitance. 

The capacitor acts as an integrator to the current. To solve for these equations, integration 

methods such as Euler’s method can be used to find the voltages. For each of these potentials 

a sustained stimulus current is required to fire the neurons.  

We directly derived our MATLAB model from Professor Bruce Land’s Hodgkin Huxley neuron 

MATLAB model, which was used for the computational section of BIONB 2220. This program 

set initial conditions based on ion conductance for a Giant Squid Axon (Appendix 1, Table 1) 

and used Euler’s method to find membrane voltage at any given time for a Hodgkin Huxley 

Neuron.  

In this program, we first set all initial equilibrium potentials and base conductance. Then, we 

calculate the steady state gate variables based on the resting potential. This steady state value 

is the initial condition for the gating variables. Since Hodgkin Huxley neurons require 

stimulation, we also initialize the magnitude of stimulation. During the calculation, we first 

update the overall conductance based on the gating variables. We then calculate the change in 

gating variables based on their respective 𝛼 and 𝛽 values. The equations for these updates are 

described in Appendix 1. We then calculate the updated net current of the cell, and find the 

change in the voltage by dividing by the membrane capacitance. Finally, having calculated the 

change in the variables, we update the gating variables and voltages using Euler’s method. We 



iterate these steps for a set time. In figure 8, we show the results of modeled Hodgkin Huxley 

neurons at various stimulus magnitudes.  

 

Figure 8: Hodgkin Huxley Neurons at various current injections 

 

Denis Noble Matlab Modeling 

Our first pass at implementing a model of a cardiac cell was modeling the Denis Noble model in 

MATLAB. Having a working Hodgkin Huxley model was very useful because the Denis Noble 

model is simply a modification of Hodgkin Huxley. Both neuron models make the use of 

changing ion conductance with gating variables and rate variables. In our modeling of Denis 

Noble, we used Euler integration as we had previously with Hodgkin Huxley. However, 

individual equations were changed as in Appendix 2. The final total current calculation is (2). 

 

 

 

After changing currents, all other elements of this program changed. Importantly, there was no 

current injection. This is because cardiac cells as modeled by Denis Noble do not require 

external stimulation to fire. This model’s firing pattern is displayed in Figure 9.  



 

Figure 9: Noble Model action potentials from MATLAB 

In order to see the firing, the overall time of the program had to be increased. In addition, there 

was significant delay time between the beginning and the first potential, although firing occurs 

regularly after the first potential.  

 

Design Decisions for Priebe Beuckelmann Model 

 

While the Priebe Beuckelman Model is extremely accurate, the amount of calculation required is 

impractical to run on a microcontroller while still maintaining biologically accuracy to a human 

heartbeat. It is necessary to therefore find a model that exists between the Noble Model and the 

Priebe Beuckelmann models of cardiac cells. In order to do so, it is important to realize that 

several currents and concentrations are relatively constant throughout the process of the 

cardiac action potentials. For instance, it is appropriate to assume that intracellular 

concentrations of calcium ions do not change significantly throughout the course of an action 

potential and can remain constant. The sodium calcium exchange and the sodium potassium 

pump only change based on these concentrations, and can also be assumed to be constant. 

Therefore, several of the currents can be combined in order to limit the total number of currents 

available.  

Bernus et al took all of these factors into account and derived the Reduced Priebe Beuckelmann 

model. In this model, Bernus et al reduced the previous model from 10 currents and 17 

variables down to 5 currents and six total variables (Bernus et al, 2002). This was done so by 

leaving concentrations constant where possible, and eliminating several gating variables. The 

result of this simplification was the creation of a still biologically accurate model to Priebe 

Beuckelmann, but also a model that was easier to work with. Although most of the currents still 

exist in this model, they are essentially constant or exponential with voltage as seen in Figure 

10 below.  



 

Figure 10: All currents of reduced Priebe Beuckelmann model 

 

Figure 11: Comparison of Priebe Beuckelmann with Reduced Priebe Beuckelmann 

 

While the shapes of individual currents were affected by the reduced model, the net action 

potential remained essentially the same (Figure 11 above). Most importantly, because this was 

the case, we decided to implement this model as our cardiac cell model. The equations used to 

define this, and all models are contained in the appendices.  



In order to implement this model, we followed the logic used in the virtual heart simulation, 

implemented by Flavio Fenton and Elizabeth Cherry. All of the equations used in this model are 

described in Appendix 3. To implement this model in MATLAB, much of the initial design had to 

be remodeled. 

Firstly, several new currents have to be implemented, each with their own conductance and 

gating variables. The total of all currents is in (3): 

 

𝐼𝑡𝑜𝑡𝑎𝑙  =  𝐼𝑁𝑎  + 𝐼𝐶𝑎  +  𝐼𝐾  +  𝐼𝐾,𝑠𝑙𝑜𝑤 +  𝐼𝐾,𝑡𝑜 + 𝐼𝑁𝑎𝐾 +  𝐼𝑁𝑎𝐶𝑎  + 𝐼𝑁𝑎,𝑏 +  𝐼𝐶𝑎,𝑏(3) 

 

These include fast sodium, L-type calcium, potassium, transient outward potassium, 

sodium/potassium exchange, and sodium calcium exchange.  

In addition, gating variables were not updated using the simple Euler’s method as was done 

previously. Instead, if 𝑥∞is the steady state value of gating variable 𝑥, and 𝜏𝑥is the time constant 

of gating variable 𝑥, then 𝑥(𝑡)  =  𝑥∞(𝑡 − 1)  +  (𝑥(𝑡 − 1) − 𝑥∞(𝑡 − 1)) ∗ 𝑒𝑥𝑝(−𝑑𝑡/𝜏𝑥). These are 

voltage dependent in that, in general, each gating variable steady state and time constant 

values are dependent on rate functions 𝛼𝑥  and 𝛽𝑥. This is described in (4) and (5)  

 

𝑥∞ =  𝛼𝑥/(𝛼𝑥 +  𝛽𝑥) (4) 

𝜏𝑥 =  1/(𝛼𝑥 +  𝛽𝑥) (5) 

 

(4) and (5) were primarily used for steady state calculation for all gating variables. However, 

there are some exceptions to these methods of calculations that are included in Appendix 3, 

Section 4. In addition, some gating variables involved in conductance calculation only use their 

steady state value. These are also included in the appendix.  

As a whole, these resulted in better approximations of a Cardiac cells, with some artifacts due to 

integration. This model was much more effective in detecting direct behavior changes due to 

changes in all ion concentrations and conductance. Figure 12 shows an example waveform 

from the MATLAB model of reduced Priebe Beuckelmann.  



 

Figure 12: Reduced Priebe Beuckelmann Action Potentials 

 

MICROCONTROLLER IMPLEMENTATION 

 

Hardware Setup 

In order to model neurons in hardware, we used the PIC32 microcontroller. In order to obtain 

the analog signal for our oscilloscope output, we connected the MCP4822 12-bit SPI DAC to the 

PIC32. At every sample, the current membrane voltage or chosen current is sent to the DAC via 

SPI. We use SPI channel 1 to write to the DAC. The output is taken at DAC output A. We 

initially noticed that there was significant SPI noise. As a result, we created a low pass filter with 

a 1 k𝛺 resistor and a .1 𝜇F capacitor. This output is probed by the oscilloscope for the final 

output. The wiring diagram for the DAC can be seen in FIgure 13 below 

 

Figure 13: DAC wiring diagram 



Hodgkin Huxley & Noble Models 

The software on the PIC microcontroller strongly parallels the MATLAB models of the neurons. 

We first initialized variables representing the base conductance of the ion channels, the reverse 

potentials for each ion, the current injection value, the gating values, and the membrane 

voltage. In order to perform Euler integration, we maintained the values of the previous gating 

values and membrane voltage. All of these values were first initialized based on Hodgkin 

Huxley. After we finished creating a Hodgkin Huxley neuron, we modified all values for the 

Denis Noble Model. All of the variables were initially of the _Accum data type, which is the 

PIC32’s default 15.16 fixed point type. We used this data type in order to minimize computation 

and reduce clock cycles. Using fixed point allowed us to remain as true to neurons as possible.  

The bulk of the software can be broken down into three parts: the main method, the integration 

method, and helper functions to calculate the rate values 𝛼 and 𝛽. In the main method, we 

initialized protothreads, SPI, and set the initial values of the membrane voltage and gating 

constants. We then called the integration thread.  

The integration method uses the variable delayTime as the time delta for integration. In this 

method, all of the ion conductance are changed based on the appropriate equations from 

MATLAB modeling. The derivatives of the gating values and membrane voltages are then 

updated based on the updated conductance and the rate functions for each of the gating values. 

After all of these values are updated, the current membrane voltage and gating values are 

changed using Euler’s method. Once the values are updated, the current membrane voltage is 

written to the DAC. A 12 bit DAC can only handle values between 0 and 2047. As a result, to 

get the best display, the membrane voltage is dc offset in order to make all values positive, and 

scaled to allow for better visualization on the display. The scaling was set in a trial and error 

fashion, with the offset decided from observation from the MATLAB results. Sending information 

to the DAC was accomplished through SPI. This loop repeats after every delay of the thread.  

All of the rates 𝛼 and 𝛽 were calculated using helper functions. These functions directly mapped 

to the respective functions in the MATLAB model. The bulk of the calculations is done in these 

functions. In each of these functions, exponentiation is required. This was possible after 

importing “math.h” and using the exp() function. Since we decided to use the math.h header file, 

exponentiation required to be in floating point. As a result, in all of the helper functions, all 

exponentiation were done after casting the fixed point values to floating point. In addition, since 

division takes less clock cycles in floating point than in fixed point, all divisions were done in 

floating point as well. In the end, each of these functions output a fixed point value representing 

an 𝛼 or 𝛽 rate value. There were six total functions, one each for 𝛼𝑛 , 𝛽𝑛, 𝛼ℎ, 𝛽ℎ, 𝛼𝑛, and 𝛽𝑛 as 

shown in the Appendix. 

As mentioned before, we first made a working Hodgkin Huxley model. The oscilloscope output 

can be seen in Figure 14 and directly corresponds to the Hodgkin Huxley spiking in Figure 8.  

 



 

Figure 14: Hardware Model of Hodgkin Huxley Neurons 

 

Once Hodgkin Huxley was working and tested, we implemented the Denis Noble model 

neurons. The output of these neurons is in Figure 15 and corresponds to the MATLAB model in 

Figure 9. In this model, we still do not have the tall spike or plateau as we would ideally want. 

However, it is clear that there is still a strong spike for depolarization. 



  

Figure 15: Hardware Model of Denis Noble Neuron  

 

Reduced Priebe Beuckelmann Model 

In this section, we primarily describe the implementation of the differential equations into C. 

Base conductance and concentrations are initially set from the user interface input. Constants 

as summarized in (Appendix 3, Section 1, Table 1) are initialized and calculated before running 

the simulation. After initializing constants, initial steady state values of gate variables are 

calculated. Afterwards, differential equations are solved based on Figure 16 below. 

In the differential equation loop, we first store previous values of gating variables and voltage. 

These previous voltages are used in all calculations for updates. We then update all 

conductance using the equations in Appendix 3 for gNa,
 gK, gK1, gCa, and gto. We then calculate 

the rate functions 𝛼 and 𝛽for all gating variables.Then, at the previous voltage, we calculate all 

steady state values for the gating variables. Next, we calculate the time constants for all gating 

variables whose steady state values are not explicitly used to calculate conductance (vrate, X, m, 

f, and to). Using the updated conductance, we calculate the current from each ion and ion 

exchange (sodium, fast potassium, slow potassium, transient outward, calcium, sodium-

potassium exchange, and sodium-calcium exchange). After calculating currents, we sum the 

currents to calculate total current across the membrane, and integrate the current across the 

membrane to find the voltage. The updated membrane voltage is calculated as 𝑉𝑚 =  𝑉𝑝𝑟𝑒𝑣  −

 𝐼𝑡𝑜𝑡 ∗ 𝑑𝑡/𝐶𝑚, where 𝑉𝑚is the membrane voltage, 𝐼𝑡𝑜𝑡is the total current, 𝑑𝑡 is the change in time 

per iteration, and 𝐶𝑚is the membrane capacitance. At this point, the calculated membrane 

voltage and selected current is sent to the user interface in order to display on the TFT screen. 

In addition, since the minimum voltage is known to be -90 mV, the membrane voltage is offset 

by 90 and multiplied by 16 in order to send to the SPI DAC. This is necessary as the DAC does 

not handle negative values, and will show minute differences at the scale of the membrane 

voltages. As a result, the membrane voltage must be scaled by 16 to appear accurate.  



 

 

Figure 16: Flow of differential equation software 

 

In comparison to the previous implementations of cell models, this model required far more sub-

functions in order to implement in an organized fashion. While the Denis Noble model only 

required functions to calculate 𝛼𝑚,𝛽𝑚, 𝛼𝑛, 𝛽𝑛, 𝛼ℎ , and 𝛽ℎ, this implementation used functions for 

all 𝛼, 𝛽, steady state calculation, and time constant calculations, in addition to functions for other 

intermediate calculations. These functions are all described in Table 2 below. Between 

iterations, the update thread yielded. However, the thread did not yield with a set wait time. This 

ensured minimizing delay between calculations, and led to the update thread having an 

implicitly higher priority than all other threads.  

 

 

Function Header Purpose 

alpha_d(voltage) Calculate 𝛼𝑑for d gating variable based on current voltage 

alpha_f(voltage) Calculate 𝛼𝑓for f gating variable based on current voltage 

alpha_k1(voltage) Calculate 𝛼𝑘1for k gating variable based on current voltage 

alpha_m(voltage) Calculate 𝛼𝑚for m gating variable based on current voltage 

alpha_r(voltage) Calculate 𝛼𝑟for r gating variable based on current voltage 

alpha_to(voltage) Calculate 𝛼𝑡𝑜for to gating variable based on current voltage 

beta_d(voltage) Calculate 𝛽
𝑑
for d gating variable based on current voltage 

beta_f(voltage) Calculate 𝛽
𝑓
for f gating variable based on current voltage 



beta_k1(voltage) Calculate 𝛽
𝑘1

for k1 gating variable based on current voltage 

beta_m(voltage) Calculate 𝛽
𝑚

for m gating variable based on current voltage 

beta_r(voltage) Calculate 𝛽
𝑟
for r gating variable based on current voltage 

beta_to(voltage) Calculate 𝛽
𝑡𝑜

for to gating variable based on current voltage 

calcNaCaCurrent(voltage,temperature, gNaCa, KmNa, [Na]e, 

[Na]i, KmCa, ksat, [Ca]e 𝜂) 

Calculate sodium-calcium exchange current, based on sodium 
permeability, sodium intra and extracellular concentrations, 

extracellular calcium concentration and constant 𝜂 

calcNaKCurrent(voltage, sigmaNaK, temperature, gNaK) Calculate sodium-potassium exchange current based on 

current voltage, constant 𝜎𝑁𝑎𝐾, current temperature, and 
sodium-potassium exchange conductance 

E_to([Na]e, [K]e, [Na]i [K]i, temperature) Calculate equilibrium potential of transient outward currents 
based on sodium and potassium concentrations as well as 
temperature 

equlibriumPotential([ion]i, [ion]e, ion charge, temperature) Calculate equilibrium potential based on ion concentrations, 
charge, and temperature 

expDTChange(dt, 𝜏) Calculate change in variable exp(-dt/𝜏) as mentioned in 

MATLAB section 

f_Ca([Ca]i, KCa) Calculate calcium constant gating variable 𝑓𝐶𝑎 

fNaK(voltage, sigmaNaK, temperature) Calculate sodium-potassium pump gating variable fNaK based 
on voltage, 𝜎𝑁𝑎𝐾, and temperature 

f_primeNaK([K]e, [Na]i) Calculate intermediate step gating variable for sodium 

potassium pump 𝑓′𝑁𝑎𝐾based on extracellular potassium 
concentration and intracellular sodium concentration 

gateSteadyState(𝛼, 𝛽) Calculate steady state value for gating variable given its 𝛼and 

𝛽 

gateTau(𝛼, 𝛽) Calculate time constant for gating variable given its 𝛼and 𝛽 

getRateofChangeK(voltage, DT, 𝜏𝑋) Potassium rate of change is an exception to all other ions. This 
function calculates its change 

sigma_nak([Na]e) Calculate the constant 𝜎𝑁𝑎𝐾based on sodium concentration 

tau_v(voltage) Calculate time constant for gate variable 𝑣𝑟𝑎𝑡𝑒 

tau_x(voltage) Calculate time constant for gate variable 𝑋 

v_inf(voltage) Calculate steady state value for gate variable 𝑣𝑟𝑎𝑡𝑒 

X_inf(voltage) Calculate steady state value for gate variable 𝑋 

fixedPointExp(n) Calculate long _Accum fixed point exponentiation of n 

fixedPointTanh(n) Calculate long _Accum fixed point hyperbolic tangent of n 

Table 2: All functions involved in Reduced Priebe Beuckelmann implementation. Note that function 

headers use symbols to imply definition and are written out based on appropriate data types 

 



In Table 2, we do not include data types since we ended up implementing all numbers in two 

different data types. In our first pass we implemented all numbers using the long _Accum data 

type. This is the PIC32’s 31.32 fixed point data type. This was chosen instead of _Accum 

because this model required greater precision in order to be accurate and stable. However, 

none of the exponentials were solved in fixed point. Instead functions fixedPointExp and 

fixedPointTanh were used to handle exponential functions. These functions casted the input to a 

double, used the math library to calculate exp() or tanh() respectively, casted the value back to 

long _Accum, and returned the result. This method of exponentiation was effective in the 

previous models to speed up calculation.  

However, in the newer model, there is a total of 55 exponentials that have to be calculated. As a 

result, the time to cast values as double and to cast back to long _Accum eclipsed the benefits 

of clock cycles saved using fixed point. For this reason, we replaced all values of the long 

_Accum data type with double data types. Calculations now only used the exp() and tanh() 

functions inbuilt into math.h. This design choice led to the benefit of spikes appearing on the 

oscilloscope once every 4 seconds to once every second, which is much more accurate to 

biology. More importantly, this design choice allowed the frequency of firing to be able to 

completely be set by the sampling interval dt. The final dt chosen was .03 ms, which while 

coarse in calculation, allowed for an accurate shape of action potential without an unstable 

differential equation. The final oscilloscope output of the reduced Priebe-Beuckelmann model of 

a cardiac cell at standard human cardiac cell settings can be seen in Figure 17 below.  

 

Figure 17: Oscilloscope capture of reduced Priebe Beuckelmann model of cardiac potentials.  

 

USER INTERFACE 

 

The user interface was designed to be as intuitive as possible, with directional buttons used to 

navigate the screen and a sliding potentiometer used to change on-screen values. The overall 

block diagram of the user interface can be seen in Figure 18 below.  

 



 
Figure 18: Block diagram of user interface 

 

The first screen allows the user to input the concentrations and conductance for the Sodium, 

Potassium, and Calcium ion channels. When satisfied with their values, the second screen 

allows the user to choose which current channel (Sodium, Potassium, or Calcium) to display on 

the TFT as well as what should display on the oscilloscope (voltage or current). If no choice is 

presented for both the TFT and the oscilloscope, an error screen appears (the ‘fourth’ screen) 

and the user is prompted to return back and provide options. Once a current channel is chosen, 

a Lab Directions screen is shown, explaining basic functionality of the buttons (the third screen). 

When the user is ready, any button press will lead them to the TFT Oscilloscope screen, 

displaying the membrane voltage and chosen current channel over time with the given 

concentrations and conductance. Simultaneously, the voltage or current is sent through an SPI 

DAC and RC filter to an oscilloscope for data analysis. 

 

Protothreads, a lightweight stackless threading library, was used to provide linear code 

execution with the help of a round-robin scheduler. The use of Protothreads allowed the 

sequential flow of control without the use of complex state machines or full multi-threading.  

 

The user interface code is separated into three separate Protothreads: protothread_button, 

protothread_update, and protothread_tft.  

 

Protothread_tft 

 

Protothread_tft handles the first four screens of the program.  

 



The first screen is designed for the user to set the Sodium, Potassium, and Calcium 

concentrations and conductance values. The up, down, left, and right buttons allow the user to 

navigate the screen while the sliding potentiometer allows the user to change any value. The in-

built analog-digital converter on the PIC-32 is used to sample the values received from the 

sliding potentiometer. When on a certain variable (i.e. Sodium concentration), that text will 

highlight red with all the other text on the screen being yellow. The center button locks in the 

chosen number for a given variable which is then used for the differential equation model. The 

‘Next screen’ on-screen button at the bottom of the screen proceeds to the second screen. A 

sample screenshot of the first screen can be seen in Figure 19 below. 

 

 
Figure 19: First Screen  

 

The second screen is designed for the user to choose the current channel they wish to display 

(Sodium, Potassium, or Calcium) and what the oscilloscope should output (voltage or current). 

The up, down, left, and right arrows allow the user to navigate the screen with the center button 

locking in the user’s choice. When a choice is made, that text will highlight red or cyan with all 

the other text on the screen being yellow. The ‘Previous Screen’ and ‘Run Simulation’ buttons 

allow the user to either return to the first screen or move onwards with their choices. A sample 

screenshot of the second screen can be seen in Figure 20 below. 

 

 
Figure 20: Second screen 

 

The third screen simply displays text involving the functionality of the fifth screen (i.e. the TFT 

oscilloscope). In the future, this screen could involve more complex lab directions as well. If no 

current channel is chosen within the second screen, a fourth screen exists as an ‘error screen’, 

simply telling the user to return back and choose a current channel to display. In either case, 

any button press will lead the user to the correct screen. A sample screenshot of the third and 

fourth screens can be seen in Figure 21 below. 



 

Figure 21: Error Screen (Left). Directions Screen (Right) 

 

Protothread_button 

 

Protothread_button reads the bits from the GPIO pins connected to the left, right, up, down, and 

center buttons. If a button seems to be pressed, the below finite state machine (FSM) is run for 

that button. The FSM below ensures that double button presses are not recorded and the 

“button experience” is well-tuned for the user. 

 

 
Figure 22: Finite state machine for debouncing buttons  

 

The finite state machine begins in the ‘NoPush’ state by checking to see if the buttonState 

variable is equal to 0 (i.e. a button may have been pushed). If this is true, the pushState variable 

is set to ‘MaybePush’. If it is not true, the pushState stays as ‘NoPush’. Within the ‘MaybePush’ 

state‘, the buttonState is once again checked. If buttonState is still equal to 0, we know the 

button has been pushed and pushState becomes ‘Pushed’. If buttonState is not 0, we go back 



to ‘NoPush’. We do another check of buttonState within the ‘Pushed’ state to see if the button is 

being held down or released. If buttonState is still 0, we stay in ‘Pushed’, otherwise we go to 

‘MaybeNoPush’. Regardless of the buttonState in the ‘Pushed’ state, the button is recorded as 

having been pushed at least once through the buttonValue variable. Within ‘MaybeNoPush’, we 

simply check buttonState to return to either ‘NoPush’ or ‘Pushed’ depending on whether the 

button has been released or held down respectively. 

 

Protothread_update 

 

Protothread_update runs only during the fifth screen (i.e. the main TFT ‘oscilloscope’ screen). 

This thread checks the down buttons and pauses the screen if it is pressed. If the screen is 

paused, two blue vertical cursors are placed on the left hand-side of the screen and the voltage, 

current, time value, and difference in time values of the cursors’ position are displayed on the 

top right hand side of the screen (see Figure 23 below). When on the pause screen, the cursor 

location can be moved with the left and right buttons. Time is recorded as 0 at the left-hand side 

of the screen and is in milliseconds. The up button can be used to toggle between cursors. 

When paused, the center button can be used to exit the screen and return to the second screen 

(choosing which ion current channel to display). 

  

 
Figure 23: Paused TFT Oscilloscope Screen 

 

When not paused, all of the previous and next differential equation model parameters are 

updated. A current stimulus is provided and a new membrane voltage and total current is 

calculated. The voltage and current are plotted on the screen every 25th iteration of the thread 

through the variable sampling. This variable can be adjusted in the code to allow more or less 

accuracy to the model. More accuracy will lead to less waveforms on the screen and vice versa.  

 

In order to obtain the analog signal for the oscilloscope, we connected the MCP4822 12-bit SPI 

DAC to the PIC32. At every iteration of the update thread, the current membrane voltage or total 

current is sent to the DAC via a Serial-Peripheral Interface (SPI) bus. We use SPI channel 2 on 

the microcontroller to write to the DAC with the output taken out of DAC output A. Initial testing 

showed a significant amount of noise on the output from the SPI DAC. As a result, we created a 

low pass filter with a 10 k𝛺 resistor and a 1 𝜇F capacitor to reduce this noise. This output is 

probed by the oscilloscope for the final output.  

 

 

 



INTEGRATION 

 

Code Structure 

 

The first step of integration was combining each element of our code together. The differential 

equation model was placed into differential_equations.c with a corresponding 

differential_equations.h acting as a header file for function prototypes. Cardiac_neuron.c and 

Cardiac_neuron.h acts as the main file containing the various threads, the round-robin 

scheduler, and all high-level screen logic. This file was designed to be as sparse and clean as 

possible so future engineers can understand the structure of the code without delving into the 

details. Those details are placed in the Helper_functions.c and helper_functions.h files with 

contain the function definitions called by Cardiac_neuron.c. Several variables such as the 

membrane voltage and ion channel currents are externed within header files so that they may 

be accessed globally.  

 

Printed Circuit Board 

 

PCBExpress software was used to create a schematic and PCB of our product. The final 

schematic and PCB design can be seen in Figures 24 and 25 below. A labeled image of the 

physical image can be seen in Figure 1. 

 

 
Figure 24: Schematic of Final Board 



 

 
Figure 25: PCB Design 

 

FUTURE WORK 

 

Several pieces of future work remain to be explored. Firstly, minor user interface errors still exist 

including occasionally “sticky” buttons as well as a sliding potentiometer that does not fit flat on 

the board. However, more needs-based design problems may surface when students and 

instructors interface with the product. Secondly, there are a large amount of variables that could 

be user programmable that are currently not set to be in the code. For example, making the 

frequency of current stimulus tunable may be an interesting avenue as it would change the 

frequency of the heartbeat. Thirdly, extensive testing needs to be done to ensure that all of the 

bounds for voltage and current produce reasonable waveforms on the oscilloscope and TFT 

screens. Fourthly, unnecessary long delays exist in the code for button debouncing and TFT 

displaying. These delays could certainly be reduced to their absolute minimum for optimal 

performance. Finally, more lab handouts could be created in order to provide students and 

teachers the breadth of knowledge that our product can showcase.  
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APPENDICES 

 

Appendix 1: Hodgkin Huxley Constants and Equations (Hodgkin and Huxley, 
1952) 
 

 

Table 1: Base conductance and equilibrium potentials in Hodgkin Huxley 

 

 

 
Table 2: Change of rate functions 

 

Appendix 2: Denis Noble Model Constants and Equations (Noble, 1968) 



 

 

Table 1: Reversal Potential and Initial conductance for ion channels in Denis noble model 
 

 

Table 2: Rate variables changed for Denis Noble model 

 

 

Appendix 3: Reduced Priebe Beuckelmann Equations (Bernus et. al, 2002) 

 

Section 1: Base Conductances and Concentrations 



 

Table 1: Base Conductances 

 

Ion Intracellular (mM) Extracellular (mM) 

Na 0.0004 2 

Ca 10 138 

K 140 4 

Table 2: Base Concentrations 

 

 

Table 3: Permeabilities 

 

 

 

 

 

 



Section 2: Overall Current and Gate Variable Calculations: 

 

Table 4: Calculations for all currents 

 

 

 

Section 3: Equilibrium Potentials 

 

 

 

 

 

 

 

 



Section 4: Steady State Equations and Exceptions 

In general, for a given gating variable x 

 

 

Section 5: Rate Functions 

 

Table 5: Calculation of 𝛼 for all gate variables 

 

 

 

 

 

 



 

Table 6: Calculation of 𝐵𝑒𝑡𝑎 for all gate variables 

 

 

 

Appendix 4: Possible Lab Handout 1 

Lab Handout 

 

Introduction 

 

We have learned through the course of the previous labs that neurons exhibit excitable behavior resulting 

from opening and closing of ion channels. However, excitability is not limited to cells in the nervous 

system. Cells elsewhere in anatomy contain ion channels and exhibit action potential behavior as well. 

One such system is the cardiac system. In this lab, we will explore the ionic basis of cardiac action 



potentials. Cardiac action potentials are unique in that they act like the central pattern generators of 

invertebrates. These cells spontaneously fire and are directly related to mammalian EKG.  

 

Invertebrates do not have hearts. For this reason, we will not be able to use a dissection or recordings to 

understand cardiac cells. Instead, we will be using an electrical simulation device to act is we have a heart 

available. This system allows us to explore the ionic basis of Cardiac Action potentials by being able to 

adjust ion concentrations and conductance in the cell.  

 

How to use the device: 

 

Before use, plug in the device using a 5 V DC adaptor. Connect a BNC cable from the device into a 

neural recording device as well as into an oscilloscope.  

 

On the first screen, use the up, down, left, and right buttons to navigate. Use the center button to select the 

appropriate conductance or concentration. These include sodium, potassium, and calcium. To change the 

value, use the slider. Once completed, press the “down” arrow until you reach the “Next Screen” option. 

Press the center button to continue.  

 

On the second screen, use the up and down buttons to choose whether to display and record sodium, 

potassium, or calcium currents. Select as in the first screen. Additionally, use the directional arrows to 

select whether membrane voltage or current will display on the oscilloscope. Once selected, scroll down 

to the “Next Screen” option. Press the center button continue.  

 

On the third screen, you will be given a set of instructions on how to interpret the final output. Press any 

button to continue. 

 

On the final screen, you will see the resulting waveform. The red waveform represents the membrane 

voltage and the green waveform represents the selected ion current. Press the down button to pause. To 

move the cursors, use the right and left arrows. The current time, voltage, and current will be displayed in 

yellow letters. To toggle between cursors, use the up button. When paused, use the center button to exit 

the screen and re-enter values.  

 

Experiments: 

Human Ventricle Cell:  

For the first experiment, adjust settings to the default values for the human ventricle cells (Bernus et al, 

2002).  

 

Ion Concentration (mM) Conductance (mS) 

Na 138 16 

K 4 0.018 

Ca 1.5 0.64 

Table 1: Human Ventricle Cell Conductance 



 

Record the membrane voltage, and record the current contribution from each ion. How does each ion 

contribute to the final waveform? 

 

Change Concentrations: 

For each ion, gradually increase and decrease concentrations for each ion. How does each ion change and 

affect action potential shape?  

 

Example Solution for Sodium Concentration 

 

 

 
Figure 1: TFT screenshots with decreasing Sodium concentration  

Top left: 138. Top right: 70. Bottom: 67 

 



 
Figure 2: Oscilloscope screenshots with decreasing Sodium concentration  

Top left: 138. Top right: 70. Bottom: 67 

 

Figures 1 and 2 above show the membrane voltage and Sodium current waveforms as the 

Sodium concentration is decreased from 138 to 70 to 67 mM. As the Sodium concentration 

decreases, the depolarizing spike gets smaller until it can no longer fire. On the TFT, the spike 

decreases from 29 mV to 22 mV to -59 mV.  

 

This behavior occurs due to another phase within the heartbeat. Action potentials are triggered 

in a neighboring pacemaker cell causes the membrane potential to rise above -90 mV. Fast 

Sodium ion channels start to open as Sodium leaks into the cell, raising the membrane potential 

to the “threshold potential” (~59 mV). This point is where enough fast Sodium channels have 

opened to generate a self-sustaining inward Sodium current, leading to a depolarization spike.  

 

The value of 67 mM is the concentration at which there are too few Sodium channels to reach 

the “threshold potential”. Thus, at this Sodium concentration, the cell reaches -59 mV but cannot 

generate the self-sustaining inward current and subsequent depolarization spike. Of particular 

interest is the stark difference in action potentials between the 70 mM and 67 mM Sodium 

concentration. 

 

Change Conductance: 

For each ion, gradually increase and decrease concentrations for each ion. How does each ion change and 

affect action potential shape?  

 

Example Solution for Calcium Conductance 

 



 
Figure 3: TFT Screenshots with increasing calcium conductance.  

Top left: 0.64. Top right: 0.84. Bottom: 1.0 

 

 
Figure 4: Oscilloscope screenshots with increasing calcium conductance.  

Top left: 0.64. Top right: 0.84. Bottom: 1.0 

 

Figures 3 and 4 above show the membrane voltage and calcium current waveforms as the 

Calcium conductance is increased from 0.64 to 0.84 to 1.0 nS on the TFT and oscilloscope 

respectively. As the Calcium conductance increases, the plateau of the action potential clearly 

elongates. On the TFT, the plateau increases from approximately 50 ms to 105 ms to 230 ms. 

The oscilloscope shows the exact same behavior. 

 



This behavior occurs due to the physiology of cardiac action potentials. During the plateau, L-

type Calcium ion channels are open, allowing a small and constant inward current of Calcium 

ions. This initial influx of Calcium ions into myocytes through the L-type Calcium channels is 

insufficient to trigger the contraction of myofibrils. However, the signal is amplified by the 

Calcium-induced Calcium release leading to a larger release of Calcium from the sarcoplasmic 

reticulum. Ultimately, this large release of intracellular Calcium acts on tropomyosin complexes 

to induce myocyte contraction and the contraction of cardiac muscle cells (Ikonnikov et al, 1993) 

 

During the plateau phase, Potassium ions are also leaking out down the concentration gradient 

through delayed rectifier Potassium channels. The Calcium and Potassium currents are 

electrically balanced and the total membrane potential is maintained at a plateau. Over time, 

Calcium channels are gradually inactivated leading to eventual repolarization after the plateau 

(Grandi et al., 2009). However, with increased Calcium conductance, these Calcium channels 

take longer to become inactivated. Thus, with increased Calcium conductance, we also see a 

longer plateau. Additionally, with an extremely large Calcium conductance like 1.0 nS, the 

plateau elongates so far as to disrupt the next action potential (i.e. the next heartbeat of the 

cardiac cell). 

 

This behavior mimics conditions like Vitamin D deficiency that result in hypocalcemia (low 

Calcium levels in the blood serum).  

 

Example solution for Potassium Conductance 

 

 



Figure 5: TFT screenshots with increasing Potassium conductance  

Top left: 0.015. Top right: 0.06. Bottom: 0.045 

 

 
Figure 6: Oscilloscope screenshots with increasing Potassium conductance  

Top left: 0.015. Top right: 0.06. Bottom: 0.045 

 

Figures 5 and 6 above show the membrane voltage and Potassium current waveforms as the 

Potassium conductance is increased from 0.015 to 0.06 to 0.045 nS. As the Potassium 

conductance increases, the amount time on the TFT from depolarization spike back to the 

resting potential decreases from 675 to 435 ms to 300 milliseconds.  

 

This behavior occurs due to the final phase of the cardiac action potential. As mentioned earlier, 

the plateau phase is caused by the balance between Potassium and Calcium currents. As 

Calcium channels inactivate, the continuing outward flow of Potassium ions brings the 

membrane potential back towards the resting potential of -90 mV. However, with increased 

Potassium channel conductance, the ions flow outward faster, and allow the membrane 

potential to reach the resting potential even faster. 

 

This behavior is characteristically similar to chronic kidney disease or a crush injury. Both of 

these problems cause hyperkalemia, an increase in the amount of Potassium ions. Left 

untreated, this fast repolarization spike can result in cardiac death (McCullough et al, 2014) 

 

Arrhythmias and Heart Attacks 

Can you make an arrhythmia or heart attack occur? Change conductance and concentrations until you 

detect significant abnormalities. How does this relate to physiology?  

 

Questions: 

In your lab report, report and explain your results from the above experiments. Also, answer the following 

questions. 

1. How do cardiac action potentials differ from muscle cells and other neurons previously recorded? 

In addition to behaviorally, what is different about the shape of these action potentials? 



2. What is the role of each ion in the Cardiac action potential? What happens to the shape of the 

action potential when the concentration of each ion is increased or decreased? 

3. Explain the nature of arrhythmias and heart attacks in terms of the cardiac cell action potential. 

How can abnormalities in each ion lead to disruptions in heart behavior? 

4. What poisons exist that affect the action potential of cardiac cells? Describe their action.  

5. Cardiac cells directly affect mammalian EKG. Explain how each ion affects individual parts of an 

EKG recording.  

 

Appendix 5: Distribution of Work 

All work was evenly distributed between the two team members. Samir primarily worked on the 

model implementations in Matlab and C. Adarsh primarily worked on the TFT user interface 

code, PCB design, and product/code integration. 


