
	Wireless	Real-Time	Drum	Triggering		
	
	
	
	

A	Design	Project	Report	

Presented	to	the	School	of	Electrical	and	Computer	Engineering	

of	Cornell	University	

In	Partial	Fulfillment	of	the	Requirements	for	the	Degree	of		

Master	of	Engineering,	Electrical	Computer	Engineering	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Submitted	by	
Curran	Sinha	

MEng	Field	Advisor:	Bruce	Land	
Degree	Date:	December	2017	

	 2	

Abstract	
	
	
	

Master	of	Engineering	Program	

School	of	Electrical	Computer	Engineering	

Cornell	University	

Design	Project	Report	

	
	
	
	
	
	

Project	Title:	Wireless	Real-Time	Drum	Triggering	

Author:	Curran	Sinha	

Abstract:	With	the	rise	of	electronic	music	and	home	production	in	the	music	industry,	

drum	triggering	is	gaining	popularity	and	is	now	used	widely	by	professionals	and	

amateurs	in	live	and	studio	environments.	Drum	triggering	allows	a	musician	to	sample	

various	sounds	using	mechanisms	to	detect	a	drum	strike,	which	then	triggers	a	midi	

sample.		Typical	setups	involve	sensors	or	“triggers”	for	each	drum	that	are	wired	to	a	

drum	module,	which	either	directly	triggers	samples	or	generates	midi	data.	There	are	no	

current	products	that	allow	for	cheap	wireless	triggering,	which	are	portable	and	easy	to	

setup.	This	design	project	aims	to	fill	that	gap	in	the	market	by	developing	a	system	that	

uses	just	one	microphone	and	a	microcontroller	to	distinguish	between	multiple	drums.	

	 3	

Executive	Summary	
	
Drum	triggering	is	a	common	tool	that	allows	musicians	to	trigger	arbitrary	samples	like	
percussion	instruments	or	melodic	textures.		Whether	it	is	being	using	in	a	live	or	studio	
setting,	it	adds	another	dimension	to	the	instrument	by	layering	different	voices	on	top	of	
typical	drum	set	sounds.	Even	though	it	has	been	around	for	decades,	in	the	past	few	years	
the	rise	of	electronic	music	and	the	ease	of	producing	music	without	a	studio	have	pushed	
more	drummers	to	think	about	exploring	triggering.	The	standard	system	for	triggering	
requires	a	separate	piece	of	hardware	for	each	drum	that	needs	triggering	ability,	and	all	of	
those	need	to	be	wired	to	a	central	drum	module	to	generate	the	sounds.	The	setup	and	
convenience	of	the	current	technology	is	less	than	ideal.	New	products	have	come	out	that	
try	to	fix	that,	but	they	all	are	lacking	in	at	least	one	way	that	makes	them	undesirable.	
Either	they	cost	more	than	a	casual	drummer	looking	to	explore	triggering	is	willing	to	pay,	
or	they	do	not	have	the	functionality	to	trigger	different	drums,	or	they	are	inconvenient	to	
transport	and	setup.	This	design	project	aims	to	fix	that.		
	
This	project	is	a	proof	of	concept	for	a	product	that	uses	just	a	microphone	and	a	
microcontroller	to	trigger	multiple	drums	in	real	time.	The	system	is	small	enough	to	easily	
carry	around	and	the	set	up	required	is	just	placing	the	system	near	the	drums	and	training	
each	drum.	By	implementing	the	algorithm	that	performs	the	training	and	classification	in	
Matlab,	I	was	able	to	prove	the	feasibility	of	this	design.	The	algorithm	is	easily	transferable	
to	a	microcontroller	to	execute	the	same	algorithm	in	real	time	and	trigger	sound	
accordingly.	
	
There	are	quite	a	few	significant	problems	with	triggering	drums	using	just	one	
microphone.	First	off,	to	maintain	real	time	response,	the	entire	system	must	detect	a	drum	
strike	and	trigger	the	audio	sample	within	15	milliseconds.	That	means	only	about	10	
milliseconds	of	a	sample	can	be	used	to	analyze,	and	that	short	of	a	sample	does	not	contain	
a	large	amount	of	information	about	the	drum.	As	well,	once	a	strike	is	detected	and	a	
sample	is	recorded,	the	features	that	uniquely	distinguish	the	sample	from	other	drum	
samples	are	used	in	a	K-nearest	neighbors	algorithm	to	allow	the	user	to	play	a	drum	and	
trigger	any	sound.	
	
The	final	results	are	extremely	promising.	Given	a	training	set	to	train	on,	the	algorithm	
correctly	identified	93%	of	the	test	samples	accurately.	For	version	1	of	the	design,	this	
system	has	plenty	of	room	to	grow	and	improve,	and	hopefully	will	eventually	lead	to	a	real	
product.		
	
	
	
	
	
	
	
	
	

	 4	

1.	Introduction	
1.1	Motivation	

Drum	triggering	is	used	widely	by	musicians	all	over	the	world	to	add	electronic	and	

sampled	sounds	to	their	playing	while	using	an	acoustic	drum	kit.		This	is	not	just	a	fad.	

Electronic	music	that	uses	non-acoustic	sounds	is	gaining	popularity	and	musicians	are	

expecting	these	sounds	to	be	recreated	in	live	settings	or	studio	settings.	As	well,	

drummers	are	starting	to	experiment	with	creating	full	songs	on	their	own.	This	involves	

triggering	the	melody,	harmony	and	bass	lines,	while	still	playing	the	drum	part.		I	have	

been	playing	drums	for	8	years	and	at	Cornell	I’m	currently	part	of	a	jazz	combo,	jazz	big	

band,	and	a	funk/R&B	band,	so	when	I	started	to	think	of	a	final	design	project,	I	

immediately	thought	about	designing	something	related	to	drums	or	music.		

	

Recently,	a	product	was	released	called	Sensory	Percussion	(sunhou.se)	that	uses	sensors	

on	a	drum	to	detect	different	hits	depending	on	where	the	drum	is	struck	and	trigger	audio	

samples	accordingly.	The	sensors	can	detect	many	sounds	(7+)	like	center	of	the	head,	edge	

of	the	head,	rim	of	the	drum,	rim	shot	(hitting	the	rim	and	drumhead	at	the	same	time)	at	

the	center	of	the	head,	rim	shot	at	the	edge	of	the	head,	and	a	few	more.	Each	of	these	

sounds	can	then	be	assigned	to	a	sample	and	it	gives	the	drummer	new	sounds	to	create	

music	with.	Along	with	this,	the	company	has	software	that	allows	for	more	advanced	

features	like	blending	between	two	different	sounds	if	you	hit	in	between	regions.			

This	product	inspired	me	because	it	combined	my	love	of	drumming	with	hardware	and	

signal	processing.	I	remember	when	the	product	first	came	out,	the	drumming	community	

was	extremely	excited	and	they	still	are,	but	there	are	a	few	flaws	with	the	system.	The	first	

issue	is	that	these	sensors	work	with	just	one	drum	and	if	the	user	wants	to	trigger	with	

more	than	one	drum,	they	need	another	sensor.	This	is	limiting	because	most	drummers	

are	used	to	creating	beats	using	separate	sound	sources	and	thus	different	limbs,	which	

would	require	more	sensors.	This	is	related	to	another	issue,	which	is	that	the	software	and	

one	sensor	costs	$700.	Each	additional	sensor	is	$300.	For	most	musicians,	this	is	an	

expensive	part	and	creates	a	high	barrier	to	enter	the	market.	The	last	issue	is	that	setting	

up	the	system	can	take	a	while	because	one	needs	to	attach	all	the	sensors	and	then	wire	

	 5	

each	sensor	up	to	an	audio	interface.	For	recording	purposes	this	is	fine,	but	if	someone	

wants	to	quickly	setup	these	sensors	it	is	inconvenient.	I	used	these	“downsides”	as	

inspiration	while	developing	my	project.	

	

1.2.	Previous	Work	

My	main	goals	for	this	project	were	to	design	a	portable,	easy	to	setup,	reliable	drum	

triggering	mechanism	that	did	not	cost	too	much	and	had	no	noticeable	latency.		The	initial	

thought	I	had	was	to	do	this	using	only	a	microphone	and	a	microcontroller.	Taking	a	look	

at	some	similar	products	on	the	market,	I	discovered	Versatrigger:	a	wireless	drum	

triggering	mechanism.	Despite	meeting	a	few	of	my	requirements	of	being	wireless	and	

having	low	latency,	the	set	up	process	is	tedious	and	laborious.	This	trigger	needs	to	be	

installed	inside	the	drum	which	make	it	non	portable	and	hard	to	set	up.	As	well,	one	

trigger	and	the	hub,	which	receives	the	data	from	the	trigger,	costs	around	$120.		

	
Figure	1.	Versatrigger	

	

Another	product	that	was	recently	released	is	called	the	Electronic	Acoustic	Module	(EAD)	

from	Yamaha.	They	use	a	similar	principle	to	this	design	project	by	using	just	one	unit,	but	

it	does	not	trigger	drums	separately.	Instead,	it	processes	the	sound	coming	from	the	

microphone(s)	with	certain	sound	effects	to	add	another	layer	of	sound.	This	is	a	step	in	the	

right	direction	and	confirms	that	there	is	growing	need	for	a	product	like	the	one	I	am	

developing.	

	 6	

	

	
Figure	2:	Yamaha	EAD	

	

2.	Implementation	
2.1	Possible	Solutions	

Tackling	this	problem	is	not	simple	because	it	has	not	been	done	before	and	can	vary	

depending	on	the	environment.	One	approach	is	to	use	wireless	piezo	sensors	with	a	

simple	radio	protocol	such	as	Zigbee,	which	would	transfer	the	sensor	readings	to	a	central	

hub	that	generated	midi	data.	This	is	relatively	easy	to	setup	and	probably	would	

accomplish	the	job,	but	then	issues	might	arise	with	price	because	of	various	different	parts	

and	with	battery	life	because	radio	protocols	take	up	a	decent	amount	of	power	regardless	

of	how	little	information	is	being	transferred.	Another	option	is	to	use	two	microphones	in	

front	of	the	drum	set	to	gain	not	only	audio	information,	but	also	spatial	locality	of	the	

drum	set.	This	is	promising,	but	a	better	idea	with	regards	to	that	is	just	to	place	two	

microphones	near	the	middle	of	the	drum	set	and	point	the	microphones	in	opposite	

direction.	This	would	help	determine	the	direction	the	sound	is	coming	from,	which	can	be	

combined	with	the	audio	processing	to	determine	the	drum.	This	idea	seemed	to	meet	all	

my	requirements,	but	I	decided	to	start	with	just	one	microphone	and	rely	on	audio	

processing	to	see	if	that	would	be	possible.		

	

2.2.	System	Requirements		

The	current	design	assumes	an	environment	consisting	of	only	a	drumset,	where	the	user	is	

triggering	sounds	using	multiple	drums,	but	not	playing	cymbals.	In	order	to	use	triggering	

	 7	

in	a	live	environment	(band	performance),	a	trigger	per	drum	is	necessary	because	of	all	

the	noise	from	other	instruments.	The	scope	of	this	project	is	catered	more	towards	

drummers	who	want	to	explore	new	sounds	and	the	possibilities	of	triggering.	As	well,	the	

system	is	not	expected	to	produce	100%	accuracy	because	of	the	simplicity	and	cheap	price	

of	the	design.	I	would	hope	for	accuracy	above	80%	though,	where	most	hits	are	registered	

and	trigger	the	correct	sound,	but	there	will	be	a	few	misplayed	sounds.	More	iterations	of	

the	design	will	help	increase	the	accuracy	though.		

	

The	main	approach	to	this	project	is	to	constantly	sample	audio	from	the	microphone,	use	a	

simple	power	or	amplitude	threshold	to	detect	the	start	of	a	hit,	run	the	audio	through	an	

FFT,	send	the	spectrum	and	the	actual	sound	wave	into	a	classification	network,	and	trigger	

an	audio	sample	accordingly.	The	training	of	the	classification	network	will	happen	first	

and	it	will	generate	a	classification	model	for	the	drums.			

	

2.3.	Issues	

One	main	issue	is	the	frequency	spectrum	of	a	drum	is	not	like	a	piano	or	trumpet	note,	

because	there	is	not	always	a	clear	primary	frequency	and	if	there	is	there	are	many	other	

harmonics	that	appear.	As	well,	depending	on	how	hard	the	drum	is	hit,	the	frequency	

spectrum	can	change.	On	a	related	note,	in	order	to	maintain	real	time	response,	the	time	

between	the	drum	hit	and	the	midi	trigger	must	be	less	than	15	milliseconds	because	real	

time	audio	perception	is	between	10-20	milliseconds.	This	means	the	actual	sample	that	

will	be	used	can	only	be	around	8-10	milliseconds	because	it	takes	time	to	process	the	

sample	and	generate	a	midi	trigger.	With	such	a	short	sample,	the	tone	of	the	drum	will	not	

be	completely	present.	It	instead	will	be	a	combination	of	the	tone	of	the	drum	and	the	

impact	of	the	stick	hitting	the	head.		A	comparison	of	a	full	drum	sound	wave	to	what	10	

milliseconds	of	a	drum	sound	is	shown	in	Figure	3	and	4.	

	 8	

	
Figure	3.	Full	Tom	Sound	Wave	

	
Figure	4.	10ms	Tom	Sound	Wave	

2.28 2.285 2.29 2.295 2.3
Time (ms) 104

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Am

pl
itu

de

Full (220 ms) High Tom Hit

22806 ms
23026 ms

2.2805 2.2806 2.2807 2.2808 2.2809 2.281 2.2811 2.2812 2.2813 2.2814
Time (ms) 104

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Am
pl

itu
de

10ms High Tom Hit

	 9	

Another	interesting	issue	is	the	classification	mechanism.	It	needs	to	be	robust	and	able	to	

adapt	to	various	different	drums,	but	it	cannot	take	up	too	much	space	or	take	too	long	

computationally.	

	

2.4.	Software	Design		

At	its	current	state,	my	project	is	more	of	a	proof	of	concept	for	a	real	time	system	that	

proves	the	feasibility	of	using	just	one	microphone	to	trigger	multiple	drums.	The	system	is	

implemented	in	Matlab,	but	for	real	time	execution	it	needs	to	be	run	on	a	microcontroller.	

It	is	easy	to	port	the	system	to	one	because	all	the	steps	are	relatively	basic	computations.	

In	the	next	sections	I	will	elaborate	on	each	step	of	the	design.	

	

2.4.1.	Audio	Input	

The	system	samples	audio	at	8khz	because	the	majority	of	drum	frequencies	are	present	

below	1000	kHz.	For	the	prototyping	I	was	doing	with	Matlab,	I	ended	up	using	a	Zoom	

H4N	microphone,	which	has	two	stereo	microphones.	It	samples	as	44100,	but	down	

sampling	that	is	simple.	For	the	actual	microphone	circuitry	that	would	be	connected	to	the	

microcontroller,	a	high	pass	and	low	pass	filter	will	be	added	along	with	an	amplifier.	The	

low	and	high	pass	will	help	filter	out	any	noise	that	is	present,	while	the	amplifier	allows	

the	user	to	set	the	gain	depending	on	where	the	microphone	is	placed	and	how	loud	they	

are	playing.	The	audio	samples	are	stored	in	a	circular	buffer	to	allow	the	system	to	have	

some	previous	recordings	to	take	when	a	drum	strike	it	detected.	

	

2.4.2.	Detecting	Drum	Strike	

In	order	to	detect	the	start	of	a	drum	strike,	the	system	needs	to	detect	a	sudden	increase	in	

amplitude	above	a	certain	threshold,	but	it	must	not	trigger	on	sporadic	noise	that	might	be	

present	in	environment.	The	basic	way	to	do	this	is	to	generate	an	envelope	of	the	signal	

that	tries	to	outline	the	amplitude	of	the	signal.	There	are	two	ways	I	tried	to	approach	this:	

an	exponential	moving	average	(1	pole	IIR)	and	a	moving	average	window	(.		Both	

approaches	are	shown	on	a	sample	drum	strike	in	Figure	XXX.	For	the	exponential	moving	

average,	it	uses	this	formula:	

	

	 10	

𝐸 𝑖 + 1 = 𝛼 ∗ 𝑖𝑛𝑝𝑢𝑡 𝑖 + 1− 𝛼 ∗ 𝐸(𝑖)	

	

	

An	n-window	moving	average	uses	the	follow	equation:	

	

𝐸 𝑖 =
1
𝑛 𝑖𝑛𝑝𝑢𝑡 𝑖)
!!!

!!!

	

	

The	input(i)	to	the	formulas	can	be	either	the	raw	microphone	inputs	or	the	absolute	value	

of	those	results.	Using	the	absolute	values	allows	the	envelope	to	respond	slightly	faster,	

but	for	this	specific	application,	it	does	not	affect	the	result	significantly.	Also,	the	alpha	

term	for	the	exponential	moving	average	can	easily	be	adjusted	to	change	the	response	

time,	which	can	be	useful	when	tuning	the	system.	In	terms	of	implementing	an	envelope	

on	a	microcontroller,	the	exponential	moving	average	is	much	simpler,	so	I	chose	to	work	

with	that.		

	
Figure	4.	Drum	Strike	with	Filtered	Signals	

9.7155 9.716 9.7165 9.717 9.7175 9.718 9.7185 9.719 9.7195 9.72 9.7205
Time (samples) 104

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Am
pl

itu
de

Audio signal with Envelopes

Original Signal
Exponential w Abs
Exponential wout Abs
5 pt Moving Avg

	 11	

	

2.4.3.	Feature	Extraction		

After	a	drum	strike	is	detected,	the	system	takes	note	of	that	specific	index	and	saves	

around	2	milliseconds	before	the	detection	as	the	start	of	the	sample.	It	then	proceeds	to	

collect	samples	for	~8	more	milliseconds,	which	at	8khz	is	64	samples.	This	produces	a	

10ms	sample	to	process.	These	offsets	were	chosen	by	analyzing	drum	strikes	and	finding	

the	smallest	index	that	was	needed	to	obtain	the	start	of	the	drum	hit	for	most	samples,	and	

then	the	rest	is	allocated	for	after	the	strike	to	gain	as	much	information	as	possible	about	

the	drum.		

	

Next,	the	signal	is	processed	to	extract	the	important	features.	A	large	problem	with	

extracting	features	is	that	there	is	no	definition	for	what	is	important	for	a	specific	drum.	A	

useful	method	to	determine	this	is	by	visualizing	the	features	as	a	K-nearest	neighbors	

classification	algorithm.	In	order	to	do	that,	I	only	use	three	features	because	it	is	easy	to	

graph	the	features	for	all	the	drums	and	see	if	there	is	a	clear	separation	between	them.	I	

will	talk	more	about	the	tradeoffs	between	the	features	in	the	classification	section.	The	

most	obvious	feature	to	extract	is	the	frequency	response	of	the	drum	since	a	bass	drum	

clearly	has	a	lower	pitch	then	a	small	tom	drum	and	it	can	be	applied	to	drums	no	matter	

how	big	or	small	they	are.	To	do	this	the	system	generates	the	discrete	Fourier	transform	of	

the	10-millisecond	sample	using	the	fast	Fourier	transform.	The	output	is	a	graph	that	

represents	the	amplitudes	of	each	frequency	range.	Another	factor	to	consider	is	whether	

the	filtered	signal	or	the	original	signal	should	be	passed	into	the	FFT.	The	original	signal	

seems	like	the	better	option	comparing	Figure	5	and	6	because	it	has	larger	peaks,	but	

issues	can	arise	if	there	is	significant	noise	that	adds	in	some	frequency	components.	

However,	since	the	noise	will	show	up	in	frequency	bins	separated	from	the	main	sample	I	

chose	to	use	the	original	signal.	It	is	important	to	note	that	raw	amplitude	data	is	not	useful	

because	the	system	needs	to	function	regardless	of	the	volume	of	the	drum	hit.	To	deal	with	

this,	the	system	uses	features	based	around	relative	data	like	the	order	of	peaks	or	using	

amplitude	ratios	relative	to	the	highest	peak.		

	 12	

	
Figure	5.	Original	Signal	Response	

	
Figure	6.	Filtered	Signal	Response	

	

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (ms)

-0.4

-0.2

0

0.2

0.4

0.6

Am
pl

itu
de

Raw Siganl

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

Am
pl

itu
de

Raw Siganl FFT

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (ms)

-0.4

-0.2

0

0.2

0.4

Am
pl

itu
de

Filtered Siganl

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency

0

0.05

0.1

0.15

0.2

0.25

Am
pl

itu
de

Filtered Siganl FFT

	 13	

Once	the	frequency	response	is	available,	there	is	a	large	variety	of	features	that	can	be	

extracted.	A	few	that	I	explored	included	the	highest	peak	in	the	frequency	graph,	the	

number	of	frequency	peaks,	the	time	difference	between	peaks	in	the	time	domain	and	the	

ratio	of	the	highest	peak	to	the	second	highest	peak	in	the	time	domain.	These	are	just	a	

small	selection	I	thought	of	by	observing	the	different	responses	of	four	drums	that	can	be	

seen	in	Figure	7.		

	

	

	 	
Figure	7.	Different	Drum	Responses	

	

2.4.4.	Training	and	Classification	

This	system	classifies	drums	using	a	simple	K-nearest	neighbors	classification	algorithm.	

Initially,	during	the	training,	the	user	plays	each	drum	10	or	20	times	and	the	system	saves	

the	three	features	for	each	drum	hit.	Then,	when	a	new	sample	is	obtained,	the	three	

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (ms)

-0.4

-0.2

0

0.2

0.4

Am
pl

itu
de

High Tom

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency

0

0.05

0.1

0.15

0.2

0.25

Am
pl

itu
de

High Tom FFT

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (ms)

-1

-0.5

0

0.5

1

Am
pl

itu
de

Low Tom

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency

0

0.1

0.2

0.3

0.4

0.5
Am

pl
itu

de

Low Tom FFT

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (ms)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Am
pl

itu
de

Snare Drum

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency

0

0.05

0.1

0.15

Am
pl

itu
de

Snare Drum FFT

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (ms)

-0.4

-0.2

0

0.2

0.4

Am
pl

itu
de

Bass Drum

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

Am
pl

itu
de

Bass Drum FFT

	 14	

features	are	calculated	and	then	the	distance	to	each	of	the	training	points	is	calculated.	

The	sample	is	classified	as	the	majority	of	its	“k”	nearest	(in	terms	of	Euclidian	distance)	

neighbors.	This	is	a	fairly	simple	machine-learning	algorithm,	but	that	helps	in	terms	of	

comprehending	the	reasoning	for	its	classifications.	This	makes	it	easier	to	tune	the	

algorithm	so	it	is	catered	towards	drums.	While	testing	out	different	features,	I	would	

generate	graphs	of	all	of	the	training	points	and	the	goal	was	to	separate	each	drum	as	

much	as	possible.	Figure	8	shows	one	of	the	first	ones	that	worked	decently.	The	features	

are	the	peak	frequency,	the	number	of	peaks	in	the	time	domain,	and	the	ratio	between	the	

maximum	peak	and	the	last	point	in	the	time	domain.	For	the	most	part	each	drum	is	in	a	

specific	region,	which	is	what	matters.				

	

	

	
Figure	8.	First	Working	KNN	Model	

	

	 15	

Through	more	analysis	of	the	different	drums’	time	and	frequency	responses,	and	musical	

intuition	of	what	typical	drums	sounds	like,	I	generated	the	KNN	graph	shown	in	Figure	9.	

This	is	one	of	the	best	I	obtained.	It	uses	the	peak	frequency,	the	second	highest	frequency,	

and	the	ratio	of	the	max	peak	and	the	last	point.	Other	than	one	or	two	outliers,	the	high	

tom	and	bass	drum	are	extremely	separated,	and	low	tom	and	snare	drum	are	slightly	

separated.	I	tried	to	compensate	for	that	by	using	a	new	feature	that	was	fairly	specific.	The	

feature	was	the	number	of	frequency	peaks	that	were	equal	or	greater	than	half	of	the	

highest	magnitude	peak,	which	represents	spectral	density	in	a	way.	This	is	because	I	

noticed	the	snare	drum	had	a	lot	of	frequency	noise	and	because	of	that	had	a	much	busier	

frequency	spectrum	despite	having	a	similar	first	and	second	peak.	The	final	KNN	is	shown	

in	Figure	10.		The	final	system	implements	the	classification	using	the	peak	frequency,	the	

second	highest	frequency,	and	the	number	of	frequency	peaks	greater	or	equal	to	half	the	

magnitude	of	the	highest	peak.	Many	drum	strikes	mapped	to	the	same	point,	so	I	sized	

each	point	according	to	the	number	of	instances	at	each	point.	It	is	of	course	possible	to	

keep	optimizing	for	the	training	set,	but	that	can	easily	lead	to	over	fitting,	which	I	felt	I	was	

starting	to	do.	By	analyzing	the	specific	drums	in	the	training	set,	and	trying	to	think	of	

features	that	would	fit	that	specific	sound	wave	can	lead	to	results	that	do	not	adapt	well	to	

other	drums.		

	 16	

	
Figure	9.	Second	Working	KNN	Model	

	
Figure	10.	Final	KNN	Model	

50

100

4

150

200

250

300

Pe
ak

 F
re

qu
en

cy

3

350

400

450

Num freq peak >
(mag(peak freq)/2 2

Clustering for Different Drums

900800

second freq

7006005004001 3002001000

Hi tom
Low tom
Bass Drum
Snare

	 17	

	

3.	Results/Discussion	
Overall,	I	was	able	to	obtain	decent	results	that	performed	well	with	a	given	training	and	

testing	set.	These	were	processed	in	Matlab	(not	in	real	time),	but	the	way	each	audio	

signal	is	processed	simulates	a	10ms	sample	to	prove	its	feasibility	on	a	microcontroller.	

	

Training	Set	 Number	of	Samples	

High	Tom	 60	

Low	Tom	 20	

Bass	Drum	 203	

Snare	Drum	 91	

	

The	number	of	samples	here	varies	so	much	because	of	the	way	the	microphone	is	

positioned;	certain	drums	are	louder	than	others,	and	since	each	is	using	the	same	

threshold,	not	all	of	them	are	registered	as	drum	strikes	despite	the	recording	containing	

similar	amounts	of	each	drum.	This	needs	to	be	addressed	somehow.		After	running	them	

through	the	KNN	algorithm	with	K	=	3,	the	resubstitution	loss,	which	is	how	the	training	set	

performs	(error	rate)	on	a	KNN	algorithm,	was	0.058.	A	low	6%	means	that	the	data	has	

separated	the	drums	fairly	well.	

	

Testing	Set	 Total	Samples	

Detected	

Total	Classified	

Correctly	

Accuracy	

High	Tom	 86	 83	 0.965	

Low	Tom	 37	 32	 0.865	

Bass	Drum	 252	 248	 0.984	

Snare	Drum	 145	 124	 0.855	

Average	 520		 487	 0.937	

	

Overall,	these	numbers	show	that	the	system	works	for	the	most	part	and	achieves	

accuracy	beyond	what	I	expected.	In	terms	of	usage	for	exploring	triggers,	this	type	of	

	 18	

accuracy	for	a	first	version	is	a	great	starting	point,	but	still	leaves	a	lot	of	room	for	

improvement.	

	

These	results	can	vary	quite	a	bit	depending	on	a	few	variables	that	are	not	set	in	stone.	

The	main	things	are	the	threshold	that	can	change	how	many	drum	strikes	are	detected,	

the	value	of	K,	which	greatly	affects	the	accuracy	if	the	model	is	not	well	fitted,	and	lastly	

the	features	that	are	chosen	to	create	the	KNN	model.	While	the	features	for	all	drums	are	

similar	at	their	core,	depending	on	the	environment,	tuning	of	the	drums,	volume,	sticks	

that	are	used,	and	many	other	factors,	these	features	may	not	represent	those	particular	

drums	best.	For	this	reason,	this	application	might	be	more	suited	for	a	neural	net	that	

accepts	the	entire	waveform	to	classify	the	drums.		As	well,	computationally	speaking,	KNN	

is	intensive	compare	to	a	simple	neural	network	and	once	the	system	moves	to	a	

microcontroller,	this	could	pose	an	issue.		

	

4.	Conclusion	and	Future	Work	
Overall,	this	project	was	an	interesting	and	successful	exploration	of	wireless	drum	

triggering	using	a	microphone.	The	goal	of	developing	a	cheap,	reliable,	easy	to	setup	

system	was	achieved	in	theory	(Matlab)	and	I	would	have	loved	to	implement	this	on	the	

microcontroller,	but	because	of	a	lack	of	planning	and	unforeseen	difficulties	I	was	unable	

to.	The	accuracy	of	the	system	was	proven	to	be	high	enough	to	use	as	a	musician,	and	

there	are	significant	improvements	that	can	be	made.	

	

The	obvious	next	step	is	to	move	this	over	to	a	microcontroller	so	it	can	actually	trigger	

sounds	in	real	time.	I	have	already	started	that	process.	I	have	the	full	microphone	setup,	

connected	to	a	PIC32	that	also	is	connected	to	a	Teensy	3.2	for	debugging	purposes.	I	

already	have	that	code	sampling	from	the	microphone,	performing	an	envelope	filter,	and	

detecting	and	capturing	10	milliseconds	of	a	drum	strike.	The	next	steps	involve	putting	

that	sample	through	an	FFT	in	fixed	point	so	it	can	execute	it	in	a	few	milliseconds,	and	

then	also	implementing	some	type	of	KNN	or	neural	network	on	the	microcontroller.	This	

	 19	

is	not	too	common	because	of	space	constraints,	but	I’m	confident	there	will	be	enough	

space	because	the	audio	processing	code	is	pretty	memory	efficient.		

	

Other	steps	include	implementing	the	same	functionality	with	two	microphones.	With	this	

type	of	special	locality,	detecting	which	drum	is	played	becomes	much	more	trivial	and	can	

lead	to	accuracies	above	98%.	That	would	be	exceptional	for	even	professional	musicians	

and	could	be	developed	into	a	product.		A	significant	amount	of	work	would	need	to	be	

dedicated	to	choosing	the	right	classification	algorithm	that	can	work	for	various	

environments,	is	not	too	computationally	intensive,	and	is	implementable	on	a	

microcontroller	with	space	restraints.	The	other	issue	is	overlapping	or	simultaneous	drum	

hits.	This	is	probably	solvable	using	two	microphones	and	some	more	frequency	analysis.	

Overall,	this	design	project	has	shown	me	that	a	simple	solution	can	achieve	the	

functionality	of	an	accepted	standard	in	a	much	cheaper	way.	It	as	well	has	inspired	me	to	

try	to	develop	this	into	a	product	because	now	I	am	confident	it	will	work	and	if	I	would	

love	to	use	it,	I	believe	there	will	be	other	drummers	who	would	as	well.	 	

	 20	

Appendix	

Matlab	Code	
%Import samples
hitom_train_o = importdata('longSamp/train/hitom.mp3');
lotom_train_o = importdata('longSamp/train/lotom.mp3');
bass_train_o = importdata('longSamp/train/bass.mp3');
snare_train_o = importdata('longSamp/train/snare1.mp3');

hitom_test_o = importdata('longSamp/test/hitom.mp3');
lotom_test_o = importdata('longSamp/test/lotom.mp3');
bass_test_o = importdata('longSamp/test/bass.mp3');
snare_test_o = importdata('longSamp/test/snare1.mp3');
all_test_o = importdata('longSamp/test/all.mp3');

Freq = 44100;
Freq_d = 5;
Fs = Freq/Freq_d; % 8.8kHz

%downsample Samples
hitom_train = downsample(hitom_train_o.data(:, 1), Freq_d);
lotom_train = downsample(lotom_train_o.data(:, 1), Freq_d);
bass_train = downsample(bass_train_o.data(:, 1), Freq_d);
snare_train = downsample(snare_train_o.data(:, 1), Freq_d);

hitom_test = downsample(hitom_test_o.data(:, 1), Freq_d);
lotom_test = downsample(lotom_test_o.data(:, 1), Freq_d);
bass_test = downsample(bass_test_o.data(:, 1), Freq_d);
snare_test = downsample(snare_test_o.data(:, 1), Freq_d);
all_test = downsample(all_test_o.data(:, 1), Freq_d);

drum_names = {'hitom', 'lotom', 'bass', 'snare'};
drum_train = {hitom_train, lotom_train, bass_train, snare_train};
drum_test = {hitom_test, lotom_test, bass_test, snare_test};

% Set Constants
tiny = 0.3;
threshold = 0.23;

j = 1;
class = "";
knn_x = [];
knn_y= [];

counter = 0;
total = 0;

for j=1:length(drum_train)
 class = drum_names(j);
 testThing = drum_train{j}; % actual sample
 lengthH = round(length(testThing));
 envelope = zeros(1, lengthH);
% envelope1 = zeros(1, lengthH);

 %instantiate feature vectors
 numPeaks = [];
 peakRatio = [];
 peakFreq = [];
 secFreq = [];

	 21	

 numfPeaks = [];
 total = 0;

 % Create envelope Filter
 i = 1;
 while (i < (lengthH))
 envelope(i+1) = (tiny*testThing(i)+ (1.0-tiny)*envelope(i));
% envelope(i+1) = (tiny*abs(testThing(i))+ (1.0-tiny)*envelope(i));
 i = i+1;
 end

 i = 1;

 while (i <= (lengthH))
 if (envelope(i) > threshold && counter <= 0)

 start = i - 15;
 last = i + 65;
% sample = envelope(start:last);
 sample = testThing(start:last);

 % Time Based Features
 [peaks, loc] = findpeaks(sample, 'MinPeakDistance', 10);
 numPeaks = [numPeaks, length(peaks)];
 [sortedPeaks, sortedPeakI] = sort(peaks, 'descend');
 peek = (sample(end)/sortedPeaks(1));
 peakRatio = [peakRatio, peek];

 % Frequency Based Features
 L = length(sample);
 NFFT = 2^nextpow2(L); % Next power of 2 from length of myRecording
 Y = fft(sample,NFFT)/L;
 f = Fs/2*linspace(0,1,NFFT/2+1);
 max_fft = max(abs(Y(1:round(NFFT/2+1))));
 [fpeaks, floc] = findpeaks(abs(Y(1:round(NFFT/2+1))));
 [sortedfPeaks, sortedfPeakI] = sort(fpeaks, 'descend');
 peakFreq = [peakFreq, f(floc(sortedfPeakI(1)))];
 secFreq = [secFreq, f(floc(sortedfPeakI(2)))];
 [nfpeaks, nfloc] = findpeaks(abs(Y(1:round(NFFT/2+1))), 'MinPeakHeight',
max_fft/2);
 numfPeaks = [numfPeaks, length(nfpeaks)];

 % graphing for debuggin
% figure();
%
% subplot(2,1,1)
% plot ((1:length(sample))/Fs, sample);
% subplot (2, 1, 2);
% plot(f,2*abs(Y(1:NFFT/2+1)))
% title(["thing " num2str(i)]);
% end

 % add feature vector to KNN data
 knn_x = [knn_x; [peek, f(floc(sortedfPeakI(1))),
f(floc(sortedfPeakI(2)))]];
 knn_y = [knn_y, class];
 total = total + 1;
 counter = 100;
 envelope(i) = 0;
 end
 if (counter > 0)
 counter = counter - 1;
 end
 i = i +1;

	 22	

 end

 disp (['total training for ' drum_names{j} ' = ' num2str(total)]);
 xx = peakRatio;
 yy = secFreq;
 zz = peakFreq;
 figure(70)
% scatter3(xx, yy, zz, 60, 'filled');

 %Engine
 [uxy, jnk, idx] = unique([xx.',yy.', zz.'],'rows');
 szscale = histc(idx,unique(idx));
 %Plot Scale of 25 and stars
 scatter3(uxy(:,1),uxy(:,2), uxy(:,3),'o', 'filled', 'sizedata',szscale*25)

 title("Clustering for Different Drums ");
 xlabel('Peak between max and last peak');
 ylabel('Second Frequency peak ');
 zlabel('Peak Frequency ');
 legend({'Hi tom', 'Low tom', 'Bass Drum', 'Snare'}, 'Fontsize', 18);
 hold all;

end

%KNN Model
mdl = fitcknn(knn_x, knn_y);
mdl.NumNeighbors = 3;
rloss = resubLoss(mdl);

% Training

for j=1:length(drum_test)
 class = drum_names(j);
 testThing = drum_test{j};
 lengthH = round(length(testThing));
 envelope = zeros(1, lengthH);

 numPeaks = [];
 peakRatio = [];
 peakFreq = [];
 secFreq = [];
 numfPeaks = [];
 correct = 0;
total = 0;

 i = 1;
 while (i < (lengthH))
 envelope(i+1) = (tiny*testThing(i)+ (1.0-tiny)*envelope(i));
% envelope(i+1) = (tiny*abs(testThing(i))+ (1.0-tiny)*envelope(i));
 i = i+1;
 end

 i = 1;

 while (i <= (lengthH))
 if (envelope(i) > threshold && counter <= 0)
 start = i - 15;
 last = i + 65;
% sample = envelope(start:last);
 sample = testThing(start:last);
 [peaks, loc] = findpeaks(sample, 'MinPeakDistance', 10);

	 23	

 numPeaks = [numPeaks, length(peaks)];
 [sortedPeaks, sortedPeakI] = sort(peaks, 'descend');
 peek = (sample(end)/sortedPeaks(1));
 peakRatio = [peakRatio, peek];
 L = length(sample);
 NFFT = 256;%2^nextpow2(L); % Next power of 2 from length of myRecording
 Y = fft(sample,NFFT)/L;
 f = Fs/2*linspace(0,1,NFFT/2+1);
 max_fft = max(abs(Y(1:round(NFFT/2+1))));
 [fpeaks, floc] = findpeaks(abs(Y(1:round(NFFT/2+1))));
 [sortedfPeaks, sortedfPeakI] = sort(fpeaks, 'descend');
 peakFreq = [peakFreq, f(floc(sortedfPeakI(1)))];
 secFreq = [secFreq, f(floc(sortedfPeakI(2)))];
 [nfpeaks, nfloc] = findpeaks(abs(Y(1:round(NFFT/2+1))), 'MinPeakHeight',
max_fft/2);
 numfPeaks = [numfPeaks, length(nfpeaks)];

% if (i > (22600/(1/(Fs/1000))) && i < (23400/(1/(Fs/1000))))
% figure();
%
% subplot(2,1,1)
% plot ((1:length(sample))/Fs, sample);
% subplot (2, 1, 2);
% plot(f,2*abs(Y(1:NFFT/2+1)))
% title(["thing " num2str(i)]);
% end

 sampleData = [peek, f(floc(sortedfPeakI(1))), f(floc(sortedfPeakI(2)))];
 drumClass = predict(mdl,sampleData);
 if (strcmp(drumClass{1},drum_names{j}))
 correct = correct +1;
 end
 total = total + 1;
 counter = 100;
 envelope(i) = 0;
 end
 if (counter > 0)
 counter = counter - 1;
 end
 i = i +1;

 end
 disp(['For ' drum_names{j} ' got ' num2str(correct) '/' num2str(total) '='
num2str(correct/total)])

end
	

