
SIMULTANEOUS LOCALIZATION AND

MAPPING ON A QUADCOPTER

Submitted by:

Shaurya Luthra

MEng Field Advisor: Bruce Robert Land

Degree Date: May 2018

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

2 SL2462

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project title: Simultaneous Localization and Mapping on a Quadcopter

Author: Shaurya Luthra

Abstract:

The goal of this MEng Design Project for the School of Electrical and Computer

Engineering was to integrate autonomous navigation and simultaneous localization and

mapping (SLAM) on a custom-built quadcopter. The use of SLAM allows the quadcopter to

not only build maps in real time, but also localize itself in these maps. By doing so, the

quadcopter can eventually gain the ability to navigate indoor, and eventually outdoor,

spaces – mapping down the environment it has seen thus far. By applying a variety of

different aggregation methods to those mappings, the quadcopter system could eventually

be repurposed for a wide variety of uses. By going one step further and integrating

autonomous flight control methods such as optical flow and basic obstacle avoidance, this

project demonstrates the viability of a low-cost mapping solution for various uses such as

search and rescue and security.

3 SL2462

Executive Summary:

For my MEng Design Project for the School of Electrical and Computer Engineering, I

worked on integrating autonomous navigation and simultaneous localization and mapping

(SLAM) on a custom-built quadcopter. The use of SLAM allows the quadcopter to navigate

indoor, and eventually outdoor, spaces – mapping down the environment it has seen thus

far. By applying a variety of different aggregation methods to those mappings, the

quadcopter system could eventually be repurposed for a wide variety of uses. The scope of

this project involved specifically testing and tuning a variety of SLAM algorithms as well as

autonomous flight algorithms – utilizing Intel libraries, as well as custom code – to map an

indoor space. More specifically, in regard to algorithms, this project involved developing

C++ code, that takes in distance data from the Intel Aero’s 3D camera, and uses it for

obstacle avoidance for flight. Using ROS, and OSS Library ORBSLAM2, the final system is

also able to feed in the 3D camera data into the prebuilt SLAM library and achieve real time

mapping and localization. Throughout the past two semesters, this project has gained

significant success. The Intel Aero quadcopter is currently able hover autonomously using

optical flow and move down a hallway. While fully autonomous flight was not yet achieved

due to safety concerns and limitations of sensor data, the stable hover from the quadcopter

allowed manual indoor navigation while running the custom tuned SLAM algorithm,

proving that the end result of the project is not only viable but completely attainable. While

the project in of itself might not be completely novel – the uses intended are. SLAM running

on autonomous quadcopter can be repurposed to areas where mounted cameras/security

personnel are lacking and could help watch over large areas without human intervention.

Furthermore, the CV/3D mapping work could be used for search and rescue work in a

variety of situations from terror attacks to natural disasters – aiding first responders in

reaching victims quickly and efficiently.

4 SL2462

Table of Contents

Abstract .. 2

Executive Summary: .. 3

Introduction: ... 5

Alternative Solutions: .. 5

Design and Implementation: .. 6

Initial Decision Process: ..6

Final Design: ..8

Architecture:..8

Hardware Design: ..9

Software Design: .. 11

Design Conclusion: ... 14

Results: ... 15

Acknowledgements: .. 17

Appendix: .. 18

Initial Setup: .. 18

Setup Ubuntu: ... 19

Setup VNC: .. 20

Install Robotic Operating System (ROS): ... 20

Install SLAM: .. 21

Running SLAM: .. 22

Setup PX4 Environment on Local Computer: ... 26

Setup Optical Flow: .. 26

Setup Dronecore: ... 27

5 SL2462

Introduction:

With an ever-growing world with an increasing number of terror attacks and

natural disasters, it is becoming more important now than ever before to be able to find

survivors and victims in different areas as quickly as possible. Furthermore, in areas

dominated by large open natural landscapes, and dangerous features like gorges and cliffs,

it is of upmost importance to be able to find missing persons as soon as possible.

Unfortunately, in the situations of terror attacks, natural disasters, and missing persons, it

can sometimes take hours or even days to find people in unknown or ravaged terrain. One

of the main reasons this is the case is that the ability to quickly analyze and map out a

terrain to either plan a rescue route, or to just assess damage, is usually limited to very

technologically advanced groups who have a lot of training and financial resources in hand.

My project aims to resolve this issue by providing a relatively low cost (~$1100) solution

that would allow more police departments, and rescue organizations, the real-time

information they need to save lives. By using an autonomous quadcopter with mapping

abilities, I created the basis for a system that can be released over ravaged or unknown

terrain and provide insight to those who would need it in saving lives. The idea for this

project came from a very big event in my life where I lost one of my best friends in Cornell’s

gorges, and it took rescue workers days to find him after he went missing. After realizing

what real time maps could do for search and rescue I decided to pursue this project in place

of another. This document will go through my design writeup for my MEng project,

discussing the possible mapping solutions that were evaluated before arriving at the final

design, as well as the final design of my project. The report’s appendix also contains a user

guide and a full walkthrough on getting the system to its current working state.

Alternative Solutions:

 Before starting this project, I had to consider the possible solutions to my end goal –

autonomous mapping in order to aid first responders in search and rescue situations.

Looking into the possible platforms to map, I realized there were only two main choices, a

ground vehicle, or a quadcopter – each with their own pros and cons. The benefits of a

6 SL2462

ground vehicle were low risk in regard to crashing, a stable platform to do sensing off of,

and a basic background in vehicle design from my time on Cornell Baja’s racing team. The

benefits of a quadcopter were fewer obstacles (in air), more versatility (terrain), and

quadcopters being a continuously growing field of research. After thinking more about

what I hoped to see out of the project, I ended up choosing a quadcopter as the platform

upon which I would develop my autonomous mapping solution. By choosing a quadcopter,

I ended up taking on a much more difficult controls project but opened the opportunity for

this project to grow into something bigger than a two semester MEng project. With a

quadcopter, the work of this project could be adapted for a variety of different uses, as well

as regions, from search and rescue in a building collapse to security for an estate – the

versatility and clear industry growth of quadcopters in the near future made the selection

very straight forward.

Design and Implementation:

Initial Decision Process:

Throughout the course of this project I had to make many design choices prior to

settling on my final design. There were several points I had to consider, from which SLAM

algorithm would best suit my needs to which quadcopter I should use given the scope of

the project. Beyond this I also had to figure out the best mode of integration – combining

the autonomous flight code, the Intel RealSense camera feed, SLAM, and the live

quadcopter feed, into one cohesive solution

 One of the first and most important decisions I had to make during the course of this

project was which quadcopter to use as my base platform. During my research I came

across two main platforms – the Qualcomm SnapDragon Flight starter kit and the Intel

Aero RTF. While both are very powerful embedded Linux based quadcopters – for nearly

the same price, the Intel aero also offered a full Intel RealSense system and a prebuilt setup

with an integrated flight controller, co-processor, and FPGA based peripheral bus. Given

the time frame of my project, and the amount of funds available, I decided upon the Intel

7 SL2462

Aero RTF – as it would allow me to fast track development on SLAM and autonomous

navigation and be able to flight test right out of the box. More about the Intel Aero RTF can

be seen in the hardware design section below.

 After deciding on the actual platform, the next set of choices I had to look into was

which SLAM algorithm to use. In deciding which algorithm to use I first looked at how they

might integrate with the Intel Aero RealSense camera system. Looking through the

RealSense libraries, I realized that a ROS Node could publish the camera stream to a ROS

topic – which would mean I could use any algorithm that could stream in ROS formatted

depth data. Upon doing more research I settled on using either RTabMap or ORBSLAM2,

both of which are ROS ready SLAM solutions. In the end I ended up using ORBSLAM2 solely

as a result of field testing which will be discussed below.

The last major decision that I had to look into was the software platform upon which

to develop. Knowing that the Intel Aero natively runs the PX4 autopilot stack – I found that

I could use either C++ (Dronecore) or Python (Dronekit), both of which are compatible

with the Intel Aero’s native flight stack. Looking into both platforms more, and how they

might eventually integrate into the final solution, I found that using Dronecore would be

the best option to start with – while it is newer than Dronekit and less developed, it is

written in C++. This made it eaisly compatible with the Intel RealSense libraries, including

the Intel collision avoidance library.

My final design consisted of the Intel Aero RTF that uses ORBSLAM2 and Dronecore

libraries. My design approach based on this final setup is outlined below.

8 SL2462

Final Design:

This project can be broken down into two main parts – software and hardware, each

of which was used in order to enable both SLAM and autonomous flight. The purpose of

this section is to go over the overall system architecture, and then discuss the hardware

and software design and how they both contribute to SLAM, as well as autonomous flight.

Architecture:

The above diagram illustrates the final design architecture discussed earlier in this

section. The main development platform was the Intel Aero RTF’s co-processor, a quad-

Ubuntu Linux Running on Intel Aero Compute
Board

QGroundControl Running
on calibration computer

Intel R200 RealSense
Camera

PX4 Running on Intel
Aero FC

PX4Flow

ORBSLAM2

DroneCore SW

MavLink
Proxy

Local Port 5760
Wifi

I2C

Serial Port

ROS
Node

Intel Aero RGB Camera

9 SL2462

core Intel x7 processor running Ubuntu – note the processor comes with Yocto linux, but

Ubuntu was installed (details in appendix) in order to speed along the development

process. This processor ran a MavLink proxy which communicated with the PX4 flight

controller, the Dronecore autonomous flight software, ORBSLAM2, and ROS. Using these

various software tools, the platform interacted with the Intel R200 stereo camera and RGB

camera which fed in data used for mapping and localization. Finally, the PX4Flow optical

flow chip communicated with the co-processor over I2C and allowed the quadcopter to

have an autonomous and stable hover in a GPS denied environment indoors.

Hardware Design:

While this project in of itself was very reliant on hardware it did not involve a lot of

independent hardware design. The hardware platform itself was the Intel Aero RTF

Quadcopter seen below with specifications:

10 SL2462

Using the above platform allowed for flight capabilities right out of the box, as well

as fairly straightforward hardware/software development.

The only other hardware that went into this project was the optical flow setup. The

optical flow setup is what allows the quadcopter to hover stably at a given altitude without

human input. During the project I used two different setups for stable flight. The first setup

was using the Intel Aero’s built in downward facing camera and a Garmin LIDAR v3

rangefinder. Using this setup, I was able to achieve a stable flight height, but quickly

realized the wide FOV Intel camera was not particularly suitable to visual odometry.

Instead I switched over the PX4Flow optical flow chip that uses sonar and a much higher

resolution and focused camera to achieve a stable hover. The chip, seen below had to have

its firmware modified for indoor use (expanded on here).

11 SL2462

Software Design:

A vast majority of this project involved software integration, from working with the

PX4Flow optical flow chip, to setting up ROS. The details of the software work in this

project are outlined below.

In order to first get the Intel Aero RTF to a stage where I could develop on it, I had to

configure everything from the operating system to the installed drivers. While there are a

lot of small details, I will focus on the overall setup for this section, with references to the

appendix for specifics.

Setting up the Intel Aero involved a series of steps. After first booting it up and

confirming it was working out of the box I upgraded the BIOS, the flight controller, and the

FPGA expansion board. After doing this I confirmed flight capabilities once again. Following

these upgrades, I installed Ubuntu Linux on the x7 processor instead of Yocto Linux. I did

this so that I could better develop – as Ubuntu can have packages installed without

recompiling the entire kernel, whereas Yocto cannot. Following the installation of Ubuntu, I

installed the Intel Aero System, Intel RealSense libraries (including the ROS libraries), the

Intel Aero Optical Flow software, and finally both RTabMap as well as ORBSLAM2. The step

by step instructions can be found in the appendix here.

After setting up the system as above, I tested the individual components, testing

various ROS Nodes, and streaming depth maps to ensure that the necessary components

were functioning properly (appendix).

After confirming overall system functionality, I worked on getting SLAM up and

running. In doing so I tested both RTAB-Map and ORBSLAM2. In my tests I found that by

using RTAB-Map I was able to make some fairly decent maps, but could not do so when

moving the quadcopter at a reasonable rate. With ORBSLAM2, however, I could build maps

and localize the quadcopter at speeds that were reasonable when considering my overall

search and rescue use case (walking speed in a hallway). With these tests complete I

12 SL2462

worked on using ORBSLAM2 and better integrating the open source SLAM algorithm with

the RealSense R200 camera.

While the ORBSLAM2 mapping software was already developed and put on GitHub

for opensource use, it was not developed with the Intel Aero platform in mind. A good

portion of my time went into tuning the parameters that allowed it to best use the data

from the Intel Aero R200. The parameters, shown below, were found in one of two ways.

First a custom written script was written to find the camera’s intrinsic parameters –

calculating various fields based on these values – and second, were hand tuned through

repeated testing.

Camera calibration parameters:
Camera.fx: 613.305
Camera.fy: 620.215
Camera.cx: 325.150
Camera.cy: 246.264

Camera distortion parameters:
Camera.k1: -0.069
Camera.k2: 0.079
Camera.p1: -0.0001
Camera.p2: 0.003
Camera.k3: 0.0

Camera.width: 640
Camera.height: 480

Camera.fps: 30.0

IR projector baseline times fx (approx.):
Camera.bf: 36.325

Color order of the images:
Camera.RGB: 1

Close/Far threshold:
ThDepth: 50.0
DepthMapFactor: 1000.0

ORB Parameters:

ORB Extractor: Number of features per
image
ORBextractor.nFeatures: 1000

ORB Extractor: Scale factor between
levels in the scale pyramid
ORBextractor.scaleFactor: 1.2

ORB Extractor: Number of levels in the
scale pyramid
ORBextractor.nLevels: 8

ORB Extractor: Fast threshold
ORBextractor.iniThFAST: 15
ORBextractor.minThFAST: 4

Viewer Parameters:
Viewer.KeyFrameSize: 0.05
Viewer.KeyFrameLineWidth: 1
Viewer.GraphLineWidth: 0.9
Viewer.PointSize: 2
Viewer.CameraSize: 0.08
Viewer.CameraLineWidth: 3
Viewer.ViewpointX: 0
Viewer.ViewpointY: -0.7
Viewer.ViewpointZ: -1.8
Viewer.ViewpointF: 500

13 SL2462

The tuning was done incrementally, modifying individual parameters, and retesting,

until the SLAM program was able to properly map the quadcopter’s surroundings. The

results of the SLAM software can be seen below.

Beyond the above work on SLAM, I spent a majority of my MEng working on getting

autonomous flight up and running. In order to do so I worked with PX4 and Dronecore

developers in order to get optical flow up and running for indoor use, as well as get basic

autonomous flight and collision avoidance scripts up and running (found in appendix)

In order to take a step to full autonomous navigation, I first had to figure out a way

to have the quadcopter hold its position (x, y, and z coordinates) in a GPS denied

environment. Because GPS was out of the question I knew I had to read in sensor data –

while range finders could solve the altitude hold problem, I knew they could not solve any

14 SL2462

translational (x,y) drift. For this reason, I settled on using optical flow. After experimenting

with hardware as described above, my final design included the PX4Flow Optical Flow chip,

which includes both a high res camera for drift, as well as a sonar for altitude hold. After

installing the chip, I realized that my position hold was mediocre at best, with sharp over

corrections and occasional jumps in height. To solve this issue, I ended up recompiling the

PX4Flow firmware and changing certain state variables that better suit indoor use – using

weaker thresholding to accept weaker pattern matching (due to less features and worse

lighting indoors). I also modified the PX4Flow driver to scale up the integration_timespan

which appears to make the corrections less aggressive and more suitable for indoor use

(this has no mathematical proof and was achieved in trial and testing). Setting up PX4Flow

can be found in the appendix.

The final bit of software work in this project went into developing autonomous

control scripts. For this work I took an incremental approach, but unfortunately, I was not

able to achieve full autonomy by this report’s writing – for both safety and timeline

reasons.

The autonomous software was written in C++ and is a combination of the Intel

RealSense and collision avoidance libraries, combined with Dronecore for basic flight

control. The scripts seen in the appendix were created by utilizing a variety of sample

scripts provided in the various repository’s websites.

Design Conclusion:

During the course of this project I was able to successfully implement mapping on a

quadcopter and have the quadcopter hover autonomously in a position hold using optical

flow. While full autonomy was not achieved, this project successfully creates a platform

upon which future work can occur.

15 SL2462

Results:

 In my original proposal I set out to create a fully autonomous mapping system

running on a quadcopter. During the course of this project, I was able to achieve a majority

of my goals, as seen below I was able to achieve autonomous position hold, as well as real

time SLAM.

16 SL2462

During the course of my testing I was also able to make some quantitative

measurements outlined in the tables below:

Quadcopter Results

Flight Time out of box 20 minutes

Flight Time after running Optical Flow and

ORBSLAM2

14 minutes

Controllable airspeed indoors pre optical

flow

~2.16 ft/sec

Controllable airspeed indoors post optical

flow

~.75 ft/sec

Drift velocity pre optical flow ~.3 ft/sec

Drift velocity post optical flow ~.03ft/sec (but self corrects immediately)

SLAM Results

RTAB-Map mapping speed (translational

movement)

~.25 ft/sec

ORBSLAM2 mapping speed (translational

movement)

~1.5 ft/sec

RTAB-Map mapping speed (angular

movement)

NA (failed quickly after angular movement)

ORBSLAM2 mapping speed (angular

movement)

~.78 rads/sec

ORBSLAM2 Reproducibility ~90% reproducible maps (approximately

10% of features come in and out of map on

subsequent trials – black shiny objects

confuse the Intel R200 camera)

17 SL2462

While I was not able to complete everything that I set out to do, given the scope of the

system, and the time limitations of an MEng project, a fair amount of success was achieved,

and can definitely be built upon in the future. The next steps of this project involve

autonomous take-off, which was the main delay in fully autonomous flight. The reason

autonomous flight had to be postponed was that signal noise made autonomous flight, and

more specifically autonomous takeoff, very dangerous. Also, at the time of writing, the

Dronecore software platform is currently incapable of supporting optical flow position

mode out of the box. After the sensor data is cleaned up, and the Dronecore api is updated,

testing of the autonomous scripts can be completed!

Overall, I was able to achieve a vast majority of what I set out to do. Along the way I was

able to establish a proof of concept that illustrates sensor technology is at the point where

autonomous aerial navigation is becoming cost effective, however, fully autonomous flight

still requires more sensors than the base Aero RTF and PX4Flow board can offer.

Acknowledgements:

I would like to thank my advisor Bruce Land for not only supporting my project but

also funding it when alternative funding fell through. I would also like to thank Kirstin H.

Petersen for helping me find uncommon parts used to interface with the Intel Aero RTF

Quadcopter even when my project was independent of her group. Finally, I would like to

thank ECE Squad – Tim Braren, Dhruv Gaba, Patrick Wang, Rohan Ghosh, Ryan de Freitas

Bart, and Aalaap Narasipura, for helping me work my hardest, and obtain my Master of

Engineering in Electrical and Computer Engineering.

18 SL2462

Appendix:

Initial Setup:
- Flashing Intel Aero Linux Distribution

o Download image at
▪ https://downloadcenter.intel.com/download/26389/UAV-

installation-files-for-Intel-Aero-Platform?v=t
o Easy method: For Linux, Windows and MacOS you can use Etcher.

▪ Insert the removable/USB disk to the windows machine (it will be
formatted)

▪ Launch Etcher
▪ Select the .iso file, the USB drive and click on the "Flash" button

o With HDMI Screen connected
▪ Wait for the image to be written and verified
▪ shut down Intel Aero (unplug-wait 5s-replug)

▪ press ESC to enter the BIOS

▪ select boot from USB key

▪ when booting from USB key, select "install"

- Update BIOS:
o download the latest BIOS from the Intel Download Center [link] and copy

onto the Aero disk space.
o To install, first remove the previous version (v1.00.13) and then install the

latest (v1.00.16)
▪ rpm -ev aero-bios-01.00.13-r1.corei7_64
▪ rpm -i aero-bios-01.00.16-r1.corei7_64.rpm
▪ aero-bios-update

- Flash FPGA
o Type:

▪ cd /etc/fpga/
▪ jam -aprogram aero-rtf.jam

- Flash Flight Controller:
o Type:

▪ cd /etc/aerofc/px4/
▪ aerofc-update.sh nuttx-aerofc-v1-default.px4

- Check Install
o Type: aero-get-version.py
o Should see below (or newer)

▪ BIOS_VERSION = Aero-01.00.13
▪ OS_VERSION = Poky Aero (Intel Aero linux distro) v1.6.0 (pyro)
▪ AIRMAP_VERSION = 1.8
▪ FPGA_VERSION = 0xc2
▪ Aero FC Firmware Version = 1.6.5

https://downloadcenter.intel.com/download/26389/UAV-installation-files-for-Intel-Aero-Platform?v=t
https://downloadcenter.intel.com/download/26389/UAV-installation-files-for-Intel-Aero-Platform?v=t
https://etcher.io/
https://downloadcenter.intel.com/download/27399/Intel-Aero-Platform-for-UAVs-Installation-Files?v=t

19 SL2462

- Calibrate according to https://github.com/intel-aero/meta-intel-aero/wiki/02-
Initial-Setup#calibration

- Connect to QGroundControl as stated in following link in order to confirm Aero
connectivity

- Note all instructions can be found at https://github.com/intel-aero/meta-intel-
aero/wiki/02-Initial-Setup

Setup Ubuntu:
- Install Ubuntu

o Download Ubuntu 16.04.3 x64 Desktop
o Create a bootable disk (refer to the Ubuntu documentation)
o Plug Intel Aero to the wall power supply, the USB-OTG adapter, bootable USB

key, hub, keyboard and mouse. Power on
o Type ESC to enter the BIOS
o Select boot manager, select your USB key and press Enter
o Install Ubuntu as you would on a computer
o In terms of options, my preferences are:

▪ I went with a full disk install (erase Yocto and use all space for
Ubuntu)

▪ I do not install third party proprietary software (flash, mp3)
▪ I choose to have my session opening automatically (it has networking

consequences).
- Set up Intel Aero Repo:

o Type:
▪ echo 'deb https://download.01.org/aero/deb xenial main' | sudo tee

/etc/apt/sources.list.d/intel-aero.list
▪ wget -qO - https://download.01.org/aero/deb/intel-aero-deb.key |

sudo apt-key add -
▪ sudo apt-get update
▪ sudo apt-get upgrade
▪ sudo apt-get -y install gstreamer-1.0 libgstreamer-plugins-base1.0-

dev libgstrtspserver-1.0-dev gstreamer1.0-vaapi gstreamer1.0-
plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad
gstreamer1.0-libav ffmpeg v4l-utils python-pip

▪ sudo pip install pymavlink
▪ sudo apt-get -y install aero-system
▪ sudo reboot

- Update BIOS
o sudo aero-bios-update
o sudo reboot

- Flash FPGA
o sudo jam -aprogram /etc/fpga/aero-rtf.jam

- Flash Flight Controller:
o cd /etc/aerofc/px4/

https://github.com/intel-aero/meta-intel-aero/wiki/02-Initial-Setup#calibration
https://github.com/intel-aero/meta-intel-aero/wiki/02-Initial-Setup#calibration
https://github.com/intel-aero/meta-intel-aero/wiki/02-Initial-Setup
https://github.com/intel-aero/meta-intel-aero/wiki/02-Initial-Setup
https://www.ubuntu.com/download/desktop/thank-you?country=US&version=16.04.3&architecture=amd64

20 SL2462

o aerofc-update.sh nuttx-aerofc-v1-default.px4
- Install RealSense SDK:

o Type:
▪ cd
▪ sudo apt-get -y install git libusb-1.0-0-dev pkg-config libgtk-3-dev

libglfw3-dev cmake
▪ git clone -b legacy --single-branch

https://github.com/IntelRealSense/librealsense.git
▪ cd librealsense
▪ mkdir build && cd build
▪ cmake ../ -DBUILD_EXAMPLES=true -

DBUILD_GRAPHICAL_EXAMPLES=true
▪ make
▪ sudo make install

- Enable Optical Flow:
o Type:

▪ systemctl enable aero-optical-flow
▪ systemctl start aero-optical-flow

Setup VNC:
- Follow the steps here:

o https://www.linode.com/docs/applications/remote-desktop/install-vnc-on-
ubuntu-16-04/

- Add Dummy screen according to post by PMLA here:
o https://ubuntuforums.org/showthread.php?s=1d7ec44878f85eedc7376595

b188983b&t=1471785&page=2

Install Robotic Operating System (ROS):
- Install ROS

o Type:
▪ sudo add-apt-repository http://packages.ros.org/ros/ubuntu
▪ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net --recv-

key 0xB01FA116
▪ sudo apt-get update
▪ sudo apt -y install ros-kinetic-desktop-full ros-kinetic-rqt python-

rosinstall ros-kinetic-realsense-camera ros-kinetic-mavros ros-
kinetic-web-video-server ros-kinetic-visp-tracker ros-kinetic-visp-
camera-calibration ros-kinetic-vision-visp ros-kinetic-vision-opencv
ros-kinetic-video-stream-opencv ros-kinetic-uvc-camera ros-kinetic-
usb-cam ros-kinetic-test-mavros ros-kinetic-rviz-visual-tools ros-
kinetic-rostopic ros-kinetic-roslaunch python-rosinstall python-
rosinstall-generator python-wstool build-essential ros-kinetic-pyros
python-rosdep

▪ sudo rosdep init

https://www.linode.com/docs/applications/remote-desktop/install-vnc-on-ubuntu-16-04/
https://www.linode.com/docs/applications/remote-desktop/install-vnc-on-ubuntu-16-04/
https://ubuntuforums.org/showthread.php?s=1d7ec44878f85eedc7376595b188983b&t=1471785&page=2
https://ubuntuforums.org/showthread.php?s=1d7ec44878f85eedc7376595b188983b&t=1471785&page=2

21 SL2462

▪ rosdep update
▪ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
▪ source ~/.bashrc
▪ sudo geographiclib-get-geoids egm96-5

- Launch Camera Node:
o roscore &
o roscd realsense_camera
o roslaunch realsense_camera r200_nodelet_rgbd.launch &

- Test Camera:
o roscd realsense_camera
o rosrun rviz rviz -d rviz/realsense_rgbd_pointcloud.rviz

Install SLAM:
- Install RTAB-Map

o sudo apt-get install ros-kinetic-rtabmap-ros
o export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/ros/kinetic/lib/x86_64-
linux-gnu

- Install ORBSLAM2
o Install Pangolin: https://github.com/stevenlovegrove/Pangolin
o Install OpenCV 3.2

▪ Install dependencies:
• sudo apt-get install --assume-yes build-essential cmake git
• sudo apt-get install --assume-yes pkg-config unzip ffmpeg

qtbase5-dev python-dev python3-dev python-numpy python3-
numpy

• sudo apt-get install --assume-yes libopencv-dev libgtk-3-dev
libdc1394-22 libdc1394-22-dev libjpeg-dev libpng12-dev
libtiff5-dev libjasper-dev

• sudo apt-get install --assume-yes libavcodec-dev libavformat-
dev libswscale-dev libxine2-dev libgstreamer0.10-dev
libgstreamer-plugins-base0.10-dev

• sudo apt-get install --assume-yes libv4l-dev libtbb-dev libfaac-
dev libmp3lame-dev libopencore-amrnb-dev libopencore-
amrwb-dev libtheora-dev

• sudo apt-get install --assume-yes libvorbis-dev libxvidcore-dev
v4l-utils python-vtk

• sudo apt-get install --assume-yes liblapacke-dev libopenblas-
dev checkinstall

• sudo apt-get install --assume-yes libgdal-dev
▪ Download OpenCV:

https://github.com/opencv/opencv/archive/3.2.0.zip
▪ Enter the unpacked directory:

https://github.com/stevenlovegrove/Pangolin
https://github.com/opencv/opencv/archive/3.2.0.zip

22 SL2462

• mkdir build
• cd build/
• cmake -D CMAKE_BUILD_TYPE=RELEASE -D

CMAKE_INSTALL_PREFIX=/usr/local -D FORCE_VTK=ON -D
WITH_TBB=ON -D WITH_V4L=ON -D WITH_QT=ON -D
WITH_OPENGL=ON -D WITH_CUBLAS=ON -D
CUDA_NVCC_FLAGS="-D_FORCE_INLINES" -D WITH_GDAL=ON
-D WITH_XINE=ON -D BUILD_EXAMPLES=ON ..

• make -j $(($(nproc) + 1))
▪ Install using checkmake:

• sudo apt-get install checkinstall
• sudo checkinstall

o Install Eigen3 according to http://eigen.tuxfamily.org
o Make catkin workspace:

▪ mkdir -p ~/catkin_ws/src
▪ cd ~/catkin_ws/src
▪ catkin_init_workspace
▪ cd ~/catkin_ws/
▪ catkin_make

o Install ORBSLAM2
▪ cd ~/catkin_ws/src
▪ git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2
▪ cd ORB_SLAM2
▪ chmod +x build.sh
▪ ./build.sh

o Install ORBSLAM2 ROS Nodes
▪ export

ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:~/catkin_ws/src
/ORB_SLAM2/Examples/ROS

▪ cd ~/catkin_ws/src/ORB_SLAM2
▪ chmod +x build_ros.sh
▪ ./build_ros.sh

Running SLAM:
- Run RTAB_Map

o roscd realsense_camera
o roslaunch realsense_camera r200_nodelet_rgbd.launch &
o roslaunch rtabmap_ros rgbd_mapping.launch rtabmap_args:="--

delete_db_on_start"
depth_registered_topic:=/camera/depth_registered/sw_registered/image_re
ct_raw

- Run ORBSLAM2
o Get Camera Parameters:

▪ cd ~/librealsense/examples

http://eigen.tuxfamily.org/
https://github.com/raulmur/ORB_SLAM2.git%20ORB_SLAM2

23 SL2462

▪ Add this file:

#include<iostream>

#include<stdio.h>

#include <librealsense/rs.hpp>

int main(int argc, char** argv)

{

 rs::context ctx;

 if(ctx.get_device_count() == 0) return EXIT_FAILURE;

 rs::device * dev = ctx.get_device(0);

 dev->enable_stream(rs::stream::depth, 640, 480, rs::format::z16, 30);

 dev->enable_stream(rs::stream::color, 640, 480, rs::format::rgb8, 30);

 dev->start();

 const float scale = dev->get_depth_scale();

 const float rgb_fx = dev->get_stream_intrinsics(rs::stream::color).fx;

 const float rgb_fy = dev->get_stream_intrinsics(rs::stream::color).fy;

 const float rgb_cx = dev->get_stream_intrinsics(rs::stream::color).ppx;

 const float rgb_cy = dev->get_stream_intrinsics(rs::stream::color).ppy;

 const float rgb_k1 = dev->get_stream_intrinsics(rs::stream::color).coeffs[0];

 const float rgb_k2 = dev->get_stream_intrinsics(rs::stream::color).coeffs[1];

 const float rgb_p1 = dev->get_stream_intrinsics(rs::stream::color).coeffs[2];

 const float rgb_p2 = dev->get_stream_intrinsics(rs::stream::color).coeffs[3];

 const float rgb_k3 = dev->get_stream_intrinsics(rs::stream::color).coeffs[4];

 const float baseline = dev->get_extrinsics(rs::stream::depth,

rs::stream::color).translation[0];

 printf("Camera.fx: %.3f\nCamera.fy: %.3f\nCamera.cx: %.3f\nCamera.cy: %.3f\n\n",

 rgb_fx, rgb_fy, rgb_cx, rgb_cy);

 printf("Camera.k1: %.3f\nCamera.k2: %.3f\nCamera.p1: %.3f\nCamera.p2:

%.3f\nCamera.k3: %.3f\n\n",

 rgb_k1, rgb_k2, rgb_p1, rgb_p2, rgb_k3);

 printf("Camera.bf: %.3f\nDepthMapFactor: %.3f\n", fabs(baseline*rgb_fx),

1/scale);

 return 0;

}

▪ Add this to the CMakeLists file:
• add_executable(find_params find_params.cpp)

target_link_libraries(find_params ${DEPENDENCIES})
▪ type cd ../build
▪ type

• cmake ../ -DBUILD_EXAMPLES=true -
DBUILD_GRAPHICAL_EXAMPLES=true

• make
• sudo make install

24 SL2462

▪ Run parameter script:
• ./find_params

▪ Save parameters above into YAML file as shown here:

%YAML:1.0

Camera Parameters. Adjust them!

Camera calibration parameters (OpenCV)

Camera.fx: 613.305

Camera.fy: 620.215

Camera.cx: 325.150

Camera.cy: 246.264

Camera distortion paremeters (OpenCV) --

Camera.k1: -0.069

Camera.k2: 0.079

Camera.p1: -0.0001

Camera.p2: 0.003

Camera.k3: 0.0

Camera.width: 640

Camera.height: 480

Camera frames per second

Camera.fps: 30.0

IR projector baseline times fx (aprox.)

Camera.bf: 36.325

Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)

Camera.RGB: 1

Close/Far threshold. Baseline times.

ThDepth: 50.0

Deptmap values factor

DepthMapFactor: 1000.0

#---

ORB Parameters

#---

ORB Extractor: Number of features per image

ORBextractor.nFeatures: 1000

ORB Extractor: Scale factor between levels in the scale pyramid

25 SL2462

ORBextractor.scaleFactor: 1.2

ORB Extractor: Number of levels in the scale pyramid

ORBextractor.nLevels: 8

ORB Extractor: Fast threshold

Image is divided in a grid. At each cell FAST are extracted imposing a minimum

response.

Firstly we impose iniThFAST. If no corners are detected we impose a lower value

minThFAST

You can lower these values if your images have low contrast

ORBextractor.iniThFAST: 20

ORBextractor.minThFAST: 7

#---

Viewer Parameters

#---

Viewer.KeyFrameSize: 0.05

Viewer.KeyFrameLineWidth: 1

Viewer.GraphLineWidth: 0.9

Viewer.PointSize: 2

Viewer.CameraSize: 0.08

Viewer.CameraLineWidth: 3

Viewer.ViewpointX: 0

Viewer.ViewpointY: -0.7

Viewer.ViewpointZ: -1.8

Viewer.ViewpointF: 500

o After saving above YAML file,
o roscd realsense_camera
o roslaunch realsense_camera r200_nodelet_rgbd.launch &
o rosrun ORB_SLAM2 RGBD {path}/ORB_SLAM2/Vocabulary/ORBvoc.txt

{path}/RealSense.yaml
/camera/depth_registered/image_raw:=/camera/depth/image_raw

o Note in above we remap a depth topic because ORBSLAM2 uses a different
topic then the Intel node publishes

26 SL2462

Output should look as follows:

Setup PX4 Environment on Local Computer:
- Follow steps here: https://dev.px4.io/en/setup/getting_started.html

o Initial setup
o Toolchain installation
o Building the code

Setup Optical Flow:
- For Lidar V3 follow:

o Install Lidar V3:
▪ https://docs.px4.io/en/flight_controller/intel_aero.html

o in QGroundControl change these parameters:
▪ EKF2_AID_MASK = 3 (use GPS + use optical flow)
▪ EKF2_HGT_MODE = 2 (range sensor)

o inside of an Aero terminal run:
▪ systemctl start aero-optical-flow.service
▪ change start to enable if you want it to run at every boot

- For PX4Flow
o Follow steps here under image quality and output (Note you need

QGroundControl 3.1.3 or earlier):
▪ https://pixhawk.org/modules/px4flow

o Modify PX4Flow firmware:
▪ Download firmware from https://github.com/PX4/Flow
▪ Modify lines in Flow/src/modules/flow/settings.c

// global_data.param[PARAM_BOTTOM_FLOW_VALUE_THRESHOLD] = 8 * 8 * 20;

 global_data.param[PARAM_BOTTOM_FLOW_VALUE_THRESHOLD] = 5000; // threshold is

irrelevant with this value

 strcpy(global_data.param_name[PARAM_BOTTOM_FLOW_VALUE_THRESHOLD],

"BFLOW_V_THLD");

 global_data.param_access[PARAM_BOTTOM_FLOW_VALUE_THRESHOLD] = READ_WRITE;

// global_data.param[PARAM_BOTTOM_FLOW_FEATURE_THRESHOLD] = 100;

 global_data.param[PARAM_BOTTOM_FLOW_FEATURE_THRESHOLD] = 40;

https://dev.px4.io/en/setup/getting_started.html
https://docs.px4.io/en/flight_controller/intel_aero.html
https://pixhawk.org/modules/px4flow
https://github.com/PX4/Flow

27 SL2462

 strcpy(global_data.param_name[PARAM_BOTTOM_FLOW_FEATURE_THRESHOLD],

"BFLOW_F_THLD");

 global_data.param_access[PARAM_BOTTOM_FLOW_FEATURE_THRESHOLD] = READ_WRITE;

▪ Build the PX4Flow firmware using:

• make archives - this needs to be done only once
• make

▪ Copy firmware from: Flow/Build/px4flow-v1_default.build/firmware.px4
to known location

▪ Update firmware to new firmware as done previously through
QGroundControl

o Modify PX4 Firmware:
▪ Download from: https://github.com/PX4/Firmware
▪ To line 682 in Firmware/ROMFS/px4fmu_common/init.d/rcS add

if ver hwcmp AEROFC_V1
then
 px4flow start &
fi

▪ In Firmware/cmake/configs/nuttx_aerofc-v1_default.cmake add
• drivers/px4flow

▪ In Firmware/src/drivers/px4flow/px4flow.cpp change lines
• report.integration_timespan = 1.1* f_integral.integration_timespan

▪ Make PX4 Firmware using steps here for nuttx boards (aero-rtf)
• https://dev.px4.io/en/setup/building_px4.html

o Copy firmware from build folder to Aero RTF
o Update firmware using same method in Ubuntu setup but with new firmware

instead of old flight controller firmware
o Connect PX4Flow to Intel Aero FC and setup according to

http://www.instructables.com/id/Intel-Aero-Drone-Altitude-and-Position-
Hold-Using-/

▪ ONLY FOLLOW STEPS 7-9

Setup Dronecore:
- On the Aero RTF follow these steps to install Dronecore on a Linux Machine:

o https://docs.dronecore.io/en/contributing/build.html
- Run and build the Takeoff and land example (OUTSIDE) as described here:

o https://docs.dronecore.io/en/examples/#trying_the_examples
- Should see an output as shown here:

o https://docs.dronecore.io/en/examples/takeoff_and_land.html
- Test custom script below, create file and build and run as an example as stated here:

o https://docs.dronecore.io/en/guide/toolchain.html

https://dev.px4.io/en/setup/building_px4.html
http://www.instructables.com/id/Intel-Aero-Drone-Altitude-and-Position-Hold-Using-/
http://www.instructables.com/id/Intel-Aero-Drone-Altitude-and-Position-Hold-Using-/
https://docs.dronecore.io/en/contributing/build.html
https://docs.dronecore.io/en/examples/#trying_the_examples
https://docs.dronecore.io/en/examples/takeoff_and_land.html

28 SL2462

//

// Simple example to demonstrate how to use DroneCore.

//

// Author: Julian Oes <julian@oes.ch>

#include <chrono>

#include <cstdint>

#include <dronecore/action.h>

#include <dronecore/dronecore.h>

#include <dronecore/telemetry.h>

#include <dronecore/offboard.h>

#include <iostream>

#include <thread>

#include <iostream>

#include <memory>

#include <vector>

#include <coav/coav.hh>

#include "coav-control.hh"

#ifdef WITH_VDEBUG

#include "visual.hh"

#endif

using namespace dronecore;

using namespace std::this_thread;

using namespace std::chrono;

using namespace std;

#define ERROR_CONSOLE_TEXT "\033[31m" //Turn text on console red

#define TELEMETRY_CONSOLE_TEXT "\033[34m" //Turn text on console blue

#define NORMAL_CONSOLE_TEXT "\033[0m" //Restore normal console colour

void usage(std::string arg);

int main(int argc, char **argv)

{

 shared_ptr<MavQuadCopter> vehicle = opts.port ?

 std::make_shared<MavQuadCopter>(opts.port) : std::make_shared<MavQuadCopter>();

 shared_ptr<DepthCamera> sensor;

 sensor = make_shared<RealSenseCamera>(640, 480, 30);

 shared_ptr<Detector> detector;

 detector = make_shared<DepthImageObstacleDetector>(5.0);

 shared_ptr<CollisionAvoidanceStrategy<MavQuadCopter>> avoidance;

 avoidance = make_shared<QuadCopterStopAvoidance>(vehicle);

 DroneCore dc;

 std::string connection_url;

29 SL2462

 ConnectionResult connection_result;

 bool discovered_system = false;

 if (argc == 1) {

 usage(argv[0]);

 return 1;

 } else {

 connection_url = argv[1];

 connection_result = dc.add_any_connection(connection_url);

 }

 if (connection_result != ConnectionResult::SUCCESS) {

 std::cout << ERROR_CONSOLE_TEXT << "Connection failed: "

 << connection_result_str(connection_result)

 << NORMAL_CONSOLE_TEXT << std::endl;

 return 1;

 }

 std::cout << "Waiting to discover system..." << std::endl;

 dc.register_on_discover([&discovered_system](uint64_t uuid) {

 std::cout << "Discovered system with UUID: " << uuid << std::endl;

 discovered_system = true;

 });

 // We usually receive heartbeats at 1Hz, therefore we should find a system after around 2

seconds.

 sleep_for(seconds(2));

 if (!discovered_system) {

 std::cout << ERROR_CONSOLE_TEXT << "No system found, exiting." << NORMAL_CONSOLE_TEXT <<

std::endl;

 return 1;

 }

 // We don't need to specify the UUID if it's only one system anyway.

 // If there were multiple, we could specify it with:

 // dc.system(uint64_t uuid);

 System &system = dc.system();

 auto telemetry = std::make_shared<Telemetry>(system);

 auto action = std::make_shared<Action>(system);

 // We want to listen to the altitude of the drone at 1 Hz.

 const Telemetry::Result set_rate_result = telemetry->set_rate_position(1.0);

 if (set_rate_result != Telemetry::Result::SUCCESS) {

 std::cout << ERROR_CONSOLE_TEXT << "Setting rate failed:" << Telemetry::result_str(

 set_rate_result) << NORMAL_CONSOLE_TEXT << std::endl;

 return 1;

 }

 // Set up callback to monitor altitude while the vehicle is in flight

 telemetry->position_async([](Telemetry::Position position) {

 std::cout << TELEMETRY_CONSOLE_TEXT // set to blue

 << "Altitude: " << position.relative_altitude_m << " m"

30 SL2462

 << NORMAL_CONSOLE_TEXT // set to default color again

 << std::endl;

 });

 // Check if vehicle is ready to arm

 while (telemetry->health_all_ok() != true) {

 std::cout << "Vehicle is getting ready to arm" << std::endl;

 sleep_for(seconds(1));

 }

 // Arm vehicle

 std::cout << "Arming..." << std::endl;

 const ActionResult arm_result = action->arm();

 if (arm_result != ActionResult::SUCCESS) {

 std::cout << ERROR_CONSOLE_TEXT << "Arming failed:" << action_result_str(

 arm_result) << NORMAL_CONSOLE_TEXT << std::endl;

 return 1;

 }

 action->set_takeoff_altitude(1.0)

 // Take off

 std::cout << "Taking off..." << std::endl;

 const ActionResult takeoff_result = action->takeoff_async();

 if (takeoff_result != ActionResult::SUCCESS) {

 std::cout << ERROR_CONSOLE_TEXT << "Takeoff failed:" << action_result_str(

 takeoff_result) << NORMAL_CONSOLE_TEXT << std::endl;

 return 1;

 }

 auto offboard = std::make_shared<Offboard>(system);

 offboard->set_velocity_body({0.0f, 0.0f, 0.0f, 0.0f});

 Offboard::Result offboard_result = offboard->start();

 if (result != Offboard::Result::SUCCESS) {

 std::cerr << "Offboard::start() failed: "

 << Offboard::result_str(offboard_result) << std::endl;

 }

 while(!detector->detect(sensor->read())){

 offboard->set_velocity_ned({1.0f, 0.0f, 0.0f, 0.0f});

 }

 offboard->set_velocity_ned({0.0f, 0.0f, 0.0f, 0.0f});

 offboard->stop();

 // Let it hover for a bit before landing again.

 sleep_for(seconds(2));

 std::cout << "Landing..." << std::endl;

 const ActionResult land_result = action->land();

31 SL2462

 if (land_result != ActionResult::SUCCESS) {

 std::cout << ERROR_CONSOLE_TEXT << "Land failed:" << action_result_str(

 land_result) << NORMAL_CONSOLE_TEXT << std::endl;

 return 1;

 }

 // We are relying on auto-disarming but let's keep watching the telemetry for a bit longer.

 sleep_for(seconds(5));

 std::cout << "Finished..." << std::endl;

 return 0;

}

void usage(std::string arg)

{

 std::cout << NORMAL_CONSOLE_TEXT << "Usage : " << arg << " [connection_url]" << std::endl

 << "Connection URL format should be :" << std::endl

 << " For TCP : tcp://[server_host][:server_port]" << std::endl

 << " For UDP : udp://[bind_host][:bind_port]" << std::endl

 << " For Serial : serial:///path/to/serial/dev[:baudrate]" << std::endl;

 std::cout << "Default connection URL is udp://:14540" << std::endl;

}

	Abstract
	Executive Summary:
	Introduction:
	Alternative Solutions:
	Design and Implementation:
	Initial Decision Process:
	Final Design:
	Architecture:
	Hardware Design:
	Software Design:
	Design Conclusion:

	Results:
	Acknowledgements:
	Appendix:
	Initial Setup:
	Setup Ubuntu:
	Setup VNC:
	Install Robotic Operating System (ROS):
	Install SLAM:
	Running SLAM:
	Setup PX4 Environment on Local Computer:
	Setup Optical Flow:
	Setup Dronecore:

