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Abstract: 

We created a power supply with the current and voltage characteristics of a 
thin film solar panel for testing solar-powered devices in bad weather and 
wintertime. The device is best implemented using a 100 W power supply but 
will also work with a 10 W supply. It steps supply voltage down using an 
Arduino-controlled power converter. The Arduino detects the device’s current 
output, calculates the voltage a solar cell would output at that current, and 
adjusts output voltage to match that voltage. This control occurs through a 
servo loop. The sunless solar panel allows users to test solar-powered devices 
regardless of weather conditions.   



Executive Summary 
 

 Solar panels provide optimal power output under full illumination. Their 
performance suffers in cloudy. Since the majority of Cornell University’s school 
year runs during the cloudy season, students designing solar devices would 
benefit from a solar panel simulator, which would enable testing regardless of 
weather conditions, especially during cloudy Ithaca winters. However, such 
devices on the market cost thousands of dollars. We have designed a 10 W 
hardware simulator of a thin-film solar cell to achieve this goal. 

 We designed the system to meet the following requirements: output a 
minimum of 10 W with voltage and current characteristics mimicking those of 
a solar panel; be safe for operation by untrained users; be upgradable to 
output 100 W; be upgradable to include settable controls simulating ambient 
temperature and illumination conditions; be upgradable to display voltage and 
current output; cost at least ten times less than commercially available solar 
simulators; be buildable within a school year. 

  We chose to implement the device with digital control instead of using 
a purely analog circuit. A survey of analog photovoltaic simulator 
implementations showed that it is difficult to scale up power output and 
implement precise I-V characteristic controls in such systems. On the other 
hand, complicated analog systems with sophisticated analog control 
mechanisms would take longer than one academic year to implement and still 
struggle to output high power. The ease of programming control loops using 
microcontrollers sold us on a digital design implementation. 

 Our device uses power electronics to step down voltage from a power 
supply. A current sensor detects the output current, and appropriate circuitry 
filters and amplifies this current signal before it is read by an Arduino 
microcontroller. The Arduino uses the solar cell equation to calculate the 
output voltage of a solar panel based on the measured current. The Arduino 
then adjusts the power converter output to match a solar cell’s voltage and 
repeats the control loop. 

 Our device successfully met the stated objectives. It safely outputs 10 
watts, is inexpensive, and can easily be upgraded to output 100 W and voltage 
and current output readouts. 



The authors contributed equally in carrying out this design project and 
writing the design report. 

 

 

 

 

 

 

 

We dedicate this report to our grandfathers, who never fail to inspire, 
encourage, and teach us to be better. 

  



Design Problem 

 Solar-powered devices must be tested with solar panels. However, solar 
panel performance varies with insolation and temperature, and drops sharply 
in cloudy conditions. Unfortunately, Ithaca and the majority of the 
Northeastern and Northwestern US are notorious for their dreary, gloomy, 
cloudy winter days. These conditions drop solar panel outputs to near-nil for 
much of the year. And low solar panel outputs, in turn, hinder testing solar-
powered devices while testing engineers wait for an optimally sunny day to 
test their wares. This problem is especially frustrating in Cornell’s engineering 
school, which runs during the nine cloudiest months of the year. That students 
cannot create and follow reliable testing timelines only gives stressed students 
more stress. Academic mentors can only recommend patience while students 
wait to get a stable, full-power solar panel output.  

 This project solves the problem of testing solar-powered devices in 
Ithaca’s cloudy conditions. We designed a hardware solar panel simulator to 
enable testing of solar-powered devices by any student at any time.  

 We created the simulator to: 

• Have output current and voltage (I-V) characteristics of a solar panel. 
• Output at least 10 W. 
• Be safe for inexperienced users. 
• Be at least ten times cheaper than commercial alternatives. 
• Be upgradable to a 100 W system with voltage and current readouts and 

controls to simulate changes in ambient temperature and light. 

Design Alternatives 

 The ideal problem solution would be using solar panels. However, solar 
panel performance in Ithaca is unpredictable. Ithaca ranks below the US 
average on the annual number of sunny days. And even on a sunny days, 
clouds can suddenly obscure the sun and disrupt a running experiment. 
Further, changes in ambient temperature alter solar panels’ I-V 
characteristics. These factors make for hourly, daily, and seasonal variations 
in solar panel performance. Therefore, testing with solar panels is a 
suboptimal solution to the current design problem. 

 Commercially available solar panel simulators are another solution to 
testing solar devices in winter. These devices, while reliable, are extremely 
expensive. A 500 W Keysight solar array simulator costs over $6,000 [5]. This 
price is too steep, even though the device our design requirements.  



 While using real solar panels and commercial simulators is not feasible, 
building a custom solar panel simulator certainly is. These simulators come 
with two flavors of control system: analog and digital. Among analog options, 
the simulator described by Blanes and Garrigos directly simulates an ideal 
solar cell equivalent circuit by creating a transistor current source in parallel 
with an array of diodes (Fig. 1) [4]. Controlling the current source output 
corresponds to controlling an irradiance parameter, while altering the parallel 
diode array controls simulated temperature parameters. According to the 
authors, the circuit outputs up to 2 A using its transistor amplifiers; the R2 
potentiometer controls the simulated short-circuit current. The diodes can be 
short circuited in groups of 10 or less to alter open circuit voltage parameter. 

 

Figure 1. Circuit diagram of Blanes and Garrigos' transistor-and-diode 
photovoltaic simulator. 

However, the open circuit voltage control is discretized into steps equal 
to the diode forward voltages, which are gross for our control requirements. 
Further, the 2 A maximum output current is enough for a 10 W solar panel 
simulator, but is short of the approximately 5 A needed for a 100 W output. 
Finally, detecting and displaying voltage and current output levels from this 
circuit would be difficult without adding digital functionality. This circuit 
therefore lacks the granularity of control and scalability options an ideal design 
would have. It was not suitable for our purposes. 

A design proposed by Miric and Nedeljkovic similarly used transistor 
current amplifiers to create a current-controlled photovoltaic simulator [7]. 



Their device employed nested analog control loops in which variable resistors 
simulate temperature and irradiance characteristics, and op amp resistor 
feedback networks set amplification parameters.  

This design was simple, inexpensive, and used no digital memory or 
processor. However, it did not allow precise control of temperature and 
irradiance parameters because variable resistors could not be programmed. 
This design was also limited in its power output by the transistor amplifiers’ 
current output capabilities. The author’s experimental data confirmed these 
limitations by indicating that the design’s open circuit voltage and short circuit 
current characteristics were lower than our design’s requirements. Finally, this 
device would not have been user-friendly because of the analog control.  

These analog hardware photovoltaic simulators illustrate the main 
drawbacks of analog devices: difficulty of control and use. Furthermore, these 
two designs also had limited output power levels and for upgrade. We chose 
to construct a digitally controlled system to overcome these obstacles. Digital 
control allowed finer control over simulation properties than an analog circuit 
would. It also left room for easier system upgrades because components with 
higher performance specifications can be installed in the system, keeping the 
same control scheme. Upgrading analog systems, on the other hand, would 
demand rebuilding the control loops and making other large system 
modifications. 

Device Design 

 On a high level, our device consists of a power electronics stage, which 
steps input DC voltage down; a current sensing stage, which feeds a current 
signal into the control loop; and a control loop, which adjusts the output 
voltage (Fig. 2). This voltage adjustment is based on current readings, in 
accordance with the solar panel equation, 

I = IL − 𝐼𝐼0 �exp �
𝑉𝑉 + 𝑅𝑅𝑠𝑠𝐼𝐼
𝑛𝑛𝑉𝑉𝑡𝑡

� − 1� −
𝑉𝑉 + 𝑅𝑅𝑠𝑠𝐼𝐼
𝑅𝑅𝑠𝑠ℎ

 (1) 

 

Where 𝐼𝐼 is the photovoltaic output current, 𝐼𝐼𝐿𝐿 is the device illumination current, 
𝐼𝐼0 is the diode saturation current, 𝑉𝑉 is the output voltage, 𝑅𝑅𝑠𝑠 is the series 
resistance of the equivalent photovoltaic circuit model, 𝑅𝑅𝑠𝑠ℎ is the shunt 
resistance from the equivalent circuit model, 𝑛𝑛 is the diode ideality factor, and 
𝑉𝑉𝑡𝑡 is the thermal voltage. 

The system’s power stage is powered by a 20 V DC power supply, while 
the logic circuit is powered from 5 V voltage regulator’s output. Both supplies 



are decoupled with 100 uF and 100 nF capacitors. The full system schematic 
can be found in Appendix 1. 

 

Figure 2. Block diagram of the solar simulator. 

Power Stage 

 The power stage consists of the LM2575 power converter and its 
external components (Fig. 3).  

 

Figure 3. The power stage consists of the LM2575 DC-DC power converter and 
external components. Most important of these is the AD5291 digital 
potentiometer, which adjusts the output voltage. 

 The LM2575 steps a 20 V DC power supply input down to a desired 
output level. This power converter’s adjustable output of up to 37 V at 1 A 
made it suitable for our 10 W Sunless Solar Panel application because 10 W 
solar panels output up to 20 V and 1 A [3]. We chose to use a buck (step 
down) converter topology instead of a boost (step up) topology because the 
LM2575’s minimum output voltage (1.23 V) was lower than that of a similar 



boost converter’s (3 V) [8]. The Schottky diode (D1) and 330 uH inductor (L1) 
enable the switched-mode voltage conversion [9]. D1, the 1N5822 Schottky 
diode, is amply robust for our high current application because it can block a 
maximum 40 V and conduct a maximum 3 A, well above maximum expected 
outputs of 20 V and 1.2 A [6]. We sized L1 according to the instructions in the 
LM2575 datasheet using the volt-microsecond constant and the calculated 
maximum current [6]. A Murata 60B334C 220 uH inductor with a 4 A 
maximum current rating was sufficient for this application. Finally, we sized 
the output capacitor C1 per the datasheet procedure [6] using the equation 

𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂 ≥ 7.785 
𝑉𝑉𝑖𝑖𝑖𝑖 (𝑚𝑚𝑚𝑚𝑚𝑚)

𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡 ∗ 𝐿𝐿
 (2) 

 
 The power converter’s output passed through a voltage divider with a 
0.2 division ratio to create an output suitable for the Arduino, which accepts 
0-5 V input voltages. The resistors were sized on the order of 1 kOhm to avoid 
interference with the Arduino’s analog-to-digital converter (ADC) with too high 
an impedance. A 300 Ohm current limiting resistor ensured the scaled voltage 
output signal didn’t damage the Arduino input pins. Similarly, an ACS724 
current sensor detected the converter’s output current passing through 
variable load resistors on the output. More on the current detection in later 
subsections. 

The converter’s output voltage is determined by the ratio of the AD5291 
digital potentiometer to R6 according to the equation 

𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡 = 1.23 �1 +
𝑅𝑅𝐴𝐴𝐴𝐴5291
𝑅𝑅6

�  (3) 

We sized R6 as 1 kOhm because the LM2575 datasheet recommended it be 
sized between 1 kOhm and 5 kOhm. Using 1 kOhm would give the maximal 
range of output voltages [6]. We included the AD5291 digital potentiometer 
(digipot) acting as a rheostat in place of a regular resistor to enable real-time 
output voltage control from the power converter (Fig. 4). Using the digipot as 
a rheostat allowed keeping R6 a constant 1 kOhm. Implementing the digipot 
as a potentiometer with one terminal taking the place of R6 would have 
complicated output voltage control, since both the numerator and 
denominator in equation (3) would change with each adjustment of the digipot 
wiper position.  

 We chose the AD5291 chip because it allowed changing the resistance 
from 0 to 20 kOhm with a 256-position resolution [2]. This range of 
resistances provided for 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡,𝑚𝑚𝑖𝑖𝑖𝑖 = 1.23 𝑉𝑉 and 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 = 25.83 𝑉𝑉 which was, of 



course, be cropped to slightly below the 20 V supply voltage. The 256-position 
resolution implied a 78.125 Ohm change in resistance with each setting of the 
wiper position, which translated to a 0.096 V output voltage change with each 
wiper setting. Such control was vital to accurate output voltage adjustment in 
tracing a solar cell’s I-V curve. Further, the AD5291 was one of the few digital 
potentiometer chips on the market which accepted with a supply voltage 
above 20 V [2].  

 The digipot chip held two circuits: a digipot circuit (pins 1-7) and a digital 
logic circuit (pins 8-14) [2]. The digipot circuit included supply, ground, 
filtering capacitor, and reset pins (Fig. 4). Pins 3-5 were the potentiometer 
terminals. Since we used the digipot in rheostat mode, we left the Resistor A 
(pin 3) open and connected the wiper (pin 4) and Resistor B (pin 5) pins as in 
Figure 3. 

 

Figure 4. Wiring diagram of the AD521 digital potentiometer. 

The AD5291 resistance was controlled through SPI communication 
coming into pins 10-12 [2]. Pin 10 was the data in pin and connected to 
Arduino’s hard-wired SPI data pin 11. The synchronous clock input on pin 11 
connected to Arduino’s SCLK pin 13. Finally, the slave-select input pin 12 
received input from Arduino pin 10, which we programmed to give a low signal 
to enable writing data commands to the AD5291 data register. We didn’t use 
pin 13 because we had no use for reading back digipot settings. However, this 
data out pin would be useful for diagnosing whether dysfunctional 
potentiometers were fried on the digital logic side or on the potentiometer 



side. Similarly, we left pin 14 open because it was only involved in two-way 
communication with the digipot.  

The Arduino controlled the digipot by passing a write enable command 
on startup, then passing 16-bit wiper commands consisting of [0 0 0 0 0 1 
D9 D8] on the most significant byte and [D7 D6 D5 D4 D3 D2 X X] on the 
least significant byte [2]. The six most significant bits initiated a write 
operation to record wiper settings in the digipot registers, while the ten least 
significant bits were wiper-setting serial data from the Arduino. See 
Appendix 2 for complete Arduino control code. The AD5291 receives the two 
least significant bits as “don’t care” bits because it has a 256-bit resolution. 
The AD5292 chip reads these bits because it is has a 1024-bit resolution. We 
chose the AD5291 because the extra fourfold increase in resolution with the 
AD5292 was unnecessarily fine. 

Current Sensing Stage 

 The current sensing stage (Fig. 5) linked the power converter with the 
circuit’s control loop. An ACS724 Hall Effect current sensor detected the 
LM2575 output current being fed through a load resistor. We chose the 
ACS724 for its high precision, simple operating principle, and extremely low 
1.2 mOhm resistance [1]. The current sensor output a 200 mV / A output 
signal on top of a 2.5 V zero-current signal [1]. 

 The ACS724’s maximum output reached 200 mV when the LM2575 
output its maximum 1 A current. This signal was too weak for the Arduino 
ADC to resolve any significant features and was also corrupted by electrical 
noise. To clean and strengthen the signal, we implemented a filter and 
amplifier circuit (Fig. 5) using MCP6242 rail-to-rail op amps powered with 5 V 
on the positive side and ground on the negative side. Powering the op amps 
as such ensured that their output voltage fell within the 0-5 V range suitable 
for input into the Arduino’s analog input pins.  

 We implemented the low pass filter using a 100 kOhm resistor and 100 
nF capacitor for a cutoff frequency of 10 Hz, which was much lower than 
anticipated noise. We chose to implement an active filter instead of a passive 
filter to preserve signal strength and take advantage of the op amp’s low 
output impedance when outputting a signal to the differential amplifier. A 
nontrivial output impedance would complicate designing the differential 
amplifier because the latter relies on precise resistor matching to achieve 
consistent voltage subtraction across multiple input voltage ranges. 

 Having attenuated the noise in the current signal, we needed to amplify 
it. Given that the Arduino accepts input in the range 0-5 V, we could amplify 



our output current, which was up to 1 A, by 25. We achieved this amplification 
as shown in Figure 5, using 20 kOhm and 500 kOhm resistors in the amplifier 
feedback loops. However, the constant 2.5 V zero-current offset limited the 
possible signal amplification because the op amps output a maximum of 5 V.  

 

Figure 5. The current sensing stage consists of the ACS724 current sensor, 
whose output is fed through a low-pass filter and a differential amplifier, 
before being read by the Arduino. 

To avoid hitting the 5 V rail, we designed a differential amplifier to 
subtract the bias voltage. The differential amplifier’s output is given by  

Vout =
R16

R14
(𝑉𝑉+ − 𝑉𝑉−) (4) 

Therefore, providing a voltage on the inverting terminal equal to the ACS724 
zero-current offset would ensure that our circuit reads only the sensed current 
signal. We designed this amplifier by feeding a zero-current signal from the 



ACS724 into the op amp’s positive input and implementing a 3 kOhm 
potentiometer using two 1 kOhm resistors and a 1 kOhm potentiometer. We 
adjusted the potentiometer until the op amp showed a minimal output voltage. 
The output never reached 0 V because of noise, but when the output was at 
a minimum, the input on the inverting terminal was best matched to the 
ACS724’s zero current signal.  

 The filter and differential amplifier circuit provided a relatively noise-free 
current signal amplified 25-fold, so that the signal voltage read was scaled to 
be 5 V/A. This scaling was ideal for our op amps, which had a 5 V rail, and our 
power converter, which output a maximum 1 A current. This current signal 
was input into the Arduino, which implemented the system’s control 
functionality. 

Arduino Control  

 Our circuit achieved solar cell behavior by controlling the power 
converter’s output voltage based on output current readings. An Arduino Uno 
provided this control functionality and worked as follows. During startup, the 
Arduino output a command to enable writing to the AD5291 data registers. 
This write enable command allowed the Arduino to modify the digipot’s 
resistance – and therefore the power converter output voltage – by writing 
the requisite resistance settings to the register.  

The full control code can be found in Appendix 2. The control loop 
pseudo-code is given below. 

loop: 
 measure converter output current 
 calculate theoretical solar cell output voltage at that 
current 
 measure converter output voltage 
 if (measured voltage > theoretical voltage): 
  decrease digipot resistance 
 else if (measured voltage < theoretical voltage): 
  increase digipot resistance 

The Arduino pin assignment follows: 

Pin Function 
A0 Power converter output voltage reading 
A5 Power converter output current reading 
10 Slave select 
11 Data out 
13 Synchronous clock 
GND Common ground 



Testing and Results 

 We loaded our device with resistors of varying sizes to verify the output 
voltage and current characteristic. The load resistor’s value determined the 
output current of the device according to Ohm’s law. As the output current 
changed, the Arduino set the digipot to alter the power converter’s output 
voltage in accordance with equation (1). We recorded the voltage and current 
for thirty resistance values and found that the resulting I-V curve matched 
closely with that of thin-film solar panels (Fig. 6) recorded by Liu et. al. [10].  

 

Figure 6. Our I-V data superimposed on the same from Liu et. al. We observe 
that our solar simulator output closely matched that of a CZTS thin film solar 
panel. 

We were expecting an I-V profile like that of a rigid mono- or 
polycrystalline solar panel, but were surprised to find a thin film characteristic. 
We investigated this discrepancy by fitting equation (1) to our data to 
parametrize the series and shunt resistances from an equivalent solar cell 
circuit (Fig. 7). To fit these parameters in the solar cell equation to our data, 



we used Professor Bruce Land’s fixed-point iteration code to find the 
appropriate resistance values. Our findings are labeled in Figure 7.  

The series resistance of a solar cell is typically small, as we found in the 
equivalent circuit for our data. However, the shunt resistance of a solar cell is 
typically large, on the order of tens of kilo ohms. It was strange that our 
equivalent circuit indicated the shunt resistance was less than an ohm. We 
explored which components in our circuit could have been responsible for this 
extremely small shunt resistance by switching shunt-like elements on the 
output of the converter to different values. For example, we replaced the Cout 
capacitor with a smaller 100 uF capacitor and retook the I-V curve data. The 
new data, however, still looked like that of a thin-film solar cell, so we 
concluded the capacitor was not the culprit. We unfortunately did not find the 
reason for the thin film behavior, and we leave this inquiry for future 
engineers. 

 

Figure 7. Equivalent solar cell circuit. Our device's behavior reflects 
approximately thirty such solar cells connected in series. 

 Finally, our product is over ten times cheaper than the currently 
available commercial solar simulators because the total cost of our parts was 
$37, not including wires, resistors, and power supply. 

Design Process Notes 

 The design process saw two main bottlenecks that forced us to scale our 
project from a 100 W converter to a 10 W converter without current and 
voltage readout. We had initially set out to implement a power converter with 
discrete components. Neither Buck, nor Boost, nor SEPIC topologies worked 
as we had hoped. A universal problem was output voltage dropping rapidly 
where it ought to have increased. It took much longer than we care to admit 
to understand that the off-the-shelf components from the lab, particularly the 



inductors, were limiting the power that was being transmitted through the 
power electronics we had built. A key learning was allowing adequate 
conductance through our circuit to let it deliver the power it was meant to 
deliver.  

 Once we solved the problem of dropping voltage by purchasing an 
inductor with heavy-grade wire windings, we were getting poor efficiency in 
our power converter. Having burned a lot of time on the dropping output, we 
opted to purchase an integrated circuit (IC) power converter to guarantee a 
high degree of efficiency. Then, however, came the second major bottleneck 
in our design process. 

  Most power converters on the market either had insufficient power 
output or demanded a pulse-width-modulated (PWM) signal faster than our 
Arduino controller could output. Up to this point, we had been working with 
PWM output voltage control because it is the basic principle of operation of 
switched-mode power converters. However, not finding any suitable power 
converter options, we opted to purchase a resistor-controlled power 
converter.  

 This type of converter output varying voltages depending on a resistor 
connected to its feedback control loop. Taking advantage of our digital circuit 
characteristics, we opted to implement a digital potentiometer. On top of the 
challenge of soldering the TSSOP chip, it took us approximately seven burned 
digipots to figure out that there was an important power-up sequence to obey 
when working with these chips. Having figured out the power-up, we also had 
trouble differentiating between old and new Arduino SPI libraries when 
attempting to send readable outputs to the digipot.  

 During testing, we found discrepancies between the device output 
current and the output current indicated by the power supply feeding the 
entire system. This change, we understood, was because the power converter 
steps current up as it steps voltage down, while the power supply always 
outputs a constant voltage. After this realization, we no longer paid attention 
to the outputs reported on the power supply.  

 We also had trouble extracting equivalent circuit parameters like series 
and shunt resistances from our observed data because equation (1) was 
nonlinear and had output current on both sides. A fixed-point iteration 
approach implemented by Professor Bruce Land allowed heuristic 
determination of the system parameters. 

 



Further Work and Known Bugs 

AD5291 Power-Up 

Special care was required when working with the AD5291 chip because 
the chip burned if there was a voltage applied to the potentiometer terminals 
before the supply and logic voltages were powered on. The chip’s internal 
voltage compliance diodes would short the resistor pins to the supply voltage 
if the proper power-up sequence wasn’t followed. According to [2], we found 
the optimal power-up sequence is: 

1. Make sure digipot terminals and logic input pins are open 
2. Connect supply voltage 
3. Connect digital logic voltage 
4. Connect digital inputs 
5. Connect digipot terminals 

When broken, the wiper would either lock at approximately 10 kOhm or there 
would be an open circuit between two of the resistor terminals. For the case 
of the wiper position locking, further investigation is required to determine 
whether part of the logic circuit was damaged. In this case, pins 13 and 14, 
thus far left open, would come in useful to read back values stored in the 
register.  

Thin-Film Behavior 

As we mentioned earlier, another point to troubleshoot is the thin-film 
solar panel behavior. Thin film solar panels are still a developing research 
area, and have low efficiency ratings. Students wishing to test solar-powered 
devices would likely desire to simulate the behavior of traditional, rigid solar 
panels. Some possible areas to explore in this regard are control loop gain and 
differential amplifier drift. We currently use a simple servo control loop scheme 
with a low gain. According to Professor Bruce Land, a higher control loop gain 
may improve the output characteristic. Further, finer tuning of the differential 
amplifier’s voltage subtraction may help to avoid differing current 
amplification at different output currents. If this amplification drift is the 
culprit, then devising another approach to subtracting the ACS724’s zero-
current bias may provide more accurate I-V curves. 

System Upgrades 

 Finally, the system can be upgraded to 100 W relatively simply, since 
the control loop is digital and can be recycled for different, higher-power 
electronics components. Further upgrades on the system may include analog 
control knobs for temperature and insolation simulation settings, a voltage 



and current readout as on a regular power supply, and a safe, robust, and 
user-friendly packaging to house the unit. 

Conclusion 

 We have built an inexpensive, upgradable hardware solar panel 
simulator. While this device is version one, it opens the door for future 
engineering projects and, ultimately, a device such that any person can test 
any solar-powered device anytime. 
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Appendix 1: Complete System Schematic 

 



Appendix 2: Arduino Control Code 
#include <SPI.h> 
#include <math.h> 
const int slaveSelectPin = 10; 
const int writeEnable = 0b00011000; 
const int firstByte = 0b00000111; 
const int readPin = A5; 
const int vinPin = A0; 
int b1 = 5; 
int b2 = 200; 
 
void setup() { 
  Serial.begin(9600); 
  pinMode(slaveSelectPin, OUTPUT); 
  SPI.begin(); 
  SPI.setBitOrder(MSBFIRST); 
  SPI.setDataMode(SPI_MODE1); 
 
  // Enable writing to RDAC 
  digitalWrite(slaveSelectPin, LOW);  
  SPI.transfer(writeEnable); // Write first byte 
  SPI.transfer(firstByte); // Write second byte 
  digitalWrite(slaveSelectPin, HIGH); delay(100); 
 
  // Initialize digipot to output just under 10V in the converter. 
  digitalPotWrite(b1, b2); 
} 
 
void loop() { 
  digitalPotWrite(b1, b2); 
   
  // Current Reading 
  int val = analogRead(readPin); 
  double current = val * (5.0 / 1023); 
 
  // Calculate the theoretical voltage at this current 
  // Use (5 - current) instead of just (current) to mimic open circuit and 
short circuit behavior 
  double vCalc = (1 / 0.02568) * log(((5 - current) / 1.0937) + 1) / 3.5; // 
/36 
  if (vCalc <= 1.23) { 
    vCalc = 1.23; 
  } 
 
  // Voltage Reading 
  int vin = analogRead(vinPin); 
  double voltage = vin * (5.0 / 1023 / 0.192); 
 
  // If we're reading higher voltage than we expect by the diode equation: 
  if (voltage > vCalc) { 
     
    // Reduce the digipot setting by one increment ~ 78.125 Ohms 
    // This reduction corresponds to ~96 mV 
    if ((b1 >= 4) && (b2 >= 4)) { 
      b2 = b2 - 3; 
    } 



     
    // If we get to zero on byte 2, decrement byte 1 and reset byte 2 to 255 
    if (b2 <= 4) { 
      if (b1 > 4) { 
        b1 = --b1; 
        b2 = 255; 
      } 
      // If minimum value 
      else if (b1 == 4) { 
        b1 = b1; 
        b2 = b2; 
      } 
    } 
  } 
 
  // If we're reading lower voltage than we expect by the diode equation: 
  else if (voltage < vCalc) { 
    // Increment the digipot by one bit ~ 78.125 Ohms 
    // This increase corresponds to ~96 mV 
    // Increment only if we're not already in the maximum digipot setting 
    if (((b1 <= 6) && (b2 <= 255))) { 
      // To prevent open short circuit voltage from going to maximum 
      if (!((vCalc == 1.23) && (voltage < vCalc))) { 
        b2 = b2 + 3; 
      } 
    } 
 
    // If we get to 255 on byte 2, increment byte 1 and reset byte 2 to 0 
    if (b2>255) { 
      if (b1 < 6) { 
        b1 = ++b1; 
        b2 = 4; 
      } 
      // If maximum value 
      else if ( b1 == 6) { 
        b1 = b1; 
        b2 = 215; 
      } 
    } 
  } 
} 
 
void digitalPotWrite(int byte1, int byte2) { 
  digitalWrite(slaveSelectPin, LOW);  
  
  SPI.transfer(byte1); // Write first byte 
  SPI.transfer(byte2); // Write second byte 
   
  digitalWrite(slaveSelectPin, HIGH); delay(5); 
} 
  



Appendix 3: Bruce Land’s MATLAB Fixed-Point Iteration Code  
clear all 

%=================== 

% I = % I = IL - Io * (exp(q*V/nkT) - 1) 

IL = 1.0; % amp 

Io = 1e-10; % amp 1e-10 

nkT = 0.025 ; % volts 

q = .9 ; %coulombs 

 

Rser = 0.005; 

Rsh = 0.90; 

%I = IL - Io * (exp(q*(V+I*Rser)/nkT)) - (V+I*Rser)/Rsh ; 

%=================== 

%total fit 

figure(1) 

clf 

 

%======================================================== 

%START settable inputs 

%======================================================== 

%data set Sasha 

%the voltages 

V=[0.35 

1.23 

1.3 

3.2 

4.16 

5.08 

7.38 

9.35 

9.85 

12 



13.2 

14.4 

14.9 

15 

15.2 

15.3 

15.6 

15.6 

15.8 

16.1 

16.3 

16.5 

16.7 

16.8 

16.9 

17.5 

18 

18.3 

19 

19.2 

]; 

 

%the measured current 

I=[1.028 

1.022 

1.024 

0.98 

0.964 

0.94 

0.844 

0.754 

0.73 



0.614 

0.546 

0.442 

0.412 

0.41 

0.384 

0.376 

0.358 

0.352 

0.338 

0.318 

0.3 

0.286 

0.27 

0.254 

0.246 

0.198 

0.138 

0.11 

0.024 

0.012 

]; 

 

V = V/29.5 ; %30 

plot(V,I, 'o') 

hold on 

%I = IL - Io * (exp(q*(V+I*Rser)/nkT)) - (V+I*Rser)/Rsh ; 

% now, take I,V and compute new I using Rser and Rsh 

Iinit = I;  

%plot(V,Iinit); 

% 

%Inew = IL - Io * (exp(q*V/nkT) - 1)  ; 



Inew = IL - Io * (exp(q*(V+Iinit*Rser)/nkT )) - (V+Iinit*Rser)/Rsh ; 

Inew = IL - Io * (exp(q*(V+Inew*Rser)/nkT )) - (V+Inew*Rser)/Rsh ; 

Inew = IL - Io * (exp(q*(V+Inew*Rser)/nkT )) - (V+Inew*Rser)/Rsh ; 

Inew = IL - Io * (exp(q*(V+Inew*Rser)/nkT )) - (V+Inew*Rser)/Rsh ; 

Inew = IL - Io * (exp(q*(V+Inew*Rser)/nkT )) - (V+Inew*Rser)/Rsh ; 

 

plot(V,Inew, 'ro') 

 


