

SUNLESS SOLAR PANEL

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted By

Oleksandr Kuzura and Karthik Krishna Jayaram

MEng Field Advisor: Bruce Land

Degree Date: May 2019

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title:

Sunless Solar Panel

Authors:

Oleksandr Kuzura and Karthik Krishna Jayaram

Abstract:

We created a power supply with the current and voltage characteristics of a
thin film solar panel for testing solar-powered devices in bad weather and
wintertime. The device is best implemented using a 100 W power supply but
will also work with a 10 W supply. It steps supply voltage down using an
Arduino-controlled power converter. The Arduino detects the device’s current
output, calculates the voltage a solar cell would output at that current, and
adjusts output voltage to match that voltage. This control occurs through a
servo loop. The sunless solar panel allows users to test solar-powered devices
regardless of weather conditions.

Executive Summary

 Solar panels provide optimal power output under full illumination. Their
performance suffers in cloudy. Since the majority of Cornell University’s school
year runs during the cloudy season, students designing solar devices would
benefit from a solar panel simulator, which would enable testing regardless of
weather conditions, especially during cloudy Ithaca winters. However, such
devices on the market cost thousands of dollars. We have designed a 10 W
hardware simulator of a thin-film solar cell to achieve this goal.

 We designed the system to meet the following requirements: output a
minimum of 10 W with voltage and current characteristics mimicking those of
a solar panel; be safe for operation by untrained users; be upgradable to
output 100 W; be upgradable to include settable controls simulating ambient
temperature and illumination conditions; be upgradable to display voltage and
current output; cost at least ten times less than commercially available solar
simulators; be buildable within a school year.

 We chose to implement the device with digital control instead of using
a purely analog circuit. A survey of analog photovoltaic simulator
implementations showed that it is difficult to scale up power output and
implement precise I-V characteristic controls in such systems. On the other
hand, complicated analog systems with sophisticated analog control
mechanisms would take longer than one academic year to implement and still
struggle to output high power. The ease of programming control loops using
microcontrollers sold us on a digital design implementation.

 Our device uses power electronics to step down voltage from a power
supply. A current sensor detects the output current, and appropriate circuitry
filters and amplifies this current signal before it is read by an Arduino
microcontroller. The Arduino uses the solar cell equation to calculate the
output voltage of a solar panel based on the measured current. The Arduino
then adjusts the power converter output to match a solar cell’s voltage and
repeats the control loop.

 Our device successfully met the stated objectives. It safely outputs 10
watts, is inexpensive, and can easily be upgraded to output 100 W and voltage
and current output readouts.

The authors contributed equally in carrying out this design project and
writing the design report.

We dedicate this report to our grandfathers, who never fail to inspire,
encourage, and teach us to be better.

Design Problem

 Solar-powered devices must be tested with solar panels. However, solar
panel performance varies with insolation and temperature, and drops sharply
in cloudy conditions. Unfortunately, Ithaca and the majority of the
Northeastern and Northwestern US are notorious for their dreary, gloomy,
cloudy winter days. These conditions drop solar panel outputs to near-nil for
much of the year. And low solar panel outputs, in turn, hinder testing solar-
powered devices while testing engineers wait for an optimally sunny day to
test their wares. This problem is especially frustrating in Cornell’s engineering
school, which runs during the nine cloudiest months of the year. That students
cannot create and follow reliable testing timelines only gives stressed students
more stress. Academic mentors can only recommend patience while students
wait to get a stable, full-power solar panel output.

 This project solves the problem of testing solar-powered devices in
Ithaca’s cloudy conditions. We designed a hardware solar panel simulator to
enable testing of solar-powered devices by any student at any time.

 We created the simulator to:

• Have output current and voltage (I-V) characteristics of a solar panel.
• Output at least 10 W.
• Be safe for inexperienced users.
• Be at least ten times cheaper than commercial alternatives.
• Be upgradable to a 100 W system with voltage and current readouts and

controls to simulate changes in ambient temperature and light.

Design Alternatives

 The ideal problem solution would be using solar panels. However, solar
panel performance in Ithaca is unpredictable. Ithaca ranks below the US
average on the annual number of sunny days. And even on a sunny days,
clouds can suddenly obscure the sun and disrupt a running experiment.
Further, changes in ambient temperature alter solar panels’ I-V
characteristics. These factors make for hourly, daily, and seasonal variations
in solar panel performance. Therefore, testing with solar panels is a
suboptimal solution to the current design problem.

 Commercially available solar panel simulators are another solution to
testing solar devices in winter. These devices, while reliable, are extremely
expensive. A 500 W Keysight solar array simulator costs over $6,000 [5]. This
price is too steep, even though the device our design requirements.

 While using real solar panels and commercial simulators is not feasible,
building a custom solar panel simulator certainly is. These simulators come
with two flavors of control system: analog and digital. Among analog options,
the simulator described by Blanes and Garrigos directly simulates an ideal
solar cell equivalent circuit by creating a transistor current source in parallel
with an array of diodes (Fig. 1) [4]. Controlling the current source output
corresponds to controlling an irradiance parameter, while altering the parallel
diode array controls simulated temperature parameters. According to the
authors, the circuit outputs up to 2 A using its transistor amplifiers; the R2
potentiometer controls the simulated short-circuit current. The diodes can be
short circuited in groups of 10 or less to alter open circuit voltage parameter.

Figure 1. Circuit diagram of Blanes and Garrigos' transistor-and-diode
photovoltaic simulator.

However, the open circuit voltage control is discretized into steps equal
to the diode forward voltages, which are gross for our control requirements.
Further, the 2 A maximum output current is enough for a 10 W solar panel
simulator, but is short of the approximately 5 A needed for a 100 W output.
Finally, detecting and displaying voltage and current output levels from this
circuit would be difficult without adding digital functionality. This circuit
therefore lacks the granularity of control and scalability options an ideal design
would have. It was not suitable for our purposes.

A design proposed by Miric and Nedeljkovic similarly used transistor
current amplifiers to create a current-controlled photovoltaic simulator [7].

Their device employed nested analog control loops in which variable resistors
simulate temperature and irradiance characteristics, and op amp resistor
feedback networks set amplification parameters.

This design was simple, inexpensive, and used no digital memory or
processor. However, it did not allow precise control of temperature and
irradiance parameters because variable resistors could not be programmed.
This design was also limited in its power output by the transistor amplifiers’
current output capabilities. The author’s experimental data confirmed these
limitations by indicating that the design’s open circuit voltage and short circuit
current characteristics were lower than our design’s requirements. Finally, this
device would not have been user-friendly because of the analog control.

These analog hardware photovoltaic simulators illustrate the main
drawbacks of analog devices: difficulty of control and use. Furthermore, these
two designs also had limited output power levels and for upgrade. We chose
to construct a digitally controlled system to overcome these obstacles. Digital
control allowed finer control over simulation properties than an analog circuit
would. It also left room for easier system upgrades because components with
higher performance specifications can be installed in the system, keeping the
same control scheme. Upgrading analog systems, on the other hand, would
demand rebuilding the control loops and making other large system
modifications.

Device Design

 On a high level, our device consists of a power electronics stage, which
steps input DC voltage down; a current sensing stage, which feeds a current
signal into the control loop; and a control loop, which adjusts the output
voltage (Fig. 2). This voltage adjustment is based on current readings, in
accordance with the solar panel equation,

I = IL − 𝐼𝐼0 �exp �
𝑉𝑉 + 𝑅𝑅𝑠𝑠𝐼𝐼
𝑛𝑛𝑉𝑉𝑡𝑡

� − 1� −
𝑉𝑉 + 𝑅𝑅𝑠𝑠𝐼𝐼
𝑅𝑅𝑠𝑠ℎ

 (1)

Where 𝐼𝐼 is the photovoltaic output current, 𝐼𝐼𝐿𝐿 is the device illumination current,
𝐼𝐼0 is the diode saturation current, 𝑉𝑉 is the output voltage, 𝑅𝑅𝑠𝑠 is the series
resistance of the equivalent photovoltaic circuit model, 𝑅𝑅𝑠𝑠ℎ is the shunt
resistance from the equivalent circuit model, 𝑛𝑛 is the diode ideality factor, and
𝑉𝑉𝑡𝑡 is the thermal voltage.

The system’s power stage is powered by a 20 V DC power supply, while
the logic circuit is powered from 5 V voltage regulator’s output. Both supplies

are decoupled with 100 uF and 100 nF capacitors. The full system schematic
can be found in Appendix 1.

Figure 2. Block diagram of the solar simulator.

Power Stage

 The power stage consists of the LM2575 power converter and its
external components (Fig. 3).

Figure 3. The power stage consists of the LM2575 DC-DC power converter and
external components. Most important of these is the AD5291 digital
potentiometer, which adjusts the output voltage.

 The LM2575 steps a 20 V DC power supply input down to a desired
output level. This power converter’s adjustable output of up to 37 V at 1 A
made it suitable for our 10 W Sunless Solar Panel application because 10 W
solar panels output up to 20 V and 1 A [3]. We chose to use a buck (step
down) converter topology instead of a boost (step up) topology because the
LM2575’s minimum output voltage (1.23 V) was lower than that of a similar

boost converter’s (3 V) [8]. The Schottky diode (D1) and 330 uH inductor (L1)
enable the switched-mode voltage conversion [9]. D1, the 1N5822 Schottky
diode, is amply robust for our high current application because it can block a
maximum 40 V and conduct a maximum 3 A, well above maximum expected
outputs of 20 V and 1.2 A [6]. We sized L1 according to the instructions in the
LM2575 datasheet using the volt-microsecond constant and the calculated
maximum current [6]. A Murata 60B334C 220 uH inductor with a 4 A
maximum current rating was sufficient for this application. Finally, we sized
the output capacitor C1 per the datasheet procedure [6] using the equation

𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂 ≥ 7.785
𝑉𝑉𝑖𝑖𝑖𝑖 (𝑚𝑚𝑚𝑚𝑚𝑚)

𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡 ∗ 𝐿𝐿
 (2)

 The power converter’s output passed through a voltage divider with a
0.2 division ratio to create an output suitable for the Arduino, which accepts
0-5 V input voltages. The resistors were sized on the order of 1 kOhm to avoid
interference with the Arduino’s analog-to-digital converter (ADC) with too high
an impedance. A 300 Ohm current limiting resistor ensured the scaled voltage
output signal didn’t damage the Arduino input pins. Similarly, an ACS724
current sensor detected the converter’s output current passing through
variable load resistors on the output. More on the current detection in later
subsections.

The converter’s output voltage is determined by the ratio of the AD5291
digital potentiometer to R6 according to the equation

𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡 = 1.23 �1 +
𝑅𝑅𝐴𝐴𝐴𝐴5291
𝑅𝑅6

� (3)

We sized R6 as 1 kOhm because the LM2575 datasheet recommended it be
sized between 1 kOhm and 5 kOhm. Using 1 kOhm would give the maximal
range of output voltages [6]. We included the AD5291 digital potentiometer
(digipot) acting as a rheostat in place of a regular resistor to enable real-time
output voltage control from the power converter (Fig. 4). Using the digipot as
a rheostat allowed keeping R6 a constant 1 kOhm. Implementing the digipot
as a potentiometer with one terminal taking the place of R6 would have
complicated output voltage control, since both the numerator and
denominator in equation (3) would change with each adjustment of the digipot
wiper position.

 We chose the AD5291 chip because it allowed changing the resistance
from 0 to 20 kOhm with a 256-position resolution [2]. This range of
resistances provided for 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡,𝑚𝑚𝑖𝑖𝑖𝑖 = 1.23 𝑉𝑉 and 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 = 25.83 𝑉𝑉 which was, of

course, be cropped to slightly below the 20 V supply voltage. The 256-position
resolution implied a 78.125 Ohm change in resistance with each setting of the
wiper position, which translated to a 0.096 V output voltage change with each
wiper setting. Such control was vital to accurate output voltage adjustment in
tracing a solar cell’s I-V curve. Further, the AD5291 was one of the few digital
potentiometer chips on the market which accepted with a supply voltage
above 20 V [2].

 The digipot chip held two circuits: a digipot circuit (pins 1-7) and a digital
logic circuit (pins 8-14) [2]. The digipot circuit included supply, ground,
filtering capacitor, and reset pins (Fig. 4). Pins 3-5 were the potentiometer
terminals. Since we used the digipot in rheostat mode, we left the Resistor A
(pin 3) open and connected the wiper (pin 4) and Resistor B (pin 5) pins as in
Figure 3.

Figure 4. Wiring diagram of the AD521 digital potentiometer.

The AD5291 resistance was controlled through SPI communication
coming into pins 10-12 [2]. Pin 10 was the data in pin and connected to
Arduino’s hard-wired SPI data pin 11. The synchronous clock input on pin 11
connected to Arduino’s SCLK pin 13. Finally, the slave-select input pin 12
received input from Arduino pin 10, which we programmed to give a low signal
to enable writing data commands to the AD5291 data register. We didn’t use
pin 13 because we had no use for reading back digipot settings. However, this
data out pin would be useful for diagnosing whether dysfunctional
potentiometers were fried on the digital logic side or on the potentiometer

side. Similarly, we left pin 14 open because it was only involved in two-way
communication with the digipot.

The Arduino controlled the digipot by passing a write enable command
on startup, then passing 16-bit wiper commands consisting of [0 0 0 0 0 1
D9 D8] on the most significant byte and [D7 D6 D5 D4 D3 D2 X X] on the
least significant byte [2]. The six most significant bits initiated a write
operation to record wiper settings in the digipot registers, while the ten least
significant bits were wiper-setting serial data from the Arduino. See
Appendix 2 for complete Arduino control code. The AD5291 receives the two
least significant bits as “don’t care” bits because it has a 256-bit resolution.
The AD5292 chip reads these bits because it is has a 1024-bit resolution. We
chose the AD5291 because the extra fourfold increase in resolution with the
AD5292 was unnecessarily fine.

Current Sensing Stage

 The current sensing stage (Fig. 5) linked the power converter with the
circuit’s control loop. An ACS724 Hall Effect current sensor detected the
LM2575 output current being fed through a load resistor. We chose the
ACS724 for its high precision, simple operating principle, and extremely low
1.2 mOhm resistance [1]. The current sensor output a 200 mV / A output
signal on top of a 2.5 V zero-current signal [1].

 The ACS724’s maximum output reached 200 mV when the LM2575
output its maximum 1 A current. This signal was too weak for the Arduino
ADC to resolve any significant features and was also corrupted by electrical
noise. To clean and strengthen the signal, we implemented a filter and
amplifier circuit (Fig. 5) using MCP6242 rail-to-rail op amps powered with 5 V
on the positive side and ground on the negative side. Powering the op amps
as such ensured that their output voltage fell within the 0-5 V range suitable
for input into the Arduino’s analog input pins.

 We implemented the low pass filter using a 100 kOhm resistor and 100
nF capacitor for a cutoff frequency of 10 Hz, which was much lower than
anticipated noise. We chose to implement an active filter instead of a passive
filter to preserve signal strength and take advantage of the op amp’s low
output impedance when outputting a signal to the differential amplifier. A
nontrivial output impedance would complicate designing the differential
amplifier because the latter relies on precise resistor matching to achieve
consistent voltage subtraction across multiple input voltage ranges.

 Having attenuated the noise in the current signal, we needed to amplify
it. Given that the Arduino accepts input in the range 0-5 V, we could amplify

our output current, which was up to 1 A, by 25. We achieved this amplification
as shown in Figure 5, using 20 kOhm and 500 kOhm resistors in the amplifier
feedback loops. However, the constant 2.5 V zero-current offset limited the
possible signal amplification because the op amps output a maximum of 5 V.

Figure 5. The current sensing stage consists of the ACS724 current sensor,
whose output is fed through a low-pass filter and a differential amplifier,
before being read by the Arduino.

To avoid hitting the 5 V rail, we designed a differential amplifier to
subtract the bias voltage. The differential amplifier’s output is given by

Vout =
R16

R14
(𝑉𝑉+ − 𝑉𝑉−) (4)

Therefore, providing a voltage on the inverting terminal equal to the ACS724
zero-current offset would ensure that our circuit reads only the sensed current
signal. We designed this amplifier by feeding a zero-current signal from the

ACS724 into the op amp’s positive input and implementing a 3 kOhm
potentiometer using two 1 kOhm resistors and a 1 kOhm potentiometer. We
adjusted the potentiometer until the op amp showed a minimal output voltage.
The output never reached 0 V because of noise, but when the output was at
a minimum, the input on the inverting terminal was best matched to the
ACS724’s zero current signal.

 The filter and differential amplifier circuit provided a relatively noise-free
current signal amplified 25-fold, so that the signal voltage read was scaled to
be 5 V/A. This scaling was ideal for our op amps, which had a 5 V rail, and our
power converter, which output a maximum 1 A current. This current signal
was input into the Arduino, which implemented the system’s control
functionality.

Arduino Control

 Our circuit achieved solar cell behavior by controlling the power
converter’s output voltage based on output current readings. An Arduino Uno
provided this control functionality and worked as follows. During startup, the
Arduino output a command to enable writing to the AD5291 data registers.
This write enable command allowed the Arduino to modify the digipot’s
resistance – and therefore the power converter output voltage – by writing
the requisite resistance settings to the register.

The full control code can be found in Appendix 2. The control loop
pseudo-code is given below.

loop:
 measure converter output current
 calculate theoretical solar cell output voltage at that
current
 measure converter output voltage
 if (measured voltage > theoretical voltage):
 decrease digipot resistance
 else if (measured voltage < theoretical voltage):
 increase digipot resistance

The Arduino pin assignment follows:

Pin Function
A0 Power converter output voltage reading
A5 Power converter output current reading
10 Slave select
11 Data out
13 Synchronous clock
GND Common ground

Testing and Results

 We loaded our device with resistors of varying sizes to verify the output
voltage and current characteristic. The load resistor’s value determined the
output current of the device according to Ohm’s law. As the output current
changed, the Arduino set the digipot to alter the power converter’s output
voltage in accordance with equation (1). We recorded the voltage and current
for thirty resistance values and found that the resulting I-V curve matched
closely with that of thin-film solar panels (Fig. 6) recorded by Liu et. al. [10].

Figure 6. Our I-V data superimposed on the same from Liu et. al. We observe
that our solar simulator output closely matched that of a CZTS thin film solar
panel.

We were expecting an I-V profile like that of a rigid mono- or
polycrystalline solar panel, but were surprised to find a thin film characteristic.
We investigated this discrepancy by fitting equation (1) to our data to
parametrize the series and shunt resistances from an equivalent solar cell
circuit (Fig. 7). To fit these parameters in the solar cell equation to our data,

we used Professor Bruce Land’s fixed-point iteration code to find the
appropriate resistance values. Our findings are labeled in Figure 7.

The series resistance of a solar cell is typically small, as we found in the
equivalent circuit for our data. However, the shunt resistance of a solar cell is
typically large, on the order of tens of kilo ohms. It was strange that our
equivalent circuit indicated the shunt resistance was less than an ohm. We
explored which components in our circuit could have been responsible for this
extremely small shunt resistance by switching shunt-like elements on the
output of the converter to different values. For example, we replaced the Cout
capacitor with a smaller 100 uF capacitor and retook the I-V curve data. The
new data, however, still looked like that of a thin-film solar cell, so we
concluded the capacitor was not the culprit. We unfortunately did not find the
reason for the thin film behavior, and we leave this inquiry for future
engineers.

Figure 7. Equivalent solar cell circuit. Our device's behavior reflects
approximately thirty such solar cells connected in series.

 Finally, our product is over ten times cheaper than the currently
available commercial solar simulators because the total cost of our parts was
$37, not including wires, resistors, and power supply.

Design Process Notes

 The design process saw two main bottlenecks that forced us to scale our
project from a 100 W converter to a 10 W converter without current and
voltage readout. We had initially set out to implement a power converter with
discrete components. Neither Buck, nor Boost, nor SEPIC topologies worked
as we had hoped. A universal problem was output voltage dropping rapidly
where it ought to have increased. It took much longer than we care to admit
to understand that the off-the-shelf components from the lab, particularly the

inductors, were limiting the power that was being transmitted through the
power electronics we had built. A key learning was allowing adequate
conductance through our circuit to let it deliver the power it was meant to
deliver.

 Once we solved the problem of dropping voltage by purchasing an
inductor with heavy-grade wire windings, we were getting poor efficiency in
our power converter. Having burned a lot of time on the dropping output, we
opted to purchase an integrated circuit (IC) power converter to guarantee a
high degree of efficiency. Then, however, came the second major bottleneck
in our design process.

 Most power converters on the market either had insufficient power
output or demanded a pulse-width-modulated (PWM) signal faster than our
Arduino controller could output. Up to this point, we had been working with
PWM output voltage control because it is the basic principle of operation of
switched-mode power converters. However, not finding any suitable power
converter options, we opted to purchase a resistor-controlled power
converter.

 This type of converter output varying voltages depending on a resistor
connected to its feedback control loop. Taking advantage of our digital circuit
characteristics, we opted to implement a digital potentiometer. On top of the
challenge of soldering the TSSOP chip, it took us approximately seven burned
digipots to figure out that there was an important power-up sequence to obey
when working with these chips. Having figured out the power-up, we also had
trouble differentiating between old and new Arduino SPI libraries when
attempting to send readable outputs to the digipot.

 During testing, we found discrepancies between the device output
current and the output current indicated by the power supply feeding the
entire system. This change, we understood, was because the power converter
steps current up as it steps voltage down, while the power supply always
outputs a constant voltage. After this realization, we no longer paid attention
to the outputs reported on the power supply.

 We also had trouble extracting equivalent circuit parameters like series
and shunt resistances from our observed data because equation (1) was
nonlinear and had output current on both sides. A fixed-point iteration
approach implemented by Professor Bruce Land allowed heuristic
determination of the system parameters.

Further Work and Known Bugs

AD5291 Power-Up

Special care was required when working with the AD5291 chip because
the chip burned if there was a voltage applied to the potentiometer terminals
before the supply and logic voltages were powered on. The chip’s internal
voltage compliance diodes would short the resistor pins to the supply voltage
if the proper power-up sequence wasn’t followed. According to [2], we found
the optimal power-up sequence is:

1. Make sure digipot terminals and logic input pins are open
2. Connect supply voltage
3. Connect digital logic voltage
4. Connect digital inputs
5. Connect digipot terminals

When broken, the wiper would either lock at approximately 10 kOhm or there
would be an open circuit between two of the resistor terminals. For the case
of the wiper position locking, further investigation is required to determine
whether part of the logic circuit was damaged. In this case, pins 13 and 14,
thus far left open, would come in useful to read back values stored in the
register.

Thin-Film Behavior

As we mentioned earlier, another point to troubleshoot is the thin-film
solar panel behavior. Thin film solar panels are still a developing research
area, and have low efficiency ratings. Students wishing to test solar-powered
devices would likely desire to simulate the behavior of traditional, rigid solar
panels. Some possible areas to explore in this regard are control loop gain and
differential amplifier drift. We currently use a simple servo control loop scheme
with a low gain. According to Professor Bruce Land, a higher control loop gain
may improve the output characteristic. Further, finer tuning of the differential
amplifier’s voltage subtraction may help to avoid differing current
amplification at different output currents. If this amplification drift is the
culprit, then devising another approach to subtracting the ACS724’s zero-
current bias may provide more accurate I-V curves.

System Upgrades

 Finally, the system can be upgraded to 100 W relatively simply, since
the control loop is digital and can be recycled for different, higher-power
electronics components. Further upgrades on the system may include analog
control knobs for temperature and insolation simulation settings, a voltage

and current readout as on a regular power supply, and a safe, robust, and
user-friendly packaging to house the unit.

Conclusion

 We have built an inexpensive, upgradable hardware solar panel
simulator. While this device is version one, it opens the door for future
engineering projects and, ultimately, a device such that any person can test
any solar-powered device anytime.

Gratitude

 We extend a deep thank you to Professor Bruce Land, who showed great
patience in answering all our questions, great intellectual adventurousness in
generating ideas and problem solving, and great joy in sharing life anecdotes.

References

[1] Allegro Microsystems, "ACS724 Datasheet, Rev. 14," 2018. [Online].
Available:
https://www.allegromicro.com/~/media/Files/Datasheets/ACS724KMA-
Datasheet.ashx. [Accessed 11 05 2019].

[2] Analog Devices, "AD5291 Datasheet, Rev. E," 2014. [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-
sheets/AD5291_5292.pdf. [Accessed 11 05 2019].

[3] Hangzhou Amplesun Solar Technology Co., Ltd., "cheapest price 10W solar
panels amorphous silicon thin film," 2019. [Online]. Available:
https://www.alibaba.com/product-detail/cheapest-price-10W-solar-panels-
amorphous_60195205578.html?spm=a2700.7724857.normalList.20.25f8563
4WDZjC3.

[4] J. M. Blanes and A. Garrigos, "Circuit Implements Photovoltaic-Module
Simulator," 07 04 2011. [Online]. Available:
https://www.edn.com/design/analog/4369621/Circuit-implements-
photovoltaic-module-simulator. [Accessed 12 05 2019].

[5] Keysight Technologies, "E4361A Solar Array Simulator DC Module, 65V, 8.5A,
510W," 2019. [Online]. Available: E4361A Solar Array Simulator DC Module,
65V, 8.5A, 510W. [Accessed 12 05 2019].

[6] ON Semiconductor, "LM2575 Datasheet," 2009. [Online]. Available:
https://www.onsemi.com/pub/Collateral/LM2575-D.PDF. [Accessed 9 3
2019].

[7] S. Miric and M. Nedjelkovic, "The Solar Photovoltaic Panel Simulator,"
Électrotechn. et Énerg., vol. 60, no. 3, pp. 273-281, 2015.

[8] Texas Instruments, "LM2733," 2019. [Online]. Available:
http://www.ti.com/product/LM2733/description.

[9] Wikipedia, "Buck Converter," [Online]. Available:
https://en.wikipedia.org/wiki/Buck_converter. [Accessed 11 05 2019].

[10] X. Liu, H. Ruiting, Q. Zhao, F. Chang, Y. Li, K. Gu, L. Wang, B. Liu and J.
Guo, "Studies on Sputtered Cu–Zn–Sn–O Precursor to Fabricate Cu2ZnSnS4
Thin Films," A Journal of Physical Sciences, vol. 73, no. 10, pp. 957-964,
2018.

Appendix 1: Complete System Schematic

Appendix 2: Arduino Control Code
#include <SPI.h>
#include <math.h>
const int slaveSelectPin = 10;
const int writeEnable = 0b00011000;
const int firstByte = 0b00000111;
const int readPin = A5;
const int vinPin = A0;
int b1 = 5;
int b2 = 200;

void setup() {
 Serial.begin(9600);
 pinMode(slaveSelectPin, OUTPUT);
 SPI.begin();
 SPI.setBitOrder(MSBFIRST);
 SPI.setDataMode(SPI_MODE1);

 // Enable writing to RDAC
 digitalWrite(slaveSelectPin, LOW);
 SPI.transfer(writeEnable); // Write first byte
 SPI.transfer(firstByte); // Write second byte
 digitalWrite(slaveSelectPin, HIGH); delay(100);

 // Initialize digipot to output just under 10V in the converter.
 digitalPotWrite(b1, b2);
}

void loop() {
 digitalPotWrite(b1, b2);

 // Current Reading
 int val = analogRead(readPin);
 double current = val * (5.0 / 1023);

 // Calculate the theoretical voltage at this current
 // Use (5 - current) instead of just (current) to mimic open circuit and
short circuit behavior
 double vCalc = (1 / 0.02568) * log(((5 - current) / 1.0937) + 1) / 3.5; //
/36
 if (vCalc <= 1.23) {
 vCalc = 1.23;
 }

 // Voltage Reading
 int vin = analogRead(vinPin);
 double voltage = vin * (5.0 / 1023 / 0.192);

 // If we're reading higher voltage than we expect by the diode equation:
 if (voltage > vCalc) {

 // Reduce the digipot setting by one increment ~ 78.125 Ohms
 // This reduction corresponds to ~96 mV
 if ((b1 >= 4) && (b2 >= 4)) {
 b2 = b2 - 3;
 }

 // If we get to zero on byte 2, decrement byte 1 and reset byte 2 to 255
 if (b2 <= 4) {
 if (b1 > 4) {
 b1 = --b1;
 b2 = 255;
 }
 // If minimum value
 else if (b1 == 4) {
 b1 = b1;
 b2 = b2;
 }
 }
 }

 // If we're reading lower voltage than we expect by the diode equation:
 else if (voltage < vCalc) {
 // Increment the digipot by one bit ~ 78.125 Ohms
 // This increase corresponds to ~96 mV
 // Increment only if we're not already in the maximum digipot setting
 if (((b1 <= 6) && (b2 <= 255))) {
 // To prevent open short circuit voltage from going to maximum
 if (!((vCalc == 1.23) && (voltage < vCalc))) {
 b2 = b2 + 3;
 }
 }

 // If we get to 255 on byte 2, increment byte 1 and reset byte 2 to 0
 if (b2>255) {
 if (b1 < 6) {
 b1 = ++b1;
 b2 = 4;
 }
 // If maximum value
 else if (b1 == 6) {
 b1 = b1;
 b2 = 215;
 }
 }
 }
}

void digitalPotWrite(int byte1, int byte2) {
 digitalWrite(slaveSelectPin, LOW);

 SPI.transfer(byte1); // Write first byte
 SPI.transfer(byte2); // Write second byte

 digitalWrite(slaveSelectPin, HIGH); delay(5);
}

Appendix 3: Bruce Land’s MATLAB Fixed-Point Iteration Code
clear all

%===================

% I = % I = IL - Io * (exp(q*V/nkT) - 1)

IL = 1.0; % amp

Io = 1e-10; % amp 1e-10

nkT = 0.025 ; % volts

q = .9 ; %coulombs

Rser = 0.005;

Rsh = 0.90;

%I = IL - Io * (exp(q*(V+I*Rser)/nkT)) - (V+I*Rser)/Rsh ;

%===================

%total fit

figure(1)

clf

%==

%START settable inputs

%==

%data set Sasha

%the voltages

V=[0.35

1.23

1.3

3.2

4.16

5.08

7.38

9.35

9.85

12

13.2

14.4

14.9

15

15.2

15.3

15.6

15.6

15.8

16.1

16.3

16.5

16.7

16.8

16.9

17.5

18

18.3

19

19.2

];

%the measured current

I=[1.028

1.022

1.024

0.98

0.964

0.94

0.844

0.754

0.73

0.614

0.546

0.442

0.412

0.41

0.384

0.376

0.358

0.352

0.338

0.318

0.3

0.286

0.27

0.254

0.246

0.198

0.138

0.11

0.024

0.012

];

V = V/29.5 ; %30

plot(V,I, 'o')

hold on

%I = IL - Io * (exp(q*(V+I*Rser)/nkT)) - (V+I*Rser)/Rsh ;

% now, take I,V and compute new I using Rser and Rsh

Iinit = I;

%plot(V,Iinit);

%

%Inew = IL - Io * (exp(q*V/nkT) - 1) ;

Inew = IL - Io * (exp(q*(V+Iinit*Rser)/nkT)) - (V+Iinit*Rser)/Rsh ;

Inew = IL - Io * (exp(q*(V+Inew*Rser)/nkT)) - (V+Inew*Rser)/Rsh ;

Inew = IL - Io * (exp(q*(V+Inew*Rser)/nkT)) - (V+Inew*Rser)/Rsh ;

Inew = IL - Io * (exp(q*(V+Inew*Rser)/nkT)) - (V+Inew*Rser)/Rsh ;

Inew = IL - Io * (exp(q*(V+Inew*Rser)/nkT)) - (V+Inew*Rser)/Rsh ;

plot(V,Inew, 'ro')

