

PIC32 AND RASPBERRY PI INTERFACE

A Design Project Report
Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Vipin Venugopal (vv258), Ye Kuang (yk749)

Advisors: Dr. Bruce Land, Dr. Joseph Skovira

Degree Date: May 2019

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: PIC32 AND RASPBERRY PI INTERFACE

Authors: Vipin Venugopal (vv258), Ye Kuang (yk749)

Abstract: The goal of the project was to develop a cross platform system capable of

performing real time tasks, while enabling development of software decoupled from the

hardware and to implement a final application to demonstrate the system. The project aimed

to combine the best of both worlds of Embedded Operating System in Raspberry Pi and

hardware dependent bare metal firmware of PIC32 to build a final application.

2

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Executive Summary

The objective of this project was to develop a hybrid system which can provide

optimum real-time performance at minimum development cost and to develop an end

application to demonstrate the PIC and Pi combined system capabilities. A hybrid approach

was adopted for building a system capable of carrying out hard real-time tasks using

hardware parallelism available in a PIC32 microcontroller, while simultaneously using the

higher level of abstraction provided by the embedded operating system in a Raspberry Pi,

relieving the developer from taking care of the background tasks. The major task involved in

this was to build a library and communication protocol between the PIC32 and Raspberry Pi,

which will enable the Raspberry Pi to access PIC32 peripherals. The developer can use these

library calls to seamlessly integrate PIC32 peripherals with the peripherals of the Pi and

simultaneously allow the Embedded OS to do system management.

The outcome of this project was the successful interfacing between the PIC32 and Pi,

fully tested set of real-time functions, a PCB for PIC32 the fits the Raspberry Pi3 and a

prototype of an object tracking robot. The library developed for interfacing between the

PIC32 and Raspberry Pi, is generic enough to support a wide range of applications. This

document covers all the design choices and decision made during the development of the

system. A set of future improvements and suggestions for additional features have been

included in the document. Since the project serves as a platform that can be used for building

a wide range of applications, a huge emphasis was placed on documenting the features in

terms of usability. Hardware Guide in Appendix contains the BOM, General Assembly and

PCB Layouts for building additional boards. Software Guide in Appendix gives a detailed

explanation of every function available in the library, including example usage, making it

easy for anyone to jumpstart on any application using the library. The code consisting of the

PIC32Interface python library, PIC32 firmware and module test cases are available at

https://github.com/vv258/PIC-and-Pi-Interface. All relevant documentation including PCB

files are also available in this repository.

3

https://github.com/vv258/PIC-and-Pi-Interface

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Contributions

Sl no Task Vipin
Venugopal

Ye
Kuang

1 PIC32 peripheral selection and pin assignment * ✓

2 Mode of Communication and protocol design * ✓

3 State machine design for Communication * ✓ ✓

4 Firmware implementation on PIC for peripheral control ✓

5 Python Library development for Raspberry Pi ✓

6 Communication Testing ✓

7 Module Testing of PIC32 firmware ✓

8 PCB design for PIC32 board ✓

9 Assembly and Testing of PIC32 board ✓

10 Application development for Raspberry Pi ✓

11 Module Testing for Raspberry Pi Application ✓

12 Integrated testing for PIC and Pi Interface with custom board ✓ ✓

 *includes contributions by Zesun Yang (zy366)

4

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

1 Introduction 7

2 Background 7

3 Design & Testing 10

3.1 PIC32 peripheral selection and pin assignment 10

3.2 Mode of Communication and Protocol design 13

3.3 State machine design for Communication 20

3.4 Firmware implementation on PIC for peripheral control 22

3.5 Python Library development for Raspberry Pi 25

3.6 Communication Testing 27

3.7 Module Testing of PIC32 firmware 28

3.8 PCB design for PIC32 board 30

3.9 Assembly and Testing of PIC32 board 31

3.10 Application development for Raspberry Pi 33

3.10.1 QR code tracking 33

3.10.2 Multiprocessing 34

3.10.3 Motor control 36

3.11 Module Testing for Raspberry Pi Application 36

3.12 Integrated testing for PIC and Pi Interface with custom board 38

4 Results 38

5

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

5 Future improvements 42

5.1 Protocol/ State Machine and functions 42

5.2 PIC32 PCB 42

5.3 Remote Programming 43

5.4 End Application 43

5.5 Other Applications 44

6 Conclusion 44

7 Acknowledgements 44

8 References 45

Appendix A. Hardware Guide 47

Appendix B. Software Guide 51

Appendix C. Test Plan 59

6

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

1 Introduction

The most common approach to build an embedded system is to use a microcontroller and

write the code from the ground up. This approach is appropriate for the classic definition of

embedded system as a computer system capable of handling a specific function. But over the

years, the applicability of the definition is diminishing as the embedded systems move closer

to the general purpose computers. Recently, there has been a migration towards OS based

microcontrollers, to reduce development time and effort and for ease of performing high

level tasks. But this comes at the cost of poor real-time performance. Developers need to

consider the trade-offs between the development effort, time and performance in real-time

environment while choosing from these two approaches.

The objective of this project was to develop a hybrid system which can provide optimum

real-time performance at minimum development cost. The goal is to develop an end

application to demonstrate these features and a human tracking robot was chosen as the target

system.

2 Background

As the world progresses towards Internet of Things, the expectations from an embedded

system are increasing exponentially. The devices are expected to provide connectivity, form

part of sensor networks and respond to events and commands from other systems. Traditional

bare metal microcontrollers are lacking in this regard as building the software from scratch

becomes increasingly difficult, as the trend progresses. Use of an operating system could

provide a much higher level of abstraction, and relieve the developer of most of the

background tasks from carrying out these tasks. Linux based operating systems come with a

7

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

whole suite of free tools and libraries for supporting this. This is the major reason why a

Linux OS based microcontroller like Raspberry Pi has become a more popular choice for IoT

applications when compared to bare metal microcontroller like PIC. However, the embedded

systems used in safety critical environments are expected to perform hard-real-time tasks.

Hardware access at a level low enough to achieve this is often not available while using a

traditional Operating System. While an OS based microcontroller like Raspberry Pi does not

do well with analog interfaces and real-time tasks, a bare metal microcontroller like PIC32

does not offer the versatility of the OS and community support of Linux.

The idea is to use a Raspberry Pi which runs a Linux distribution to perform high level tasks

and provide connectivity and user interface, and then use the PIC32 microcontroller to

perform low level and time critical tasks. This requires a hardware dependent firmware on

the PIC32 capable of responding to commands, and application specific software running on

Raspberry Pi over the Linux OS and a high speed interface between the two to enable the Pi

to control the PIC. The command line between the Pi and PIC will be encapsulated into a

library running on the Pi, which will abstract the functions of the PIC microcontroller and act

as a driver for the embedded hardware. The application can perform low level tasks by

making library calls without worrying about the actual implementation.

The PIC32 microcontroller is a powerful, 32-bit CPU with the following peripherals

1) Analog to Digital Converter

2) Data Memory Access

3) Communication Interfaces

4) Timers

5) Output Compare Unit

6) Input Capture Unit

7) General Purpose I/O

8

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Peripheral libraries are also available to control them. The downside of the PIC32

microcontroller is that it has no operating system and code has to be written from start, also

rendering it hardware dependent.

The Raspberry Pi runs a full Linux distribution and it comes with many features like

1) Bluetooth

2) LAN

3) Wi-Fi connectivity

4) USB and serial channel

5) HDMI camera and display-port interface

However, the Pi does not perform real-time tasks very well. The combination will have the

best of both worlds. Both the devices are combined to take advantage of the PIC32

peripherals for interfacing, and the high performance of Pi on computation. The plan is to use

the PIC32 for input reading, output generation, and use the Pi for decision making and

user-interface. The resultant system would have a master slave configuration with Raspberry

Pi as Master and PIC32 as slave, and command response interface between the two.

Figure 1. Proposed System

9

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

One application that can utilize the PIC32 and Raspberry Pi interface is a human tracking

robot. Raspberry Pi’s quad core CPU can be used to do computer vision and image

processing, and then use vision information to track the owner of the robot, meanwhile

sending control commands to PIC32 to control motors.

3 Design & Testing

The system development was done in various stages:

1) PIC32 peripheral selection and pin assignment

2) Mode of Communication and protocol design

3) State machine design for Communication

4) Firmware implementation on PIC for peripheral control

5) Python Library development for Raspberry Pi

6) Communication Testing

7) Module Testing of PIC32 firmware

8) PCB design for PIC32 board

9) Assembly and Testing of PIC32 board

10) Application development for Raspberry Pi

11) Module Testing for Raspberry Pi Application

12) Integrated testing for PIC and Pi Interface with custom board

3.1 PIC32 peripheral selection and pin assignment

Most of the PIC32’s pins have multiple selectable functionalities, which needs to be

configured based on the application requirement. In this project, the challenge is to identify

the right combinations of these functionalities which could provide a range of features not

available in the Raspberry Pi such as PWM motor control, sensor reading, and also a

communication interface with Pi. Since many of the functionalities can be mapped only to a

10

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

subset of the pins, choosing the right combination becomes critical due to the limited number

of pins available on PIC32. The selection should not be limited to the specific application of

smart suitcase, rather it should be generic to implement a wide range of applications.

Raspberry Pi has Bluetooth, Wi-Fi connectivity, data analysis and communication with

PIC32 and USB interface but lacks in analog interfaces. Hence, the goal was to maximize the

analog interfaces on the PIC32.

Figure 2. PIC32MX250 Pin Assignment

The pin assignment was first validated using microchip code configurator.

11

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

The Pins functionalities are explained in the table below:

Category Signal Description Pin No

Supply and
Reset

MCLR Master Clear (Device Reset) Input. 1

VSS Ground Reference for Logic and I/O pins. 8,19

VDD Positive Supply for Peripheral Digital Logic and
I/O pins.

13

AVDD Positive Supply for Analog Modules. 28

AVSS Ground Reference for Analog Modules. 27

VCAP External Filter Capacitor Connection 20

Analog Inputs AN0 Analog Channel 0 2

AN1 Analog Channel 1 3

AN2 Analog Channel 2 4

AN3 Analog Channel 3 5

PWM Outputs PWM1 PWM Output 1 7

PWM2 PWM Output 2 6

SPI SDO1 SPI1 Serial Data Out 9

SDI1 SPI1 Serial Data In 17

SCK1 SPI1 Serial Clock 25

SS1 SPI1 Slave Select 24

SD02 SPI2 Serial Data Out 22

SCK2 SPI2 Serial Clock 26

SS2 SPI2 Slave Select 18

UART U1RX UART1 Receiver 12

12

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

U1TX UART1 Transmitter 16

U2RX UART2 Receiver 14

U2TX UART2 Transmitter 21

GPIO GPIO1 General Purpose Input Output 1 10

GPIO2 General Purpose Input Output 2 11

Table 1. PIC32MX250 Pin Description

3.2 Mode of Communication and Protocol design

Some of the options available for communication were UART, I2C, SPI and USB. Amongst

all these options, USB is the fastest. However, the communication protocols for USB are

complicated to design for the system. SPI is fast, but each SPI requires 4 pins and

communication can only be initiated by the master. I2C requires fewer pins, but it is slow and

the implementation can be complex. As a result, we chose UART as the mode of

communication.

The first step in protocol design was to come up with the categories of commands. The initial

categories of commands identified were System Commands, Expanded I/O commands, DAC

Configuration and Control Commands, ADC Configuration and Control Commands, PWM

Configuration and Generation Commands and Memory Commands.

The detailed description of the command categories are listed in the table below:

13

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Slno Category Description

1 System To initialize and maintain communication

2 Expanded I/O To control the GPIOs in Port Expander connected to PIC

3 DAC To configure and control the analog outputs in DAC IC
connected to PIC

4 ADC To configure the PICs internal ADCs and sample analog inputs

5 PWM To configure the PICs internal Output Compare Unit to generate
Pulse Width Modulated Signals

6 Memory To write to and read from 4 1024 byte memory blocks inside PIC

Table 2. Command Categories

Once the broad categories were identified, the commands within each category were decided

to provide a high level of configurability.

Sl no Category Command Description

1 System Handshake Send a command and wait for response to
check if communication is established

2 Expanded
I/O

Read input To read data from GPIO port Z of Port
Expander

3 write output To write data to GPIO port Y of Port Expander

4 DAC Set Value for
DAC Channel A

To Set DC value for DAC Channel A between
0 and 3.3V

5 Set Value for
DAC Channel B

To Set DC value for DAC Channel B between
0 and 3.3V

14

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

6 ConfigDACA To Configure DAC Channel A for arbitrary
waveform generation

7 ConfigDACB To Configure DAC Channel B for arbitrary
waveform generation

8 ConfigDACA&B To Configure DAC Channel A and B for
arbitrary waveform generation

9 Start DAC To start the generation of arbitrary waveform
stored in any of the internal buffers from DAC

10 Stop DAC To reset the DAC

11 ADC Check Buffer
Status

To check if ADC sampling is complete

12 Set Sample
Frequency

To set ADC sampling frequency and number of
samples to be acquired

13 Start ADC To start the sampling of analog channels

14 PWM Set Period To Set Period for PWM

15 Generate PWM 1 To Set the ON time for PWM Channel 1 and
generate signal

16 Generate PWM 2 To Set the ON time for PWM Channel 2 and
generate signal

17 Memory Read Buffer To read data from Buffer memory in PIC32

18 Write Buffer To write data to Buffer memory in PIC32

Table 3. Command Descriptions

15

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

The next task was to assign command codes to each command and specify the number of

data bytes associated with each command. One important aspect of the protocol was to

ensure that none of the data bytes get interpreted as the SOT and EOT. The SOT was chosen

as F0 and EOT as D7. All data bytes had first 3 bits set to 0, so that F0 and D7 can never be

sent as data. The response code for each command is same as the command code to check

that the response is coherent with the command.

The detailed protocol is shown below:

Byte Value Description

SOT F0 START OF TRANSMIT

EOT D7 END OF TRANSMIT

CS SUM OF COMMAND
CODE+DATA BYTES

CHECKSUM

Table 4. Byte Description

Command RASPBERRY Pi to PIC

BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7

Handshake SOT 0x1A EOT

Read input SOT 0x2A CHECKSUM EOT

write output SOT 0x2B 0000, 1 bit for
each MSB
I/O; 1- set

0000, 1 bit for
each LSB
I/O; 1- set

CS EOT

16

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

HIGH 0- set
LOW

HIGH 0- set
LOW

Set Value for
CHA

SOT 0x3A 00,6 bit MSB
value

00, 6bit LSB
value

CS EOT

Set Value for
CHB

SOT 0x3B 00,6 bit MSB
value

00, 6bit LSB
value

CS EOT

ConfigDACA SOT 0x3C 000000,Buffer
A number

000000,
MODE

CS EOT

ConfigDACB SOT 0x3D 000000,Buffer
B number

000000,
MODE

CS EOT

ConfigDACA
&B

SOT 0x3E 0000Buffer A
number,Buffe
r B number

000000,
MODE

CS EOT

Start DAC SOT 0x3F 00, 6 bits for
prescaler

000, 5 bits for
higher #of
buffer
samples

000, 5
bits for
lower
#of
buffer
samples

CS EOT

Stop DAC SOT 0X39 CS EOT

Check Buffer
Status

SOT 0x4A CS EOT

Set Sample
Frequency

SOT 0x4B 00, 6 bits for
prescaler

000, 5 bits for
higher #of
buffer
samples

000, 5
bits for
lower
#of
buffer
samples

CS EOT

17

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Start ADC SOT 0x4C 00, 4 bits:
select analog
channel, 2
bits:buffer
selections

CS EOT

 6 bits 5 bits 5 bits

Set Period SOT 0x5A 000,time
period

000,time
period

CS EOT

Generate
PWM 1

SOT 0x5B 000,on time 000,on time CS EOT

Generate
PWM 2

SOT 0x5C 000,on time 000,on time CS EOT

Read Buffer SOT 0x6A 000000,Buffer
number

000, 5 bits for
higher #of
buffer
samples

000, 5
bits for
lower
#of
buffer
samples

CS EOT

Write Buffer SOT 0x6B 000000,Buffer
number

000, 5 bits for
higher #of
buffer
samples

000, 5
bits for
lower
#of
buffer
samples

CS EOT

Table 5. Raspberry Pi to PIC protocol

18

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

RESPONSE PIC to RASPBERRY Pi

BYT
E1

BYTE2 BYTE3 BYTE4

Handshake SOT 0x1B EOT

Read input SOT 0x2A 0000,1 bit for
each MSB I/O;
1- high, 0- low

0000, 1 bit
for each LSB
I/O; 1- high,
0- low

write output SOT 0x2B EOT

Set Value for CHA SOT 0x3A EOT

Set Value for CHB SOT 0x3B EOT

ConfigDACA

ConfigDACB

ConfigDACA&B

Start DAC

Stop DAC

Check Buffer Status SOT 0x4A 0000, 1bit for
each of four
buffers, 1-
ready, 0 -not
ready

EOT

19

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Set Sample Frequency SOT 0x4B EOT

Start ADC SOT 0x4C EOT

Set Period SOT 0x5A EOT

Generate PWM 1 SOT 0x5B EOT

Generate PWM 2 SOT 0x5C EOT

Read Buffer SOT 0x6A EOT followed by
DMA burst

Write Buffer SOT 0x6B EOT followed by
DMA burst

0x3A as Byte ACK
for every 8th received
Byte

 Table 6. PIC to Raspberry Pi protocol

3.3 State machine design for Communication

The State Machine works on a command-acknowledgement basis. The protocol has the

provision to be robust (error free) using status and control features such as SOT, EOT,

invalid commands and checksum to indicate communication status. Receiving data by PIC

can only be done using a state machine as the protocol uses commands of different length

and the PIC does not know the length of command until the command code is parsed. A state

machine implementation was not required for the Raspberry Pi as the Pi is the master and

initialises all communications. The command and associated number of data bytes are known

to the Pi before transmission. Since command response occurs in-order, the length of

response is also known to Pi.

20

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

The states in PIC receiver are the following:

State Description

ACTIVE_WAIT_FOR_SOT Waits for receiving SOT

ACTIVE_PARSE Reads the command code. Calculates the number of
data bytes associated with the command code. Reads
the data bytes

ACTIVE_CHECKSUM Calculates checksum by adding command code and
data bytes. Compares with the received Checksum

ACTIVE_WAIT_FOR_EOT Waits for receiving EOT

EXECUTE Executes the command and sends the response
message. For read buffer alone, the response is sent
first and then the command is executed.

Table 7. State Description

The state diagram is shown below:

Figure 3. State Diagram

21

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

3.4 Firmware implementation on PIC for peripheral control

The various components of firmware for PIC32 consists of the following

a. Pin Assignment PPS Input/Output

b. Setup of Peripherals like SPI, UART, TIMERS, PWM, ADC

c. UART channel for continuous debug and troubleshooting

d. State Machine for communication

e. Functions for controlling peripherals

Peripheral Input Select is used to configure the following inputs and outputs:

Type Group Signal Pin

Input 3 U1RX RPA4

Input 2 U2RX RPB5

Input 2 SDI1 RPB8

Output 1 U1TX RPB7

Output 1 OC1 RPB3

Output 4 SS2 RPB9

Output 4 U2TX RPB10

Output 3 OC4 RPB2

Output 2 SDO2 RPB11

Output 3 SDO1 RPA2

Table 8. PPS Configuration

22

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

The peripherals were configured with the following settings:

UART1 is used for displaying debug message. It is configured for using only TX and RX

pins, with 8 bit data, no parity, 1 stop bit and 9600 baud rate. UART2 is used for

communication with Raspberry Pi. It is configured for using only TX and RX pins, with 8 bit

data, no parity, 1 stop bit and 115200 baud rate.

ADC module is configured with output in integer format, auto triggering and auto sampling.

External reference voltage is used for ADC with offset test disabled, and scan mode enabled.

ADC samples 4 times per interrupt with dual buffers and using only MUXA, internal

reference clock and sample times as 15. Channels AN0,AN1, AN2 and AN3 are configured

as analog inputs and all other channels are added to skip scan list.

SPI1 is used to interface with the Port Expander IC. It is configured with prescalar 4, 8 bit

data mode, PIC as master and reverse polarity between data and clock. SPI2 is used to

interface with the DAC IC. It is configured in framed mode with prescalar 4, 16 bit data

mode, PIC as master and reverse polarity between data and clock.

DMA Channel 1 is set up to transfer into the receive buffer every time an interrupt occurs at

UART2 receiver. DMA Interrupt is triggered when a pattern match with EOT occurs. The

communication state machine runs inside the DMA interrupt. This allows the UART data to

be received using only hardware and allows the software to respond to it whenever it is free.

Otherwise, this would lead to data loss.

When the command for setting ADC sampling is received, TIMER1 is setup with the

sampling frequency and timer interrupt is enabled. The mapping of Analog channel to PIC

buffer is done with the start ADC command. The sampled values are copied to the buffer

23

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

inside the interrupt. When the desired number of samples are received the interrupt is

disbaled and the buffer status is set. The Pi can check completion of sampling by reading the

buffer status.

When the command for setting PWM period is received, TIMER2 is setup with Period as the

PWM period. The prescalar value is scaled appropriately to allow a dynamic range. The

output Compare Units 1 and 4 are setup with TIMER2 as source and ON time as 0. When

Start PWM command is received, the ON time of corresponding OC module is set to the

desired ON time.

For reading and writing the GPIOs in Port expander, SPI transactions are used. The SPI read

operation is started by lowering CS. The SPI read command (slave address with R/W bit set)

is then clocked into the device. The opcode is followed by an address, with at least one data

byte being clocked out of the device. The SPI write operation is started by lowering CS. The

Write command (slave address with R/W bit cleared) is then clocked into the device. The

opcode is followed by an address and at least one data byte.

For setting DAC voltages, 2 types of operations are used, depending on whether the DAC is

used to set fixed dc value or to generate arbitrary waveforms. For fixed dc values, the write

transaction is used in normal spi mode. The write command is initiated by driving the CS pin

low, followed by clocking the four Configuration bits and the 12 data bits into the SDI pin on

the rising edge of SCK. The CS pin is then raised, causing the data to be latched into the

selected DAC’s input registers. The configuration bits are changed depending on the channel

to be used. For arbitrary waveform generation, first each sample data is appended to the

configuration bits and stored in a buffer. If both channels are simultaneously used, then the

samples are stored in alternate locations of the buffer. TIMER3 is set up with frequency same

as the synthesis frequency for single channels and double synthesis frequency for dual

channel modes. DMA channel is setup to transfer the data to the DAC over SPI in frame

24

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

mode. The DMA channel is opened in default mode or auto mode depending on whether the

generation mode is single burst or continuous. When a Stop DAC command is received, the

DMA channel is disabled and TIMER3 is closed.

To display debug messages, the message is sent through the UART channel one character at

a time and a newline character is sent at the end of the message. After executing the

command, the response message is sent by sending the SOT, followed by command code,

data bytes if any and then the EOT. For Read Buffer alone, the response is sent before

executing the command, to help the Pi to distinguish between acknowledgement and

response data.

3.5 Python Library development for Raspberry Pi

The python library was developed in accordance with the communication protocol. The

library was named as PIC32Interface. It consists of:

1. Setup of serial port

2. Helper functions for Checksum & Data transfer/reception

3. Functions for controlling PIC peripherals

The serial port is setup using Python Serial module with following settings:

Channel: /dev/ttyAMA0

Baudrate: 115200

Parity: None

Stopbits: 1

Byte size: 8 bits

For testing from PC, the serial port channel may have to be changed accordingly.

The two helper functions available in the library are Chceksum and SendCommand.

Checksum calculates sum of command code and data bytes to be sent along with the

command. The SendCommand function takes the command code, data bytes and checksum,

25

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

adds SOT to the beginning and EOT to the end and converts the bytes to hex array. The hex

bytes are then written to the serial port.

The following functions are available for the user to control PIC peripherals from Pi:

1. WriteBuffer

2. ReadBuffer

3. ReadBuffer2

4. SetPWMPeriod

5. EnablePWM1

6. EnablePWM2

7. SetDACA

8. SetDACB

9. ConfigureDACA

10. ConfigureDACB

11. ConfigureDACAB

12. StartDACOutput

13. StopDACOutput

14. CheckBufferStatus

15. _StartADC_

16. _SetSampleFreq_

17. WriteGPIO

18. ReadGPIO

The detailed instructions for using these functions in application is included in the Software

User guide in Appendix.

26

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

3.6 Communication Testing

Since the mode of communication is UART, the communication testing could be carried out

independently for both PIC and Pi. Docklight software was used along with USB to serial

converters to carry out module testing. For PIC testing commands were sent from Docklight,

the interpreted message was displayed on the debug UART channel using another docklight

window. For Testing the Raspberry Pi, the sent message from Pi was printed on its terminal

and received a message on a Docklight window. These two were then compared for

verification.

The communication was happening at 115200 baud rate for most commands. However, for

PIC32 for large data reception, this resulted in framing errors. Initially, the baud rate for

communication was set at 9600 to overcome this issue. Towards the end, this was resolved

by adding an additional acknowledgement for every 8th byte received, baud rate of 115200

was achieved.

 Figure 4. Debug window showing PIC-PI communication and data transfer

27

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

3.7 Module Testing of PIC32 firmware

The choice of UART for communication proved quite useful module testing. PIC

functionality could be tested independent of Pi by using a PC/USB-Serial Converter. Test

cases were written for testing the following. The test cases were integrated into a Jupyter

Notebook for ease of testing. It enabled quick editing of test parameter and running of code

blocks for the following cases:

1) Data transfer

2) PWM Generation

3) DAC Waveform Generation

4) ADC sampling

5) GPIO control

The Memory Read/Write was tested by writing a chunk of data into PIC memory and reading

it back over serial communication. These were then compared for verification.

PWM generation was first tested by viewing the generated PWM signal on oscilloscope. It

was further testing by driving continuous rotation Parallax servo motors are various speed.

One issue observed was that PWM was not getting generated for all ON time values. It was

due to the limited range of base TIMER setup. This issue was resolved by adding a dynamic

prescaling for the base TIMER with respect to the PWM ON time & Period.

28

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

 Figure 5. PWM generation

The DAC was tested for generating a fixed DC value, as well as arbitrary waveforms like

sine and triangular waveform. These arbitrary waveforms were first written into the PIC

buffer and then played out in both burst mode and loopback mode.

Figure 6. DAC generation

29

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

GPIO testing was carried out using loopback. The GPIO input channels and output channels

were treated as parallel ports to send and receive data. Data matching was carried out to

verify this.

ADC sampling was tested using both fixed DC input values and waveforms like sine, square

and triangular waveforms for all 4 channels. The plot of sampled AC waveform was initially

highly distorted. This was due to the printing of debug message in the ADC interrupt leading

to delays. The next interrupt was getting generated before completion of printing. This was

resolved by removing the debug message in interrupt.

3.8 PCB design for PIC32 board

A protoboard mating with the PIC32 small board was wired up to ensure that the connections

are correct before doing the final board design. Pin connections were verified using this setup

by carrying out all module tests.

Figure 7. Protoboard

30

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

The final schematic was designed using ExpressSchematic and ExpressPCB was used for

layout. The schematic and layout are available in the Appendix. The following aspects were

taken into account for the design.

a. The overall dimension of board should be same as RaspberryPi

b. It should mate with the 40 pin header of Pi. At the same time, these pins have to

accessible for connecting Pi display. This was done using stacking connectors.

c. Use of through hole components to ensure Design for Assembly and Design for

Maintainability.

d. Provision to power up PIC from external source or from Pi. This was implemented

using optional resistor.

e. Optional connections for PIC programming pins to RPi GPIOs for future scope.

f. Pin arrangement for ease of connection with parallax servo motors and USB to serial

converters.

g. External supply input for driving motors.

h. Sufficient number of supply and ground pins for connecting external sensors and

actuators and reducing the wiring required.

3.9 Assembly and Testing of PIC32 board

The board was assembled and tested for full functionality. The only issue in the board was

related to the Power ON LED, which had both ends connected to ground. However, this was

not a major issue as it did not affect functionality.

31

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Figure 8. Final board

Detailed Bill of Materials and General assembly details are given in the Hardware Guide

included in Appendix. The PCB and schematic files are shown in Appendix and also included

in the repository.

The board takes less than 30 minutes to assemble. Testing was carried out using Jupyter

Notebook available in repository.

The power output points on the board was verified using multimeter.

UART communication and debug was verified by observing the debug message display.

PWM generation was first tested by viewing the generated PWM signal on oscilloscope. It was

further testing by driving continuous rotation Parallax servo motors are various speed.

The DAC was tested for generating a fixed DC value, as well as arbitrary waveforms like sine

and triangular waveform. These arbitrary waveforms were first written into the PIC buffer and

then played out in both burst mode and loopback mode. This also validates Memory Write.

32

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

ADC sampling was tested using both fixed DC input values and waveforms like sine, square

and triangular waveforms for all 4 channels. This also validates memory read.

GPIO was tested using loopback check.

 For testing a newly assembled board, a Test Plan is provided in the Appendix.

3.10 Application development for Raspberry Pi

The application for the cross platform system is a human tracking robot, it features human

tracking based on computer vision(QR code tracking). Raspberry Pi will do all the image

processing and decision making, while PIC32 generates PWM to control motors. The

hardware components needed are listed below:

1) PIC32 board

2) Raspberry Pi 3 model B

3) Two parallax standard servos

4) Robot frame

5) Pi camera

The initial development was carried out with Pi’s built-in PWM.

3.10.1 QR code tracking

To track the owner of the robot, we need some unique target pattern to help the robot

recognize the owner. At first, we chose to use circles with different colors, but it turned out to

be too slow that we can only get 2 or 3 frames of processed images per second, it will cause

trouble for our control loop since the delay is high, not to mention color tracking is greatly

influenced by environment lighting . So we came up with an alternative solution, which is

33

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

QR code tracking. QR code tracking is less computational intense than shape and color

tracking, and it’s also pretty accurate.

Figure 9. QR code recognition

Figure 9 shows how our QR code tracking works, the program captures the specific QR code

in the frame and calculate its center point for further use.

3.10.2 Multiprocessing

To accelerate image processing and make full use of Raspberry Pi’s quad core CPU, we took

the strategy of multiprocessing(inspired by Autonomous Turret Tracking Project, see

appendix), which enables us to process 3 frames of images simultaneously, the structure of

our multiprocessing strategy is as below:

34

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Figure 10. Multiprocessing structure

As you can see in Figure 10, three processors are assigned as worker processors and one is

master processor. Worker processors’ only job is processing frames captured by Pi camera

and send the result back to master processor. Master processor is in charge of frame

capturing, coordination of worker processors and decision making based on information

collected from workers.

Processes communication is handled by queue, one frame queue is used for master processor

to handle frames to each worker processor, and three buffer queues for worker processors to

send back frame processing result to master processor. Process lock technique is applied to

ensure correct workflow.

35

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

3.10.3 Motor control

The motor we are using is parallax standard servo. The Parallax Standard Servo is controlled

through pulse width modulation, where the position of the servo shaft is dependent on the

duration of the pulse. In order to hold its position, the servo needs to receive a pulse every 20

ms. Figure 11 is a sample timing diagram for the center position of the Parallax Standard

Servo.

Figure 11. parallax standard servo timing diagram from data sheet

3.11 Module Testing for Raspberry Pi Application

The first stage of testing was for the camera interface. Initially, OpenCV was used to detect

multiple circles of different colors. However, the processing time for circles were quite high.

This meant that we would not be able to achieve real-time performance. By switching to QR

code scanner, we were able to achieve 200ms processing time (5 frames per second).

Next the motors were calibrated. Extensive tuning was carried out to set the speeds for servo

motors. High speed would lead to overshooting and the QR code going out of frame. Slow

speed meant that the system responsiveness is quite low and would not be able to track fast

movements of target.

36

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Figure 12. Simultaneously tracking 3 frames

37

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

3.12 Integrated testing for PIC and Pi Interface with custom board

The integration was comparatively easier as the modules and application were independently

tested prior to this. The Pi PWM is configured using frequency and duty cycle, whereas, the

PIC32Interface PWM is configured using Period and ON time. The only change in the code

was to do this mapping. The performance of the system was comparable to the one using

built-in PWM modules.

4 Results

During the past two semesters, we spent a lot of effort in exploring project development as

well as team management. At the end of the second semester, we have achieved some

substantial milestones, which we are enthusiastic to summarize in this section.

The PIC32 peripherals were selected and mapped to the pins(see Figure 13). The mapping

was validated using Harmony Code configurator. There is the very first thing we did in the

development of our project, since almost everything else depends on the appropriate pin

mapping.

A list of real-time functions were selected and a robust protocol was designed to use the

UART mode of communication. We drafted the communication protocol together and

refined it with the help of Professor.Land. We also designed the corresponding state machine

for implementing the protocol for both PIC and Pi.

After the protocol and state machine design, we implemented the protocol on both sides

using python and also validated the protocol using serial helper tool. The peripheral control

functions of PIC were implemented in C and verified too.

38

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

After protocol code is implemented, Vipin designed a PIC32 PCB (see Figure 14) that mates

with Raspberry Pi was designed, manufactured, assembled and tested successfully. The PCB

was mounted on Raspberry Pi (Figure 16) and tested for all functionality.

An end application of a QR code tracking robot was designed and tested on Raspberry Pi.

We tried many ways of tracking algorithm, at last we chose QR code tracking for our

application since it has the best performance among all methods we tried. Pi camera and

OpenCv library is used for QR code tracking. The PIC and PI were then integrated and

installed on the robotic platform and final application using integrated system was

successfully tested (see Figure 17).

Figure 13. overall system

39

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Figure 14. PIC32 board

Figure 15. PIC32 and Raspberry Pi stack side views

40

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Figure 16. PIC32 and Raspberry Pi stack

Figure 17. Integrated Robot

41

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

5 Future improvements

5.1 Protocol/ State Machine and functions

The first thing we need to add into our communication protocol implementation is checksum.

A checksum is a string of numbers and letters that act as a fingerprint for a file against which

later comparisons can be made to detect errors in the data. They are important because we

use them to check files for integrity. The protocol has framework for checksum. But this is

not implemented. Implementing this can make the protocol robust.

Other desired improvements are all trivial but we haven’t got time to implement them yet.

Right now The Pi receives the acknowledgement. However, currently it is only read. There is

no validation for this, it’s important to add a validation process for acknowledgement. Pin

number 10 and 11 of PIC are currently unused. Additional functions can be implemented to

utilise this. The python interface library we wrote should be encapsulated into a class, the

objects can be initialized by specifying the serial ports. Using classes will make our code

more organized and turn it into generic reusable pieces. This would enable us to connect

multiple PICs to RPi using the USB ports of Pi. Also we need to write equivalent C library

which can improve code performance and increase utility.

5.2 PIC32 PCB

For PIC32 PCB, we also have a few improvements in mind. In the present version of the

PCB, both ends of Power ON LED are connected to ground. This has to be corrected in the

future versions.The PCB can be redesigned to using SMD components. A USB to serial

convertor can be integrated into the PCB. This can then be used as a dongle to add analog

and other interfaces to any Desktop/Laptop/Embedded Platform. Adding a heat sink to

Raspberry Pi CPU is also important, right now CPU is easy to overheat and throttle, which

42

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

results in performance degradation, if we want to keep a constant performance, cooling the

component is necessary

5.3 Remote Programming

Currently there is a hardware provision to connect PIC programming pins to RPi GPIOs.

With proper scripting in PI, this interface can be used to remotely program the PIC using Pi.

On running update PIC command on Pi, the script should be able to download the latest code

from git, compile using GCC and program PIC using GPIO.

5.4 End Application

Our application is a prototype at the moment and it needs tuning and refinement. The first

thing that needs to be done is adding a feed-back loop to motor control, right now it’s a

open-loop control system, feed-back loop control will greatly improve tracking accuracy.

And we want to make use of distance sensor(e.g.,ultrasonic sensor) to get distance

information, and add this distance information to feed-back loop to keep a constant distance

between robot and human, which will also increase tracking accuracy.

Although QR code tracking is great and it performs relatively well on our system, we want

something better. Professor.Land mentioned to us there is something called AprilTag, it is

designed for robot tracking system and it’s less computational intensive than QR code

tracking, if we replace QR code tracking with Apriltag tracking, the performance of our

system will definitely increase.

And the camera we are using right now is the normal Pi camera, its field of view is very

narrow, we want to replace it with fisheye camera which has over 100 degrees of field of

view, but fisheye camera needs calibration to recognize patterns, since it will deform

patterns. We need to write some program and adapt checkerboard pattern calibration

43

https://drive.google.com/file/d/0B3EXsqKhWPfdVk9NRmIzNE1RQms/view?usp=sharing

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

technique to calibrate fisheye camera. And IR beacons can be integrated into the system to

level coarse direction information when the tag is out of field of view.

5.5 Other Applications

Current end application utilises only the PWM. Other real-time applications like oscilloscope

or inverted pendulum which can use full capability of the interface can be implemented.

6 Conclusion

The project is a success. The PIC32 and Raspberry Pi interface is versatile and easy to use,

which greatly increases the potential of our cross platform system, one can easily create

many electronic devices such as an oscilloscope using our system. And our human tracking

robot application based on this system serves as a proof of concept, it works great and shows

us how useful the combination of Raspberry Pi and PIC32 is. There are many foreseeable

improvements to be carried out. We believe this system will grow better, and be useful to

everyone who is interested in embedded devices development.

7 Acknowledgements

We would like to express our deepest appreciation to all those who helped with this project.

A special gratitude we give to our project advisors, Professor. Bruce Land and Professor.

Joseph Skovira, whose contribution in stimulating suggestions and encouragement, helped

me to coordinate my project especially in writing this report. We would also like to thank

Zesun Yang for her contributions to the initial phase of the project, and Autonomous Turret

Tracking project inspired us to use multiprocessing to accelerate image processing, many

thanks for him sharing his code. Several portions of the PIC firmware are modifications of

code snippets spread across the ECE4760 course website.

44

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

8 References

1.ECE 4760 Course Website

http://people.ece.cornell.edu/land/courses/ece4760/

2. PIC32 reference board

http://people.ece.cornell.edu/land/courses/ece4760/PIC32/target_board.html

3. PIC32 datasheet

http://people.ece.cornell.edu/land/courses/ece4760/PIC32/Microchip_stuff/2xx_datasheet.pdf

4. PIC32 Reference manual

http://ww1.microchip.com/downloads/en/devicedoc/61113e.pdf

5. PIC32 Peripheral Library Guide

http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf

6. Port Expander datasheet

http://people.ece.cornell.edu/land/courses/ece4760/PIC32/Microchip_stuff/port_expander.pdf

7. DAC datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/20002249B.pdf

8. ECE5725 Course Website

http://skovira.ece.cornell.edu/ece5725/

45

http://people.ece.cornell.edu/land/courses/ece4760/
http://people.ece.cornell.edu/land/courses/ece4760/PIC32/target_board.html
http://people.ece.cornell.edu/land/courses/ece4760/PIC32/Microchip_stuff/2xx_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/61113e.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://people.ece.cornell.edu/land/courses/ece4760/PIC32/Microchip_stuff/port_expander.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20002249B.pdf
http://skovira.ece.cornell.edu/ece5725/

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

9. PiCamera Document

https://picamera.readthedocs.io/en/release-1.13/

10.RaspberryPi

https://www.raspberrypi.org/

11. Parallax Continuous Rotation Servo

https://www.parallax.com/sites/default/files/downloads/900-00008-Continuous-Rotation-Ser

vo-Documentation-v2.2.pdf

12. Autonomous Object Tracking Turret

https://courses.ece.cornell.edu/ece5990/ECE5725_Spring2018_Projects/fy57_xz522_AutoTu

rret/index.html

13.Pyzbar tutorial

https://www.learnopencv.com/tag/pyzbar/

14.Raspberry Pi uart setting

https://www.raspberrypi.org/documentation/configuration/uart.md

46

https://picamera.readthedocs.io/en/release-1.13/
https://www.raspberrypi.org/
https://www.parallax.com/sites/default/files/downloads/900-00008-Continuous-Rotation-Servo-Documentation-v2.2.pdf
https://www.parallax.com/sites/default/files/downloads/900-00008-Continuous-Rotation-Servo-Documentation-v2.2.pdf
https://courses.ece.cornell.edu/ece5990/ECE5725_Spring2018_Projects/fy57_xz522_AutoTurret/index.html
https://courses.ece.cornell.edu/ece5990/ECE5725_Spring2018_Projects/fy57_xz522_AutoTurret/index.html
https://www.learnopencv.com/tag/pyzbar/
https://www.raspberrypi.org/documentation/configuration/uart.md

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Appendix A. Hardware Guide

All relevant documentation including PCB files are also available at

https://github.com/vv258/PIC-and-Pi-Interface.

Figure A-1. PIC board schematics

47

https://github.com/vv258/PIC-and-Pi-Interface

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Sl no Reference Description Remarks

1 C1, C2 100nF

2 C3 10uF

3 C4, C5 1uF

4 D1 LED

5 D2 1N4007

6 J1-J3,J6-J14 Right angle male
headers

ICSP HEADER

7 R1 10k

8 R2 330 Ohm

9 R3(#) 0 Mount for powering PIC from external
supply

10 R4(# $) 0 Mount for powering PIC from RPi

11 R6, R7 0

12 R5,R8,R9(*) 0 Mount for programming from Pi

13 SW2 POWER

14 U1 PIC32MX250F128B

15 U2 MCP1702

16 U3 MCP4822

17 U4 MCP23S17

 18 J4 40 pin stacking
connector

 # Do not mount R3 and R4 at the same time

 $ Not tested yet. RPi may not be able to supply sufficient power

 * Not tested yet

Table A-1. PIC board Bill of Materials

48

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Figure A-2. PIC board General Assembly

Figure A-3. PIC board PCB Layout

49

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Figure A-4. PIC board Top Layer

Figure A-5. PIC board Bottom Layer

50

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Appendix B. Software Guide
The code consisting of the PIC32Interface python library, PIC32 firmware, module test cases

are available at https://github.com/vv258/PIC-and-Pi-Interface. The final application is

available at https://github.com/yk749/PIC32-and-Raspberry-Pi-Interface

 Library PIC32Interface

1 Function CheckSum

Description To calculate checksum

Parameters Command Command Bytes to be
transmitted

Return Value CheckSumValue Sum of Command bytes

Example usage Helper function. Not required for user

2 Function SendCommand

Description To transmit the command over serial port

Parameters Command Command Bytes to be
transmitted

Return Value

Example usage Helper function. Not required for user

3 Function WriteBuffer

Description To write data to Buffer memory in PIC32

Parameters BufNum Specifies the buffer number 0-3

 Data List of data to be written 2 byte
words

Return Value

51

https://github.com/vv258/PIC-and-Pi-Interface
https://github.com/yk749/PIC32-and-Raspberry-Pi-Interface

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Example usage sawdata =list()

for j in range(0,16):
for i in range(0,16):

 sawdata.append(i*16)
 sawdata.append(j)

for j in range(15,-1,-1):
for i in range(15,-1,-1):

 sawdata.append(i*16)
 sawdata.append(j)

PIC32Interface.WriteBuffer(0,sawdata)

sinedata =list()

data =list()

for i in range(0,512):

data.append(2047*math.sin(i*2*math.pi/512)+2047)

for i in range(0,512):
 MSB,LSB=divmod(int(data[i]),256)

sinedata.append(LSB)

sinedata.append(MSB)

PIC32Interface.WriteBuffer(1,sinedata)

4 Function ReadBuffer

Description To read data from Buffer memory in PIC32 as single
bytes

Parameters BufNum Specifies the buffer number 0-3

 DataLength Number of 1byte words to be
read

Return Value Data List containing data

Example usage ReadData=PIC32Interface.ReadBuffer(0,5)

5 Function ReadBuffer2

52

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Description To read data from Buffer memory in PIC32 as two
byte word

Parameters BufNum Specifies the buffer number 0-3

 DataLength Number of 2 byte words to be
read

Return Value Data2 List containing data

Example usage ReadData=PIC32Interface.ReadBuffer2(3,200)

6 Function SetPWMPeriod

Description To Set Period for PWM as Period * (10^unit)
microseconds. This is common for both channels.

Parameters Period specifies the value 0-255

 unit specifies the power of 10 0-255

Return Value

Example usage PIC32Interface.SetPWMPeriod(22, 3)
#Sets period to 22 milliseconds

7 Function EnablePWM1

Description To Set the ON time for PWM Channel 1 as
OnTime*(10^unit) microseconds and start the PWM.
SetPWMPeriod should be called before calling this
function

Parameters Period specifies the value

 unit specifies the power of 10

Return Value

Example usage PIC32Interface.SetPWMPeriod(22, 3)
PIC32Interface.EnablePWM1(13,2)
#set on time to 1.3 milliseconds

8 Function EnablePWM2

53

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Description To Set the ON time for PWM Channel 2 as
OnTime*(10^unit) microseconds and start the PWM.
SetPWMPeriod should be called before calling this
function

Parameters Period specifies the value

 unit specifies the power of 10

Return Value

Example usage PIC32Interface.SetPWMPeriod(22, 3)
PIC32Interface.EnablePWM2(17,2)
#set on time to 1.7 milliseconds

9 Function SetDACA

Description To Set DC value for DAC Channel A

Parameters DacVal specifies the DC value 0-4095

Return Value

Example usage #Set 2V output

VA=(int)(4096*2.0/3.3)
PIC32Interface.SetDACA(VA)

10 Function SetDACB

Description To Set DC value for DAC Channel B

Parameters DacVal specifies the DC value 0-4095

Return Value

Example usage #Set 2V output

VB=(int)(4096*2.0/3.3)
PIC32Interface.SetDACB(VB)

11 Function ConfigureDACA

Description To Configure DAC Channel A for arbitrary waveform
generation

Parameters

BufNum Specifies PIC buffer to be used
for generating the waveform

Mode

0-Single burst

1-Continuous

54

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Return Value

Example usage PIC32Interface.ConfigureDACA(0,1)
#Setup DAC to Continuously play buffer 0

12 Function ConfigureDACB

Description To Configure DAC Channel B for arbitrary waveform
generation

Parameters

BufNum Specifies PIC buffer to be used
for generating the waveform

Mode

0-Single burst

1-Continuous

Return Value

Example usage PIC32Interface.ConfigureDACB(1,0)
#Setup DAC B to play buffer 1 once

13 Function ConfigureDACAB

Description To Configure DAC Channel A and B for arbitrary
waveform generation

Parameters

BufNumA Specifies PIC buffer to be used
for generating the waveform in
Channel A

BufNumB Specifies PIC buffer to be used
for generating the waveform in
Channel B

Mode

0-Single burst

1-Continuous

Return Value

55

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Example usage PIC32Interface.ConfigureDACAB(0,1,1)
Play Channel A from buffer 0 and Channel B from

buffer 1 continuously

#Setup DAC B to play buffer 1 once

14 Function StartDACOutput

Description To start the arbitrary waveform generation from
DAC.Buffer should be written using WriteBuffer and
ConfigureDACA/ConfigureDACB/ConfigureDACAB
function should be called before using this function

Parameters

SampleFreq Specifies sample frequency for
waveform generation in
kilohertz

0-255

Samples Specifies number of samples
from buffer to use for waveform
generation

Return Value

Example usage PIC32Interface.WriteBuffer(0,sawdata)
PIC32Interface.WriteBuffer(1,sinedata)
PIC32Interface.ConfigureDACAB(0,1,1)
#play buffer 0 and 1 continuously

PIC32Interface.StartDACOutput(10,512)
#use 512 samples from buffer A and B at 10 khz for

waveform generation

#resultant waveform will have frequency =(10/512)

khz # Play Channel A from buffer 0 and Channel B

from buffer 1 continuously

15 Function StopDACOutput

Description To reset the DAC

Parameters

Return Value

56

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Example usage PIC32Interface.StopDACOutput()

PIC32Interface.WriteBuffer(1,sinedata)
PIC32Interface.ConfigureDACAB(0,1,1)
#play buffer 0 and 1 continuously

PIC32Interface.StartDACOutput(10,512)
#use 512 samples from buffer A and B at 10 khz for

waveform generation

#resultant waveform will have frequency =(10/512)

khz # Play Channel A from buffer 0 and Channel B

from buffer 1 continuously

16 Function _SetSampleFreq_

Description To set ADC sampling frequency

Parameters PrescalerSetting Specifies the sampling
frequency in kilohertz

 SampleVal Specifies the number of
samples to be acquired

Return Value

Example usage PIC32Interface._SetSampleFreq_(1, 200)
 #Acquire 200 samples at 1 khz sampling frequency

17 Function _StartADC_

Description To start ADC sampling. _SetSampleFreq_ should
be called before calling this function

Parameters Channel Specifies the analog input
channel

0-3

 Buffer Specifies the buffer number to
store the samples

0-3

Return Value

Example usage PIC32Interface._StartADC_(1,3)
 #Take samples from analog channel 1 & put in
buffer 3

57

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

18 Function CheckBufferStatus

Description To check if ADC sampling is complete

Parameters

Return Value status 4 bit value. Each bit indicates
status of corresponding PIC32
buffer

Example usage while(not((PIC32Interface.CheckBufferStatus())and
0x08)):

pass

#wait till buffer 3 ADC sampling is complete

19 Function WriteGPIO

Description To write data to GPIO port Y

Parameters data 8 bit value to write to Port Y

Return Value

Example usage #Turn ON all pins

WriteData=255
PIC32Interface.WriteGPIO(WriteData)

20 Function ReadGPIO

Description To read data from GPIO port Z

Parameters

Return Value ReadVal 8 bit value read from PORT Z

Example usage ReadData=PIC32Interface.ReadGPIO()

Table B-1. PIC32Interface Library Functions

58

PIC32 and Raspberry Pi Interface

Vipin Venugopal (vv258)
Ye Kuang (yk749)

Appendix C. Test Plan
The following procedure may be used to test out a newly assembled board.

a. Remove the ICs from the sockets.

b. Set the power supply to 5V and turn off. Connect the J2 connector to power supply

and turn On the power supply. Turn ON the switch SW2 on the board.

c. Check the output voltages on the J3 connector and turn OFF switch.

d. Place the ICs in sockets and make the following connections:

i. Connect USB to serial converters to debug channel and RPi channel and

connect to PC

ii. Connect the programmer

iii. Connect parallax servo motors to PWM channels

iv. Connect DAC output channels to oscilloscope

v. Connect analog input channels to function generator

vi. Connect loopback connectors across GPIO Ports

vii. Connect motor in pin to 5V out pin of J3

e. Power On the board and program the PIC with PiInterface code from repository.

f. On reset, check if “Welcome to PIC & Pi Project Debug Window” appears on debug

serial channel.

g. Run the module tests available in the Jupyter Notebook available in the repository to

verify each module.

59

