Electronics Introduction

Curie 2011 Written by Al Molnar Modified by Bruce Land

Why Electricity?

- Useful for it to transporting energy
 - Just need wires, instead of pipes, or trucks, or whatever
- Use it to physically move objects
 - Electric motors in cars
 - Actuators to control things
- Use it to transmit information
 - Again, just wires are needed
 - Very very fast (~1000,000 times faster than talking)
- Use it to compute things (electronic chips)
 - Again, very very fast (~1 billion times faster than pencil and paper.
 - Very small (1 million times smaller than a pencil and paper)
- Others...

What is electricity? Charge

- All matter in the universe is made up of charged particles
 - These can be either positive (protons) or negative (electrons)
 - Positive charges repel each other
 - negative charges repel each other
 - But positive charges attract negative charges.
- Normally have equal amounts of each, nothing happens
- But if move enough charge: zap!

Electricity: Voltage/current

- Voltage: describes how much energy you have from separating +. – charges
 - Energy = voltage (V) times amount of charge (# of electrons).
 - Voltage "pushes on" charge: kind of like pressure on fluid
 - Measured in Volts (V)
 - Can either measure across a component, or as a number relative to ground (0V).
- Current: electrons can move in conductors (metal, people, etc), current describes how much
 - Current: charge /per second
 - Like water flowing in a pipe: gallons/ second
 - Measured in Amperes (Amps: A)
- When you put voltage across a conductor, it pushes on charge, and makes current flow.

I-V curves + conductance

- You can characterize component by:
 - placing voltage across it
 - Measure current through it
 - Changing the voltage, and repeating
- Plotting an "I-V" curve:
 - V on x-axis
 - I on y-axis
- Ohm's law: V=I·R ↔I=V/R
 - R: resistance: small in metal, big in other things (like people, except when they lie), measured in Ohms: Ω
 - Symbol:

Resistor combinations

- Series Resistors:
 - V1=IR1
 - V2=IR2
 - Total voltage: add up voltages
- Effective resistance:

 $R_{eff} = R_2 + R_1$

Capacitance

 In addition to resistors, another kind of component, called a capacitor, is used a lot in circuits. The symbol used is

 $\dashv \vdash$

- The equation describing a capacitor is V= (i*t)/C or in words: voltage equals charge/capacitance (remember that current*time=charge). Another way to write this relation is ΔV=(i*Δt)/C, which is read as "a small change in voltage results from a current flowing for a small time into a capacitance C".
- We will see that a combination of resistors and capacitors allows us to make circuits that respond with a certain speed or over a certain time.

Capacitance

 Building a circuit of a resistor and a capacitor and applying a sudden jump in voltage results in a slowing rising output with

- The blue line is the input (starting at zero at t=0).
- The red line is Vout=Vin*(1-e^(-t/RC)) (Here RC=2)
- The black line is drawn at the value RC which is called the *time* constant of the circuit. At that point, Vout=Vin*(1-e⁻¹)=0.632
- A fast input results in a slower output.

Electricity: power and energy

- When current flows from high voltage to low voltage, energy is dissipated (water down hill)
 - This can be as heat
 - Or as light
 - As force + movement
 - Or even as sound
- When current flows from low voltage to high voltage, electrical energy is generated:
 - Chemically (battery)
 - By light (solar cells)
 - By force and movement (wind generator)
- Power (in Watts) equals voltage times current: P = V.
 - Example: A light bulb conducts 1 Amp of current when 100 Volts are applied across it: What is:
 - The power dissipated in the bulb?
 - The resistance of the bulb?

Analog Voltage signals

- Now voltage directly represents a value:
 - Like temperature (so V = T·k): example 1V for every 20° above 0: 32° →1.6V.
 - Or light intensity
 - or air pressure (from sound)
- This is useful because it is easier to send a voltage over a wire over a long distance than sound (or heat, etc)

Time varying signals

- If voltage changes in time, can plot that voltage vs time (using an oscilloscope)
 - Important things to note:
 - Amplitude
 - Time scale

 One benefit of electronics is it is very fast: can send fast-changing signals = lots of information (lots of "voices" at once)

Digital Voltage signals

- Simplest signals are digital: "1" or "0"
- Really 0V or 5V (relative to ground) \rightarrow use these to make decisions :
 - 1= light on
 - 0 = light off
- Can combine to make "logical decisions"
 - Example:
 - Rule: turn on the light if it is night time, *and* I am in the room:
 - 2 inputs (time of day, person in the room)
 - Time of day: represent "night" as "1", day as "0" (call this A)
 - person in the room: yes = 1, no = 0 (call this B)
 - State of light is also digital (call this C): light on = 1, light off = 0
 - Then could say: if A and B are 1, then C is 1, otherwise C is 0.
 - Shorthand: C = A & B
- You can implement this with a circuit!

A simple "AND gate"

Light and electronics

- Electronics to make light:
 - Light emitting diode:
 - amount of light → amount of current L = k*I
 - Wavelength (color) sets voltage
 - Only works one direction
 - Laser diode: like an LED by with special properties to make a narrow beam
- Electronics to detect light:
 - Photodiode: like an LED but run the other way: now current flows when light is absorbed:
 - | = k*L
 - Only really works if V > 0
 - Photovoltaic: same idea but arranged so that current flows "out" of it: voltage is roughly constant, amount of current set by light.

