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Abstract

This article presents an online learning approach to probabilistic forecasting

of real-time system and market operations. Specifically, the proposed approach

produces a forecast of marignal or joint probability distributions of variables of

interest such as the locational marginal prices (LMPs), power flows on lines, and

the level of reserves.

A fundamental challenge in probabilistic forecasting for large systems is the

scalability. As the size of the system and the complexity of stochasticity increase,

standard techniques based on direct Monte Carlo simulations and classical meth-

ods of statistical inference become intractable. This article presents an alterna-

tive approach based on an online dictionary learning that overcomes the curse

of dimensionality.

1.1 Introduction

The increasing penetration of renewable resources has changed the operational

characteristics of the power systems and electricity markets, from one relying on

deterministic and static planning to one involving highly stochastic and dynamic

operations. For instance, the net load profile in some areas now follows a so-called

“duck curve” [1] where there is a steep down-ramp during the hours when a large

amount of solar power is injected into the network followed by a sharp up-ramp

when the solar power drops in late afternoon hours.

While the duck curve phenomenon represents an average net-load behavior, it

is the highly stochastic and spatial-temporal dependent ramp events that present

some of the most difficult and costly operational challenges to system operators.

In such new operation regimes, the ability to adapt to changing environments

a Stanford University
b Cornell University
c China Southern Power Grid Co., Ltd.
d This work is supported in part by the National Science Foundation under Awards 1809830

and 1816397

In Advanced Data Analytics for Power Systems, Cambridge University 
Press, pp. 28-49 2021.



4 Probabilistic Forecasting of Power System and Market Operations

and managing risks arising from complex scenarios of contingencies is essential.

For this reason, there is a need for informative and actionable characterization

of the overall operation uncertainty over an extended planning horizon, one that

reveals interdependencies of power flows, congestions, reserves, and locational

marginal prices (LMPs).

Some system operators are providing real-time price forecasts currently. The

Electric Reliability Council of Texas (ERCOT) [2], for example, offers one-hour

ahead real-time LMP forecasts, updated every 5 minutes. Such forecasts signal

potential shortage/oversupply caused by the anticipated fall/rise of renewable

supplies or the likelihood of network congestions. The Alberta Electric System

Operator (AESO) [3] provides two short-term price forecasts with prediction

horizons of 2 hours and 6 hours, respectively. The Australia Energy Market Op-

erator (AEMO) [4] provides 30 minutes to 32-hour spot price and load forecasts.

Most LMP forecasts, especially those provided by system operators, are point

forecasts that predict directly future LMP values. Often they are generated by

substituting actual realizations of stochastic load and generation by their ex-

pected (thus deterministic) trajectory in the calculation of future generation

and price quantities. Such certainty equivalent approaches amount to approxi-

mating the expectation of a function of random variables by the function of the

expectation of random variables; they can lead to gross mischaracterization of

the behavior of the system operation and systematic error in forecasting.

We consider in this article the problem of online probabilistic forecasting in

real-time wholesale electricity market from an operator perspective. Specifically,

we are interested in using real-time SCADA and PMU measurements along with

operating conditions known to the operator to produce short-term probabilistic

forecasts of nodal prices, power flows, generation dispatches, operation reserves

and discrete events such as congestions and occurrences of contingencies. Unlike a

point forecast that predicts the realization of a random variable, say the LMP at a

particular bus one hour ahead, probabilistic forecasting produces the probability

distribution of the random variable one hour ahead conditional on the real-time

measurements obtained at the time of prediction.

For an operator, probabilistic forecasting provides essential information for

evaluating operational risks and making contingency plans. It is only with prob-

abilistic forecasts that stochastic optimization becomes applicable for unit com-

mitment and economic dispatch problems [5]. For the market participants, on

the other hand, probabilistic forecasts of prices are essential signals to elicit ad-

ditional generation resources when the probability of high prices is high and to

curtail otherwise. Indeed, in the absence of a day-ahead market, continuing price

and load forecasts by the independent market operator that covers 30 minutes

and longer forecasting horizons play an essential role in the Australian national

electricity market [6].
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1.1.1 Related Work

There is an extensive literature on point forecasting techniques from perspectives

of external market participants. See [7, 8] for a review. These techniques typically

do not assume having access to detailed operating conditions. Results focusing on

probabilistic forecasting by an operator are relatively sparse. Here we highlight

some of the relevant results in the literature applicable to probabilistic forecasting

by system operators.

A central challenge of obtaining probabilistic forecasting is estimating the

(joint or marginal) conditional probability distributions of future system vari-

ables. One approach is to approximate the conditional distributions based on

point estimates. For instance, a probabilistic LMP forecasting approach is pro-

posed in [9] based on attaching a Gaussian distribution to a point estimate. While

the technique can be used to generalize point forecasting methods to probabilis-

tic ones, the Gaussian distribution is, in general, a poor approximation as there

typically multiple distribution modalities caused by different realizations of bind-

ing constraints in the optimization. The authors of [10] and [11] approximate the

probabilistic distribution of LMP using higher order moments and cumulants.

These methods are based on representing the probability distribution as an infi-

nite series involving moments or cumulants. In practice, computing or estimating

higher order moments and cumulants are challenging; lower order approximations

are necessary.

A more direct approach is to estimate the conditional distributions directly.

Other than some simple cases, however, probabilistic forecasting in a large com-

plex system can only be obtained by Monte Carlo simulations where conditional

distributions are estimated from sample paths generated either according to the

underlying system model or directly from measurements and historical data. In

this context, the problem of probabilistic forecasting is essentially the same as

online Monte Carlo simulations. To this end, there is a premium on reducing

computation costs.

The idea of using simulation techniques for LMP forecasting was first proposed

in [12], although probabilistic forecasting was not considered. Min et al. proposed

in [13] a direct implementation of Monte Carlo simulations to obtain short-term

forecasting of transmission congestion. For M Monte Carlo runs over a T -period

forecasting horizon, the computation cost is dominated by the computation of

M × T direct current optimal power flow (DCOPF) solutions that are used

to generate the necessary statistics. For a large scale system with a significant

amount of random generations and loads, such computation costs may be too

high for such a technique to be used for online forecasting.

A similar approach based on a nonhomogeneous Markov chain modeling of

real-time LMP was proposed in [14]. The Markov chain technique exploits the

discrete nature of LMP distributions and obtains LMP forecasts by the product

of transition matrices of LMP states. Estimating the transition probabilities,
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however, requires roughly the same number of Monte Carlo simulations, thus

requiring approximately the same number of DCOPF computations.

A significant reduction of simulation cost is achieved by exploiting the struc-

ture of economic dispatch by which random variables (such as stochastic gener-

ations) enter the optimal power flow (OPF) problem. In [15], a multiparametric

programming formulation is introduced where random generations and demands

are modeled as the right-hand side parameters in the constraints of the DCOPF

problem. From the parametric linear/quadratic programming theory, the (con-

ditional) probability distributions of LMP and power flows, given the current

system state, reduce to the conditional probabilities that realizations of the ran-

dom demand and generation fall into one of the finite number of critical regions

in the parameter space. The reduction of the modeling complexity from high

dimensional continues random variables of stochastic generations and loads to a

discrete random variable with a finite number of realizations represents a funda-

mental step toward a scalable solution to probabilistic forecasting.

Although the multiparametric programming approach in [16] reduces the mod-

eling complexity to a finite number of critical regions in the parameter space,

the cardinality of the set of critical regions grows exponentially with the num-

ber of constraints in the DCOPF problem. For a large power system with many

constraints, the cost of characterizing these critical regions, even if performed

offline, have exponential complexity in computation and storage.

In [17], an online dictionary learning (ODL) approach is proposed. The main

idea is to avoid computing and store all critical regions ahead of time, using

instead online learning to acquire and update sequentially a dictionary that cap-

tures the parametric structure of DCOPF solutions. In particular, each entry of

the dictionary corresponds to an observed critical region within which a sample

of random generation/demand has fallen. A new entry of the dictionary is pro-

duced only when the realization of the renewable generation and demand does

not fall into one of the existing critical regions in the dictionary. This avoids

costly DCOPF computations and recalls the solution directly from the dictio-

nary. Because renewable generation and load processes are physical processes,

they tend to be bounded and concentrated around the mean trajectory. As a

result, despite that there is potentially an exponentially large number of poten-

tial entries in the dictionary, only a tiny fraction of the dictionary entries are

observed in the simulation process.

1.1.2 Summary and Organization

This article highlights and extends recent advances in simulation-based proba-

bilistic forecasting techniques [16, 17]. We focus on simulation-based approaches

for two reasons. First, simulation-based forecasting is so far the only type of

techniques for large complex power systems that can yield consistent estimates

of conditional probability distributions. Second, although computation costs of

such methods have long been recognized as the primary barrier for their ap-



1.2 Probabilistic Forecasting via Monte Carlo Simulations 7

plications in large systems, novel computation and machine learning techniques

and new computation resources such as cloud computing and graphical process-

ing units (GPUs) will lead to a scalable online forecasting platform for system

operators.

This chapter is organized as follows. Section 1.2 presents a general simulation-

based approach to probabilistic forecasting. Examples of real-time operation

models are provided in Section 1.3. Section 1.4 summarizes key structural results

on multiparametric programming for developing the probabilistic forecasting al-

gorithm. Details of the proposed forecasting approach is presented in Section 1.5,

followed by case studies in Section 1.6 and concluding remarks in Section 1.7.

1.2 Probabilistic Forecasting via Monte Carlo Simulations

We highlight in this section a general approach to probabilistic forecasting based

on Monte Carlo simulation. Probabilistic forecast, in contrast to point forecast,

aims to provide (marginal or joint) probability distributions of future quantities

of interest such as load, power flow, reserve, LMP, etc.

Two critical components of simulation-based probabilistic forecasting are (i) a

model that captures the physical characteristics of the system and (ii) a proba-

bility model that characterizes the underlying random phenomena in the system.

For power system and market operations, the former includes a physical model

of the underlying power system and an algorithmic model of the decision pro-

cess for unit commitment, economic dispatch, and LMP. The latter comes from

probabilistic load/generation forecasts and probability models for contingencies.
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Figure 1.1 Schematics of simulation based probabilistic forecasting.

Fig. 1.1 illustrates a general schematic of simulation-based probabilistic fore-
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casting, similar to that in [12]. The main engine of the probabilistic forecasting

is a computational model of real-time system and market operations (MSMO).

Details of MSMO are subjects of Sections 1.3.

One set of inputs to MSMO are the exogenous random processes from real-

time measurements from SCADA or PMUs that define the system state St at

the time of forecasting t. Another set of inputs are the probabilistic forecasts of

generations and loads. Shown in Fig. 1.1 is an illustration of probabilistic load

forecast at time t where the grey area represents possible load trajectories of

the future. Probabilistic forecasting of load and renewable generation has been

studied extensively. See review articles [18, 19, 20] and references therein.

MSMO also imports a set of deterministic parameters that characterize the

network condition (topology and electrical parameters), bids and offers from

market participants, and operation constraints such as generation and line ca-

pacities. Using a physical model of the power system, the MSMO simulates the

actual system operations from generated scenarios using probabilistic load and

generation forecasts. Statistics of variables of interests such as LMP, congestion

patterns, levels of the reserve, etc. are collected and presented to the operator.

The output of MSMO is the set of the conditional probability distributions of

the variables of interest. In particular, given the system state St = s estimated

from PMU/SCADA data, MSMO outputs the conditional probability distribu-

tion ft+T |t of LMP at time t + T in the form of a histogram or parametric

distributions learned from LMP samples generated by MSMO.

1.3 Models of System and Market Operations

Most wholesale electricity markets consist of day-ahead and real-time markets.

The day-ahead market enables market participants to commit to buy or sell

wholesale electricity one day ahead of the operation. The day-ahead market is

only binding in that the market participants are obligated to pay or be paid for

the amount cleared in the day ahead market at the day-ahead clearing price. The

amount of energy cleared in the day ahead market is not related to the actual

power delivery in real-time.

The real-time system operation determines the actual power delivery based

on the actual demand and supply. The real-time market, in contrast to the day

ahead market, is a balancing market that prices only the differences between

day-ahead purchases and the actual real-time demand and production.

Modern power systems and electricity markets are highly complex. Here we

present a stylized parametric model for real-time system and market opera-

tions, which captures essential features of the optimal economic dispatch, energy-

reserve co-optimization, and related LMP computations.
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1.3.1 A Multi-parametric Model for Real-time System and Market Operations

We defer to later sections for the detailed specification of several real-time op-

erations. Here we present a generic multiparametric optimization model that

underlies primary real-time system and market operations.

Specifically, we consider the multi-parametric linear or quadratic program of

the following form

minimize
x

z(x) subject to Ax ≤ b+ Eθ (y) (1.1)

where x is the decision variable typically representing the dispatch of generation

or flexible load, z(·) the overall cost function, the inequalities the generation and

network constraints, and y the vector of Lagrangian multipliers (dual variables)

from which the energy prices are calculated. Special to this optimization is the

parameter θ that captures the realized exogenous stochastic generations and

demands.

The real-time system is operated in discrete time periods, each of duration, say,

one to five minutes. For a twenty-four hour operation, let θt, t = 1, 2, · · · , T be

the sequence of realized stochastic demands and (renewable) generations. The

single period operation model is to solve a sequence optimizations of the form

(1.1) for each realized θt to determine the optimal generation dispatch x∗
t and

related LMP y∗t . When θt are drawn repeatedly from a probability distribution

based on load and generation forecasts, we obtain samples of dispatch levels

and LMPs from which their distributions can be estimated. Sections 1.3.2, 1.3.4

describes techniques under the single-period operation model.

In practice, there are the so-called ramping constraints for generators on how

much the generation level can change from one interval to the next. This means

that, given a sequence of realized demand θt, obtaining optimal dispatch inde-

pendently one interval at a time according to the single operation model may

violate the ramping constraints, leading to an infeasible dispatch sequence.

One approach to deal with significant ramping events is to call up the reserve in

cases of shortage, which is a costly proposition. A more economic approach is to

schedule generations based on amulti-period operationmodel in which generation

levels of the entire operation horizon are considered jointly. For instance, at time

t, if the future load and stochastic generation can be forecasted perfectly as

θ = (θt, θt+1, · · · , θt+T ′), the problem of jointly determining generation levels

x∗ = (x∗
t , x

∗
t+1, · · · , x

∗
t+T ′) can be solved from (1.1).

In practice, one does not have the perfect prediction of θt+1, · · · θt+T ′ , the prob-

lem of determining the optimal sequence of dispatch becomes on of multi-period

stochastic (or robust) optimizations, for which the computation complexity is

substantially higher. Practical solutions based on certainty equivalent heuristics

or model predictive control (MPC) are used in practice. We present one such

approach in Sec. 1.3.3.

We should note that, unlike computing (and forecasting) LMP under the single

period operation model, pricing dispatch under the multi-period operation model
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is highly nontrivial and is an area of active research. See [21] and references

therein.

1.3.2 Single Period Economic Dispatch

Here we consider the problem of economic dispatch in the energy-only real-

time market under the single period operation model. The system operator sets

generation adjustments by solving a so-called DCOPF problem in which the

one-step-ahead real-time demand is balanced subject to system constraints.

For simplicity, we assume that each bus has a generator and a load. The single-

period DCOPF problem solves, in each time period t, for the optimal generation

dispatch vector g∗t given the forecast demand dt in period t subject to generation

and network constraints from the following optimization:

minimize
g

Cg(g) (1.2)

subject to 1⊤(g − dt) = 0 (λt) (1.3)

S(g − dt) ≤ Fmax (µt) (1.4)

Gmin ≤ g ≤ Gmax (1.5)

ĝt−1 −Rmax ≤ g ≤ ĝt−1 +Rmax (1.6)

where
Cg(·) real-time generation cost function;

1 the vector of all ones;

dt vector of net load forecast at time t;

g vector of ex-ante dispatch at time t;

ĝt−1 vector of generation estimate at time t− 1;

dt vector of one-step net load1 forecast at time t;

Fmax vector of transmission capacities;

Gmax vector of maximum generator capacities;

Gmin vector of minimum generator capacities;

Rmax vector of ramp limits;

S power transfer distribution factor matrix;

λt shadow price for the energy balance constraint at time t;

µt shadow prices for transmission constraints at time t.
In the above optimization, the first equality constraint (1.3) represents the

power balance dictated by the Kirchhoff law, the second (1.4) on the maximum

power transfer over each branch, and the third (1.5) on the maximum and mini-

mum restrictions on generations. The last constraint (1.6 is on the up and down

ramping capabilities of generators from the previously set dispatch levels.

The above model clearly is an instance of the general parametric program

defined in (1.1). In this model, the generation costs can be linear or strictly

convex quadratic. The real-time LMP πit at bus i and time t is defined by the

marginal cost of demand dit at that bus. In other words, the LMP is the total
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cost increase induced by an ǫ increase of demand dit. In the limit,

πit =
∂

∂dit
C(g∗(dt)).

By the envelop theorem, the LMP vector πt can be computed from the dual

variable y∗ as

πt = λ∗
t1− S⊤µ∗

t , (1.7)

where the first term corresponds to the sum of energy prices λ∗ and weighted

sum of congestion prices µ∗. Note that the ith entry of µ∗ corresponds to the

constraint associated with the ith branch of the system. Thus we have µ∗
i > 0

only if the ith branch is congested, i.e., the power flow constraint on branch i is

binding.

1.3.3 Multi-Period Economic Dispatch with Ramping Products

With increasing levels of variable energy resources and behind the meter gener-

ation, the operational challenge of ramping capability becomes more prominent.

ISOs [22, 23] are adopting market-based “ramp products” to address the oper-

ational challenges of maintaining the power balance in the real-time dispatch.

Here we present a multi-period economic dispatch model [24] based on the so-

called flexible ramping product (FRP) [22] recently adopted in the California

Independent System Operator (CAISO).

Given the load forecast d̄t for the next T period, the following optimization,

again in the general form of (1.1), produces a sequence of dispatch levels (g∗t )

and up and down ramping levels (rupt , rdown
t ):

min
{gt,r

up
t

,rdown
t

}

t0+T
∑

t=t0+1

Cg(gt) + Cup
r (rupt ) + Cdown

r

(

rdown
t

)

(1.8)

subject to ∀t = t0 + 1, · · · , t0 + T, (1.9)

1⊤(gt − d̄t) = 0, (λt) (1.10)

S(gt − d̄t) ≤ Fmax, (µt) (1.11)

gt + rupt ≤ Gmax, (1.12)

gt − rdown
t ≥ Gmin, (1.13)

gt − gt−1 + rupt−1 + rupt ≤ Rmax, (1.14)

gt − gt−1 + rdown
t−1 + rdown

t ≤ Rmax, (1.15)

1⊤rupt ≥ Rup
t , (αt) (1.16)

1⊤rdown
t ≥ Rdown

t , (βt) (1.17)

rupt ≥ 0, rdown
t ≥ 0. (1.18)

1 In this model, we use the concept of “net load” dt. Since renewable generation can be
considered as a negative load, we define the net load as the total electrical load plus
interchange minus the renewable generation. The interchange schedule refers to the total
scheduled delivery and receipt of power and energy of the neighboring areas.
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where
Cg(·) energy generation cost function;

Cup(·) cost function to provide upward ramping;

Cdown(·) cost function to provide downward ramping;

d̄t vector of net load forecast at time t conditioning on the system

state at time t0;

gt vector of generation at time t;

rupt vector of upward flexible ramping capacity at time t;

rdown
t vector of downward flexible ramping capacity at time t;

Fmax vector of transmission capacities;

Gmax vector of maximum generator capacities;

Gmin vector of minimum generator capacities;

S shift factor matrix;

Rmax vector of ramp limits;

Rup
t upward ramping requirement of the overall system at time t;

Rdown
t downward ramping requirement of the overall system at time t.
This multi-period economic dispatch is performed at time t0 to minimize the

overall system cost, consisting of energy generation cost and generation ramping

cost, over time steps t = t0+1, t0+2, · · · , t0+T . The constraints of power balance

(1.10) and branch flow capacity (1.11) are the same as in single-period economic

dispatch. Constraints (1.12)-(1.15) correspond to the capacity of generations and

ramping constraints. The rest of constraints (1.16)-(1.18) enforce the flexible

ramping products to satisfy the ramping requirements.

Ramping requirements Rup
t and Rdown

t will ensure there is sufficient ramping

capability available to meet the forecasted netload. In practice, ISO uses the

historical forecast error to calculate the distribution of ramping needs. The last

constraint is the risk-limiting constraint, which implies that the system operator

needs to meet the actual demand at all times with the probability of at least p.

The practice used by CAISO [25] to determine the ramping requirements is as

follows. The values of Rup
t and Rdown

t are chosen to achieve confidence level of p

with respect to the point prediction of load d̄t at time t:

P [1⊤d̄t −Rdown
t ≤ 1⊤dt ≤ 1⊤d̄t +Rup

t ] ≥ p (1.19)

where dt is the actual load at time t.

Because the sequence of demand forecasts (d̄t) is never perfect, the further

ahead of the forecast, the higher the forecast error, only the dispatch g∗t is im-

plemented in reality. The dispatch at time t0 + 1 is determined by solving the

above optimization upon receiving the updated forecasts. Such type of sequential

decision processes follows the principle of model predictive control (MPC).

The MPC approach seeks to perform the economic dispatch for time steps

t = t0 +1, t0 +2, · · · , t0 +T under the condition that ramping capacity needs to

be reserved for steps t = t0+1, t0+2, · · · , t0+T − 1. Ramping capacity for time

t = t0 has been reserved in the previous time step, hence, there are no variables

to be determined. Note that the load predictions are updated as time goes by.
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Hence, only the energy dispatch profile for t = t0, i.e., gt0 ’s, and the flexible

ramping requirements for t = t0 + 1, i.e., rdown
t0+1 and rupt0+1, will be applied.

By the envelop theorem, the energy LMP vector πt at time t is given by

πt = 1λ∗
t + S⊤µ∗

t . (1.20)

The clearing prices for upward ramping and downward ramping at time t are α∗
t

and β∗
t respectively.

1.3.4 Energy and Reserve Co-Optimization

In the joint energy and reserve market, dispatch and reserve are jointly deter-

mined via a linear program that minimizes the overall cost subject to operating

constraints. In the co-optimized energy and reserve market, system-wide and

locational reserve constraints are enforced by the market operator to procure

enough reserves to cover the first and the second contingency events. We adopt

the co-optimization model in [26] as follows:

minimize
g,r,s

∑

i



cgi gi +
∑

j

crijrij



+
∑

u

cpus
l
u +

∑

v

cpvs
s
v (1.21)

subject to 1⊤(g − d) = 0 (λ) (1.22)

S(g − d) ≤ Fmax (µ) (1.23)
∑

ij

δlijurij + (Imax
u − Sint

u (g − d)) + slu ≥ Ql
u, ∀u (αu) (1.24)

∑

ij

δsijvrij + ssv ≥ Qs
v, ∀v (βv) (1.25)

Gmin
i ≤ gi +

∑

j

rij ≤ Gmax
i , ∀i (1.26)

Rdown ≤ g − ĝt−1 ≤ Rup (1.27)

0 ≤ r ≤ Rmax (1.28)

slu, s
s
v ≥ 0, ∀u, v (1.29)
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where
i index of buses;

j index of reserve types, 10-min spinning, 10-min non spinning, or

30-min operating reserve;

u/v index of locational/system-wide reserve constraints;

k index of transmission constraints;

di net load at bus i;

gi dispatch of online generator at bus i;

rij generation reserve of type j on bus i;

sl/ss local/system reserve deficit of constraint;

cgi cost for generation at bus i;

crij cost for reserve type j at bus i;

cpu/v penalty for reserve deficit of constraint u/v;

Imax
u interface flow limit for locational reserve constraint u;

Fmax vector of transmission capacities;

Ql/Qs locational/system-wide reserve requirement of constraint;

S shift factor matrix for transmission lines;

Sint shift factor matrix for interface flows;

δliju binary value that is 1 when reserve j on bus i belongs to locational

reserve constraint u;

δsijv binary value that is 1 when reserve j on bus i belongs to system-

wide reserve constraint v;

G
max/min
i max/min generation capacity for generator at bus i;

Rup/down vector of upward/downward ramp limits;

Rmax vector of reserve capacities.

In this model, the real-time dispatch problem is formulated as a linear pro-

gramming problem with the objective to maximize the social surplus, subject to

real-time operating constraints and the physical characteristics of resources. En-

ergy balance constraint (1.22) and transmission constraint (1.23) are the same as

in the economic dispatch for the energy-only market. The system-wide reserve

requirement constraint (1.25) is enforced for the market operator to procure

enough reserves to cover the first contingency events. A locational reserve con-

straint (1.24) is used to cover the second contingency event caused by the loss

of a generator or a second line in a local area. Therefore, the unloaded tie-line

capacity (Imax
u − Sint

u (g − d)), as well as the reserve provided by units located

in the local reserve zone, can be utilized to cover the local contingency or re-

serve requirement within 30 min. Note that the interface flow is calculated the

same way as transmission line flow using the shift factor matrix Sint. Constraints

(1.26)-(1.27) correspond to the generation capacity and ramping limits respec-

tively.

Based on the envelop theorem, the energy price vector π for all buses and the
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reserve clearing price ρij of each reserve product j at bus i are defined as

π = λ∗1− S⊤µ∗ + (Sint)⊤α∗ (1.30)

ρij =
∑

u

α∗
uδ

l
iju +

∑

v

β∗
vδ

s
ijv (1.31)

where λ∗, µ∗, α∗, β∗ are the optimal values of Lagrangian multipliers.

Note again that the energy-reserve co-optimization model is also of the form

of parametric program of (1.1) with parameter θ = (dt, ĝt−1) that is realized

prior to the co-optimization.

1.4 Structural Solutions of Multiparametric Program

We have seen in the section that many real-time market operations can be mod-

eled as a general form of the multi-parametric linear or quadratic program defined

in (1.1). Here we present several key structural results on multiparametric lin-

ear/quadratic programming that we use to develop our approach. See [27, 28, 29]

for multiparametric programming for more comprehensive expositions.

1.4.1 Critical Region and its Geometric Structure

Recall the multiparametric (linear/quadratic) programm defined earlier

minimize
x

z(x) subject to Ax ≤ b+ Eθ (y) (1.32)

where the decision variable x is in Rn, the cost function z(x) linear or quadratic,

and the parameter θ is in a bounded subspace Θ ⊂ Rm.

Let the optimal primal solution be x∗(θ), the associated dual solution y∗(θ),

and the value of optimization z∗(θ). We will assume that the MLP/MQP is

not (primal or dual) degenerate2 for all parameter values. Approaches for the

degeneracy cases are presented in [29].

The solution structure of (1.32) is built upon the notion of critical region

partition. There are several definitions for critical region. Here we adopt the

definition from [29] under primal/dual non-degeneracy assumption.

definition 1.1 A critical region C is defined as the set of all parameters such

that for every pair of parameters θ, θ′ ∈ C, their respective solutions x∗(θ) and

x∗(θ′) of (1.1) have the same active/inactive constraints.

To gain a geometric insight into this definition and its implication, suppose

that, for some θo, the constraint of (1.32) is not binding at the optimal solution,

i.e., Ax∗(θo) < b + Eθo. Then the constraint (1.32) is none binding for all θ’s

in a small enough neighborhood of θo. Thus this small neighborhood belongs to

2 For a given θ, (1.32) is said to be primal degenerate if there exists an optimal solution
x∗(θ) such that the number of active constraints is greater than the dimension of x. By
dual degeneracy we mean that the dual problem of (1.32) is primal degenerate.
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the critical region Co in which all linear inequality constraints of (1.32) are none

binding at their own optima. We can then expand this neighborhood until one of

the linear inequalities becomes binding. That particular linear equality defines a

boundary of C0 in the form of a hyperplane.

Conceptually, the above process defines the critical region C0 of the form of

a polyhedron. For a quadratic objective function, because all linear inequality

constraints are none binding for all θ ∈ C0, the solution of (1.32) must all be of

the form x∗(θ) = f0.

Similarly, if we take θ1 for which only one linear inequality constraint is binding

at x∗(θ1). We can then obtain a different polyhedral critical region C1 containing

θ1, for which the same constraint binding condition holds. By ignoring all none

binding constraints and eliminating one of the variables, say x1 in the equality

constraint, we can solve an unconstrained quadratic optimization with θ only

appears in the linear term. Thus, for all θ ∈ C1, the optimal solution is of a

parametric affine form

x∗(θ) = F1θ + f1 for all θ ∈ C1,

where F1 and f1 are independent of θ ∈ C1.

The significance of the above parametric form of the solution is that, once we

have (F1, f1), we no longer need to solve the optimization whenever θ ∈ C1.

It turns out that every θ is in one and only one critical region. Because there

is an only finite number of binding constraint patterns, the parameter space Θ

is partitioned into a finite number of critical regions. Within critical region C1,

the optimal solution is of the form x∗(θ) = Fiθ + fi for all θ ∈ C1.

1.4.2 A Dictionary Structure of MLP/MQP Solutions

We now make the intuitive arguments given above precise mathematically and

computationally. In particular, we are interested in not only the existence of a

set of a finite number critical regions {Ci} that partitions the parameter space,

but also the computation procedure to obtain these critical regions and their

associated functional forms of the primal and dual solutions.

The following Theorem summarizes the theoretical and computational basis

for the proposed probabilistic forecasting approach.

theorem 1.2 ([16, 17]) Consider (1.32) with cost function z(x) = c⊤x for

MPLP and z(x) = 1
2x

⊤Qx for MPQP where Q is positive definite. Given a

parameter θ0 and the solution of the parametric program x∗(θ0), let Ã, Ẽ and b̃

be, respectively, the submatrices of A, E and subvector of b corresponding to the

active constraints. Let Ā, Ē and b̄ be similarly defined for the inactive constraints.

Assume that (1.32) is neither primal nor dual degenerate.

(1). For the MPLP, the critical region C0 that contains θ0 is given by

C0 =
{

θ
∣

∣(ĀÃ−1Ẽ − Ē)θ < b̄− ĀÃ−1b̃
}

. (1.33)
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And for any θ ∈ C0, the primal and dual solutions are given by, respectively,

x∗(θ) = Ã−1(b̃+ Ẽθ), y∗(θ) = y∗(θ0).

(2). For the MPQP, the critical region C0 that contains θ0 is given by

C0 = {θ|θ ∈ Pp

⋂

Pd}, (1.34)

where Pp and Pd are polyhedra defined by

Pp = {θ|ĀH−1Ã⊤(ÃQ−1Ã⊤)−1(b̃+ Ẽθ)− b̄− Ēθ < 0},

Pd = {θ|(ÃQ−1Ã⊤)−1(b̃+ Ẽθ) ≤ 0}.

And for any θ ∈ C0, the primal and dual solutions are given by

x∗(θ) = H−1Ã⊤(ÃH−1Ã⊤)−1(b̃+ Ẽθ), (1.35)

y∗i (θ) =

{

0 the ith constraint is inactive

−e⊤i (ÃH
−1Ã⊤)−1(b̃+ Ẽθ) otherwise

.(1.36)

where ei is the unit vector with ith entry equal to one and zero otherwise.

Figure 1.4.2 illustrates the geometric structure of MLP/MQP on the parameter

space Θ partitioned by a finite number of polyhedral critical regions {calCi}. We

then attach each critical region Ci a unique signature, which we shall referred

to as a word Wi = (Fi, fi, Gi, gi, Hi, hi), that defines completely the primal/dual

solutions and the critical region. Specifically, the primal and dual solutions for

θ ∈ Ci is given by, respectively,

x∗(θ) = Fiθ + fi, y∗(θ) = Giθ + gi, (1.37)

and the critical Ci is defined by Ci = {θ|Hiθ + hi ≤ 0}.

Thus the complete solution of the MLP/MQP can be viewed as a dictionary

in which each word of the dictionary defines the solution from within a critical

region. In the next section, we present an online learning approach that learns

the dictionary adaptively.

1.5 Probabilistic Forecasting via Online Dictionary Learning

In this section, we present an online learning approach to probabilistic forecasting

aimed at achieving computation scalability for large networks and a high degree

of accuracy that requires a large number of Monte Carlo runs. To this end, we

first examine the computation costs of probabilistic forecasting, which motivates

the development of an online dictionary learning solution.

In developing a tractable forecasting solution, we emulate the process by which

a child learn how to speak a language. A natural way is to acquire words as the

child encounters them. Along the process, the child accumulates a set of words

most useful for her. Even if a word was known to her earlier but is forgotten later,

she can relearn the word making the words less likely to forget. Among all the
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C0

C1

C2

C3

Ci

Wi = (Fi, fi, Gi, gi,

Hi, hi)

Figure 1.2 Illustration of the geometry of the solution structure on the parameter
space Θ.

words in the language dictionary, only a small fraction of them are sufficient for

all practical purposes, and the set of words most useful may change dynamically.

1.5.1 Complexity of Probabilistic Forecasting

As outlined in Sec. 1.2, the engine of the probabilistic forecast is the Monte Caro

simulations defined by MSMO. Thus the main computation cost comes from

repeatedly solving the optimal dispatch problem defined by the multi-parametric

program (1.1) for random samples generated from load and generation forecasts.

Consider a system of N buses. The structural results in Theorem 1.2 allows

us to solve the LP/QP defined in (1.32) no more than K(N) times where K(N)

is the number of critical regions. For fixed N , the complexity in terms of the

number of LP/QP calls to achieve arbitrarily accurate probabilistic forecasting

is finite. Let M be the number of Monte Carlo simulations needed to generate

probabilistic forecasts. To achieve a consistent estimate of the conditional proba-

bility distributions, we require M → ∞. The computation costs per Monte Carlo

run, in the limit as M → ∞, is given by

lim
M→∞

M ×O(N2) +O(K(N)Nα

M
= O(N2)

where the first term in the numerator corresponds to cases when solving LP/QP

are unnecessary and the second term for the cases when LP/QP has to be solved

(only once per critical region) by a polynomial algorithm. This means that,
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in high accuracy regime, the computation complexity per Monte Carlo run is

roughly that of a matrix-vector multiplication.

On the other hand, in the large system asymptotic regime when N → ∞,

the computation cost is dominated by O(K(N)Nα) where K(N), the number

of critical regions for an N bus network. Unfortunately, K(N) may grow expo-

nentially with N , which means that direct Monte Carlo simulations for a large

network remain intractable in the worst case.

1.5.2 An Online Dictionary Learning Approach to Probabilistic Forecasting

We leverage the dictionary structure of the MLP/MQP to develop an online

learning approach3 in which critical regions are learned sequentially to overcome

the curse of dimensionality. To overcome the memory explosion, we also allow

words previously learned but rarely used to be forgotten. It is the combination of

sequential learning and dynamic management of remembered words that makes

the simulation-based probabilistic forecasting scalable for large systems.

Given that, in the worst case, there may be exponentially (in N) a large num-

ber of critical regions for an N -bus system, obtaining analytical characterizations

of all critical regions and the associated solution functions can be prohibitive. If,

however, we are interested not in the worst case, but in the likely realizations of

the stochastic load and generation parameter θt, not all critical regions need to

be characterized. In fact, since θt represents the physical processes of load and

generation, it is more likely that θt concentrates around its mean. As a result,

each realization of θt may encounter a few critical regions.

A skeleton algorithm of the online dictionary approach is given in Algo-

rithm 1. We assume that at time t, we have acquired a dictionary Dt = {Wi, i =

1, · · · ,Kt} with Kt entries, each corresponds to a critical region that has been

learned from the past. Upon receiving a realization of random load and gen-

eration θt, the algorithm checks if θt belongs to a critical region whose word

representation is already in the dictionary. This mounts to search for a word

Wi = (Fi, fi, Gi, gi, Hi, hi) such that Hiθt + hi ≤ 0. If yes, the primal solution is

given by the affine mapping defined by Fi and fi and dual solution by Gi and

gi. Otherwise, we need to solve (1.32) and obtain a new word W according to

Theorem 1.2.

The main intuition of the dictionary learning approach is that the parameter

process θt represents the physical processes of aggregated load and generation.

Such processes tend concentrates around its mean. As a result, each realization

of θt may encounter a few critical regions. This intuition is confirmed in our

experiments discussed in Sec 1.6 where for a three thousand bus system with

one million Monte Carlo runs, less than 20 critical regions cover more than 99%

3 Widely used in the signal processing community, dictionary learning refers to acquiring a
dictionary of signal bases to represent a rich class of signals using words (atoms) in the
dictionary [30, 31].
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Algorithm 1 Online Dictionary Learning

1: Input: the mean trajectory {d̄1, d̄2, · · · , d̄T } of load and associated (forecast)

distributions {F1,F2, · · · ,FT}.

2: Initialization: compute the initial critical region dictionary C0 from the

mean load trajectory.

3: for m = 1, · · · ,M do

4: for t = 1, · · · , T do

5: Generate sample dmt and let θmt = (dmt , gmt−1).

6: Search Cm
t−1 for critical region C(θmt ).

7: if C(θmt ) ∈ Cm
t−1 then

8: Compute gmt from the affine mapping g∗C(θm

t
)(θ).

9: else

10: Solve gmt from DC-OPF (1.2-1.6) using θtm, compute C(θmt ), and up-

date Cm
t = Cm

t−1 ∪ {C(θmt )}.

11: end if

12: end for

13: end for

14: Output: the critical region dictionary CM
T .

of cases. Thus a dictionary of 20 words is mostly adequate for representing the

level of randomness in the system.

1.6 Numerical Simulations

We present in this section two sets of simulation results. The first compares

the computation cost of the proposed method with that of direct Monte Carlo

simulations. To this end, we used the 3210 “Polish network” [32]. The second set

of simulations focuses on probabilistic forecasting. With this example, we aim

to demonstrate the capability of the proposed method in providing joint and

marginal distributions of LMPs and power flows, a useful feature not available

in existing forecasting methods.

1.6.1 General setup

We selected the “duck curve” [1] as the expected net load profile as shown in

Figure 1.3. We were particularly interested in three scenarios: Scenario 1 repre-

sented a time (T = 55) when the net load was held steady at the mid range.

Scenario 2 (T = 142) was when the net load was on a downward ramp due to

the increase of solar power. Scenario 3 (T = 240) was at a time when the netload

was at a sharp upward ramp. The three scenarios represented different operating

conditions and different levels of randomness.
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Figure 1.3 The “duck curve” of net load over the different time of the day.

The net load—the load offset by renewable generation—was distributed through-

out the network. A renewable generation connected to a bus, say a wind farm,

was modeled as a Gaussian random variable N (µ, (ηµ)2) with mean µ and stan-

dard deviation ηµ. Similar models were used for load forecasts.

Given a forecasting or simulation horizon T , the real-time economic dispatch

model was a sequence of optimizations with one DCOPF in each 5-minute in-

terval. In this model, the benchmark technique solved a series of single period

DCOPF models with ramp constraints that coupled the DCOPF solution at time

t with that at time t− 1. Computationally, the simulation was carried out in a

Matlab environment with yalmip toolbox and IBM CPLEX on a laptop with an

Intel Core i7-4790 at 3.6 GHz and 32 GB memory.

1.6.2 The 3120-bus System

The 3120-bus system (Polish network) defined by MATPOWER [32] was used to

compare the computation cost of the proposed method with direct Monte Carlo

simulation [13]. The network had 3120 buses, 3693 branches, 505 thermal units,

2277 loads and 30 wind farms. Twenty of the wind farms were located at PV

buses and the rest at PQ buses. For the 505 thermal units, each unit had upper

and lower generation limits as well as a ramp constraint. Ten transmission lines

1, 2, 5, 6, 7, 8, 9, 21, 36, 37 had capacity limits of 275 MW.

The net load profile used in this simulation was the duck curve over a 24-hour

simulation horizon. The total load was at the level of 27,000 MW during morning

peak load hours with 10% of renewables distributed across 30 wind farms. One

large wind farm had rated capacity of 200 MW, 20 midsize wind farms at the
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Figure 1.4 Left: The expected number of OPF computations vs. the total number of
Monte Carlo simulations. Right: The distribution of the critical regions observed for
the proposed method.

rated capacity of 150 MW, and 9 small wind farms at 50-80 MW. Wind farm i

produced Gaussian distributed renewable power N (µi, (0.03µi)
2).

The left panel of Figure 1.4 shows the comparison of the computation cost

between the proposed approach and the benchmark technique [13]. The two

methods obtained identical forecasts, but ODL had roughly three orders of mag-

nitude reduction in the number of DCOPF computations required in the simu-

lation. This saving came from the fact that only 3989 critical regions appeared

in about 2.88 million random parameter samples. In fact, as shown in the right

panel of Figure 1.4, 19 out of 3989 critical regions represented 99% of all the

observed critical regions.

1.6.3 The IEEE 118-bus System

The performance of the proposed algorithm was tested on the IEEE 118-bus

system [32] shown in Figure 1.5. Here the system was partitioned into three

subareas. There were 10 capacity constrained transmission lines (labeled blue)

at the maximum capacity of 175 MW. The system included 54 thermal units

with ramp limits, 186 branches, and 91 load buses. All of which were connected

with Gaussian distributed load with standard deviation at the level of η = 0.15%

of its mean. The mean trajectory of the net load again followed the “duck curve.”

Three scenarios were tested, each included 1000 Monte Carlo runs to generate

required statistics.

Scenario 1: T=55

The first scenario was T = 55 on the duck curve. This was a case when the system

operated in a steady load regime where the load did not have a significant change.

Figure 1.6 showed some of the distributions obtained by the proposed technique.

The top left panel showed the average LMP at all buses where the average LMPs

were relatively flat with the largest LMP difference appeared between bus 94 and

bus 95. The top right panel showed the joint LMP distribution at bus 95 and

94. It was apparent that the joint distribution of LMP at these two buses was
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Figure 1.5 The diagram of IEEE 118-bus system. Blue lines are capacity limited. Red
lines are tie lines.

concentrated at a single point mass, which corresponded to the case that all

realizations of the random demand fell in the same critical region. The bottom

left panel showed the power flow distribution at line 147 connecting bus 94-95.

As expected, line 147 was congested. The bottom right panel showed the power

flow distribution of line 114, which was one of the tie lines connecting areas 2 and

3. The distribution of power flow exhibited a single mode Gaussian-like shape.

Scenario 2: T=142

The second scenario at T=142 involved a downward ramp. This was a case when

the load crossed the boundaries of multiple critical regions. In Figure 1.7, the

top left panel showed the joint probability distribution of LMP at buses 94-95,

indicating that the LMPs at these two buses had two possible realizations, one

showing small LMP difference with a high probability, the other a bigger price

difference with a low probability. The top right panel showed the power flow

distribution on the line connecting bus 94-95. It was apparent that the line was

congested with non-zero but relatively small probability, which gave rise to the

more significant price difference between these two buses. The bottom panels

showed the power flow distributions on tie lines 115 and 153. In both cases, the

power flow distribution had three modes, showing little resemblance of Gaussian

distributions.

Scenario 3: T=240

The third scenario at T=240 involved a steep up ramp at high load levels. This

was also a case when the random load crossed the boundaries of multiple critical
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Figure 1.6 Top left: The expected LMPs at all buses. Top right: joint LMP
distribution at buses 94-95. Bottom left: power flow distribution on line 147. Bottom
right: power flow distribution on line 114.

regions. In Figure 1.8, the top left panel indicated 4 possible LMP realizations

at buses 94-95. With probability near half that the LMPs across buses 94-95 had

a significant disparity and the other half the LMPs on these two buses roughly

the same. The power flow on tie line 152 had a Gaussian-like distribution shown

in the top right panel whereas tie line 128 had a power flow distribution spread

in four different levels shown in the bottom left panel. It is especially worthy of

pointing out, from the bottom right panel, that the power flow on line 66 had

opposite directions.

1.7 Conclusion

We present in this paper a new methodology of online probabilistic forecasting

and simulation of the electricity market. The main innovation is the use of on-

line dictionary learning to obtain the solution structure of parametric DCOPF

sequentially. The resulting benefits are the significant reduction of computation

costs and the ability to adapt to changing operating conditions. Numerical sim-

ulations show that, although the total number of critical regions associated with

the parametric DCOPF is very large, only a tiny fraction of critical regions ap-

pear in a large number of Monte Carlo runs. These insights highlight the potential

of further reducing both computation costs and storage requirements.
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Figure 1.7 Top left: joint LMP distribution at buses 94-95. Top right: power flow
distribution on line 147. Bottom left: power flow distribution on line 115. Bottom
right: power flow distribution on line 153.
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