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Killing Death Spiral Softly with a Small
Connection Charge

Tao Sun† and Lang Tong‡

Abstract—The death spiral hypothesis points to the possibility
that, with increasing integration of behind-the-meter renewables,
the revenue of a regulated utility declines, which forces the
utility to increase the price of electricity to maintain revenue
adequacy. This in turn drives more consumers to adopt renewable
technology, which further erodes the financial standing of the
utility.

We analyze the interactions between a regulated utility who
sets the retail tariff and its price-elastic customers whose decisions
to adopt renewable technology are influenced by the retail
tariff and the cost of the technology. We establish conditions
for the existence of death spiral and the stable diffusion of
renewable technologies. We show in particular that linear tariffs
always induce death spiral when the fixed operating cost of the
utility rises beyond a certain threshold. For two-part tariffs with
connection and volumetric charges, the Ramsey pricing that opti-
mizes myopically social welfare subject to the revenue adequacy
constraint induces a stable equilibrium. The Ramsey pricing,
however, inhibits renewable adoption with a high connection
charge. In contrast, a two-part tariff with a small connection
charge results in a stable adoption process with a higher level of
renewable adoption and greater long-term social welfare. Market
data are used to illustrate various solar adoption scenarios.

Index Terms—Diffusion dynamics, equilibrium, retail tariff,
renewable integration, distributed energy resources.

I. INTRODUCTION

Death spiral for electric utilities stands for a positive feed-

back scenario in which, when the utility raises its price to

cover its cost, consumers reduce consumptions. This forces

the utility to increase further its price, which lowers the

consumption even further.

The possibilities of death spiral for electric utilities have

been raised several times since 1960’s [1], and this topic has

attracted considerable attention recently, thanks to the rapid

deployment of the behind-the-meter solar photovoltaic (PV)

and other distributed energy resources such as storage. A main

difference this time is the role of disruptive technology such

as solar PV and residential storage. Both technologies have

direct impacts on the revenue of the utility.

There is some evidence supporting the underlying assump-

tions of the death spiral hypothesis. Recent reports issued

by the California Public Utility Commission (CPUC) [2], [3]

state that “From 2012 to 2016, system average rates (SAR)

across the three IOUs has increased at an annual average

of approximately 3.44%, which is well above the average

annual inflation rate of 1.3% over the same time period.”
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Meanwhile, “all three utilities have experienced declines in

kWh sales, which also lead to increased rates when revenue

requirement remains flat or rises.” Data in [4] further show that

“the flattening or declining trend in kWh sales is driven by a

changing economy, growth in the customer (so called behind-

the-meter) solar industry, increasing availability of demand

side management (DSM) programs such as energy efficiency,

and the incremental proliferation of retail choice.”
The above snapshot statistics are consistent with the more

general trend discussed in one of the earliest work on death

spiral hypothesis in solar PV adoption by Cai, Adlakha, Low,

Martini, and Chandy [5]. Using data from an investor-owned

regulated utility, the results in [5] shows, empirically, the

effects of positive feedback loop involving PV adoption, the

loss of revenue, and rate changes. The empirical analysis also

shows that high connection charges slow the rate of solar

adoption. A more recent empirical study [6] using nation-

wide data by Darghouth, Wiser, Barbose, and Mills, besides

confirming the general feedback phenomenon and the negative

impact of connection charges on PV adoption, shows more

nuanced effects of dynamic pricing on PV adoption.
While empirical studies suggest the potential of death

spiral, they lack the predictive power on the dynamics of the

feedback loop of PV adoption and its policy implications. With

decreasing costs of solar PV, there is a need for a fundamental

understanding of the PV adoption dynamics and impacts of

key parameters in the adoption process. Such parameters

include the cost of solar, tax incentives, and the fixed operating

cost of the utility.

A. Summary of Results

This paper complements existing empirical studies such

as [5], [6] with an analytical study on the dynamics of PV

adoption. In particular, we aim to shed lights on the following

questions:

• Can death spiral happen under the current tariff?

• What are the conditions and pricing mechanisms for a

stable diffusion of renewable technology?

• What is the maximum installation capacity (referred to

as the limiting capacity) achievable by a stable diffusion

process.

• Does a higher level of renewable penetration implies

greater social welfare?

The main contribution of this work is an analytical framework

that allows us to study the PV adoption process as a nonlinear

dynamical system. This model captures interactions between

a regulated utility and its price-elastic and net-metered con-

sumers who maximize the consumer surplus and make PV
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adoption decisions based on the payback time of the solar

investments. Such decisions are influenced by the tariff set by

the regulator and the cost of solar PV.

By analyzing the nonlinear system with the tariff and the

installed solar capacity as its states, we establish conditions for

the existence of equilibria, death spiral, and stable equilibria.

These conditions are applied to benchmark tariff policies. A

main conclusion is that linear tariffs are prone to induce death

spiral; so are two-part tariffs with fixed connection charge.

On the other hand, the Ramsey pricing with the optimized

electricity price and connection charge, guarantees a stable

diffusion. The high connection charge of the Ramsey price,

however, has a negative impact on PV adoption. We show,

in fact, that Ramsey pricing stalls PV adoption. In contrast, a

mechanism that adds a small connection charge to the Ramsey

linear tariff induces a stable adoption process that achieves

a higher level of PV adoption. We demonstrate in addition

that, while maximizing the immediate overall social welfare,

Ramsey pricing may generate less social welfare in the long

run.

B. Related Work

The literature is limited on the dynamics of PV adoption

beyond the empirical studies in [5], [6] and economic analysis

[1]. To our best knowledge, this work appears to be the first

to pursue an analytical characterization of the PV adoption

dynamics in the framework of nonlinear dynamical feedback

systems.

In many ways, whereas our results corroborate conclusions

in [1], [5], [6], we provide deeper analytical insights on

various aspects of the death spiral phenomena. For instance,

there is a consensus that, although the possibility of death

spiral is real in the era of greater DER, the likelihood of

a death spiral occurring is small, especially if the regulator

and the utility set the tariff policy proactively, including the

proper use of connection charges [1]. Our analysis is consistent

with these conclusions. We provide, however, qualitatively and

quantitative answers on how such proactive measures can be

applied dynamically.

In summarizing relevant work in the literature, we highlight

works that are relevant to key parts of our model and analysis.

For the retailer model, it comes down to the classical problem

of tariff design for a regulated monopoly [7]. In approving

a proposed tariff, the regulator takes into account the impact

of the tariff on overall social welfare, fairness, and societal

concerns. In such a setting, the classical Ramsey pricing [7],

[8] aims to maximize the social welfare subject to the break-

even constraint for the utility. In this context, we consider

both the linear and a nonlinear (two-part) tariffs; the latter

consists of a linear volumetric charge and a connection charge.

Originally studied by Oi in his seminal work [9], the two-

part tariff is now widely adopted by utilities for residential

customers in the United States where nearly 87% of the

residential customers face some form of connection charges

[10].

Tariff models for electricity markets with stochastic demand

are extensively studied. See e.g., [11] and references therein.

With the increasing presence of distributed energy resources

(DER), there is heightened attention on different types of tariff

[12]. In such settings, the Ramsey pricing problem for the

retail utility in distribution systems with stochastic distributed

energy resources is considered in [13]–[16]. Our dynamic

model builds upon the analysis in [15], [16].
A key component of our analysis is to incorporate a solar

PV diffusion model in our analysis. To this end, we adopt

a widely used S-curve model for the aggregated consumer

behavior [17]–[19], under an implicit assumption of successful

PV diffusion.

II. CONSUMER, RETAILER, AND DIFFUSION MODELS

A. Retail Tariff Model

In this paper, we consider retail tariffs uniformly applied

to all consumers. We assume that the retailer sets tariff T
ahead of each consumption period. The tariff is approved by

the regulator periodically, say, on a yearly basis. In period

k, the tariff Tk is fixed until the next period. For simplicity,

we restrict ourselves to flat tariff, i.e., the volumetric charge

does not vary with time. Most results presented here can be

generalized for dynamic tariffs where a consumer is charged

based on the time of use (TOU) [20].
Two widely applied tariff classes are considered:

1) Linear tariff : TL = {T : T (d) = πd} where d is the

total consumption in the period. In this case, a consumer

is charged at the same rate at all time within the period

based on the total consumption.

2) Two-part tariff: T2P = {T : T (d) = A+πd} where A is

the connection charge independent of the consumption.

Naturally, TL is a subclass of T2P with connection charges

set to zero.

B. Consumer decision model

We assume price elastic demands. Consumer i’s demand

depends on the local random state ωi that is fixed within each

period. This assumption is made to simplify our presentation;

it can be generalized to be time varying following [13], [15].
Knowing the set tariff T , consumer i maximizes his surplus:

csi(T, ωi) = max
q

(

ui(q, ωi)− T (q − ri(ωi))

)

, (1)

where ui(q, ω) is the utility of consuming q, and ri(ωi) the

realized behind-the-meter renewable for consumer i. Let the

solution of (1) be Di(T, ωi), which represents his load profile.
With total M consumers in the service area of the utility,

the expected consumer surplus under a two-part tariff is

cs(T,R) = E(U(T, ω))− π(E(D(T, ω)−Rr̄0)−MA, (2)

where ω = (ω1, · · · , ωM ) is the random state of all cus-

tomers, U(T, ω) =
∑

i ui(Di(T, ωi), ωi) and D(T, ω) =
∑

i Di(T, ωi) the aggregated utility and demand, respectively.

The expected total renewable is given by Rr̄0 = E(
∑

i ri(ωi))
where r̄0 the expected renewable generation per unit-capacity

installed and R the total installed capacity. The first term

on the right hand side is the aggregated consumer utility,

the second the total volumetric charge, and the last the total

connection charge.
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C. Retailer decision model

We model the retail utility as a regulated monopoly, which

is the case in most parts of the United States. Here we assume

that the retailer imports electricity from the wholesale market

to satisfy the aggregated demand of its customers. The retailer

is assumed to be a price taker*. This model is a reasonable

approximation of the deregulated two-settlement electricity

market.

The retailer sets the tariff and seeks its approval by the reg-

ulator in each tariff setting period. As a regulated monopoly,

the retailer is allowed to break even to satisfy the revenue

adequacy constraint. Under that constraint, the retailer’s tariff

can also be set to benefit the consumers and the society in

general in a variety of ways. The revenue adequacy condition

is met by setting the retail surplus to zero, which is defined

by

rs(T, θ,R) = E((π−λ)(D(π, ω))−Rr0(ω))+MA−θ. (3)

Here λ is the wholesale price of electricity and (D(π, ω)) −
Rr0(ω)) the net consumption†. The first term on the right hand

side is the revenue from energy consumption. The second term

MA is the revenue from the connection charge. The break-

even condition can be satisfied by jointly allocating these two

types of revenue to the fixed operating cost of the utility.

We model the retailer’s pricing decision by a tariff policy µ
that maps its expected future operating cost‡ θ and the current

level of renewable adoption R to a tariff T in some tariff class

in the next period. In particular, at the end of the kth period,

the tariff in the next period Tk+1 is given by

µ : Tk+1 = µ(Rk, θk)

where Rk the installed capacity at the end of period k and θk
is the utility’s expected fixed cost.

An important type of tariff policy is the Ramsey pricing

in which the retailer maximizes the social welfare subject

to the revenue adequacy constraint. Equivalently, the retailer

solves the following constrained optimization to determine

Tk+1 given the current level of renewable installation Rk and

the (expected) fixed cost θk in the next period:

µ∗ : max
T∈T

cs(T,Rk) s.t. rs(T, θk, Rk) = 0. (4)

where T ∈ {T2P ,TL} is the tariff class. Let µ∗
2P and µ∗

L

be the Ramsey pricing for the two-part tariff and linear tariff

classes, respectively.

D. PV Diffusion Model

We now present a model for the solar PV adoption as

a diffusion process of new technology. We assume that the

adoption decision of a residential customer is based on his

investment’s payback time, which depends on the cost of

solar PV and the reduced payment for consumption. Instead

*A large retail utility, strictly speaking, can influence the wholesale price
of electricity.

†For simplicity, we assume the wholesale price is a scaler random variable
for ease of presentation. A more accurate model is to treat the wholesale price
as a random process at a minute level time scale. See [20].

‡θ includes only the fixed operating cost.

of considering individual adoption decisions, we model the

diffusion process for the entire customer population.

Specifically, for a given tariff T and per-unit (kWh) PV

purchasing cost ξ, let the installed renewable capacity in

aggregation be s(t, T, ξ) at time t. Illustrated in Fig. 1,

s(t, T, ξ) referred to as the PV diffusion curve and is defined

by the following equation:

s(t, T, ξ) = R∞(T, ξ) · η(t), (5)

where R∞(T, ξ) is the market potential of the PV diffusion,

and the cumulative installed fraction η(t) is a sigmoid function

satisfying η(0) = 0 and lim
t→∞

η(t) = 1. This model has been

used to model the adoption of renewable technology, and there

is a parametric form of R∞(T, ξ) that can be used in practice

[21]. A well known form of η(t) is the Bass diffusion model

[22].

t

R∞(T,ξ)
s(t,T,ξ)

Fig. 1: Renewable diffusion for fixed market potential.

Note that s(t, T, ξ) does not capture the dynamics of the

diffusion process; it describes the evolution of the diffusion

for fixed tariff T and PV cost ξ throughout the diffusion. In

reality, the tariff is set by the utility periodically and the cost of

PV declines. The evolution of the actual installed PV capacity

in each period depends not only on the tariff and cost in that

period but also on those in previous periods. In other words,

the installed PV capacity has to be calculated using not a

single but a collection of such S-curves. The dynamics of PV

capacity evolution is presented in Section III.

III. DYNAMICS AND STABILITY OF PV DIFFUSION

A. Dynamics of PV Diffusion

We now introduce a discrete-time dynamical system model

for the PV diffusion process where the time index k cor-

responds to the decision epoch of the retailer. The state

σk = (Tk, Rk) of the dynamic system includes the tariff Tk

set by the retailer at the beginning of the tariff period and

the installed PV capacity Rk at the end of the tariff period.

The evolution of the system state is governed by the system

equation

σk+1 = f(σk, χk), (6)

where χk = (θk, ξk) is the exogenous (input) process contain-

ing the expected operating cost θk and the per-unit purchasing

cost of PV ξk. In analyzing the stability of the diffusion

process, we set the exogenous input to constant, χk = χ.
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t

R∞(Tk+1,ξ)
s(t,T,ξ)

k k+1

R∞(Tk,ξ)Rk+1

Rk

Fig. 2: Dynamics of renewable diffusion when

R∞(Tk+1, ξ) ≥ Rk.

The exogenous input can be time varying when we consider

controlled diffusion that sets tariff in response to varying costs.

The state evolution is Markovian following Rk → Tk+1 →
Rk+1. Specifically, f(·, ·) is specified by the tariff policy µ
and the PV diffusion curve s(t, T, ξ) as follows:

Tk+1 = argmax
T∈T ,rs(T,θ,Rk)=0

cs(T,Rk), (7)

Rk+1 =

{

Rk, if R∞(Tk+1, ξk+1) < Rk;

s(1 + η−1( Rk

R∞(Tk+1)
), Tk+1, ξk+1), o.w.

(8)

Note that, at the beginning of period k + 1, the installed

PV capacity is Rk. The installed capacity Rk+1 at the end

of the period k + 1 is obtained from the diffusion curve

associated with Tk+1 by s(tk + 1, Tk+1, ξk+1) where tk is

such that s(tk, Tk+1, ξk+1) = Rk. See Fig. 2 for an illustration

of (8) when the installed PV capacity is no more than the

market potential. The case that Rk > R∞(Tk+1, ξk+1) usually

happens only when there is an exogenous shock in the system.

B. Death Spiral and its Existence Conditions

The notion of death spiral is associated with the trajectory

of a dynamic system defined through the tariff policy µ and

the diffusion curve.

Definition 1 (Death spiral and critical diffusion level). An

orbit of the dynamic system (7-8) starting from σ0 is a death

spiral induced by tariff policy µ if it ends at a state σko
for

which the optimization (7) to determine Tko+1 is not feasible.

The critical diffusion level R♯
µ is the supremum of R at which

a revenue adequate tariff exists

R♯
µ = sup{R : rs(µ(R, θ), θ, R) = 0}. (9)

We now focus on establishing existing conditions of death

spiral. In this analysis, we assume exogenous parameters χ =
(θ, ξ) are fixed. For brevity, we drop notational dependencies

on θ, ξ, and χ.

Our analysis rely on the characterization of the potential

function defined as follows.

Definition 2 (Potential function). Given a tariff policy µ, The

potential function at diffusion level R is defined as

pµ(R) = R∞(µ(R)). (10)

The potential function serves as a surrogate for the more

complicated iterative map f . Being the limiting installation

capacity on the diffusion curve, pµ(R) measures the headroom

beyond the current installation capacity R.

The existence condition for death spiral is illustrated in Fig.

3. It states that the gap between p(R) and R is strictly positive

in the left neighborhood of the critical diffusion R♯.

R

p(R)

R#R#- ϵ

p(R)=R

Fig. 3: Condition for death spiral.

Theorem 1 (Existence condition of death spiral). Given an

initial state σ0 with R0 < R♯, a tariff policy µ generates a

death spiral if there exists an ǫ > 0 such that

• Rk0
∈ (R♯ − ǫ, R♯] for some k0 ≥ 0;

• p(R) > R for all R ∈ (R♯ − ǫ, R♯].

The condition is necessary if p(R) is monotonically increasing.

Theorem 1 provides a way to check, at least numerically,

the possibility of death spiral. The following theorem gives the

precise condition for the Ramsey linear tariff to induce death

spiral.

Theorem 2 (Death spiral condition for Ramsey tariff). For the

Ramsey linear tariff µ∗
L, there exists a threshold θ† such that

a retailer cost θ > θ† induces a death spiral. In particular, if

consumers’ demand function is affine with negative slop and

random disturbance, i.e., D(π, ω) = B(ω)−Gπ, where B(ω)
is the additive disturbance and G positive, then

θ† = 1
4G [b(R†)2 − 4GE[λ(B(ω)−R†r0(ω))]

− (b(R†) + 2GR−1
∞ (R†))2],

(11)

where R† is characterized by

−dR−1
∞ (R†)

dR
=

R−1
∞ (R†)r̄0 − E[λr0(ω)]

b(R†) + 2GR−1
∞ (R†)

, (12)

and b(R) = −Gλ̄− (E[B(ω)]−Rr̄0).

C. Stable Diffusion

Death spiral is a form of instability. We now consider

conditions for stable diffusion. The exogenous parameters are

again fixed and ignored in our notations in this subsection.
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We begin with standard definitions of the equilibrium and

stable equilibrium.

Definition 3 (Stable equilibrium and stable diffusion).

1) A state σ∗ is an equilibrium if σ∗ = f(σ∗).
2) An equilibrium σ∗ is Lyapunov stable if, for each ǫ > 0,

there exists a δ = δ(ǫ) such that, for every trajectory

(σ0, σ1, · · ·) that is not a death spiral, ‖σ0 − σ∗‖ < δ
implies ‖σk − σ∗‖ < ǫ for all k > 0.

3) A trajectory (σ0, σ1, · · ·) is a stable diffusion if it con-

verges to a stable equilibrium.

Lemma 1 (Existence of equilibrium). Given a tariff policy

µ, if there exists an R∗ such that p(R∗) = R∗, then σ∗ =
(µ(R∗), R∗) is an equilibrium.

This condition is intuitive; it states the case when current

level of installed PV capacity R already reaches R∞(µ(R)).

Theorem 3 (Stability condition and convergence). Given a

tariff policy µ, an equilibrium σ∗ = (T ∗, R∗) is Lyapunov

stable if there exists an ǫ such that R < p(R) ≤ R∗ for all

R ∈ (R∗ − ǫ, R∗), and p(R) ≤ R for all R ∈ (R∗, R∗ + ǫ).
If in addition that R0 ∈ (R∗ − ǫ, R∗) for an initial state

σ0 = (T0, R0), then lim
k→∞

σk = σ∗.

A graphical illustration of Theorem 3 is given in Fig. 4.

R

p(R)

R*R*- ϵ

p(R)=R

R*+ ϵ

Fig. 4: Condition for stability.

Theorem 4 (Stable diffusion via Ramsey two-part tariff). For

an initial state σ0 = (T0, R0) with 0 ≤ R0 ≤ p(R0), the

Ramsey two-part tariff µ∗
2P induces a diffusion approaching

to the unique stable equilibrium (µ(p(R0)), p(R0).

D. Limiting Diffusion Capacity

In this subsection, we are interested in finding the highest

level of PV diffusion R† achievable by a stable diffusion. The

following definition formalizes the notion of limiting diffusion

capacity.

Definition 4 (Limiting diffusion capacity). The limiting diffu-

sion capacity is the supremum of the equilibria achievable by

stable diffusions with initial installation R0 = 0.

The following theorem provides a tariff policy that achieves

the limiting diffusion capacity.

Theorem 5 (Achieving limiting capacity). If the Ramsey

linear tariff induces a death spiral, the limiting capacity is

achieved by the two-part tariff that adds the minimum (fixed)

connection charge so that there is a stable diffusion.

For the linear demand model defined in Theorem 2, it can be

shown that the limiting capacity is R† and the fixed connection

charge that achieves the limiting diffusion capacity is given by

A† = (θ − θ†)/M .

IV. NUMERICAL EXAMPLES

In this section, we analyze renewable diffusion dynamics

in both short-run and long-run cases within a hypothetical

distribution utility facing the wholesale price in New York

city and its residential demand. The same setting of demand

model, consumption profile, revenue estimation, and solar PV

data is used as in [15], [16].

The default tariff of the Consolidated Edison Company of

New York (ConEd) in 2015 for its 2.2 million residential

customers is a two-part tariff TCE with a flat rate πCE =
$0.172/kWh and a connection charge ACE = $0.52/day.

We use this tariff to compute the utility’s fixed costs, which

amount to θCE = $6.03M. A consumer surplus of cs0(T
CE) =

$9.54M is assumed.

The integration of solar PV is modeled based on a simulated

5kW-DC-capacity rooftop system in NYC. The market poten-

tial R∞ is computed based on the expected payback years

tPB at the time of purchasing, with tPB = ξ/E[π⊤r0(ω)]. We

take the solar PV cost of NYC in 2015 as the initial solar

cost ξ0 = $4250/kW§. An exponential fit in [21] is adopted

in calculating market potential: R∞ = RMS · e−0.3tPB

. As

in [23], the total market size RMS is set to be 90% of all

customers installing, and η(t) is set to model a medium-rate

adoption using the Bass-diffusion model.

A. Short-run Analysis

This is the case where exogenous parameters including the

retailer’s cost and the solar cost are fixed when considering

one trajectory of dynamics.

We illustrate in Fig. 5 the curves of potential functions

under different tariff policies. For each tariff class, the potential

function is increasing on solar capacity (The potential function

of Ramsey two-part tariff is horizontal). The diffusion equilib-

rium of the Ramsey two-part tariff µ∗
2P is almost at 0, which

stalls the solar diffusion (green curve). This stalling diffusion

is due to the low retail rate under such tariff policy, leading to

a long payback time. The Ramsey two-part tariff with a fixed

connection charge ACE (as currently used by ConEd), induces

a stable equilibrium at 97.7MW (brown curve).

If we increase the retailer cost to $6.65M (around 10%)

and take the Ramsey linear tariff, the new tariff policy µ∗
L

induces a death spiral (blue curve). If a connection charge

A ≥ $0.088/day is introduced, however, the diffusion can stay

off death spiral and achieve a stable equilibrium. Moreover,

if we adopt the critical connection charge A† = $0.088/day,

the limiting capacity R† = 698.5MW is achieved (magenta

curve).
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Fig. 5: Potential function in short run analysis.
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Fig. 6: Potential functions of Ramsey two-part tariff
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L, and Ramsey two-part

tariff with fixed connection charge
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Fig. 7: Social welfare induced by Ramsey two-part

tariff µ∗
2P and two-part tariff with fixed
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Similar potential functions figures with a different solar cost

can be obtained, as shown in Fig. 6. If we still adopt fixed

connection charge ACE in this case, the death spiral is induced

because the payback time becomes shorter with a lower solar

§The solar cost data in New York State starting from 2009 can be found
at https://www.nysolarmap.com/
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Fig. 8: Long-run solar diffusion with retailer cost

increasing by 2% every year from θCE

cost. By adding a connection charge, the limiting capacity

diffusion can be achieved as well (magenta curve).

Fig. 7 compares the dynamics of social welfare induced

by a Ramsey two-part tariff with fixed connection charge

(A=$1.51/day) and µ∗
2P facing fixed solar cost $912/kW and

retailer cost θCE. µ∗
2P optimizes social welfare at each period,

but almost stalls the solar diffusion. The social welfare induced

by µ∗
2P thus has a slow growth. Under the Ramsey two-

part tariff with fixed connection charge, the social welfare is

low at first but eventually becomes higher than under µ∗
2P

due to a higher solar installation. This comparison indicates

that there exists some trade-off between adding connection

charges and integrating more renewables for the long-run

social welfare optimization. The Ramsey two-part tariff µ∗
2P,

which maximizes the social welfare greedily, is not the optimal

choice for social welfare maximization in the long run.

B. Long-run Analysis

We plot in Fig. 8 and Fig. 9 the long-run solar diffusion

dynamics under an increasing process of retailer cost and a

decreasing process of solar cost respectively. It is shown that

both exogenous processes induce death spiral (brown→blue).

Adding critical connection charges, however, can stay off the

death spiral and achieve a stable diffusion (brown→magenta).

Moreover, while introducing critical connection charges lowers

the speed of solar integration, the diffusion capacity in long

run is higher compared with the fixed connection charge case,

which generates a death spiral and then stalls solar diffusion.

V. CONCLUSION

In addressing the death spiral hypothesis, we have proposed

an analytical framework based on a dynamical system model

for the PV diffusion process. One conclusion is that linear

tariffs in general are prone to death spiral when the fixed cost

of the utility rises beyond a certain level. More importantly,

our model allows one to estimate the time when critical

installation level is reached and death spiral is imminent.

Another conclusion is that adding a small connection charge

not only can stop death spiral but also stimulates PV adoption.

In contrast, the Ramsey pricing, although guaranteeing a stable



SUN AND TONG: KILLING DEATH SPIRAL SOFTLY WITH A SMALL CONNECTION CHARGE 7

0 5 10 15 20 25 30

Time (year)

0

0.5

1

1.5

2

2.5

3

S
o

la
r 

C
a

p
a

c
it
y
 (

k
W

)

× 10
6

A=$0.52/day
A=$0.52/day
Critical A
Critical diffusion level
Critical diffusion level

Retailer’s daily cost: $6.03M 

Fig. 9: Long-run solar diffusion with solar cost

decreasing by 5% every year from ξ0

PV diffusion and higher short run social welfare, stalls PV

adoption and has lower long run social welfare. Our model

also suggests a simple strategy that achieves the limiting PV

adoption and a high level of long run social welfare.

We have assumed a simple flat tariff model. A more relevant

tariff structure is the dynamic tariff that has the volumetric

charge varying with the time of use. Many of these results

can be extended. See [20].
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APPENDIX

Proposition 1. For a trajectory (σ0, σ1, · · ·), if p(Rk) > Rk,

we have Rk < Rk+1 = h(Rk, µ(Rk, θ)) < p(Rk).

Proof:. It directly holds from Equation (8).

Proposition 2. If there exists an ǫ such that R < p(R) ≤ R∗

for all R ∈ (R∗ − ǫ, R∗) with p(R∗) = R∗, for each R0 ∈
(R∗ − ǫ, R∗), we have lim

k→∞
Rk = R∗.

Proof:. Leveraging Proposition 1, {Rt} is strictly increasing

and bounded by R∗. Suppose {Rt} converges to R′ ∈
(R0, R

∗). It can be induced that h(R′, µ(R′, θ)) = R′. As

p(R′) > R′, there is a contradiction with Proposition 1.

Hence {Rk} must converge to R∗ (Monotone convergence

theorem).

Proof of Theorem 1. Sufficiency ⇒: Leveraging Proposition

1, {Rk} is monotonically increasing. Suppose R♯ is an upper

bound of {Rk}. Thus there exists an R′ ∈ (Rk0, R
♯] such

that {Rk} converges to R′ (Monotone convergence theorem).

Hence, h(R′, µ(R′, θ)) = R′. As p(R′) > R′, there is a

contradiction with Proposition 1. Thus R♯ is not an upper

bound of {Rk}, indicating that the death spiral occurs.

If p(R) is monotonically increasing,

Necessity ⇐: Since a death spiral is induced, there must

exist R0 ≤ Rk1 < R♯ such that p(Rk1) > R♯ (Otherwise

Rk+1 < p(Rk) ≤ R♯ for all k, indicating there is no

death spiral). Moreover, as p(R) is monotonically increasing,

p(R) > p(Rk1) > R♯ > R holds for R ∈ (Rk1, R
♯]. Thus the

necessity is proved.

Assumption 1. The Ramsey linear tariff π∗ is monotonically

increasing on the retailer cost θ and on the PV capacity R.

The market potential R∞(π) is strictly increasing convex on

π.

Proposition 3. The critical diffusion level R♯ is

such that, for Ramsey linear tariff π∗ = µ∗(R♯, θ),
π∗ = argmax

π
rs(T, θ,R♯). Denote rsM(T, θ,R♯) =

max
π

rs(T, θ,R♯).
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arxiv.org/abs/1702.01792
http://www.solarfuturearizona.com/
http://www.solarfuturearizona.com/
https://www.nrel.gov/
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Proof:. If there exists a π0 such that rs(T0, θ, R
♯) >

rs(T ∗, θ, R♯) = 0, there must exist R′ > R♯ satisfying

rs(T0, θ, R
′) > 0 due to the continuity. Thus a contradiction

is induced with the definition of critical diffusion level.

Proposition 4. The critical diffusion level R♯ is monotonically

decreasing on the retailer cost θ.

Proof:. Leveraging Proposition 3, for a retailer cost θ1
and the corresponding critical diffusion level R♯

1, we have

rsM(T, θ1, R
♯
1) = 0. Hence, with the expression of rs in

(3), we have rsM(T, θ2, R
♯
1) < 0 for all θ2 > θ1. Thus

R♯
2 < R♯

1.

Assumption 2. The optimized linear tariff policy is such that

π∗(0, θ)r̄0 − E[λr0(ω)] > 0.

Proposition 5. For Ramsey linear tariff with the linear de-

mand model D(π, ω) = B(ω) − Gπ, The potential function

p(R, θ) is strictly increasing and convex on θ and on R.

Proof:. Solving (4) yields

π∗(R, θ) =
−b(R)−

√

b(R)2 − 4ac(R, θ)

2a
(13)

where a = G, b(R) = −λG−(E[B(ω)]−Rr̄0), and c(R, θ) =
θ + E[λ(B(ω)−Rr0(ω))].

a) On θ: p(R, θ) = R∞(π∗(R, θ)). Since we have assumed

R∞(π) to be strictly increasing and convex in Assumption

(1), we only need to prove π∗(R, θ) is strictly increasing and

convex on θ. Differentiating twice π∗(R, θ) with respect to θ
we have

dπ∗

dθ
= −1

2a (−4a) · 1√
b(R)2−4ac(R,θ)

= 2√
b2−4ac

> 0
(14)

dπ∗

dθ2
=

2a√
b2 − 4ac(b2 − 4ac)

(15)

Since a = G and G positive, dπ∗

dθ2 ≥ 0. Since we have

assumed R∞(π) to be strictly increasing and convex, p(R) =
R∞(π∗(R)) is strictly increasing and convex on θ.

b) On R: differentiating π∗(R, θ) with respect to R we have

π∗(R)′ = 1
2a [−b′ − (bb′ − 2ac′) · 1√

b2−4ac
]

= 1
2a

√
b2−4ac

[2ac′ − bb′ − b′
√
b2 − 4ac]

= 1√
b2−4ac

[ (−b−
√
b2−4ac)
2a b′ + c′] = 1√

b2−4ac
(π∗(R)b′ + c′)

(16)

where: b′ = r̄0 and c′ = −E[λr0(ω)].
Since π∗(0)r̄0 − E[λr0(ω)] > 0 (Assumption 2), one can

iteratively induct that π∗(R)b′+ c′ = π∗(R)r̄0−E[λr0(ω)] >
0. Thus π∗(R)′ > 0 holds. We differentiate twice π∗(R)

π∗(R)′′ =
1

2a

(b′b− 2ac′)2 − (b2 − 4ac)b′2√
b2 − 4ac(b2 − 4ac)

(17)

With π∗(R)′ > 0, we have 2ac′−bb′−b′
√
b2 − 4ac > 0, which

yields (b′b − 2ac′)2 − (b2 − 4ac)b′2 > 0. Thus π∗(R)′′ > 0
holds, which means π∗(R) is increasing and convex on R ∈
[0, R♯].

Since we have assumed R∞(π) to be strictly increasing and

convex, p(R) = R∞(π∗(R)) is strictly increasing and convex

on R.

Proof of Theorem 2. With Assumption 1, for R0 = 0, A

θ′ inducing a death spiral means p(R, θ′) > R for all

R ∈ [R0, R
♯|θ′ ]. It can be also inferred from Assumption 1

that p(R, θ) monotonically increasing on π. Hence, for all

θ⋄ > θ′, leveraging Proposition 4, we have p(R, θ⋄) > R for

all R ∈ [R0, R
♯|θ⋄ ]. According to Theorem 1, a death spiral

still occurs.
For a linear demand model:

We look for the infimum of such θ that induces a death

spiral, denoted by θ†. With Proposition 2 and 5, this θ† is

specified when potential function p(R, θ) is tangent to p = R,

or when π∗(R) tangent to R−1
∞ (R). Thus the tangent point

can be specified by
{

π∗(R)′ −R−1
∞ (R)′ = 0

π∗(R)−R−1
∞ (R) = 0

(18)

Further deduction of the first equation yields

π∗(R)′ −R−1
∞ (R)′ = 1√

b2−4ac
(π∗(R)b′ + c′)−R−1

∞ (R)′

= 1√
b2−4ac

(R−1
∞ (R)b′ + c′)−R−1

∞ (R)′

(19)

Reformulate (19) as

θ =
1

4a
[b2 − 4ac0 − (

R−1
∞ (R)b′ + c′

R−1
∞ (R)′

)2] (20)

where c0 = E[λ(B(ω)−Rr0(ω))]. Reformulating the second

equation in (18) yields

θ =
1

4a
[b2 − 4ac0 − (b+ 2aR−1

∞ (R))2] (21)

With (20) and (21), we can solve R† which is characterized

by

−dR−1
∞ (R†)

dR
=

R−1
∞ (R†)r̄0 − E[λr0(ω)]

b+ 2aR−1
∞ (R†)

(22)

Substituting R† into (21) we have

θ† = 1
4a [b(R

†)2 − 4aE[λ(B(ω)−R†r0(ω))]
−(b(R†) + 2aR−1

∞ (R†))2],
(23)

Proof of Lemma 1. f(σ∗, χ) = σ∗ directly holds by comput-

ing the dynamics in Equation 7 and Equation (8)

Proof of Theorem 3. We prove the convergence and stability

respectively:
a) convergence: leveraging Proposition 2, it is clear that

lim
k→∞

σk = σ∗

b) Lyapunov stable:
For ‖σ0 − σ∗‖ < δ with δ > 0, we first look

for an upper bound of deviations from σ∗ induced by

all trajectories (σ0, σ1, · · ·). Denote ∆RM(δ) = δ, and

∆TM(δ) = max
R∗−δ≤R≤R∗+δ

‖µ(R)− T ∗‖. Thus g(δ) =

‖(∆RM (δ),∆TM (δ))‖ is one of such upper bounds. Note

that g(δ) is monotonically increasing for δ ∈ (0, ǫ] and

lim
δ→0

g(δ) = 0.
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Hence for all 0 < ǫ′ ≤ g(ǫ), there exists δ1 = g−1(ǫ′) such

that ‖σ0 − σ∗‖ < δ1 implies ‖σk − σ∗‖ < g(δ1) = ǫ′ for all

k > 0. For ǫ′ > g(ǫ), it is clear.

Assumption 3. ∇π(π, ω) and λ are uncorrelated.

Proof of Theorem 4. With Assumption 3, for Ramsey two-

part tariff, the solution of (4) has the following expression

for volumetric charge

π†(R, θ) =
λE[∂D/∂π]

E[∂D/∂π]
(24)

Expression (24) reveals that the flat rate of Ramsey two-

part tariff only depend on the wholesale market prices and

the demand function, thus stays unchanged with renewable

diffusion. The potential function p(R) thus also has the same

value for different R. Utilizing Theorem 3, this tariff policy

always induces a stable equilibrium. The equilibrium capacity

is determined by the market potential facing tariff π†.

Proof of Theorem 5. Leveraging the expression of the retailer

surplus in 3, for the Ramsey tariff design problem in 4, the

solution for decreasing the retailer cost by ∆θ is the same as

increasing the connection charge by ∆A = ∆θ/M .

Then this theorem directly follows from Theorem 2.
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