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ABSTRACT

Previous proposals for power-aware thread-level paral-
lelism on chip multiprocessors (CMPs) mostly focus on
multiprogrammed workloads. Nonetheless, parallel com-
putation of a single application is critical in light of the ex-
panding performance demands of important future work-
loads. This work addresses the problem of dynamically
optimizing power consumption of a parallel application
that executes on a many-core CMP under a given per-
formance constraint. The optimization space is two-
dimensional, allowing changes in the number of active
processors and applying dynamic voltage/frequency scal-
ing. We demonstrate that the particular optimum operat-
ing point depends nontrivially on the power-performance
characteristics of the CMP, the application’s behavior, and
the particular performance target. We present simple,
low-overhead heuristics for dynamic optimization that
significantly cut down on the search effort along both di-
mensions of the optimization space. In our evaluation of
several parallel applications with different performance
targets, these heuristics quickly lock on a configuration
that yields optimal power savings in virtually all cases.

1 INTRODUCTION

Chip multiprocessors (CMPs) have emerged as a promis-
ing way to deliver sustained performance growth while
relying less on raw circuit speed, and thus power [1]. That
parallelism may bring power-performance advantages is
not new: earlier VLSI works have discussed the trade-offs
that sequential vs. parallel circuits present in silicon area
and power consumption [6, 37]. Yet even as researchers
have investigated extensively the power-performance is-
sues of uniprocessor and, to a lesser extent, multipro-
grammed CMP architectures [10, 14, 26, 32, 41, 42],
to date there is still little understanding of the specific
power-performance challenges involving parallel applica-
tions executing on CMPs.

In a parallel run, for example, the overall performance
ultimately depends on all the processors; however, at any
point in time, the critical path may depend on only a few
of them. In that case, slowing down processors not in
the critical path to save power may not affect the over-
all performance at all. Conversely, slowing down pro-
cessors in the critical path will negatively impact perfor-

mance, and the local savings may be easily negated by
the extra waste on other processors due to longer execu-
tion time. Furthermore, the available parallelism and par-
allel efficiency may depend nontrivially on the problem
size and execution environment. Moreover, it is viable
to change the number of concurrent processors/threads at
run-time [5, 16] to optimize execution across program re-
gions, or to accommodate changes in the execution envi-
ronment; however, the power-performance trade-offs that
appear as a result of such run-time adaptive parallelism
cannot be easily explained without considering the paral-
lel application behavior.

As the number of cores per CMP increases and the
opportunities for performance growth of single-threaded
codes dwindle, we anticipate that many important future
applications—as many as 80% by some industry projec-
tions [3, 25]—will be parallelized to utilize the poten-
tial of these CMP cores. With future CMPs likely sup-
port many threads on the same die, and its cores in turn
supporting a number of voltage and frequency levels, the
amount of possible power-performance configurations of
a CMP is bound to be large, making it hard to find an
optimal power-performance operating point for a parallel
application, in particular at run-time.

In this work, we target run-time power-performance
adaptation of future CMPs that run shared-memory par-
allel applications. This run-time adaptation takes place in
the two-dimensional space constituted by (1) the possi-
ble number of active processors (2) the different voltage-
frequency levels available. Specifically, in this paper, we
explore one typical scenario—maximizing power savings
while delivering a specified level of performance. This
scenario essentially reduces energy cost per application,
as energy is the integral of power over execution time.
It aims to prolong battery life for embedded systems, or
to reduce power supply capacity for high-end systems, as
long as performance is satisfactory. We show that the op-
timum operating point depends nontrivially on the par-
ticular performance target, the application, and the hard-
ware’s power-performance characteristics. However, we
demonstrate that the arrangement of the possible operat-
ing points generally allows for an efficient pruning of the
search space, which enables low-overhead dynamic op-
timization. In that context, we present simple heuristic
mechanisms that are able to quickly converge to a con-
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Figure 1: Execution of an imaginary parallel code on a
CMP with four processors under three different scenarios:
full throttle parallel execution (left), power-aware paral-
lel execution regulated with DVFES exclusively (center),
and power-aware parallel execution regulated with DVFS
and adaptive parallelism (right). Regions are not drawn to
scale with respect to each other.

figuration in the search space that achieves near-optimal
power consumption and complies with the performance
requirement in virtually all the cases that we study.

Our mechanism is implemented at the granularity of
parallel regions, with a combination of modest software
and hardware support. It does not change the applica-
tion semantics, and can be made largely transparent to
the application by encapsulating the code in a typical par-
allelization macro or directive.

The rest of the paper is organized as follows: Section 2
describes the scope of our study; Section 3 characterizes
the search space and describes our proposed mechanisms;
Section 4 lays out our experimental setup; Section 5 ana-
lyzes the results of our evaluation; and Section 6 discusses
related work.

2 SCOPE

This section lays out the scope of our work. We use an
imaginary execution of a parallel code on a CMP with
four processors as an example. The code contains a series
of interleaved serial and parallel regions. Figure 1 shows
the execution of a fragment of such code under three dif-
ferent scenarios. In the figure, regions are not drawn to
scale with respect to each other. In fact, we expect par-
allel regions to be dominant in many future applications,
and thus the focus of our paper.

The left diagram represents a conventional parallel run
at full throttle. The code runs on all four cores during par-
allel sections, all at nominal voltage/frequency levels—no
dynamic voltage/frequency scaling (DVES) is applied in
any case.

The central diagram represents a power-aware exe-
cution where power can be regulated using whole-chip

DVFS. In the example, parallel sections are slowed down
by applying DVES to all processors. This presents us with
a power-performance trade-off, which we can exploit, for
example, to reduce power consumption and still meet a
predetermined performance target.

Unfortunately, this one-dimensional trade-off limits the
power-performance optimization options. Specifically, no
matter how relaxed the performance constraint, it is not
possible to reduce power consumption in a parallel re-
gion below the static power consumption of all four cores
at room temperature, since all of them remain active. No-
tice that if the chip’s power budget is tight, executing in
all cores may result in a very limited number of feasi-
ble DVFS levels. In the worst case, if the application’s
parallel efficiency degrades significantly at that degree of
parallelism, the chip’s limited power budget may make it
simply impossible to meet the performance target [29].

The right diagram tries to address this limitation, by al-
lowing parallel regions to execute on a variable number of
processors. In this scenario, a parallel region executes on
possibly a subset of the available processors, with DVFS
properly adjusted to meet the performance target, and un-
used processors are brought down to sleep mode. (Natu-
rally, we assume that the application does support execu-
tion of parallel regions with different number of proces-
sors. We address this assumption later in Section 3.3.)

On the one hand, this scenario is highly desirable, as
it allows much greater flexibility in trading off power and
performance. On the other hand, such a two-dimensional
space can be quite large, especially as CMPs incorporate
more cores, making the task of finding the optimal oper-
ating point a challenging one, particularly if the number
of instances of a parallel region at run-time is such that
a brute-force search could not be amortized easily. This
motivates the need to explore whether a reasonably quick
and easy procedure exists that can find an acceptable op-
erating point at run time, such that power consumption
is reduced significantly but the performance target is still
met. Our work shows that this is feasible.

In our study, we limit ourselves to a homogeneous
CMP that has chip-wide DVFS capability, and focus on
power optimization at the granularity of a parallel region
that must meet a certain performance target. We gener-
ally define our performance target as a steady-state rate
(e.g., frames per second in a multimedia application). Fi-
nally, we generally assume a CMP in which each pro-
cessor executes at most one application thread, and leave
overthreading issues to future work.

3 DYNAMIC POWER-PERFORMANCE
ADAPTATION

In this section, we first explain the general characteristics
of the two-dimensional power-performance optimization
space, using one of the applications from our experimen-
tal setup as an example (Section 4.3). Then, in the con-
text of dynamic power optimization given a certain per-
formance constraint, we describe simple run-time heuris-
tics that cut down on the optimization space search signif-
icantly, and justify intuitively that such heuristics should
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Figure 2: Power consumption and execution time of
CMP configurations with varying number of proces-
sors N and voltage/frequency levels for an instance of
BSOM’s parallel region (a parallel data mining applica-
tion). Target execution time and power are 40ms and
30W, respectively.

generally converge to an operating point that is reason-
ably close to the global optimum, which is later confirmed
in our evaluation (Section 5.2). Finally, we comment
on some hardware/software implementation issues of our
mechanism.

3.1 Power-Performance
Characterization

In this section, we build a case study around BSOM, the
parallel data mining application (Section 4.3), to illustrate
the power-performance trade-offs of parallel computation
on a CMP. Fig. 2 shows the power consumption and exe-
cution time of an iteration of the main (parallel) loop, or
epoch. Each point in the plot represents one CMP config-
uration, using a certain number of processors N (shown
in the legend), and a particular DVFS level (not indicated
directly in the plot). We vary N between two and six-
teen processors, and for each N we explore sixteen dif-
ferent DVFS levels, distributed regularly along the allow-
able range (Section 4.1). In the figure, we limit our dis-
cussion to a window of power ranging from 10 to 60W,
and execution time of an epoch ranging from 20 to 80ms.
(Naturally, we are using a reduced input set to make sim-
ulation time affordable; execution time of each epoch is
longer with realistic input sizes.)

In general, as expected, points for a fixed N move right
and down as we apply DVFS, as it takes more time to exe-
cute one epoch, but on the other hand the power consump-
tion is lower. The plot shows two well differentiated oper-
ating areas: On the one hand, operating points toward the
upper-left corner lie in a performance-oriented (or power-
sensitive) area. In this area, power consumption is gener-
ally high, but small reductions in voltage/frequency lev-
els translate into significant savings in power consump-

tion, at a relatively small performance cost. On the other
hand, operating points toward the lower-right corner lie
in a power-oriented or (performance-sensitive) area. In
this area, while performance is generally low, small volt-
age/frequency increases result in large performance gains,
at a relatively small power cost.

If we try to make sense of the curves depending on the
performance target that we impose, we can again find two
well differentiated areas. As we move left (strict perfor-
mance target), configurations with a small number of pro-
cessors need to operate at high DVFS levels to meet the
performance target, thus consuming significant power. If,
as it is the case in BSOM, parallel efficiency is gener-
ally high, a higher number of processors allows the CMP
to meet the performance target while achieving signif-
icant power savings, by aggressively throttling voltage
and frequency. On the other hand, toward the right end
of the plot (relaxed performance target), most configura-
tions can meet or exceed the performance target with very
low voltage and frequency levels. In that case, the static
power consumption of configurations with a high number
of processors puts them at a disadvantage with respect to
smaller configurations.

If we assume the target execution time for one epoch
is 40ms (vertical line), and we consider 30W as the max-
imum allowable power dissipation (horizontal line), our
search for valid configurations is confined, in principle, to
the quadrant left of and below such bounds, respectively.
Only a few operating points reside in this quadrant, which
we label A, B, C, and D1 in the plot. Any of these points
satisfy both performance and power constraints; the ac-
tual choice depends on a number of possible factors.

Configuration C in the plot, for example, yields accept-
able performance and maximum power savings. Config-
uration D1 yields better performance at the same power
cost, and thus would seem a better choice in terms of over-
all power-performance behavior. Configurations A and B
consume a little more power, but they are still within the
allowed limit.

One difference between these operating points lies in
the number of processors required by each case, which
varies widely—between five (configuration A) and ten
(configuration C) in our experiment. If the application
is also expected to minimize the number of allocated
processors (for example, in a multiprogrammed environ-
ment), configuration C may prove too costly at N = 10.
On the other hand, configuration A, which uses half as
many processors, may constitute an attractive choice in
this case, even as it consumes slightly more power. The
opposite may be true if, for example, power density is a
concern.

Finally, if we define our performance target as a rate
(e.g., frames per second in MPEG decoder/encoder), and
allow epochs to borrow leftover time from previous “fast”
instances to execute slower and save more power while
still meeting the target rate, further power savings op-
portunities may be possible. For example, we can al-
ternate runs with N = 6 for one epoch, and N = 7
for the following epoch (configurations D1 and D2 in the



plot, respectively). These configurations result, as the plot
shows, in per-epoch execution times that are slightly un-
der and over target, respectively. However, alternating
between these two states is likely to meet or exceed the
target rate (with D2 borrowing time from the slack cre-
ated by D1). And the combination D1-D2 consumes, on
average, less power than any other valid configuration by
itself. Therefore, it can be argued that configuration D1
controls execution time as configuration D2 lowers power
consumption, resulting in a favorable net balance.

3.2 Dynamic Power Optimization

When optimizing for power, the operating point that
meets the performance requirement and minimizes power
consumption lies, generally speaking, at the intersection
of the performance target and the lower envelope of the
power-performance curves for the different number of
processors and DVFS levels. Unfortunately, such lower
envelope is not generally known at run-time, and must be
constructed or approximated.

If the number of instances of the parallel region is large
enough that an exhaustive search is feasible, an easy way
to construct such lower envelope at run-time is to try all
possible number of processors and (legal) DVFS levels:
For each number of processors, starting with the maxi-
mum DVFS level allowable by the chip’s power budget
(which we assume known), we gradually decrease DVFS
levels (one step per instance of the parallel region) un-
til the desired performance is no longer met. The DVFS
level immediately before is the local minimum for that
number of processors. Among all the local minima, a
global minimum can be picked. The cost of an exhaustive
search is L - N steps, with L being the number of DVFS
levels and IV the number of processors on the CMP.

Often times, however, an exhaustive search may not be
possible, or its overhead prove prohibitive, because the
parallel region is not invoked enough times as to amor-
tize the search phase. In that case, search heuristics that
can converge toward the global optimum much faster are
highly desirable.

After the search has concluded, the algorithm enters
steady state. In this mode, the goal is to minimize power
consumption while making sure that the target rate (e.g.,
frames per second) is met. In this mode, as we finish
execution of one instance, we compute the distance to the
next target (since we may have under- or overshot the cur-
rent target). Then we select, among the operating points
recorded during our search phase, the one whose execu-
tion time constitutes the tightest upper bound. This gives
us the processor count and DVFS level to use next. If we
undershot the current target, this constitutes an opportu-
nity to save extra power. If we overshot, we may now pick
a more aggressive operating point, which will allow us to
catch up.

Reducing Search Space: Processor Dimension

We propose to use a combination of binary search and
hill-climbing optimization to prune the search space
along the processor dimension. In hill-climbing optimiza-

tion, search continues until a local optimum is observed —
i.e., the immediate proximity of that point in any al-
lowed search direction yields a less optimal operating
point. Hill-climbing is limited in the sense that it may
get “stuck” at a local optimum that is significantly worse
than the global optimum in the search space. Three main
factors influence the quality of hill-climbing algorithms:
(1) the general shape of the search space; (2) whether
the search algorithm generally conforms to such shape;
and (3) possible heuristics to overcome local optima situ-
ations, such as the use of “jitter” or “momentum.” In this
paper, we choose to focus on the first two factors, and do
not explore the third one.

From the insights developed in Section 3.1, we can
build a search heuristic around the observed general
trends in the search space, namely: (1) On tight perfor-
mance constraints, configurations with more processors
are generally favored, provided the application exhibits
enough parallel efficiency, since they can meet the re-
quirement at lower DVFS levels. (2) On loose perfor-
mance constraints, configurations with fewer processors
are generally preferable, since they can meet the require-
ment with low DVFS levels and they do not constitute
as large an aggregation of static power; (3) on middle-
ground performance constraints, multiple configurations
that yield similar power-performance levels may be pos-
sible.

Cases (1) and (2) are likely to yield good operating
points, since configurations are generally arranged in a
monotonic fashion along the time constraint, which a hill-
climbing algorithm can exploit well. In Case (3), the
chances of getting “stuck” at a local optimum may be
higher, however our evaluation empirically shows that the
local optima found by our algorithm are generally close
to the global optima in that scenario.

We conduct the hill-climbing optimization using a bi-
nary search along the dimension of the number of pro-
cessors. Generally speaking, the hill-climbing algorithm
starts at some mid-point number of processors p, and
gradually decreases DVFS levels until the performance
target is missed, as it is the case of the exhaustive search
explained above. The DVFS level immediately above is
the optimum for that p. Then, another p’ half-way be-
tween the current configuration and either of the active
endpoints is chosen, and the process is repeated. If the
optimum for that p’ is better, the other side is disregarded,
and the binary search continues on that side. Otherwise,
the algorithm switches to the other side, disregarding fur-
ther attempts on the first side. When neither side is better,
or we run out of options, the search ends.

The choice of which side to explore first may be impor-
tant in cases where local optima may exist on both sides
of the search, and thus the final number of processors may
depend on the order in which they are searched. On the
other hand, in the “monotonic” areas of the search space
described above, the search is likely to converge toward
the optimum. In any case, the cost of this heuristic is
L - lgN steps—a significant improvement.



Reducing Search Space: DVFS Dimension

An orthogonal way to prune the search space is to exploit,
along the DVFS dimension, the strong correlation be-
tween performance and frequency in many applications.
The formula for execution time proposed by Hennessy
and Patterson [17] is t = IC- CPI- f~', where IC is the
dynamic instruction count, C'PI is the average number of
cycles per instruction, and f is the operating frequency.
If we make the simplifying assumption that CPI is inde-
pendent of the clock frequency, then the the ratio between
the actual and target execution times of a parallel region
should be approximately equal to the ratio of the target
and actual clock frequency.

This is a powerful result that would allow us, theoret-
ically, to execute the parallel region once at clock fre-
quency f, measure execution time ¢, and in one shot de-
rive the target frequency f,... that would yield our perfor-
mance target ¢, (Which is a known value of course).

In practice, however, neither is frequency in DVFS
scaling a continuous function, nor is CPI independent of
the clock frequency.! While the former limitation would
still allow us to pick the optimum frequency in one shot
(the closest legal frequency above the exact solution), the
latter introduces some inaccuracy that may result in over-
or undershooting the performance target. Nevertheless,
observe that we can now apply a new iteration of the pro-
cedure, this time using execution time and frequency of
the latest run. The key insight is that, with each additional
iteration, the ratio should be much smaller than before,
and thus convergence should be fast (unless the applica-
tion exhibits erratic behavior, in which case none of the
proposed heuristics is likely to work anyway).

As before, we start with the highest DVFES level allow-
able by the chip’s power budget for the number of pro-
cessors currently under consideration by the hill-climbing
algorithm. If the execution time is unfavorable (i.e., the
performance target is stricter than the measured perfor-
mance), we cannot meet the required performance at the
current number of processors, and thus we move on to
another number of processors. If, on the other hand, the
execution time is favorable, we can apply the formula to
compute the new target frequency. The new legal target
frequency maybe at the same DVFS level, in which case
we stop searching, or at a lower DVFS level, in which
case we iterate once more.

If we eventually miss the performance target, applying
the formula again results in a target frequency that is nec-
essarily faster, and since we always pick the closest legal
frequency above the exact solution, this is guaranteed to
move to a higher DVFS level. In the general case where
this DVFES level has not been tried before, we iterate once
more.

Notice that we may have already tried this DVFS level.
Because of the general convergence property of the al-
gorithm, the execution time at this DVFS level was most

!In memory-bound applications, for example, CPI may improve with
lower frequencies, as off-chip memory accesses may become effectively
faster in terms of processor clock cycles.

likely favorable the last time around, and thus we may
stop searching. However, it might occur that this DVFS
level was also recorded as unfavorable. In this (empir-
ically rare) case, we simply select the closest recorded
DVES level above that yielded a favorable execution time
and stop searching.

When combined with the hill-climbing heuristic, we
estimate the expected cost to be alg/V steps, where « is
a function that grows much slower than L. In our evalua-
tion (Section 5), where the number of DVFS levels is 16,
the above procedure converges in about three iterations in
most cases.

Thus, intuitively, the combination of the search reduc-
tion heuristics along each axis of the two-dimensional
search space should converge quickly to an operating
point that is reasonably close to the global optimum.

3.3 Implementation Issues

We envision implementing our proposed mechanism as
a combination of modest hardware and software support.
On the hardware side, we mainly require support to mea-
sure power and performance directly, chip-wide DVES,
and the ability to put cores to sleep. On the software side,
we need support to execute parallel regions with different
processor counts. We address each one in turn.

Hardware Support

Our mechanism obviously requires the ability to apply
DVFEFS, although we limit our study to simple chip-wide
DVES, leaving potentially more versatile mechanisms
such as core-level DVFS for future work.? Moreover,
because the relative power-performance characteristics
across different operating points may not be easily cor-
related to indirect metrics (e.g., IPC or cache miss rates),
we would like to directly measure both power and perfor-
mance to characterize such operating points, and thus we
need to provide such support as well. While measuring
performance can be achieved using well-known mech-
anisms based on programmable hardware counters, the
hardware support to directly measure and regulate power
is not as obvious.

In a recent publication [35], Intel describes its up-
coming Foxton technology for Itanium Montecito. It
utilizes on-chip sensors and an embedded microcon-
troller attached to the processor core to directly mea-
sure power and temperature, and apply DVFS to
maximize the processor’s performance while abiding
by power/temperature constraints. We believe this
microcontroller-based approach offers great potential and
flexibility for our purposes, and thus propose that our
mechanism be supported with similar hardware.

The Foxton-like microcontroller should be properly in-
terfaced with the software, so that the choices of DVFS

2In a multiprogrammed scenario, where the application receives a
partition of the entire chip, our mechanism may require partition-wide
DVES. In that case, each partition may operate under different, inter-
dependent power/temperature budgets. For the sake of simplicity, in
this work we intentionally ignore this scenario.



CMP Size 16-wa

Processor Core Alpha 21264 [8]

Process Technology 65nm

Nominal Frequency 3.2GHz

Nominal Vg 1.1v [21]

Vi 0.18v [21]

Ambient Temperature | 45°C

Die Size 244.5mm? (15.6mm X 15.6mm)

L1 I-, D-Cache 64kB, 64B line, 2-way, 2-cycle RT

Unified L2 Cache Shared on chip, 4MB, 128B line,
8-way, 12-cycle RT

Memory 75ns RT

Table 1: The CMP configuration modeled in the experiments.
In the table, RT stands for round-trip.

and number of cores can be communicated and/or agreed
upon properly. In that respect, an intermediate layer is
needed to identify a parallel region (monitoring instruc-
tion addresses) and, based on past history and progress,
decide on the appropriate course of action in terms of
number of processors and DVFS level to apply to the exe-
cution of the next instance of such a region. The particular
decision of which parts to map onto hardware or software
libraries is more of an engineering issue that falls out of
the scope of this paper. One definite requirement, how-
ever, is the ability to execute a parallel region on different
number of processors. We address this next.

Software Support

In our proposed mechanism, both system and application
should be able to support different processor counts on
different instances of a parallel region.

On the system side, the operating system could assign
a (probably oversized) partition to the application, which
would basically determine the processor count range at
the application’s disposal. During the search phase, our
mechanism would pick different number of processors
and put the rest of the partition in a low-power sleep
mode. Once the mechanism converges to a local optimum
and enters steady state, any excess of processors could
be given back to the operating system, or put in a low-
power sleep mode for the duration of the program. (No-
tice that processors in a low-power sleep mode may still
be required to respond to snoop requests if their cached
updates have not been written back [30].)

On the application side, the parallel region should be
written to support different processor counts. Fortunately,
this is often supported (in fact, it is frequently the default
mode) by widely used APIs for shared-memory program-
ming, most notably OpenMP [36]. (Notice that some ap-
plications do restrict the possible number of processors
to certain values, e.g. powers of two. While any search
heuristic could be easily adapted to this scenario, we do
not explicitly address it.) Furthermore, we envision the
software-side support to be encapsulated in the existing
parallel directives of such APIs, making it virtually trans-
parent to the programmer or compiler.

4 SIMULATION ENVIRONMENT
4.1 Architecture

Our study uses a detailed model of a 16-processor CMP.
CMP cores are modeled after the Alpha 21264 (EV6) pro-
cessor [8]. Each processor core has private L1 instruction
and data caches. All cores share a 4MB on-chip L2 cache
through a common bus, and implement a MESI cache
coherence protocol [9]. Table 1 lists relevant cache and
memory parameters.

We choose a 65nm process technology. The original
EV6 ran at 600MHz on a 350nm process technology; by
proceeding similarly to [26], we determine the clock fre-
quency of our 65nm EV6 cores to be 3.2GHz. We set
nominal supply and threshold voltages at 1.1v and 0.18y,
respectively [21], and in-box ambient air temperature at
45°C [33, 43]. Using CACTI [44], we obtain an esti-
mated chip area of 244.5mm? (15.6mm x 15.6mm), us-
ing a scaling method similar to [27].

For the sake of simplicity, we assume global volt-
age/frequency scaling for the entire chip. (While it is con-
ceivable to allow each core to run at a different frequency,
the applicability and performance impact in the context
of a parallel execution is nontrivial and beyond the scope
of this paper.) Frequency can scale from 3.2GHz down to
200MHz, and we resort to [20] to establish the relation-
ship between frequency and supply voltage. Notice that,
because voltage/frequency scaling is applied at the chip
level, on-chip latencies (e.g., on-chip cache hit time) do
not vary in terms of cycles. However, a round trip to (off-
chip) memory takes the same amount of time regardless
of the voltage/frequency scaling applied on chip, and thus
the round-trip memory latency in processor cycles goes
down as we downscale frequency.

4.2 Power Model

We use Wattch to model the switching activity and
dynamic power consumption of the on-chip functional
blocks. As for static power consumption, we approximate
it as a fraction of the dynamic power consumption [7, 43].
In our model, this fraction is exponentially dependent
on the temperature [7]. The average operating tempera-
ture (over the chip area) in our model ranges from in-box
ambient air temperature (45°C) to a maximum operating
temperature of 100°C, in agreement with multiple con-
temporary processor chip designs. We use the HotSpot
thermal model [43] for chip temperature estimation.

Wattch is reasonably accurate in relative terms; how-
ever, the absolute power values can be off by a nontrivial
amount [26]. Because we use power values to commu-
nicate across two different tools (Wattch and HotSpot),
we ought to ensure we do so in a meaningful way. We
achieve this by renormalizing power values as follows.

We use HotSpot to determine the maximum operational
power consumption (dynamic plus static), which is the
one that yields the maximum operating temperature of
100°C. Then, using the dynamic/static ratio that corre-
sponds to that temperature [7], we derive the dynamic



component.

We now need to establish the connection with Wattch.
To do so, we use a compute-intensive microbenchmark to
recreate a quasi-maximum power consumption scenario
at nominal voltage and frequency levels in our simulation
model, and obtain Wattch’s dynamic power value. This
number is often different from the one obtained through
HotSpot using the method explained above. To over-
come this gap, we calculate the ratio between Wattch
and HotSpot’s dynamic power values, and use it through-
out the experiments to renormalize wattage obtained with
Wattch in our simulations as needed. This makes it pos-
sible for both tools to work together. While the absolute
power may again not be exact, the results should be mean-
ingful in relative terms. Using both tools, plus the power
ratio/temperature curve, we are able to connect dynamic
and static power consumption with temperature for any
voltage and frequency scaling point.

Finally, we notice that the temperature and power den-
sity of the shared L2 cache is significantly lower than the
rest of the chip across all the applications studied. Rea-
sons include: much less switching activity; aggressive
clock gating in the model [4]; and large L2 cache dissipa-
tion area. This observation is in agreement with published
work by others [7, 10]. To obtain meaningful temperature
figures, we exclude L2 from the temperature calculation.
However, we do include the power consumption of L2 in
the reported power consumption.

4.3 Applications

We select six parallel applications from different prob-
lem domains: MPGdec and MPGenc, two popular video
decoding/encoding applications, from ALPBench [31];
FMM, Volrend, and Water-Ns, which represent N-body,
rendering, and molecular dynamics applications, respec-
tively, from the SPLASH-2 suite [45]; and BSOM, a par-
allelized data mining application [28]. The execution time
in all these applications is spent mostly on one single par-
allel region, which suits our purpose. In our experiments,
we do not change the problem sizes as we change the
number of cores. Table 2 lists the applications and their
execution parameters. The number of instances in the par-
allel regions of FMM (steps of an N-body problem), Vol-
rend (rendering from different viewpoints), and Water-Ns
(steps of a molecular dynamics problem) as included in
the SPLASH-2 benchmark suite are only a handful, and
thus we increase that number to obtain a sufficient number
of samples for our evaluation (50 for Volrend and Water-
Ns, only 10 for FMM given the extended simulation time
of each region). On the other hand, in MPGdec/MPGenc
we simulate 60 frames (out of the original 150) to get
resonable simulation times. In all cases, we skip initial-
ization and then simulate to completion.

We assume all processors are available to the applica-
tion, and that unused processors are put to sleep. We also
do not model the overhead of switching among DVFS lev-
els, as we reasonably assume that real-world parallel in-
stances of interest would each run for much longer than
the typical tens of microseconds for DVFS switching.

Application | Description

Problem Size |

BSOM Batched Self-Organizing 16k records, 104 dim.,
Maps of neural network 16-node network,
50 epochs
FMM Fast Multipole Method 16Kk particles, 10 steps
MPGdec MPEG-2 decoder flowg.mpg (Stanford)
352 x 240, 60 frames
MPGenc MPEG-2 encoder flowg.mpg (Stanford)
352 x 240, 60 frames
Volrend Volume rendering using a | head
ray casting technique 50 viewpoints
Water-Ns Forces and potentials of 512 molecules
water molecules 50 steps

Table 2: Applications used in the experiments.

Because these applications are generally not written
to change the number of processors dynamically, we ap-
proximate this behavior by simulating in two phases: In
the first phase, we execute each application once for ev-
ery combination of processor number and DVFS level,
and collect the measured execution time and power con-
sumption for each instance of the parallel region. In the
second phase, for each application, we simulate the dif-
ferent optimization mechanisms with Matlab, using the
processor count and DVFS level selected by the optimiza-
tion mechanisms in each step to pick the execution time
and power consumption of the appropriate instance from
the first phase, which in turn serve to determine the next
step in the optimization mechanism. In the case of FMM,
whose simulation time was particularly long, we traverse
its ten instances five times to come up with a total number
similar to the other applications.

5 EVALUATION

In Section 3.2, we discuss the extent to which our com-
bined heuristics may cut down on the two-dimensional
space search of processor count and DVFS. We predict
this to be important for parallel applications for which the
number of instances or steps is moderate, particularly as
we scale up the number of processors on a CMP. For our
proposed mechanisms to be useful, however, we need to
address two additional questions: (1) For a parallel region
and a particular performance target, is the choice of op-
erating point(s) that minimize power consumption a non-
trivial one that makes a space search useful? (2) In spite of
the reduced knowledge about the search space, do the pro-
posed mechanisms achieve optimum power savings and
still meet the performance requirement? Our evaluation
shows that the answer to these two questions is Yes. In
what follows, we address each question in turn.

In all our experiments, we set the chip’s total power
budget to that of one processor running at peak perfor-
mance.

5.1 Optimization Space

In our first experiment, we assess the power optimization
opportunities for each processor count within range (1
to 16). Specifically, for a particular processor count, we
measure power and performance for each possible oper-
ating point within budget. Then, in steady state, we pick
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Figure 3: Optimal chip power consumption, normalized to the
power budget, of configurations with different processor counts
[1,16] for all the applications under study, for loose (top), inter-
mediate (middle), and tight (bottom) performance targets. Dot-
ted bars indicate configurations that cannot meet the specified
performance target within the power budget. The numbers on
top of bar groups correspond to the number of processors that
yields the lowest power consumption.

at each instance the DVFS level whose recorded execu-
tion time is the tightest upper bound to our next target.
(Recall that, in steady state, as a result of variability in
the execution time across instances, we accummulate any
deviation from the target into the next instance’s). Our
goal is to see whether there exists a “universal pick” of
processor count regardless of the performance target. To
do that, for each application, we pick three deadlines: (1)
a “loose” performance target, roughly equivalent to one
fourth of the fastest possible execution on one processor
within the power budget; (2) an intermediate deadline,
roughly equivalent to the fastest possible execution on one
processor within the power budget; and (3) a “tight” per-
formance target, roughly equivalent to the fastest possible
execution on four processors, still within the power bud-
get. We normalize all power measurements to the chip’s
power budget. Fig. 3 shows the results.

The plots show that significant (and often nonlinear)
differences exist in the optimized power consumption for
each processor count, even as the performance of all
plotted configurations are within 2-3% of the target (not

shown). Generally speaking, given a particular perfor-
mance target, an increase in the number of processors
allows for DVFS downscaling. This may initially result
in overall power savings, however as we keep increasing
the number of processors and we run out of DVES levels,
static power starts to dominate, eventually reversing the
power savings trend.

With a loose performance target (top), configurations
with low processor count can downscale DVFS aggres-
sively, consuming little power, but leaving little room for
further DVFS reduction to higher processor counts, which
soon experience increased (static) power consumption.
On the other hand, a tight performance target (bottom)
requires configurations with low processor count to use
high DVES levels (and thus power) in order to meet the
performance constraint, which allows a prolongued trend
of power savings as we increase the processor count (pro-
vided the application scales well [29].)

Notice that, with greater static power consumption in
future process technologies, the differences in power con-
sumption for the scenarios with loose and intemediate
performance targets (top and middle plots, respectively)
are bound to increase, as static power will be more domi-
nant in configurations with high processor count.

Moreover, across the plots, it becomes evident that the
optimum processor count shifts depending on the perfor-
mance target. Each plot shows, on top of the bars for each
application, the number of processors of the configuration
that minimizes power consumption.

Thus, to find the configuration that minimizes power
consumption, it is generally necessary to connect the par-
ticular performance target to the power and performance
characteristics of the application and the hardware, which
is precisely what our proposed mechanisms try to do at
run time.

5.2 Effectiveness of Optimization
Mechanisms

We now investigate the effectiveness of the proposed op-
timization mechanisms. We combine the DVFS search
heuristic and the hill-climbing binary processor count
search heuristic; this we call HC (for Hill Climbing). HC
starts with eight processors, and initially veers toward a
lower number of processors (four). After that, and for the
duration of the search phase, HC reuses the last profitable
direction in determining which new processor count to try
first. Once in steady state, HC uses the operating points
visited during the search phase to try and match the target
rate.

We also try a variant of HC which we call HC-Fixed,
in which, once in steady state, we can only use the operat-
ing points visited during the search phase whose proces-
sor count is that of the local optimum found by the hill-
climbing heuristic. This represents a scenario in which,
for whatever reason, we do not want to use a variable
number of processors in steady state.

We use the same power budget and performance targets
as before. For comparison purposes, for each application
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Figure 4: Chip power consumption of two proposed mech-
anisms (HC and HC-Fixed) against the best (Fixed-Best) and
worst (Fixed-Worst) configurations of the earlier experiment, and
a configuration with full knowledge of the search space (Exhaus-
tive), for loose (top), intermediate (middle), and tight (bottom)
performance targets. All bars are normalized to the power bud-
get. Notice the different scales on the Y axes.

and performance target, we plot the power consumption
of the best (Fixed-Best) and worst (Fixed-Worst) config-
urations from the earlier experiment. (Recall that Fixed-
Best and Fixed-Worst can use any legal DVFS level for
their processor count. This is unlike HC and, in particu-
lar, HC-Fixed.)

Finally, we also compare against a configuration that
has full knowledge of the execution time and power con-
sumption of every operating point for each instance of the
parallel region under study. We call this optimistic con-
figuration Exhaustive.

Fig. 4 shows the power consumption for each config-
uration, all normalized to the power budget. As in the
case of the earlier experiments, all configurations success-
fully execute within 2-3% of the performance target in
steady state (not shown). The results are very encourag-
ing: In virtually all cases, our proposed mechanisms (HC
and HC-Fixed) are capable of achieving the same level
of power savings of not only the best configuration from
the earlier experiment (Fixed-Best), but even Exhaustive,
which has full knowledge of the power-performance be-
havior of all possible operating points at each moment.

This result is quite remarkable, considering that HC can
only leverage the approximately 12 operating points vis-
ited during the search phase in most cases (about four
steps along the processor dimension, with around three
steps along the DVFS dimension each time). Even more
remarkable is HC-Fixed which, with only about three vis-
ited operating points along the range of the final processor
count, closely tracks the performance of the more power-
ful configurations, with the possible exception of FMM
on a fast performance target (bottom plot), in which HC-
Fixed trails the other optimization mechanisms somewhat
(but HC does not).

Overall, the results of our evaluation show that, indeed:

e For a parallel region and a particular performance
target, the choice of operating point(s) that mini-
mize power consumption in our experimental setup
is nontrivial, which makes optimization space search
useful.

e In spite of the reduced knowledge about the opti-
mization space, the proposed mechanisms HC and
HC-Fixed, based on the presented heuristics for
space search reduction, achieve virtually optimum
power savings for the applications under study.

6 RELATED WORK

There is a rich collection of literature on power- and
thermal-aware simultaneous multithreading (SMT) and
CMP designs (or similar architecture configurations),
most of which focuses on multiprogrammed work-
loads [10, 14, 26, 32, 41, 42]. In contrast, our work fo-
cuses on power-performance issues of CMPs in the con-
text of parallel applications.

Huh et al. [19] conduct an in-depth exploration of the
design space of CMPs. However, they do not address
power. More recently, Ekman and Stenstrom [11] conduct
a design-space study of CMPs in which they address some
power issues. Assuming a certain silicon budget, they
compare chips with different numbers of cores, and cor-
respondingly different core sizes. They argue that parallel
applications with limited scalability but some instruction-
level parallelism may run better on CMPs with few, wide-
issue cores. They also argue that CMPs with few, wide-
issue cores and with many, narrow-issue cores consume
roughly the same power, as cache activity offsets savings
at the cores. Our work assumes a given chip design, and
explores the issues of minimizing power consumption by
judiciously applying the optimum number of processors
and voltage/frequency levels to a parallel region, given
certain performance constraints.

Grochowski et al. [15] discuss trade-offs between mi-
croprocessor processing speed vs. throughput in a power-
constrained environment. They postulate that a micropro-
cessor that can achieve both high scalar performance and
high throughput performance ought to be able to dynami-
cally vary the amount of energy expended to process each
instruction, according to the amount of parallelism avail-
able in the software. To achieve this, they survey four



techniques: dynamic voltage/frequency scaling (DVFES),
asymmetric cores, variable-sized cores, and speculation
control, and conclude that a combination of DVFS and
asymmetric cores is best.

More recently, Annavaram et al. [2] use an asymmet-
ric CMP to maximize the performance of a multithreaded
application, by assuming that nontrivial serial regions ex-
ist in the application. They use the notion of energy per
instruction (EPI) throttle to orchestrate the application’s
execution on its sequential and parallel portions under a
fixed power budget. For the sequential portions, they as-
sign a faster but more power-hungry processor. For the
parallel portions, depending on the number of threads
that are inherent in the application’s parallelization and
the number of available processors, they assign multi-
ple slower but power-thrifty processors. In our work, we
study dynamic optimization on a parallel region running
on a symmetric CMP with a large configuration space.

Kaxiras et al. [24] compare the power consumption of
an SMT and a CMP digital signal processing chip for mo-
bile phone applications. They do not explicitly study par-
allel applications in the “traditional” sense. For example,
they approximate a parallel encoder with four indepen-
dent MPEG encoder threads, each thread processing one
quarter of the original image size. A speech encoder and
a speech decoder are connected in a pipelined fashion to
a channel encoder and decoder, respectively. The issues
that we address in our work cannot be easily conveyed in
this context.

Kadayif et al. [22] propose to shut down idle proces-
sors in order to save energy when running nested loops on
a CMP. The authors also study a pre-activation strategy
based on compiler analysis to reduce the wake-up over-
head of powered-off processors. Although they address
program granularity and power, they do not exploit DVFS
in their solution, which is fundamental in our work.

In a different work, Kadayif et al. [23] propose to use
DVES to slow down lightly loaded threads, to compen-
sate for load imbalance in a program and save power and
energy. They use the compiler to estimate the load imbal-
ance of array-based loops on single-issue processor cores.
The authors also mention the opportunity for further en-
ergy savings by using less than the number of available
processor cores using profile information. However, the
connection of DVFS to parallelization granularity of the
code is not fleshed out.

In the context of cache-coherent shared-memory mul-
tiprocessors, Moshovos, et al. [34] reduce energy con-
sumption by filtering snoop requests in a bus-based par-
allel system. Saldanha and Lipasti [40] observe signif-
icant potential of energy savings by using serial snoop-
ing for load misses. Li, et al. [30] propose saving energy
wasted in barrier spin-waiting, by predicting a processor’s
stall time and, if warranted, forcing it into an appropriate
ACPI-like low-power sleep state. This work is comple-
mentary to ours in that it does not consider the number of
processors, and does not attack power consumption dur-
ing useful activity by the parallel application.

In an environment of loosely-coupled web servers run-

ning independent workloads, several studies evaluate dif-
ferent policies to control the number of active servers (and
thus their performance level) to preserve power while
maintaining acceptable quality of service [12, 13, 38, 39].
Elnozahy et al [12] evaluate policies that employ var-
ious combinations of independent and coordinated dy-
namic voltage/frequency scaling, and node vary-on/vary-
off, to reduce the aggregated power consumption of a
web server cluster during periods of reduced workload.
They evaluate the policies with simulations, and show that
the combination of coordinated voltage/frequency scaling
and node vary-on/vary-off obtains the largest power sav-
ings. They only consider dynamic power in their simula-
tions.

In the context of micro-architectures, Heo and
Asanovié [18] study the effectiveness of pipelining as a
power-saving tool in a uniprocessor. They examine the re-
lationship between the logic depth per stage and the sup-
ply voltage in deep submicron technology under different
conditions. This is complementary to our work, since we
study power-performance issues of using multiple cores
on a CMP.

7 CONCLUSIONS

In this work, we have addressed the problem of dynamic
power optimization of parallel execution on many-core,
DVEFS-capable CMPs under given performance restric-
tions. We have shown that the number of available pro-
cessors and DVFS levels may constitute a considerable
search space, and the particular optimum depends non-
trivially on the power-performance CMP characteristics,
the application’s behavior, and the specific performance
target. To attack this problem, we have proposed sim-
ple heuristics that can be used to cut down on the search
effort along both dimensions of the optimization space.
Our evaluation shows that these heuristics produce near-
optimum results in virtually all cases considered.
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