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Abstract—We present Versatile Inference Processor (VIP),
a highly programmable architecture for machine learning
inference. VIP consists of 128 lightweight processing engines
employing a vector processing paradigm, with a simple ISA
and carefully chosen microarchitecture features. It is coupled
with a modern, lightly customized, 3D-stacked memory system.
Through detailed execution-driven simulations backed by RTL
synthesis, we show that we can achieve online, real-time vision
throughput (24 fps), at low power consumption, for both full-
HD depth-from-stereo using belief propagation, and VGG-16
and VGG-19 deep neural networks (batch size of 1). Our
RTL synthesis of a VIP processing engine in TSMC 28 nm
technology, using a commercial standard-cell library supplied
by ARM, results in 18 mm2 of silicon area and 3.5 W to 4.8 W
of power consumption for all 128 VIP processing engines
combined.

I. INTRODUCTION

Two classes of machine learning inference mechanisms
that are of major interest are probabilistic graphical models
(PGMs) and deep neural networks (DNNs). These algo-
rithms are fundamentally different in the way they approach
machine learning: PGMs are generative machine learning
algorithms which model the underlying processes that pro-
duced the data, whereas most DNNs are discriminative
algorithms that only label data. We can look into generative
algorithms and reason about why they make decisions,
whereas discriminative algorithms are largely black boxes.
Inference on PGMs is used in computer vision for tasks
such as image de-noising, depth-from-stereo, or detecting
optical flow [15]; in biology, it is used to analyze DNA
sequences [16] or to help pathologists diagnose lymph-
node disease [20]. DNNs are used in a variety of other
tasks, such as detecting objects in images and video [48],
captioning images [54], and machine translation [59]. In
both cases, these tasks often have low-power and real-
time performance constraints, along with high computation
and memory bandwidth requirements that have pushed their
deployment from general purpose CPUs to GPUs, and lately
to more and more specialized accelerators.

Recent accelerator proposals in the computer architecture
community have in fact focused almost exclusively on
DNNs. While there was interest in developing FPGA and
ASIC accelerators for PGMs in the late 2000s and early
2010s [10, 12, 21], these accelerators are tailored to a
narrow class of applications and data constraints (e.g., image
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Table I: Qualitative overview of various classes of existing architectures
and systems, including CPU, GPU, TPU, FPGA, low-power ASICs, and
this work (VIP) for inference on PGMs and CNNs. Lighter is better. An
asterisk (*) indicates 24 frames per second or higher achieved at full-HD
for stereo matching (PGM) or at VGG-16’s standard size (CNN).

Platform Power Throughput Programmabil-
ity

PGM CNN

CPU Med/High Low Low Very High
GPU High Med/High High* Very High
FPGA Med Med [21] Med* [57] Med
Tile-BP [10] Very Low Med/High N/A Very Low
Eyeriss [9] Very Low N/A Low Very Low
TPU [26] Med N/A Very High* Low

VIP Low/Med Very High* Med* High

size, number of categories being labeled, etc.). Accelerator
proposals for PGMs include the Bayesian computing ma-
chine [30], which uses BRAMs within an FPGA for storage
(which would require many FPGAs to scale up to larger
problems), and Optical Gibbs’ sampling [55], which involves
inserting optical resonant units within GPUs for generating
exponentially distributed random variables. While an inter-
esting research proposition, the results presented in Optical
Gibbs’ sampling are based on projections of these optical
resonant units being miniaturized to fit within a GPU—the
prototype is a tabletop device using a laser and a resonant
medium.

Table I shows a qualitative overview of where a variety
of relevant systems fall on a relative spectra of power,
performance, and programmability. General-purpose archi-
tectures such as CPUs and GPUs are very programmable, but
they require lots of power. Accelerators, on the other hand,
provide good performance at low power, but do so with
highly specialized designs that are not very programmable.
FPGAs fall in the middle, but programming them requires
writing a new RTL implementation—not an easy task.

In this work, we take a step back and ask ourselves:
Surely highly specialized accelerators have their space in
this landscape; but is there a case to be made for a system
that provides competitive performance at low power,
for multiple classes of inference algorithms, while still
remaining highly programmable? Our results suggest that
there is.

We present a new system, Versatile Inference Proces-
sor (VIP), designed for fast, efficient inference on both
PGMs and DNNs. VIP has been designed to be highly
programmable using the well-understood vector processing
paradigm. We make economic but critical microarchitectural



choices, which we describe in this paper. We show the versa-
tility and programmability of VIP by implementing inference
workloads for PGMs, as well as two flavors of DNNs—
convolutional neural networks (CNNs) and multi-layer per-
ceptrons (MLPs)—through software reprogramming alone.

The contributions of this work include:
1) We present an analysis of common kernels used for

a) belief propagation on PGMs, and b) DNNs such as
CNNs and MLPs. We describe how these kernels can be
vectorized and discuss the similarities and differences in
these workloads (Section II).

2) We present the VIP ISA, microarchitecture, and memory
system, and we describe how the workloads described are
implemented on VIP. We show that these very different
workloads may be implemented on VIP through software
reprogramming alone (Sections III and IV).

3) We evaluate VIP’s performance using detailed microar-
chitecture and DRAM simulations. We find that VIP
would exceed the performance of an Nvidia Titan X GPU
for belief propagation on PGMs, and provide competitive
performance against a hypothetical version of Eyeriss [9]
scaled up to match VIP in area and technology (Sec-
tions V and VI).

4) We present an RTL synthesis of a VIP processing engine
(PE) in TSMC 28 nm technology using a commercial
standard-cell library supplied by ARM. We show that
VIP’s area and power requirements are modest; VIP’s
128 PEs occupy 18 mm2 and consume 3.5 W to 4.8 W
while operating at 1.25 GHz (Section VII).

II. WORKLOAD CHARACTERIZATION

A. Probabilistic Graphical Models
Probabilistic graphical models (PGMs) represent proba-

bilistic relationships between variables using graphs. Ver-
tices represent random variables and the edges represent the
joint or conditional probability distributions between these
variables. PGMs called Markov random fields (MRFs) are
often used in computer vision applications that are labeling
tasks (assign labels to each pixel in the image), e.g., image
segmentation (labels: objects), depth from stereo (labels:
depth), or optical flow (labels: motion) [15]. The MRFs
used in these applications are often 2D grid graphs (vertices
corresponding to each pixel in the image) initialized with
vertex (data) costs θv (vector) for each vertex v and edge
(smoothness) costs θv,w (matrix) for each edge between
vertices v and w. (Costs are related to negative logarithms
of probability.) Belief propagation (BP) is an iterative al-
gorithm for computation of probability in PGMs. Each
vertex receives “messages” (probability information) from
its neighbors. The vertex uses these messages to update its
belief (probability distribution), and propagates this updated
belief as new messages. Messages are computed as

θ̂v(lw) = θv(lw)+ ∑
x∈N (v)\w

mx→v(lw) (1a)

mv→w(lv) = min
lw

{
θ{v,w}(lv, lw)+ θ̂v(lw)

}
(1b)

where mv→w is the message vector from vertex v to w, θ{v,w}
is the smoothness cost, θv is the data cost, and N (v) is the
set of neighbors of v. (Equation (1b) is similar to a matrix-
vector multiplication, but using a different set of operations.)
When the messages converge, each vertex computes its most
favorable label lv.

lv = argmin
lw

{
θv(lw)+ ∑

x∈N (v)
mx→v(lw)

}
(2)

We use the accelerated BP algorithm (BP-M) proposed
by Tappen and Freeman [50], as it converges fairly quickly
while providing ample opportunities for parallelism. BP-M
on a Ix×Iy image, using L labels requires (4+1)×L×Ix×Iy
values be stored. A BP-M iteration requires 4IxIy message
updates, and each video frame requires n iterations. Each
message update requires 3L+2L2 operations and 4L data to
be read or written. Depth from stereo for full-HD (1920×
1080) video with sixteen labels at 24 fps (with 8 iterations
per frame) will therefore require 316 MiB of data storage,
190 GiB s−1 memory bandwidth (with 16 bit data types) and
892 GOp/s of computational throughput.

B. Convolutional Neural Networks

The primary operation in convolutional neural networks
(CNNs) is the convolution operation with a bias.

O(x,y,z) = f

(
b(z)+∑

i
∑

j
∑
k

I(x− i,y− j,k)hz(i, j,k)

)
(3)

where O is output feature map, I is the input feature map,
hz is the zth convolution filter, and b is the bias. The
convolution operation is highly parallel in the x, y, and filter
(z) dimensions.

VGG-16 and VGG-19 networks [48] take 224×224 sized
images as input and classify them into one of 1,000 cat-
egories using 13–16 convolution layers and three fully-
connected layers. (The fully connected layers are discussed
in Section II-C.) The thirteen convolution layers in VGG-16
require 15.3 billion multiply-accumulate (MAC) operations.
At 24 fps, this translates to 734 GOp/s (1 MAC = 2 Op).

The max pooling operation in CNNs collects values from
a neighborhood and combines these values through the
maximum operator. This reduces the size of feature maps.
The final operation in CNNs (which also appears in MLPs)
is the activation operation. VGG-16 uses rectified linear unit
(ReLU) function: f (x) = max{x,0}.

C. Multi-layer Perceptrons

Multi-layer perceptrons (MLPs), or fully-connected lay-
ers, consist of multiple layers of neurons where every neuron
produces an output as a weighted sum of inputs. A layer in
an MLP can be summarized as

O(i) = f

(
b(i)+∑

j
W (i, j)I( j)

)
(4)

where O is the output vector, W is the weight matrix, I
is the input vector, and b is the bias vector. An activation



function is applied to the outputs of each layer, similar to
CNNs. VGG-16 [48] uses ReLU activation function for its
fully connected layers.

Equation (4) involves two operations, a matrix-vector
multiplication between the weights and inputs, and a vector-
vector addition to add biases. As MLPs consist of matrix-
vector multiplications, they are dominated by memory band-
width requirements—e.g., the first fully connected layers in
VGG-16 and VGG-19 networks take in 25,088 inputs and
produces 4,096 outputs. With 16 bit data types, these require
196 MiB of data and 100 million MACs.

D. Why PGMs are Different than DNNs

There are some fundamental differences between compu-
tation on PGMs and on deep neural networks (DNNs).

First, PGMs operate on graphs and parallelism exists
across different vertices in the graph. On the other hand,
layers in CNNs and MLPs may be structured as monolithic
matrix-vector or matrix-matrix multiplications (in the case
of batched execution, a technique that improves data reuse).
As a result, PGMs require a system that can exploit both
fine-grained (computing each message using short vectors)
and coarse-grained (across graph vertices using multiple
processing engines) parallelism. The matrices in CNNs and
MLPs are much larger, and may work with long vectors as
well as tile matrices across multiple processing engines.

Second, most ISAs today support the MAC primitive as it
is commonly used in matrix-matrix multiplication. The min-
sum BP message update described by Equation (1b) uses a
different composition of operations—addition of two vectors
followed by a minimum reduction of the result. None of the
accelerators for DNNs—e.g., Cambricon [33], Eyeriss [9],
or Google’s tensor processing unit (TPU) [26]—support this
composition of operations.

In fact, both Cambricon and Google’s TPU have a very
limited datapath for true vector computations that are not
matrix-matrix multiplications, as adding vectors occurs rel-
atively rarely in CNNs, only in the pooling layers. Specif-
ically, Cambricon has only 32 ALUs for vector operations,
while it has 1024 MAC units for multiplying matrices.
Cambricon will therefore require over 0.13 s just to compute
Equation (1a) for one frame of a full-HD image, severely
limiting its throughput (to less than 8 fps) on vector op-
erations alone. Additionally Cambricon’s microarchitecture
is such that the matrices and vectors must already be in
the scratchpads of the matrix unit, unlike PGMs which not
only use a different set of operations, but also have tight
dependencies between matrix and vector operations.

Lastly, many efficient BP computations on PGMs do not
update vertices until all other vertices on the graph have been
updated. Not only do PGMs have high memory bandwidth
requirements, this also means that traditional techniques to
exploit locality, such as caching, may not work well with
PGMs due to long reuse distances.

E. Vectorizing PGMs, CNNs, and MLPs

Ni and Jain [38] define four types of vector operations—
f1 : V →V , f2 : V → S, f3 : V ×V →V , and f4 : V ×S→V ,
where V and S denote sets of vector and scalar operands
respectively. We observe, as discussed in subsequent para-
graphs, that the operations involved in the workloads un-
der consideration involve compositions of these categories
of operations. We introduce shorthand notation for these
compositions. f5 : V ×V → V → S is a composition of an
f3 operation followed by an f2 operation. If we loop over
an f5 operation while keeping one of the vector operands
constant, we create the category f6 : M ×V → V , where
M represents the set of matrix operands. A vector dot-
product is an example of an f5 category operation, while
a matrix-vector product is an example of the f6 category.
These compositions provide an efficient way to describe the
operations in PGMs, CNNs, and MLPs, and are therefore an
excellent basis for an ISA.

Operations in both PGMs and DNNs involve vector
reduction and matrix-vector operations from categories f2,
f5, and f6. For example, Equation (1a) is an f3 operation
while Equation (1b) is an f6 operation (although it uses a
composition of operators distinct from multiply-add used in
matrix-vector multiplication).1 In a similar fashion, we can
rewrite the convolution operation in CNNs—Equation (3)—
as

R(x, i,y, j,z) = ∑
k

I(x− i,y− j,k)hz(i, j,k) (5a)

Q(x, i,y,z) = ∑
j

R(x, i,y, j,z) (5b)

P(x,y,z) = ∑
i

Q(x, i,y,z) (5c)

O(x,y,z) = f (b(z)+P(x,y,z)) (5d)
Again, we observe that Equation (5a) is an f5 operation,

Equations (5b) and (5c) are f2 operations, and Equation (5d)
consists of f3 operations. Section II-C discussed how Equa-
tion (4) used in MLPs is an instance of an f6 operation
(multiply weights) and an f3 operation (add bias).

Traditional vector processors are efficient at opera-
tions in categories f1, f3, and f4, but not at reduc-
tion operations which are at the core of operations
in categories f2, f5, and f6. VIP attempts to fix this, as
discussed in Section III-B. The other link to accelerating
these applications: improving the effective use of memory
bandwidth; we discuss in Section III-C how VIP employs
a modern 3D stacked memory system with some modest
customization to accomplish this.

III. SYSTEM DESCRIPTION

VIP consists of multiple (128) processing engines (PEs)
operating at 1.25 GHz located at the logic layer of a 3D

1Belief propagation on images with 16 labels results in vector and matrix
dimensions of 16 and 16× 16, respectively. These dimensions are much
smaller than the ones encountered in neural networks or other applications
involving matrix-matrix multiplication.



Table II: A summary of the VIP instruction set

Vector Instructions

Configuration set.{vl,mr},{v.drain}
Matrix-vector m.v.{mul,add,sub,min,max.nop}.{add,min,max}
Vector-vector v.v.{mul,add,sub,min,max}
Vector-scalar v.s.{mul,add,sub,min,max}
Scalar Instructions Load-store Instructions

Reg-reg /
reg-imm

{add,sub,sll,srl,sra,
and,or,xor}

SRAM {ld,st}.sram
Reg {ld,st}.reg

Move {mov,mov.imm} Sync memfence
Control {blt,bge,beq,bne,jmp}

stacked memory system similar to Micron’s Hybrid Memory
Cube (HMC) [22]. Each VIP PE employs a vector process-
ing paradigm. VIP provides a peak throughput ranging from
320 GOp/s for 64 bit data to 2,560 GOp/s for 8 bit data.2 The
HMC provides a peak memory bandwidth of 320 GB s−1,
which is sufficient for the high bandwidth requirements of
probabilistic graphical models (PGMs) discussed in Sec-
tion II-A. The HMC has 32 independent channels or vaults,
four VIP PEs are placed in each vault, and vaults are
connected using a 2D torus network. Figure 1 shows an
overview of VIP’s organization.

A. VIP ISA and Overview

Section II-E described how matrix-vector operations from
the f6 category are common in belief propagation (BP)
on PGMs, and deep neural networks (DNNs) including
convolutional neural networks (CNNs) and multi-layer per-
ceptrons (MLPs). Implementing these operations on tradi-
tional vector-SIMD machines, however, is tricky. There are
two approaches to performing vector reductions: a) per-
form independent vector reductions in each vector element,
or b) perform reductions in a divide-and-conquer man-
ner, dividing the input vector in half every loop iteration
and performing element-by-element operations using the
two halves as inputs until only a single vector element
remains. Matrix multiplication typically involves the first
approach [23]. The matrices to be multiplied are tiled,
with the tile size determined by the length and number
of vector registers. Most applications involve large matrix
multiplications, so the vector registers can be fairly large.
As discussed in Section II-E, BP on PGMs typically works
with short vectors, 32 B in the case of depth-from-stereo
with 16 labels using a 16 bit data type. The IBM Active
Memory Cube [37], as a representative vector processor,
provides sixteen 256 B vector registers. Seven-eights of a
vector register will be unoccupied if used to store just one
vector in such a configuration, wasting space. In order to
store vectors efficiently, multiple vectors must be packed
into a single register, and unpacked as they are operated
upon, adding overheads. While the ARM scalable vector
extensions (SVE) ISA [4] does provide support for vector
reduction instructions, it too is limited by the number of
vector register names. Section VI-B discusses the extent of

2The results presented in this work assume 16 bit integer/fixed-point data
types; VIP provides a peak throughput of 1,280 GOp/s with these data types.

these overheads. GPUs, on the other hand, have their own in-
efficiencies. Each thread must perform redundant work such
as computing addresses and executing loops. Additionally,
GPUs rely on multi-threaded execution to hide instruction
and memory latency; we will show in Section V-B that a
large GPU such as the Titan X is limited in performance by
lack of sufficient threads in BP-M.

VIP addresses the problem of many short vectors by
changing its paradigm from vector-register (values must
be in vector registers before they can be operated upon)
to vector memory-memory (the processor can operate on
values in memory). Modern DRAM memory, however, has
unpredictable latency depending on the state of the DRAM.
VIP provides a 4 KiB SRAM scratchpad to hold values being
operated upon. The programmer must explicitly transfer
values from DRAM to scratchpad before operating on these
values. In this aspect, VIP lies between a vector-register and
a true vector memory-memory paradigm. The scratchpad
has multiple read and write ports just like a vector register
file, the difference being that it can be accessed at any
arbitrary location (memory address) instead of a fixed set
of locations (register names). The programmer may load in
as many vectors or matrices in the available space as they
want, without losing efficiency due to alignment.

The applications considered use two nested loops to im-
plement f6 category operations, as discussed in Section II-E.
While the outer loop may be executed in software, overheads
such as bumping source and destination pointers, loop in-
duction variables, and executing branches quickly become
overheads as they cannot be hidden behind the execution of
relatively short vectors. VIP offloads this work to hardware,
allowing the system to perform f6 category matrix-vector
multiplication like operations. VIP allows the programmer
to choose the composition of horizontal and vertical vector
operators, providing them with the flexibility to work with
different applications such as min-sum BP and sum-product
matrix multiplication.

VIP provides a set of scalar instructions for executing
loops, computing data addresses, etc. It also provides a
set of instructions for moving data between DRAM and
either scalar registers or the scratchpad. It does not provide
a method for moving data between scalar registers and
the scratchpad as the scalar unit is meant to operate on a
different set of data than the vector unit. Both the scalar and
load-store units are designed to operate in the shadow of the
vector unit; a programmer can start a long-latency vector
operation and perform additional tasks such as prefetching
the next set of data while that operation is executing. If
done correctly, VIP’s vector unit ALUs can be kept busy
every cycle, providing the peak computational throughput.
This is different from a GPU, which requires each thread to
also execute these overhead operations such as computing
addresses, issuing loads and stores, and executing loops.

In order to keep hardware complexity low, VIP exposes
the latency of the vector pipeline operations to the pro-
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Figure 1: An overview of VIP’s architecture, from the system level down to the datapath in a single PE. A Hybrid Memory Cube (HMC) has 32 vaults,
which we connect via a 2D torus network. A vault has four processing engines (PEs) associated with it. A PE consists of unified fetch and decode, followed
by independent vector, scalar, and load-store units. A unified issue unit is responsible for detecting data hazards in the scratchpad (used by vector and
load-store pipelines) through an associative array lookup (ARC). The vector unit itself consists of a lightweight vertical unit for element wise operations,
and a horizontal unit for reducing vectors to scalars. Both vertical and horizontal units have a 64 bit datapath which may operate on one 64 bit, two 32 bit,
four 16 bit, or eight 8 bit data in a single cycle.

grammer or compiler, who may schedule instructions in
order to improve utilization and avoid hazards. It also
provides an instruction to drain the vector pipeline which
may be used to conservatively avoid hazards in case such
scheduling is not possible. Section III-B describes how we
can avoid exposing the latency of vector operations at the
cost of some hardware complexity. Additionally, VIP trades
off support for predicated execution, vector masking, and
precise exceptions for hardware simplicity. Table II lists
VIP’s instruction set.

B. VIP PE Microarchitecture

The VIP ISA provides a way of efficiently encoding
the operations involved in the workloads considered. VIP’s
microarchitecture and memory system, however, are key to
its performance.

To support f6 category vector operations (matrix-vector
operations), we need to provide efficient hardware support
for reductions. A vector unit in VIP consists of a unit per-
forming vertical (element wise) vector operations followed
by a horizontal (reduction) vector unit. The reduction unit is
bypassed for operations that do not require it. Both vertical
and horizontal vector units have a 64 bit datapath which may
perform one 64 bit, two 32 bit, four 16 bit, or eight 8 bit
operations in a single cycle. Addition-like operations take
one cycle for each ALU, multiplications require a 4-stage
pipeline. If the vector’s total footprint (number of elements
times the size of an element) exceeds 64 bit, it is sent down
the pipeline in multiple cycles, similar to the classic temporal
vector-processing paradigm of early vector machines such as
the CDC STAR-100 or the Cray-1 [44].

Section III-A discussed how VIP provides a 4 KiB SRAM
scratchpad memory for its vector memory-memory process-
ing paradigm. The scratchpad memory consists of eight
banks each providing three read and two write ports, 8 bit
wide. Swizzle logic is used to combine these ports into
64 bit ports; the banked structure allows the programmer to
access any arbitrary address within the scratchpad without
considering data alignment. Multiple read and write ports
prevent port conflicts that would degrade performance; port
conflicts are a concern with GPU shared memory. Two read
ports and one write port are dedicated to the vector pipeline,
and one read and one write port are dedicated to the load-

store unit, allowing loads and stores to execute in parallel
with vector operations.

VIP provides a scalar unit for executing basic control flow
operations and for setting up addresses for data movement.
The scalar unit has a reduced instruction set with a 64 bit dat-
apath. The scalar register file contains 64 elements. This is
on the higher end, but is useful as VIP does not have caches,
which makes register spills very expensive, and because the
system must also hold pointers within the scratchpad. In
order to avoid hazards in the scalar pipeline, registers are
augmented with a “valid” bit which is cleared whenever an
instruction responsible for updating that register is issued
and set upon completion of that instruction. Subsequent
instructions accessing that register are stalled until the valid
bit is set. In order to move data between the PE and
DRAM, VIP provides a load-store unit which allows for 64
outstanding loads or stores to or from either scalar registers
or scratchpad memory.

Instructions moving data between scratchpad and DRAM
read source and destination pointers along with the length
of data to be moved from scalar registers. This allows
loading vector or matrix data with sizes that are known
only at runtime. In order to detect hazards within the
scratchpad, VIP provides an associative array, array range
check (ARC) in Figure 1, which holds scratchpad start and
end addresses upon the issue of an instruction to load data
to the scratchpad. Any subsequent instructions accessing a
region of scratchpad that overlaps with an ARC entry are
stalled until the load completes and clears the ARC entry.
The ARC has three read ports for two source and one
destination address range, a write port to create an entry,
and a clear port to delete an entry upon completion of a
load. It has twenty entries, additional entries would require
some careful RTL design to allow the ARC to work with the
0.8 ns clock cycle time. It is possible to also use the ARC
to prevent hazards within the vector pipeline, freeing the
programmer from scheduling instructions in order to prevent
these hazards. This, however, will require increasing the size
of the ARC and also result in additional ARC queries, which
will in turn increase the power consumption.

VIP uses a unified front-end consisting of fetch and
decode stages. Each VIP PE has a 1,024-entry instruction
buffer that holds the program being executed. The decode



stage is responsible for sending data down the appropriate
(vector, scalar, or load-store) pipeline. If any instruction
is stalled in the decode/issue stages (e.g., due to a data
dependency), all subsequent instructions are also stalled. We
find that the in-order issue model provides us with close to
peak performance. Instructions can, however, complete out
of order. As we cannot efficiently checkpoint the state of the
scratchpad, we choose to not support precise exceptions. We
consider this an acceptable trade-off.
C. VIP Memory System

The workloads considered require a memory system that
has high amounts of memory-level parallelism, and that can
work efficiently with requests for short bursts of data. We
therefore couple the VIP PEs with 3D stacked memory,
organized in a manner similar to the HMC [22], with modest
but key modifications which we will describe in this section.
The memory system, like the HMC, is divided into 32
vertical partitions or vaults arranged in an 8×4 grid. Each
vault contains 16 DRAM banks connected using through-
silicon vias (TSVs). Banks within a vault share data TSVs
but use independent control TSVs, so each bank is also a
rank. A bank contains 65,536 rows, which in turn contain
256 B, each accessed as 32 B columns. Each vault provides
a 10 GB s−1 DRAM bandwidth totaling 320 GB s−1 for the
stack.

VIP’s 128 PEs are distributed among the 32 vaults, four
PEs in each vault. The vaults are connected via a 2D
torus network, and PEs within a vault, along with the vault
controller, are connected in a star topology. The network
links are bidirectional, 64 bit links in each direction. With
a 1.25 GHz clock, this configuration provides a 10 GB s−1

bandwidth on each network link, ensuring that the network
does not become a bottleneck.

The default HMC address mapping scheme [22] indexes
vaults using low address bits. This scheme exposes the most
memory parallelism for a device accessing the HMC from
outside. However, we want the PEs be able to access their
local vaults and keep traffic on the on-chip network to a
minimum. To accomplish this, we index the vaults using the
most significant address bits; this allows PEs to safely access
data within their vaults.

While there are advantages to being located within the
memory stack for energy efficiency, and we argue that
VIP is sufficiently general to be an excellent candidate
for such integration, this may not be feasible from an
economic perspective [51]. We do not assume any special
characteristics within the memory stack (e.g., we do not
assume that the bandwidth within the memory stack is
more than the bandwidth outside, nor do we assume logic-
in-memory requirements). Therefore, our simulation results
discussed in Section VI won’t change significantly if it is
economically infeasible to include VIP within the HMC
logic layer. Although we will suffer additional latency from
the SERDES links, we can prefetch data more aggressively
in software to hide this latency. The address interleaving

discussed in the previous paragraph may be changed using
a logical to physical address translation. This is simpler
than virtual memory, as the mapping is known statically and
involves shuffling some bits in memory requests.

The HMC uses a closed-page policy. Intuitively, this
helps workloads that request an entire cache line of data.
VIP forgoes caches due to the streaming nature of the BP
application. (We find that we can achieve good performance
on all benchmarks without the use of caches; we attribute
this to the improved memory-level parallelism that provides
high-bandwidth data access.) Given the absence of caches,
an open-page policy provides lower DRAM access latency
for multiple requests to nearby memory addresses. Our
experiments (Section VI-C) confirm this intuition. VIP,
therefore, uses an open-page policy.

Refresh in modern DRAM systems is a source of over-
head. We observe that the JEDEC DDR4 standard allows
for refresh to occur at a higher frequency and for a shorter
duration (effectively decreasing both tREFI and tRFC) [1, 35].
In our experiments, discussed in Section VI-C, we find that
reducing both tRFC and tREFI so that we refresh rows every
1.95 µs instead of every 7.8 µs (approximately matching the
DDR4 refresh 4x mode) results in low refresh overhead.

IV. SOFTWARE DESIGN

In this section, we describe how we write parallel imple-
mentations of BP-M, and convolutional and fully-connected
layers for VGG networks [48]. While we believe VIP would
make a good compiler target due to its use of a vector-
processing paradigm, for now, we write code in assembly.
All benchmarks use 16 bit dynamic fixed point arithmetic.

A. Belief Propagation

The BP-M algorithm (discussed in Section II-A) imposes
a strict sequential order for message updates in a given
direction; parallelism exists in the orthogonal direction. It is
important to partition data so that processing engines (PEs)
access their local vaults most of the time and minimize
traffic on the on-chip network. To achieve this, we divide
the image into a square grid of rectangular tiles, as many
tiles per side as the number of vaults. PEs within a vault
work on the tile assigned to that vault and update messages
within the tile, accessing only local data. Once the PEs finish
updating messages within the tile, they copy messages at
the tile boundary to their neighboring vaults and move to
the next tile to be processed. We assign tiles to each vault
such that each row or column of the grid contains tiles
assigned to different vaults (ensuring that all PEs have data
for every message update direction) and that adjacent tiles
are assigned to vaults that are immediate neighbors in the
physical layout of the memory system (ensuring that the
minimal communication at tile boundaries is limited to just
one network link). This scheme in fact limits communication
to a ring connecting all the vaults in the memory system.
We use full-empty synchronization variables in DRAM to
synchronize producer-consumer PEs at tile boundaries. A



1 ld . sram [16− b i t ] r11 , r7 , r61 ; Load messages
2 ld . sram [16− b i t ] r12 , r8 , r61 ; r61 = v e c t o r l e n g t h
3 ld . sram [16− b i t ] r13 , r9 , r61 ; r7−9 = DRAM a d d r e s s e s
4 v . v . a d d [16− b i t ] r11 , r11 , r12 ; Update message
5 v . v . a d d [16− b i t ] r11 , r11 , r13
6 v . v . a d d [16− b i t ] r11 , r11 , r14
7 m.v.add.min [16− b i t ] r14 , r15 , r11 ; r15 = Smoothness c o s t

↪→ i n SRAM
8 s t . s r a m [16− b i t ] r10 , r14 , r61 ; r14 = DRAM a d d r e s s

Figure 2: VIP assembly code fragment for a min-sum BP message update

distributed barrier (written so that PEs access either their
own vaults or immediate neighbors) is used to synchronize
all PEs at the end of message updates in a given direction.
Figure 2 shows a VIP assembly code fragment for a single
min-sum belief propagation (BP) message update. Lines 4
to 6 execute Equation (1a), while Line 7 executes Equa-
tion (1b). The actual code is software pipelined to load data
four iterations before it is used.

B. Convolutional Neural Networks

Convolutional neural networks (CNNs) are easier to paral-
lelize as each output feature for each layer may be computed
in parallel. We utilize the X-Y structure of the activations,
and divide the inputs for each layer into a series of X-Y tiles,
which are assigned to vaults within VIP in the corresponding
X-Y locations. Tiles in the Z dimension are assigned to
adjacent vaults in the X dimension. The general pattern
for computation in any CNN follows a template. Load in
as many k× k× z filters into the scratchpad as possible,
while being able to also store (k+1)× k× z inputs. While
applying the loaded filters to the k× k window of inputs,
prefetch the next 1× k× z column of inputs. When these
selected filters have been applied to all the inputs assigned
to that PE, load in the next set of filters and repeat the
process. Code is written in a way that outputs from one
layer are already in the right location to be consumed as
inputs by the next layer. The length of filters in the Z
dimension, however, can result in the filters being too large
for the 4 KiB scratchpad. In this case, we tile filters into
shards and distribute them across vaults. PEs within these
vaults compute local partial convolutions, synchronize, then
accumulate these partial results. PEs access input features
from their local tiles multiple times as they apply the input
features and write partial outputs, but access remote vaults
just once to accumulate these partial results. As a result,
communication once again is limited to mostly local vaults.

VGG-16 and VGG-19 networks [48] use k = 3,z = 64.
The first layer is an exception, as the input consists of
just three channels. In this scenario, we are able to fit in
all 64 filters in the scratchpad of a single PE, so different
PEs within a single vault operate on different regions of
the tile assigned to that vault. Later convolutional layers in
VGG networks have feature sizes that are a multiple of 64,
we divide these across multiple vaults as discussed in the
previous paragraph. The last convolutional layers, however,
have very small feature sizes, at just 14×14. We only use
half the vaults in VIP for these layers. We find that this still

results in an acceptable runtime.
We merge pooling operations into the code phase which

collects partial results, adds biases, and applies rectified
linear unit (ReLU). For later pooling layers, we are unable
to do this as we run out of scratchpad space, so we perform
the pooling operation separately.

C. Multi-layer Perceptrons
Parallelizing multi-layer perceptrons (MLPs) is fairly

straightforward. At the end of the last pooling layer, we are
left with a 25,088×1 vector which is distributed in segments
among the vaults at the very top of the memory system. We
distribute tiles from the 4,096×25,088 weight matrix among
all the vaults of the memory system. A fully-connected layer
is executed in three passes. First, all PEs copy assigned
segments of the input vector into their local vaults. Second,
PEs in a vault compute partial products of their respective
matrix tiles with their vector segments. Third, PEs in the
vaults on the left side of the memory system accumulate
partial products from vaults in the same row, add biases and
perform the ReLU operation. Subsequent fully-connected
layers are executed in a similar way, alternating the way
data are moved, from the left-side vaults to the top vaults.

V. EXPERIMENTAL SETUP

We evaluate VIP’s performance using detailed execution-
driven simulations. We validate the simulation model and
estimate area and power through RTL synthesis of a VIP
processing engine (PE) in TSMC 28 nm technology us-
ing a commercial standard-cell library provided by ARM
(Section VII). We write CUDA code for a baseline BP-M
implementation, executed on a Nvidia Titan X (Pascal) GPU,
we use existing accelerator and GPU baselines [9, 17, 25,
40] for VGG networks.

A. Simulation Infrastructure
We use an execution-driven microarchitecture simulator

which faithfully models all pipelines including stalls and
contention on shared ports in the VIP PE. We ensure that
the simulator models the same pipeline structure validated
through a synthesizable RTL implementation of a VIP PE.
The on-chip network is modeled as a 8× 4 2D torus.
Contention and bandwidth is modeled at all injection and
ejection ports, and we assume that each router+link hop
incurs 3 cycles of latency. We use DRAMSim2 [43], an open
source DRAM simulator, to model the memory system.

We use timing parameters from Kim et al. [28] with some
changes, such as changing the address mapping scheme,
row-buffer policy, and refresh rate as discussed in Sec-
tion III-C. Table III lists the key parameters used in the
memory system simulation.

We run a single BP-M iteration on the simulator to
obtain the number of cycles required for one iteration. We
verify that the simulated code is correct by comparing its
outputs against a reference C++ implementation. Similarly,
we execute an independent tile from each VGG-16 con-
volutional layer and verify the results against a reference



Table III: Parameters used in memory simulation

Parameter Value Parameter Value

HMC vaults 32 Banks per vault 16
HMC vault data width 32 bit Burst length 8
Row buffer policy open-page Cmd queue depth 32
Address mapping vault-row-bank-col Trans queue depth 32

tCK 0.8 ns tRP 13.75 ns tCCD 5 ns tRCD 13.75 ns
tCL 13.75 ns tWR 15 ns tRAS 27.5 ns tRFC 81.5 ns
tREFI 1.95 µs

C++ implementation. An independent tile is a segment of
the input features that does not share any resources (PEs,
memory requests, or network bandwidth) with another tile.
All independent tiles have the same amount of work, or
we simulate the largest independent tile in a given layer.
Simulating a single independent tile greatly reduces the
simulation time without affecting simulation accuracy. As
we cannot break down the fully-connected layers into inde-
pendent tiles, we simulate the complete network.

B. Baseline Implementations

GPU Implementation of BP-M While there has been
prior work on accelerating belief propagation (BP) on
GPUs [18, 29, 61], such work has been done on older GPUs
which makes simply reporting those numbers unfair to them.
Additionally, these works make assumptions on the nature
of smoothness costs (e.g., the finite truncated model), use
message update schedules different from BP-M, and do not
provide source code.

We write our own hand-optimized BP-M implementation.
We tried using Tensorflow [2], but the resulting code was
very slow. This is probably because each message update
had to be expressed as a combination of Tensorflow primitive
operations, which resulted in a very large number of nodes
in the Tensorflow dataflow graph. In order to extract high
performance from Tensorflow, we would have to write and
compile native code either for the BP-M algorithm or for a
subset of operations involved. Instead of writing Tensorflow
kernels in CUDA for the BP-M algorithm, we might as well
write a native CUDA implementation of BP-M, knowing
that the performance of the native implementation will be
at least as good as the implementation that we could write
within Tensorflow utilizing our new custom operator. We
use Nvidia profiling tools to tune our implementation on
an Nvidia Titan X (Pascal) GPU. As we cannot efficiently
write BP-M code in Tensorflow, we cannot run BP-M on the
Google Cloud TPU either, without knowledge of the low-
level details of the tensor processing unit (TPU).3

The Titan X utilizes the Pascal architecture from Nvidia
and provides a peak memory bandwidth of 480 GB s−1 and
a peak computational throughput of 11 TFLOPS [60]. This
GPU has the required memory bandwidth and significantly
higher compute capability than required for BP-M. We use
shared memory on the GPU to store the smoothness costs

3Jouppi et al. [26] have published the microarchitecture of the TPU,
consisting of a systolic array for multiply-accumulate (MAC) operations,
so the TPU cannot in principle perform the min-sum BP update anyway.

as well as the intermediate results of computation as the
latency of shared memory is much less than the latency of
GPU DRAM memory. We also tune our code to minimize
the number of bank conflicts in shared memory. We do not,
however, tune the kernel so that it would work well for
only a particular image size or number of labels, instead we
supply these as parameters to the kernel; nor do we make
any assumptions on the structure of the smoothness cost
functions. This is a fair comparison as we do not make these
assumptions for the simulated VIP hardware either.

Reference CNN Architectures There are a number of
existing accelerator implementations for convolutional neu-
ral networks (CNNs), e.g., Cambricon [33], Eyeriss [9],
Neurocube [27], Neurostream [7], and Tetris [17]. Un-
fortunately, many of these implementations use different
neural networks which makes direct comparison difficult.
Eyeriss is a popular, widely-cited architecture which reports
absolute performance on VGG-16 network, making it a
suitable baseline. Tetris builds on Eyeriss by significantly
increasing the number of PEs compared to Eyeriss, and using
a Hybrid Memory Cube (HMC) to supply high bandwidth
to these PEs. Unfortunately, Tetris only reports speedups
with respect to a 2D design with LPDDR DRAM, which is
sufficiently different from Eyeriss to render making direct
performance comparisons impossible. Finally, GPU refer-
ence implementations of various CNNs are readily available
and benchmarked on various GPU platforms. [25, 40]

VI. EVALUATION

A. End-to-end Application Performance

Table IV shows an overview of the performance of the
various workloads considered on VIP as well as on various
baselines considered, including Nvidia Titan X (Pascal),
Jetson TX2 and Volta GPUs, Eyeriss [9], Tile-BP [10] and
Optical Gibbs’ Sampling [55]. From the table, we see that
VIP is faster than the Titan X for BP-M, the application for
which VIP was originally designed. Additionally, we see
that VIP’s performance on convolutional neural networks
(CNNs) and multi-layer perceptrons (MLPs) exceeds the
performance of Eyeriss, and is competitive with the Nvidia
Jetson TX2 GPU. We will discuss these results in greater
detail in following paragraphs.

Figure 3 shows where the applications considered (various
belief propagation (BP) kernels and CNN and MLP layers
from VGG-16 and VGG-19 networks) fall under VIP’s
performance roofline. The “roofline” represents the peak
achievable performance of a system. The distance of a kernel
below the roofline indicates the gap between the achieved
performance and the theoretical peak performance. The x-
axis shows the arithmetic intensity (in terms of number
of operations performed for each byte of memory moved),
while the y-axis shows the performance in GOp/s. Kernels
at the roofline with low arithmetic intensity (to the left of
the knee point in the roofline) are likely to be memory
bound, kernels with high arithmetic intensity (to the right
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Figure 3: Roofline plots for VIP running belief propagation on a full-HD (fhd) and quarter-HD (qhd) image, and convolutional neural network (c), pooling
(p) and multi-layer perceptron (fc) layers from VGG-16 [48] network for batch sizes of 1 and 16.
Table IV: A summary of the performance of this work—VIP—compared
against prior work on ASIC accelerators and GPUs for MRF and CNN
workloads. Asterisks (*) indicate that the systems described use a different
algorithm to solve the same problem.

Markov random fields

System Itera-
tions

Time
(ms)

Power
(W)

Tech
(nm)

Area
(mm2)

Optical Gibbs’
Sampling [55]

5000* 1,100 12 15 200 +
12

Tile BP (720p) [10] (1,2)* 32.7 0.242 90 9
Pascal Titan X 8 92.2 250 16 471
VIP (baseline
BP-M)

8 41.3 3.5 28 18

VIP (hierarchical
BP-M)

5 36.3 3.5 28 18

Convolutional neural networks—VGG-16 (convolution layers only)

System Batch
size

Time
(ms)

Power
(W)

Tech
(nm)

Area
(mm2)

Eyeriss [9] 3 4,309 0.236 65 12
VIP 3 91.6 4.8 28 18

Convolutional neural networks—VGG-16 (full network)

System Batch
size

Time
(ms)

Power
(W)

Tech
(nm)

Area
(mm2)

Pascal Titan X [25] 16 41.6 250 16 471
VIP 16 492.4 4.8 28 18
VIP 1 32.3 4.8 28 18

Convolutional neural networks—VGG-19 (full network)

System Batch
size

Time
(ms)

Power
(W)

Tech
(nm)

Area
(mm2)

Volta [13, 40] 1 2.2 144 12 815
Jetson TX2 [40] 1 42.2 10 16 un-

known
VIP 1 40.6 4.8 28 18

of the knee point in the roofline) will likely be compute
bound. Due to the fact that VIP supports scalar and vector
operations, and that the system can perform more operations
with smaller data types, we must be careful when defin-
ing performance. In these plots, we define performance as
only the number of 16 bit ALU operations performed by
the vector units, but we include memory accesses by the
scalar pipeline (e.g., for synchronization) when reporting
arithmetic intensity.

Belief Propagation We run a baseline as well as a hierar-
chical BP-M algorithm in our simulator, on full-HD images
with 16 labels. (The hierarchical BP-M algorithm is similar
to the one proposed by Felzenszwalb and Huttenlocher [15].)
The baseline BP-M is as discussed in Section II-A, while

the hierarchical implementation consists of four phases—
construct a coarser version of the graph by pooling neigh-
boring data costs, perform BP-M on the resulting quarter-
HD Markov random field (MRF), copy messages back to
the original full-HD MRF, then perform BP-M on the full-
HD MRF. Hierarchical BP-M requires fewer iterations as it
converges faster than baseline BP-M.

A single iteration of BP-M takes 5.2 ms, eight BP-M
iterations require 41.3 ms, allowing VIP to execute a depth-
from-stereo task at a real-time frame rate of 24 fps on full-
HD video with good results. The construct and copy oper-
ations for hierarchical BP-M require 0.36 ms and 1.26 ms,
respectively, while an iteration of BP-M on the quarter-HD
MRF requires 1.8 ms. As construct and copy are performed
only once per frame, five iterations of hierarchical BP-M will
require 36.3 ms, which again allows VIP to process full-HD
video at 24 fps. As a reference, the Nvidia Titan X GPU
requires 11.5 ms for a single BP-M iteration, not counting
the time taken to move data between DRAM and GPU
memory. Eight iterations will therefore require 92.2 ms. The
Nvidia profiler reports that the GPU performance is limited
by both instruction and memory latency. We attribute this
to the fact that the BP-M algorithm, while highly parallel,
does not have sufficient parallelism to keep the GPU fully
occupied. On the other hand, Tile-BP [10] requires 32.7 ms
for a 720p image. Tile-BP only stores messages at tile
boundaries, recomputing messages within a tile, reducing
the storage requirements to fit within on-chip SRAM. It,
however, can perform only one effective BP-M iteration
against VIP’s eight. Optical Gibbs’ sampling [55] uses a
different algorithm, Gibbs’ sampling, instead of BP for
the same application (MRF labeling). As Gibbs’ sampling
requires more iterations to converge, their work is predicted
to require 5000 iterations and 1100 ms, based on projections
of a future technology.

The roofline plot in Figure 3a shows that the BP kernels
(full and quarter HD) lie near the knee point. This indicates
that VIP balances the memory bandwidth and compute
required for the BP kernel, not surprising given this was a
design objective. The construct operation simply adds four
vectors, hence its arithmetic intensity is low. Even so, it
is near the roofline indicating that we achieve close to peak



performance for a kernel bound by memory bandwidth. This
analysis also indicates that the Nvidia Jetson GPU will be
severely bottlenecked by its 60 GB s−1 memory bandwidth.

Convolution layers We run individual layers from VGG-
16 and VGG-19 [48] networks on our VIP simulator. The
convolution, rectified linear unit (ReLU) and pooling layers
before the first fully-connected layer (fc6) require a total
of 30.9 ms for VGG-16 and 39.2 ms for VGG-19 when
operating with a batch size of 1. With a batch sizes of 3
and 16, VGG-16 convolution layers take 91.6 ms and 488 ms
respectively. The linear relationship between batch size and
execution time shows that VIP achieves good performance
without the need for batching.

As a comparison, Eyeriss [9] reports requiring 4309 ms
for VGG-16 convolution layers with a batch size of 3. We
note that Eyeriss uses a different technology node (65 nm
v. 28 nm) and has different silicon area (12 mm2 v. 18 mm2)
than VIP. We therefore, try and normalize Eyeriss’ resources
against VIP to make a meaningful comparison. In order to
normalize area and technology, we divide Eyeriss’ runtime
by 18/12 to normalize area, and by (65/28)2 to normalize
technology. We note that Eyeriss operates at 200 MHz while
VIP operates at 1.25 GHz. We optimistically assume that
Eyeriss will be able to achieve a 1.25 GHz clock speed,
and that its performance would scale linearly with area and
clock speed without any other bottlenecks such as DRAM
bandwidth. We must therefore, divide Eyeriss’ runtime by
another 25/4 to adjust for clock speed. The end result of this
analysis is that VIP is less than 10 % worse than Eyeriss-
scaled, at Eyeriss’ own and only game.

Figure 3b shows various CNN kernels on a roofline
plot. We notice that the pooling layers are memory-bound,
but very close to the roofline. The convolution layers lie
near the knee point of the roofline plot, indicating once
again that VIP is well-balanced for convolutional layers,
which account for a bulk of the execution time. There
are some exceptions, however. The first convolutional layer
(c1_1) is different from the other convolutional layers, as
discussed in Section IV-B. The ability to load all filters
into the scratchpad means that more arithmetic operations
are performed on features every time they are loaded,
increasing arithmetic intensity. The small vector lengths,
however, mean that the data are processed quickly, which
exposes latency of the control code (loops, data-movement).
This prevents VIP from achieving peak performance for
this layer. On the other hand, the later convolutional layers
(c5) suffer in performance because the input feature maps
are very small, leading to small tile sizes distributed across
only half the vaults, decreasing both memory bandwidth and
computational capacity.

Fully connected layers We also run fully-connected
layers from VGG-16 and VGG-19 networks [48]. (The two
networks use the same fully-connected layers.) When run-
ning with a batch size of 1, the fully-connected layers take
1.4 ms, with a batch size of 3, they take 1.8 ms, and with a

batch size of 16, take 4.4 ms. Figures 3b and 3c show where
the fully-connected layers lie under the performance roofline
of VIP. With a batch size of 1, the first fully-connected layer
(fc6) lies near on the roofline, but both arithmetic intensity
and peak performance drop as the weight matrix gets smaller
and data-movement and synchronization overheads increase
for later layers (fc7 and fc8). On increasing the batch size
to 16, these overheads are reduced, increasing the arithmetic
intensity. The fully-connected layers now lie near the knee
point (Figure 3c).

VGG performance The complete VGG-16 and VGG-19
networks (convolutional and fully-connected layers) require
32.3 ms and 40.6 ms respectively with a batch size of 1.
With a batch size of 16, VIP requires 492 ms on VGG-
16 network. The Nvidia Titan X (Pascal) GPU requires
41.6 ms on the same network with the same batch size [25].
Nvidia reports that the Nvidia Volta GPU requires 2.2 ms
for VGG-19 network with a batch size of one, using its
special Tensor cores which are optimized for fast matrix-
matrix multiplications [40]. While these Tensor cores cannot
accelerate the min-sum BP algorithm, they are useful for
accelerating CNN with high arithmetic intensity. The Volta
occupies 815 mm2 in 12 nm technology, a similar scaling
analysis as with Eyeriss indicates that this is ∼ 250× VIP’s
area. The Nvidia Jetson TX2, on the other hand, requires
42.2 ms for VGG-19 network, again with a batch size of
one [40]. It is important to note that unlike these GPUs
which require batching to achieve peak frame rate, VIP
achieves very close to its peak frame rate with no batching,
making it suitable for real-time systems prioritizing latency
over throughput.

B. Sensitivity to Architectural Choices
VIP differs from a traditional vector processor in two

distinct ways that make it better suited for BP: its vector
unit is designed to pipeline vertical and horizontal vector
operations, and it uses a scratchpad instead of a traditional
vector register file. In order to evaluate the benefits of these
modifications, we write code within VIP to restrict these
features and emulate a traditional vector register machine.
We achieve this by not using the reduction unit and by
restricting the location of vectors within the scratchpad to
sixteen 256 B locations, a similar configuration to IBM’s
Active Memory Cube [37]. We assume that the baseline
vector ISA provides instructions that can either extract or
insert a scalar value from or to an arbitrary location in a
vector. We further assume that a segment of a vector can
be shuffled between two different vector registers. Moving
N elements between vector registers will require dN/we, if w
is the number of elements that can be read or written from
the register file port. Similarly, extracting a scalar from or
inserting it into an arbitrary location in a vector register re-
quires one cycle. We write code using four configurations—
baseline VIP with its scratchpad and reduction units (SP+R),
with a scratchpad but not using any reduction instructions
(SP-R), with a register file and a reduction unit that writes
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Figure 5: Memory bandwidth (and execution time) for BP on a full-HD
image and VGG-16 [48] network, end-to-end (including the convolution,
ReLU, pooling, and fully-connected layers) under various memory config-
urations obtained by tweaking the one in Table III.
its results into a scalar register (RF+R), and with a register
file without a reduction unit (RF-R). In order to maximize
the utilization of the vector register file, we pack multiple
(8) 32 B vectors within the 256 B vector register, unpacking
data to be operated upon, and repacked for storage. We
simulate BP-M on a 64× 32 tile, a size close to the tile
size used when working on a full-HD image. We update
messages in the vertical direction, and store messages and
data costs such that eight vectors may be loaded into the
vector register file using a single contiguous load operation.
When simulating a configuration with a scratchpad instead
of a vector register file, we load each vector individually.
This setup provides the maximum possible advantage to
the register file configuration by reducing the number of
outstanding loads in flight and by reducing the address band-
width. Figure 4 shows the results of this comparison. We
see that configurations without the reduction unit require a
longer execution time than a comparable configuration with
a reduction unit as the reduction unit doubles the number
of operations that may be performed in each cycle. We also
observe that configurations with a traditional register file
perform worse than configurations with a scratchpad. This
is because unpacking and packing registers adds overheads
increasing execution time.

C. Sensitivity to Memory Parameters
We start with the configuration shown in Table III

(“open page”). We change the row-buffer policy to closed
page (“closed page”). To simulate the effect of varying
memory parallelism, we start with the open page policy, and
reduce and increase the number of ranks (the Hybrid Mem-
ory Cube (HMC) has one bank per rank, so these terms are
used interchangeably) by 4× (we increase and decrease the
number of rows per bank to keep the DRAM size constant)
(“fewer ranks” and “more ranks”). We study the effect of
wider and narrower rows by increasing and decreasing the

width of the DRAM rows (decreasing and increasing the
number of rows) by 4× (“wide row” and “narrow row”).
Finally, we start with the open page policy (which implicitly
uses the refresh 4x mode described in the JEDEC DDR4
standard [1]) and study the effect of increasing both tRFC
and tREFI by 2× and 4× (“refresh 2x” and “refresh 1x”).
Figure 5 shows the achieved memory bandwidth (and execu-
tion time) for the end-to-end benchmarks—one iteration of
full-HD BP-M and the entire VGG-16 network under these
configurations.

A closed page policy instead of an open page policy has a
detrimental effect on the effective memory bandwidth, which
confirms our intuition in Section III-C. If we decrease the
number of ranks in the system, the memory bandwidth drops
and the execution time increases. This is not surprising—
increased memory-level parallelism allows more DRAM
requests to be in flight at any time, increasing the achievable
bandwidth. Increasing the refresh interval (and consequently
the refresh cycle time) significantly decreases memory band-
width and increases execution time for BP, while CNNs are
affected to a much lesser degree. We attribute this to the
fact that CNNs access memory through few, large requests,
while BP accesses memory through many small requests.
As a result, BP is more sensitive to memory system stalls.
Similarly, CNNs show higher bandwidth with wider rows,
while BP shows a higher bandwidth with narrow rows.
We again attribute this to the nature of DRAM requests.
Narrow rows result in data being scattered across multiple
rows, necessitating the row to be closed and reopened when
another processing engine (PE) requests the same data when
executing CNNs.

VII. RTL SYNTHESIS

We synthesize a single VIP processing engine (PE) in
TSMC 28 nm technology using a commercial standard-cell
library from ARM in order to estimate VIP’s area and
power. We use CACTI 6.5 [36] to estimate the area and
energy required by SRAMs. (The smallest feature size that
CACTI can model is 32 nm, so the area and power estimates
provided by CACTI will be somewhat pessimistic.) In order
to make the final design as close as possible to a layout with
real SRAMs, we use the area and energy numbers from
CACTI to create black-box SRAM models for the ASIC
toolchain. We use eight 512×8 bit SRAMs for the scratch-
pad, a 64×64 bit SRAM for the register file, a 64×32 bit
SRAM for the load-store queue, and a 1024×32 bit SRAM
for the instruction buffer. The synthesized RTL code meets
the 0.8 ns clock period assumed in our simulations. We run
small belief propagation (BP) and convolutional neural net-
work (CNN) kernels on our RTL model and verify the results
of the RTL simulation against a reference implementation to
check for correctness. We use switching activity factors from
these RTL simulations as inputs to Synopsys PrimeTime to
estimate power consumption.

Figure 6 shows the layout of a single PE after place-
and-route. A single VIP PE requires 0.141 mm2 of silicon



Figure 6: The generated layout of one VIP processing engine (PE).

area, and consumes 27 mW and 38 mW of power when
executing BP and CNN kernels respectively. (CNNs require
more power than BP, as they use multipliers). 128 PEs
will, therefore, occupy 18 mm2 in area and consume 3.5 W
to 4.8 W of power, in addition to the power consumed by
the 3D-stacked DRAM. An early prototype of the Hybrid
Memory Cube (HMC) in 50 nm technology was found to
consume 10 pJ bit−1 [24]. At 320 GB s−1, this HMC would
require 25.6 W of power. IBM, on the other hand, estimates
that a 320 GB s−1 HMC will require only 5 W of power in
14 nm technology [23]. Azarkhish et al. [6] synthesize a
HMC vault controller and estimate that each vault controller
takes 0.62 mm2, or 19.84 mm2 for 32 vault controllers. The
size of a 16-vault HMC DRAM die is 68 mm2 [24], the size
of a 32 vault die will be even larger. This would suggest that
VIP could be integrated into the logic die of a 3D-stacked
memory system like the HMC, although placing VIP outside
the 3D stack will not significantly affect performance, as
discussed in Section III-C.

VIII. RELATED WORK

ASIC implementations Prior work involving ASIC for
belief propagation (BP) includes a tile-based BP algo-
rithm [10, 29], which stores only messages at the edge
of a tile, using multiple BP-M iterations to recompute
messages within a tile, achieving 30 fps for 720p video,
but performing only one effective iteration. Work by Tseng
and Chang [52] uses a “spinning message” update, based on
the message storage scheme for bipartite graphs proposed
by Felzenszwalb and Huttenlocher [15]. ASIC implemen-
tations for convolutional neural networks (CNNs) include
Eyeriss [9] and Tetris [17], which have been discussed
in previous sections. Other work includes Neurostream [7]
and Neurocube [27]. Both these works involve multiply-
accumulate (MAC) units on the logic die of a Hybrid
Memory Cube (HMC), supplied data by finite state ma-
chines that generate address request streams to DRAM.
Cnvlutin [3] saves computation by skipping multiplications
where one of the operands is a zero. SCNN [41] goes
further by storing the weights and activations in a sparse-
compressed format. Cambricon [33] presents itself as an ISA
for neural networks. Similarly, Google’s tensor processing
unit (TPU) deployed in its datacenters uses a systolic array
of MAC operations. Both Cambricon and the TPU have been
discussed in Section II-D. PuDianNao [32] is a machine

learning accelerator for multiple machine learning kernels
offering a pipelined, fixed-function implementation of paral-
lel and reduction operations. VIP, on the other hand, leaves
the choice of these operations to the programmer thereby
providing more flexibility than a datapath with fixed func-
tional units. Spert-II [56], developed in the 90s, adds vector
instructions to the MIPS ISA for training and inference on
neural networks. It uses 16 bit vector elements, and was
30 times faster than a SPARC-20 workstation at the time.
ScaleDeep [53] allows the execution of neural networks at
scale, such as in a datacenter. ScaleDeep’s approach is a
modular one—providing both compute-heavy and memory-
heavy tiles which are optimized for their respective tasks,
which are composed to create a big system. SODA [31] and
AnySP [58] also have combinations of scalar and SIMD
processors for signal processing. Their design, however, is
tailored to work with very wide vectors minimizing latency.
VIP, on the other hand, works with short vectors, providing
more processing engines (PEs), and using the long latency
of vector operations to hide memory accesses. Unlike IBM’s
Active Memory Cube [37], VIP does not force the PEs in
a vault to operate in lock step via a VLIW model either,
allowing VIP to also operate on irregular graphs.

FPGA implementations Prior work involving FPGA
implementations for BP include work by Park et al. [42]
that uses 320 parallel processing engines spread across
two Xilinx Virtex-II FPGAs. Choi and Rutenbar [12], later
extended [21] use TRW-S, an alternate form of BP, on a
Convey HC-1 platform. Lin et al. [30] use the block RAMs
(BRAMs) inside the FPGA to provide high-bandwidth mem-
ory. Their solution, however, does not work for graphs with
loops and therefore cannot be used for vision applications.
Additionally, it is limited by the size of BRAMs inside the
FPGA. Venice [45] is a soft FPGA-based vector processor.
As a soft accelerator on an FPGA, Venice runs at a low
clock frequency and therefore cannot provide the necessary
throughput. Wei et al. [57] use systolic array for CNNs that
achieves comparable performance against VIP. Nurvitadhi
et al. [39] and Zhao et al. [62] employ binarized neural
networks, i.e. neural networks where weights are expressed
as binary values instead of as real numbers, and map these to
FPGA platforms. Aydonat et al. [5] use OpenCL to map deep
neural networks (DNNs) to an FPGA platform, their work
uses special Winograd transformations to reduce the compu-
tational complexity of the convolution operation. ESE [19] is
an FPGA system for sparse long short term memory (LSTM)
networks. Tabla [34] is system that can generate FPGA
accelerators for a class of machine learning algorithms that
employ stochastic gradient descent, while DnnWeaver [47]
generates FPGA implementations for DNNs. Tabla focuses
on training, not inference, while DnnWeaver works on
DNNs, not BP. Brainwave [14] stores neural network param-
eters within the BRAMs within FPGAs, using datacenter-
scale deployment for large models. Brainwave presently
does not support BP. Even if support for BP were added



to Brainwave, this model may be inefficient for very large
data sizes, e.g., BP-M on a full-HD image requires over
300 MiB of storage.

Non-conventional devices A number of works have
proposed using ReRAM crossbar arrays for dense matrix
multiplication in DNNs [8, 11, 46, 49]. These ReRAM
crossbars can only perform matrix multiplication by sum-
ming currents, they cannot perform the min-reduction in
Equation (1b) required for BP. Optical Gibbs’ sampling [55],
discussed earlier, proposes using optical resonant units
shrunk to fit multiple on a single GPU. VIP uses CMOS
technology and can be deployed right away, while ReRAMs
and optical resonant units are exotic devices and their results
are based on projections of a future technology.

IX. CONCLUSIONS

We have presented VIP (Versatile Inference Processor),
a highly programmable architecture for machine learning
inference algorithms, including belief propagation (BP) on
probabilistic graphical models (PGMs) and deep neural
networks (DNNs) such as convolutional neural networks
(CNNs) and multi-layer perceptrons (MLPs). Through de-
tailed execution-driven simulations backed by RTL synthe-
sis, we have shown that VIP can achieve online, real-time
vision throughput (24 fps, batch size of one) across these
classes of inference workloads at low power consumption.
Our RTL synthesis of a VIP processing engine (PE) in
TSMC 28 nm technology, using a commercial standard-cell
library supplied by ARM, results in 18 mm2 of silicon area
and 3.5 W to 4.8 W of power consumption for all 128 VIP
PEs combined.
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