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Abstract—A framework of analogy between wiretap channels
(WTCs) and state-dependent point-to-point channels with non-
causal encoder channel state information (referred to as Gelfand-
Pinker channels (GPCs)) is proposed. A good (reliable and secure)
sequence of wiretap codes is shown to induce a good (reliable)
sequence of codes for a corresponding GPC. Consequently, the
framework enables exploiting existing results for GPCs to pro-
duce converse proofs for their wiretap analogs. The fundamental
limits of communication of two analogous wiretap and GP models
are characterized by the same rate bounds; the optimization
domains may differ. The analogy readily extends to multiuser
broadcasting scenarios, encompassing broadcast channels (BCs)
with deterministic components, degradation ordering between
users, and BCs with cooperative receivers. The analogy is
exploited to characterize the secrecy-capacity regions of the semi-
deterministic WTBC (an open problem until this work) and a
class of physically degraded WTBC. The derivations are based
on known solutions for the corresponding GPBCs.

I. INTRODUCTION

Two fundamental, yet seemingly unrelated, information-

theoretic models are the wiretap channel (WTC) and the state-

dependent point-to-point channel with non-causal encoder

channel state information (CSI). The discrete and memoryless

(DM) WTC (Fig. 1(a)) was introduced by Wyner in 1975 [1]

and initiated the study of physical layer security. Csiszár and

Körner characterized the WTC’s secrecy-capacity as

CWT(pY,Z|X) = max
pU,X

[

I(U ;Y )− I(U ;Z)
]

, (1)

where pY,Z|X is the WTC’s transition matrix and the under-

lying distribution is pU,XpY,Z|X . The state-dependent channel

with non-causal encoder CSI is due to Gelfand and Pinsker

(GP) [2]; we henceforth referred to it as the GP channel (GPC).

The capacity of a GPC qY |X,Z with state distribution qZ is:

CGP(qZ , qY |X,Z) = max
qU,X|Z

[

I(U ;Y )− I(U ;Z)
]

, (2)

where the joint distribution is qZqU,X|ZqY |X,Z . An interesting

question is whether the resemblance of (1) and (2) is coinci-

dental or is there an inherent relation between these problems.

This paper shows that an inherent relation is indeed the

case, by proposing a rigorous framework that links the WTC

and the GPC, establishing these two problems as analogous to

one another. Specifically, we prove that any good (reliable and

secure) sequence of codes for the WTC induces a good (reli-

able) sequence of codes of the same rate for a corresponding

GPC. This observation enables exploiting known upper bounds

on the GPC capacity to upper bound the secrecy-capacity of

an analogous WTC. While the solutions to the base cases

from Fig. 1 have been known for decades, many multiuser

M
E

X pnY,Z|X
Y

D
M̂

Z

(a)

M
E

X qnY |X,Z
Y

D
M̂

qnZ

Z

(b)

Fig. 1: (a) The WTC with transition probability pY,Z|X ; (b) The GPC
with state distribution qZ and channel transition probability qY |X,Z .
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Fig. 2: (a) The WTBC with transition probability pY1,Y2,Z|X ; (b)
An analogous GPBC is obtained by replacing the eavesdropper’s
observation with a state sequence Z ∼ q

n
Z , non-causally revealing Z

to the encoder and setting the channel law to pY1,Y2|X,Z .

extensions of these models remain open problems. Through the

analogy we derive a converse proof for the semi-deterministic

(SD) wiretap broadcast channel (WTBC), an open problem

until this work, thus characterizing its secrecy-capacity region.

The secrecy-capacity region of a certain class of cooperative

physically-degraded (PD) WTBCs is also derived.

To this end we extend the wiretap-GP analogy to multiuser

broadcasting scenarios. Given a WTBC pY1,Y2,Z|X (Fig. 2(a)),

with two legitimate receivers observing Y1 and Y2 and one

eavesdropper that intercepts Z, an analogous GP broadcast

channel (GPBC), shown in Fig. 2(b), is constructed by:

1) Converting the eavesdropper’s observation Zn to an inde-

pendently and identically distributed (i.i.d.) state sequence

with some appropriate distribution;

2) Non-causally revealing the state sequence to the encoder;

3) Setting pY1,Y2|X,Z (the conditional marginal of the

WTBC’s transition probability, with Z in the role of the

state) as the GPBC’s transition kernel.

The aforementioned relation between good sequences of codes

for analogous WTBCs and GPBCs remains valid. This allows

capitalizing on known GPBC capacity results to derive con-

verse bounds for their analogous WTBC.

The GPBC has been widely studied in the literature and the

capacity region is known for various cases, such as PD-GPBC

without and with cooperative receivers [3], [4], SD-GPBCs

[5], and more. WTBC also received considerable attention in



the literature [6]–[8]; however, solutions are known only for

some special cases. In particular, the secrecy-capacity of SD-

WTBC is known only under the assumption that the stochastic

receiver is less noisy than the eavesdropper [8]. The coding

scheme therein does not rely on this less-noisy property; the

converse proofs, however, do. Since no corresponding assump-

tion was imposed on the SD-GPBC from [5], our analogy-

based proof characterizes the SD-WTBC’s secrecy-capacity

region without assuming the aforementioned ordering between

the sub-channels. As a natural extension to the analogy for the

base case (WTCs versus GPCs), the obtained secrecy-capacity

region is described by the same rate bounds as these in the

capacity characterization of the SD-GPBC from [9].

An important ingredient in proving the analogy is to adopt

the definition of WTC achievability from, e.g., [7], [10],

[11], that merges the reliability and security requirements

into a single demand on the joint distribution induced by the

wiretap code. Specifically, we require that a good sequence

of wiretap codes induces a sequence of joint distributions (on

the message, its estimate and the eavesdropper’s observation)

that is asymptotically indistinguishable in total variation (TV)

from a target measure under which:

1) The message M and its estimate M̂ almost surely coincide

(a reliability requirement);

2) The eavesdropper’s observation is independent of the mes-

sage and is distributed according to some product measure,

say qZ (a security requirement).

Denoting by P
(cn)

M,M̂,Z
the joint distribution of M , M̂ and Z

induced by a wiretap code cn, the above requirements mean

that P
(cn)

M,M̂,Z
≈ P

(cn)
M 1{M̂=M}q

n
Z , for large block lengths. We

highlight that this security requirement is twofold. First, it

dictates that the message should be asymptotically independent

of the eavesdropper’s observed signal - a secrecy requirement.

Second, the marginal distribution of the eavesdropper’s signal

should be asymptotically indistinguishable from a product dis-

tribution qnZ , a feature known as ‘stealth’. The latter property

plays an important role in establishing the proposed analogy,

as it allow to relate the eavesdropper’s signal to the i.i.d. state

sequence in the GPC.

With this notion of achievability, we then show that such

a sequence of wiretap codes induces a sequence of reliable

codes for the analogous GPC. The GP encoder and decoder(s)

are distilled from the joint distribution induced by the wiretap

code by inverting it. Under this inversion, the asymptotic i.i.d.

distribution of the eavesdropper’s observation Z becomes the

state distribution in the corresponding GPC. The asymptotic

independence of Z and the message(s) in the WTC’s target

distribution corresponds to the independence of the message(s)

and the state in a GP coding scenario. The performance metric

described above strongly related to the more standard notion

of achievability used in [12], where performance of a wiretap

code was measured via the error probability and the effective

secrecy metric. We show that under mild conditions (namely,

a super-linear decay of the involved quantities), our definition

of achievability and the one from [12] are equivalent.

II. WIRETAP BROADCAST CHANNELS

We use notations from [13, Section II]. Throughout, the

sets X , Y1, Y2 and Z are assumed to be finite. The
(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
DM-WTBC is shown in Fig. 2(a).

The message pair (M1,M2) is uniformly distributed over
[
1: 2nR1

]
×
[
1: 2nR2

]
, and a WTBC code is defined as follows.

Definition 1 (WTBC Code) An (n,R1, R2) WTBC code cn
with a product message set M

(n)
1 ×M

(n)
2 , where M

(n)
j , [1 :

2nRj ], for j = 1, 2, is a triple of maps
(

fn, φ
(n)
1 , φ

(n)
2

)

such

that fn : M
(n)
1 ×M

(n)
2 → P(Xn) is a stochastic encoder, and

φ
(n)
j : Ynj → M

(n)
j is the decoder at Receiver j, for j = 1, 2.

For any (n,R1, R2) WTBC code cn =
(

fn, φ
(n)
1 , φ

(n)
2

)

,

the induced joint distribution is:

P (cn)(m[1:2],x,y[1:2], z, m̂[1:2])=
1

∣
∣M

(n)
1

∣
∣
∣
∣M

(n)
2

∣
∣
fn(x|m[1:2])

× pnY1,Y2,Z|X(y1,y2, z|x)1 ⋂

j=1,2

{
m̂j=φ

(n)
j

(yj)
}, (3)

where m[1:2] , (m1,m2) and similarly for y[1:2] and m̂[1:2].

Our analogy relies on developing a unified perspective

on two different problems. We arrive at this unification by

adopting the achievability definition from [7], [10], [11]. This

definition merges the reliability and security requirements into

a single demand on P (cn), phrased in terms of TV.

Definition 2 (WTBC Achievability) A pair (R1, R2) ∈ R
2
+

is called achievable if there exists a γ > 0, a distribution

qZ ∈ P(Z) and a sequence of (n,R1, R2)-codes {cn}n∈N

such that for all sufficiently large n
∣
∣
∣

∣
∣
∣P

(cn)

M[1:2],M̂[1:2],Z
n
−p

(U)

M
(n)
1 ×M

(n)
2

1{
M̂[1:2]=M[1:2]

}qnZ

∣
∣
∣

∣
∣
∣
TV

≤ e−nγ,

(4)

where p
(U)
A is the uniform distribution over the set A.

Remark 1 (Equivalence to Standard Definitions) The

above definition of achievability is equivalent to the more

standard definition from [12]. Therein, achievability was

defined in terms of a vanishing average error probability and

the effective secrecy metric that requires

D

(

P
(cn)
M1,M2,Zn

∣
∣
∣

∣
∣
∣p

(U)

M
(n)
1 ×M

(n)
2

qnZ

)

= IP (cn)(M1,M2;Z
n)

︸ ︷︷ ︸

Strong secrecy measure

+ D

(

P
(cn)
Zn

∣
∣
∣

∣
∣
∣q
n
Z

)

︸ ︷︷ ︸

Stealth measure

(5)

is made arbitrarily small. See [13, Section III-B] for details.

Remark 2 (Target i.i.d. Distribution) The structure of

the target i.i.d. distribution qnZ that approximates the

P
(cn)

Zn|M[1:2],M̂[1:2]
in (4)-(5) cannot always be a priori

determined based on the WTBC’s transition kernel pY1,Y2,Z|X .

The structure of qZ depends on the sequence of codes

{cn}n∈N, and, typically, it can be understood from the direct



proof.1 Definition 2 does not shoot for a specific qZ; rather,

it just requires the existence of any qZ satisfying (4).

As usual, the secrecy-capacity region CWT(pY1,Y2,Z|X) is

the convex closure of the set of achievable rate pairs.

III. WIRETAP AND GELFAND-PINSKER ANALOGY

We first describe the analogy principles for the base case of

the classic wiretap and GP channels. Extensions to multiuser

(namely, broadcasting) scenarios are given afterwards.

A. The Base Case - A Unified Perspective

Consider the classic WTC and GPC. These problems are

related through the fact that their target joint distributions share

the same structure. To see this, consider the pY,Z|X WTC, for

which achievability is defined similarly to Definition 2, and

the point-to-point GPC with state distribution qZ and channel

transition probability qY |X,Z .2 The joint distribution induced

by an (n,R) wiretap code cn = (fn, φn) is (see (3))

P̃ (cn)(m,x,y,z,m̂)=
1

|Mn|
fn(x|m)p

n
Y,Z|X(y,z|x)1{

m̂=φn(y)
},

(6)

while the induced distribution for the GPC with respect to an

(n,R)-code bn = (gn, ψn), where gn : Mn × Zn → P(Xn)
is a stochastic encoder and ψn : Yn → Mn is the decoder, is

Q̃(bn)(z,m,x,y, m̂)= qnZ(z)
1

|Mn|
gn(x|z,m)qnY |X,Z(y|x, z)

× 1{
m̂=ψn(y)

}. (7)

With respect to Definition 2, if R is an achievable rate for

the WTC, then there exist a qZ ∈ P(Z) and a sequence of

(n,R) wiretap codes {cn}n∈N, with
∣
∣
∣

∣
∣
∣P̃

(cn)

M,M̂,Zn
− p

(U)
Mn

1{M̂=M}q
n
Z

∣
∣
∣

∣
∣
∣
TV

−−−−→
n→∞

0. (8)

For the GPC, it can be shown that, under mild conditions,3 a

vanishing error probability is equivalent to
∣
∣
∣

∣
∣
∣Q̃

(cn)

M,M̂,Zn
− p

(U)
Mn

1{M̂=M}q
n
Z

∣
∣
∣

∣
∣
∣
TV

−−−−→
n→∞

0. (9)

See [13, Section IV-A-1] for details.

As seen from (8)-(9), while each problem has its own

induced joint distribution, their target measures share the

same structure. In both problems, a “good” sequence of

codes induces a sequence of distributions (
{
P̃ (cn)

}

n∈N
and

{
Q̃(bn)

}

n∈N
for the WTC or the GPC, respectively) that

approximates a target distribution where: (i) M = M̂ almost

surely; (ii) Z is independent of M . The first item is a

consequence of the reliability requirement in both problems.

For the second item, note that, while the independence of Z

and M is the security requirement in the WTC scenario, it

1For instance, for the degraded binary symmetric WTBC with crossover
probabilities pL and pE for the legitimate and eavesdropper channels,
respectively, where pL < pB , qZ may be chosen as a product Ber

(

1

2

)

measure. This is a consequence of the optimal input distribution that attains
that secrecy-capacity hb(pE)− hb(pL) being

(

Ber
(

1

2

))n
.

2We adhere to the standard definitions for GPCs, see, e.g., [14, Setion 7.6].
3Namely, a super-linear decay of the error probability
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Fig. 3: (a) A PD-WTBC with cooperative receivers, where Receiver
1 has access to the eavesdropper’s observation Z; (b) The analogous
PD-GPBC with cooperative receivers, where Receiver 1 has access
to the state sequence Z.

is actually part of the problem definition for the GPC. The

above described correspondence between the WTC and the

GPC stands at the heart of the analogy between them.

B. Analogy Between Multiuser Setups

Consider a WTBC
(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
. An analo-

gous GPBC is constructed in three steps (shown in Fig. 2):

1) Replace the eavesdropper of the WTBC with a state se-

quence Z ∼ qnZ , where qnZ is the target product measure

from the definition of WTBC achievability (Definition 2);

2) Non-causally reveal Z to the encoder;

3) Set the GPBC’s transition probability as pY1,Y2|X,Z .

The produced
(
Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z

)
GPBC inherits

the properties the WTBC possesses (e.g., deterministic com-

ponents, order of degradeness, etc.). For example, if the

WTBC is SD pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X , then so is

the GPBC since pY1,Y2|X,Z = 1{Y1=y1(X)}pY2|X,Z . If one of

the observed signals of the legitimate receivers is a degraded

version of the other, then the same ordering applies for the

output signals of the GPBC. A GPBC receiver that observes

the state sequence translates to a WTBC receiver that observes

the eavesdropper’s channel output. The analogy also accounts

for WTBC settings with cooperative components. Namely, if

the WTBC’s receivers are connected by, e.g., a bit-pipe, then

the same applies for the receivers of the analogous GPBC.

Fig. 3(a) shows a PD-WTBC with cooperative receivers and

where Receiver 1 also observes the eavesdropper’s output;

the analogous PD-GPBC with an informed Receiver 1 and

cooperative receivers is shown in Fig. 3(b).

As for the base case, the admissible regions of two anal-

ogous wiretap and GP BCs are described by rate bounds of

the same structure. The underlying distribution and the part

thereof over which we take the union is, however, different.

This relation between the regions is emphasized in Section IV.

Capacity results for GPBCs are available for numerous

cases [3]–[5]. The analogy enables leveraging these results

to study corresponding WTBCs. This is done by relating the

performance of two analogous models as follows.

Proposition 1 (Good Wiretap Codes and Good GP Codes)

Consider a
(
X ,Y1,Y2,Z, pY1,Y2,Z|X

)
WTBC. Let

(R1, R2) ∈ R
2
+ be an achievable rate pair for the WTBC,

with a corresponding sequence of (n,R1, R2) WTBC codes

{cn}n∈N, where cn =
(

fn, φ
(n)
1 , φ

(n)
2

)

, for each n ∈ N.



For each n ∈ N, set gn , P
(cn)
X|Z,M[1:2]

and ψ
(n)
j , φ

(n)
j ,

for j = 1, 2, where P
(cn)
X|Z,M[1:2]

is the conditional marginal

distribution of X given (Z,M1,M2) with respect to P (cn)

from (3) induced by the n-th wiretap code cn. Then:

1) bn ,

(

gn, ψ
(n)
1 , ψ

(n)
2

)

is an (n,R1, R2)-code for the
(
Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z

)
GPBC.

2) The distribution Q
(bn)

Z,M[1:2],X,Y[1:2],M̂[1:2]
induced by bn

(analogous to Q̃(bn) from (7) with M[1:2], Y[1:2] and M̂[1:2]

in the roles of M , Y and M̂ therein, respectively) satisfies
∣
∣
∣
∣P (cn) −Q(bn)

∣
∣
∣
∣
TV

≤ e−nγ , for any n large enough.

3) The codes {bn}n∈N attain Pe(bn) −−−−→
n→∞

0; consequently,

(R1, R2) is achievable for the aforementioned GPBC.

Proof: For simplicity of notation, throughout the proof

we denote M12 , M[1:2], m12 , m[1:2], M̂12 , M̂[1:2],

m̂12 , m̂[1:2] and M12 , M
(n)
1 × M

(n)
2 . The first claim

is straightforward: for each n ∈ N, P
(cn)
X|Z,M12

and ψ
(n)
j , for

j = 1, 2, are valid (stochastic) encoder and decoders for the

GPBC. For (2), fix n ∈ N, and first observe

P
(cn)

M12,X,Y[1:2],Z,M̂12
= P

(cn)
M12,Z

·Q
(bn)

X,Y[1:2],M̂12|M12,Z
, (10)

which follows from the structure of P (cn) and Q(bn) (see (3)

and (7)) and because bn =
(

gn, ψ
(n)
1 , ψ

(n)
2

)

. Recalling that

Q
(bn)
Z,M12

= qnZ · p
(U)
M12

, we have

∣
∣
∣
∣P (cn) −Q(bn)

∣
∣
∣
∣
TV

=
∣
∣
∣

∣
∣
∣P

(cn)
M12,Z

− p
(U)
M12

· qnZ

∣
∣
∣

∣
∣
∣
TV

−−−−→
n→∞

0.

(11)

Claim (3) follows by upper bounding Pe(bn) as

Pe(bn) =
∑

m12,m̂12:
m12 6=m̂12

[

Q(cn)(m12, m̂12)−p
(U)
M12

(m12)1{
m̂12=m12

}

]

(a)
=

∣
∣
∣

∣
∣
∣Q

(cn)

M12,M̂12
− p

(U)

M
(n)
1 ×M

(n)
2

1{
M̂12=M12

}

∣
∣
∣

∣
∣
∣
TV

(b)

≤
∣
∣
∣

∣
∣
∣Q

(bn)

M12,M̂12
− P

(cn)

M12,M̂12

∣
∣
∣

∣
∣
∣
TV

+
∣
∣
∣

∣
∣
∣P

(cn)

M12,M̂12
− p

(U)
M12

1{M̂12=M12}

∣
∣
∣

∣
∣
∣
TV

(c)

≤
∣
∣
∣

∣
∣
∣Q(bn)−P (cn)

∣
∣
∣

∣
∣
∣
TV

+
∣
∣
∣

∣
∣
∣P

(cn)

M12,M̂12,Z
−p

(U)
M12

1{M̂12=M12}
qnZ

∣
∣
∣

∣
∣
∣
TV

where (a) is because ||p−q||TV =
∑

x: p(x)>q(x)

[
p(x)−q(x)

]

and since m12 6= m̂12 if and only if Q(cn)(m12, m̂12) ≥

p
(U)
M12

(m12)1{
m̂12=m12

}; (b) is the triangle inequality; (c) uses

Property (3-a) from [13, Lemma 1]. Finally, the RHS above

vanishes to 0 as n→ ∞ by (11) and our hypothesis.

IV. SECRECY-CAPACITY RESULTS

A. Semi-Deterministic WTBCs

We characterize the secrecy-capacity region of the SD-

WTBC pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X , where y1 : X ×
Z → Y1 and pY2,Z|X : X → P(Y2 ×Z).

Theorem 1 (SD-WTBC Secrecy-Capacity) The secrecy-

capacity region of the SD-WTBC is the union of rate pairs

(R1, R2) ∈ R
2
+ satisfying:

R1 ≤ H(Y1|Z), (12a)

R2 ≤ I(U ;Y2)− I(U ;Z), (12b)

R1 +R2 ≤ H(Y1|Z) + I(U ;Y2)− I(U ;Y1, Z) (12c)

where the union is over all pU,X ∈ P(U×X ), each inducing a

joint distribution pU,X1{Y1=y1(X)}pY2,Z|X . Furthermore, one

may restrict U to take values in a set U , with |U| ≤ |X |+ 1.

The direct proof of Theorem 1 uses the inner bound from [7,

Theorem 3], where the performance criterion [7] corresponds

to the definition of achievability used herein (Definition 2).

Setting Q = U0 = 0, U1 = Y1 and U2 = U reduces the rate

bounds from [7, Theorem 3] to those from (12). The analogy-

based converse proof is given in Section V.

Remark 3 Until now, the secrecy-capacity region was known

only under the assumption that the stochastic legitimate chan-

nel pY2|X is less noisy than the eavesdropper’s channel pZ|X

[8, Theorem 5]. Our analogy-based converse proof obviates

this assumption. It is important to note that the analogy does

rely on the achievability notion from Definition 2, and in

particular on the asymptotic i.i.d. requirement (stealth) from

Z. With this definition of achievability one could furnish a

converse proof for the SD-WTBC that directly arrives at the

expressions from (12) without using the analogy. However,

doing so will be nothing but reproducing the analogy-based

proof without explicitly terming it that way. We are unaware of

an alternative proof method for converse part of Theorem 1.

B. Physically-Degraded WTBCs

To stress the versatility of the analogy framework, we also

present the secrecy-capacity region of the PD-WTBC with

cooperative receivers from Fig. 3(a). Formally, we consider

a PD-WTBC pY1,Z|XpY2|Y1
, where Y2 −
− Y1 −
− (X,Z)

forms a Markov chain, with an informed receiver, i.e., when

Receiver 1 observes the pair (Y1,Z), and where a unidirec-

tional noiseless link of capacity c12 < ∞ extends from (the

informed) Receiver 1 to (the uninformed) Receiver 2. Codes

and achievability for this channel are defined in accordance

with Definitions 1 and 2.

Theorem 2 (PD-WTBC Secrecy-Capacity) The secrecy-

capacity region of the PD-WTBC with cooperative receivers

and an informed Receiver 1 is the union of rate pairs

(R1, R2) ∈ R
2
+ satisfying:

R1 ≤ Ip(X;Y1|U,Z) (13a)

R2 ≤ Ip(U ;Y2)− Ip(U ;Z) + c12 (13b)

R1 +R2 ≤ Ip(X;Y1|Z) (13c)

where the union is over all pU,X ∈ P(U ×X ), each inducing

a joint distribution p , pU,XpY1,Z|XpY2|Y1
. Furthermore, one

may restrict U to take values in a set U , with |U| ≤ |X |+ 1.

Due to space limitation we omit the proof of Theorem 2

and refer the reader to [13, Section VI-B and Remark 7].



V. ANALOGY-BASED CONVERSE PROOF OF THEOREM 1

Let (R1, R2) ∈ R
2
+ be achievable rate for the SD-WTBC

and {cn}n∈N be the corresponding sequence of (n,R1, R2)
WTBC codes satisfying (4), for some γ > 0 and qZ ∈ P(Z),
and any n large enough. By Proposition 1, {cn}n∈N gives

rise to a sequence of (n,R1, R2) codes {bn}n∈N for the
(
Z,X ,Y1,Y2, qZ , pY1,Y2|X,Z

)
GPBC, each inducing a joint

distribution Q(bn), such that Items (2) and (3) from Propo-

sition 1 holds. Furthermore, since the WTBC is SD with

pY1,Y2,Z|X = 1{Y1=y1(X)}pY2,Z|X , the obtained GPBC is

also SD. Namely, the GPBC’s transition probability factors

as pY1,Y2|X,Z = 1{Y1=y1(X)}pY2|X,Z , which falls under the

framework of [5].

The converse proof of [5, Theorem 1] for the SD-GPBC

shows that if {bn}n∈N is a sequence of (n,R1, R2)-codes with

a vanishing error probability, then

R1 ≤
1

n

n∑

i=1

HQ(Y1,i|Zi) + ǫn (14a)

R2 ≤
1

n

n∑

i=1

[

IQ
(
M2, Y

i−1
2 , Zni+1;Y2,i

)

− IQ
(
M2, Y

i−1
2 , Zni+1;Zi

)]

+ ǫn (14b)

R1 +R2 ≤
1

n

n∑

i=1

[

IQ
(
M2, Y

i−1
2 , Zni+1, Y

n
1,i+1;Y2,i

)

+HQ(Y1,i|Zi)−IQ
(
M2, Y

i−1
2 , Zni+1, Y

n
1,i+1;Zi, Y2,i

)]

+ǫn,

(14c)
where the subscript Q indicates that the underlying distribution

is Q(bn) and ǫn , 2
n
+ Pe(bn)

∑

j=1,2Rj .

Since the TV between two distribution upper bounds the TV

between any of their marginals [13, Property (3-a), Lemma 1]),
∣
∣
∣

∣
∣
∣P

(cn)
M2,Y i,Zn

i

−Q
(bn)
M2,Y i,Zn

i

∣
∣
∣

∣
∣
∣
TV

≤ e−nγ (15)

for large enough n, uniformly in i ∈ [1 : n]. Now, over finite

probability spaces, an exponentially decaying TV dominates

the difference between two corresponding mutual information

terms ( [13, Lemma 3]). Combining this observation with (15),

we may replace the information measures from (14), which are

taken with respect to Q(bn), with the same terms, but with an

underlying distribution P (cn) plus a vanishing term. Namely,

there exists a δ > 0, such that for n large enough

R1 ≤
1

n

n∑

i=1

HP (Y1,i|Zi) + ǫn + e−nδ (16a)

R2 ≤
1

n

n∑

i=1

[

IP (Vi;Y2,i)−IP (Vi;Zi)
]

+ ǫn + 2e−nδ (16b)

R1 +R2 ≤
1

n

n∑

i=1

[

HP (Y1,i|Zi) + IP (Vi, Ti;Y2,i)

− IP (Vi, Ti;Y1,i, Zi)
]

+ ǫn + 3e−nδ (16c)

where, for every i ∈ [1 : n], we have defined Vi ,
(
M2, Y

i−1
2 , Zni+1

)

P
and Ti ,

(
Y n1,i+1

)

P
, with the subscript

P indicating that the underlying distribution is P (cn).

Letting n tend to infinity in (16), we see that the WTBC’s

secrecy-capacity region is contained in the convex closure of

the union of rate pairs (R1, R2) satisfying:

R1 ≤ Hp(Y1|Z) (17a)

R2 ≤ Ip(V ;Y2)− Ip(V ;Z) (17b)

R1+R2 ≤ Hp(Y1|Z)+Ip(V, T ;Y2)−Ip(V, T ;Y1, Z) (17c)

where the union is over all pV,T,X ∈ P(V × T × X ),
each inducing a joint distribution p , pV,T,XpY1,Y2,Z|X ,

i.e., (Y1, Y2, Z)−
−X−
− (V, T ) forms a Markov chain. This

Markov relation follows because (Y1,i, Y2,i, Zi)−
−Xi −
−(
M2, Y

n
1,i+1, Y

i−1
2 , Zni+1

)
, for all i ∈ [1 : n], under P (cn).

To conclude the proof it remains to show that there exists

an auxiliary random variable U , such that for any (V, T ):

Ip(V ;Y2)− Ip(V ;Z) ≤ Ip(U ;Y2)− Ip(U ;Z) (18a)

Hp(Y1|Z) + Ip(V, T ;Y2)− Ip(V, T ;Y1, Z)

≤ Hp(Y1|Z) + Ip(U ;Y2)− Ip(U ;Y1, Z). (18b)

This is established by closely following the arguments from

the end of the converse proof of the analogous SD-GPBC

[5, Section III]. Namely, setting U = V if p is such that

Ip(T ;Y2|V ) − Ip(T ;Y1, Z|V ) ≤ 0, and U = (V, T ) if

Ip(T ;Y2|V ) − Ip(T ;Z|V ) ≥ 0 suffices. Noting that every

distribution p must satisfy at least one of these information

inequalities concludes the proof.
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