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Abstract—We study the state-dependent (SD) wiretap channel
(WTC) with non-causal channel state information (CSI) at
the encoder. This model subsumes all other instances of CSI
availability as special cases, and calls for an efficient utilization
of the state sequence both for reliability and security purposes.
A lower bound on the secrecy-capacity, that improves upon the
previously best known result by Chen and Han Vinck, is derived
based on a novel superposition coding scheme. The improvement
over the Chen and Han Vinck result is strict for some SD-
WTCs. Specializing the lower bound to the case where CSI is
also available to the decoder reveals that it is at least as good as
the achievable formula by Chia and El-Gamal, which is already
known to outperform the adaptation of the Chen and Han Vinck
code to the encoder and decoder CSI scenario. The results are
derived under the strict semantic-security metric that requires
negligible information leakage for all message distributions.

I. INTRODUCTION

Reliably transmitting a message over a noisy state-

dependent (SD) channel with non-causal encoder channel state

information (CSI) is one of the most fundamental settings in

information theory. The formulation of the problem and the

derivation of its capacity dates back to Gelfand and Pinsker’s

(GP’s) celebrated paper [1]. While the original motivation for

the problem, as presented in [1], stems from the memory with

stuck-at faults example [2], the implications of the result were

much broader. One such prominent implication is that viewing

the state sequence (known to the encoder) as a codeword of

some other message naturally relates the GP scenario to the

problem of broadcasting. It is therefore of no surprise that

GP coding achieves the corner points of the best known inner

bound on the capacity region of the broadcast channel [3].

Another virtue of the GP model is its generality. Namely, it

is the most general instance of a SD point-to-point channel

in which any or all of the terminals have non-causal access

to sequence of states. Motivated by the above as well as the

indisputable importance of security in modern communication

systems, we study the SD wiretap channel (WTC) with non-

causal encoder CSI, which incorporates the notion of security

in the presence of a wiretapper into the GP channel coding

problem.

First to consider a discrete and memoryless (DM) WTC

with random states were Chen and Han Vinck [4], that studied

encoder CSI scenario. They established a lower bound on the

secrecy-capacity based on a combination of wiretap coding

with GP coding. This work was later generalized in [5] to

a WTC that is driven by a pair of states, one available to

the encoder and the other one to the decoder. However, as

previously mentioned, since CSI at the encoder is the most

general setup, the result of [5] is a special of [4]. A more

sophisticated coding scheme was constructed by Chia and

El-Gamal for the SD-WTC with causal encoder CSI and

full decoder CSI [6]. Their idea was to explicitly extract a

cryptographic key from the random state, and protect a part

of the confidential message via a one-time-pad with that key.

The remaining portion of the confidential message is protected

using a wiretap code (whenever wiretap coding is possible).

Although their code is restricted to utilize the state in a causal

manner, the authors of [6] proved that it can strictly outperform

the adaptations of the non-causal schemes from [4], [5] to the

encoder and decoder CSI setup.

In this paper we study the SD-WTC with non-causal en-

coder CSI, for which we propose a novel superposition-based

coding scheme. The scheme results in a new lower bound on

the secrecy-capacity, which recovers the previously best known

achievability formulas from [4] and [5] as special cases. The

relation to the previous schemes can be strict, i.e., there are

examples where our scheme achieves strictly higher secrecy

rates than [4], [5].

When specializing to the case where the decoder also knows

the state sequence, our achievability is shown to be at least

as good as the scheme from [6]. In fact, [6] provided two

separate coding schemes and stated their achievability result

as the maximum between the two. Recovering [6] from our

lower bound results in a compact and simplified (yet equiv-

alent) characterization of their achievable formula. Thus, our

superposition-based coding scheme encompasses a unification

of the two schemes from [6]. Interestingly, while both schemes

from [6] rely on generating the aforementioned cryptographic

key, our code construction does not involve any explicit key

generation/agreement phase. Instead, we use an over-populated

superposition codebook and encode the entire confidential

message at the outer layer. The transmission is correlated

with the state sequence by means of the likelihood encoder

[7], while security is ensured by making the eavesdropper

decode the inner layer codeword that contains no confidential

information. Having done so, the eavesdropper is lacking the

resources to extract any information about the secret message.

Our results are derived under the strict metric of semantic-

security (SS). The SS criterion is a cryptographic benchmark

that was adapted to the information-theoretic framework (of

computationally unbounded adversaries) in [8]. In that work,
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Fig. 1: The state-dependent wiretap channel with non-casual encoder
channel state information.

SS was shown to be equivalent to a negligible mutual informa-

tion between the message and the eavesdropper’s observations

for all message distributions. In contrast to this stringent

security requirement, all the aforementioned secrecy results

were derived under the weak-secrecy metric, i.e., a vanishing

normalized mutual information with respect to a uniformly

distributed message. Nowadays, however, weak-secrecy is

widely regarded as being too loose, giving rise to the recent

effort of upgrading information-theoretic secrecy results to

strong-secrecy (namely, by removing the normalization factor

but keeping the uniformity assumption on the message). SS

is clearly a further strengthening of them both. Consequently,

our achievability result outperforms the schemes from [4], [5]

for the SD-WTC with non-causal encoder CSI not only in

terms of the achievable secrecy rate, but also in the upgraded

sense of security is provides. When CSI is also available at the

decoder, our result implies that an upgrade to SS is possible,

without inflicting any loss of rate compared to [6].

II. WIRETAP CHANNELS WITH RANDOM STATES

NON-CAUSALLY AVAILABLE AT THE ENCODER

We use notation from [9, Section II]. A less common

notation this paper uses is of P(X ), which denotes the set

of all probability mass functions (PMFs) over a finite set X .

We study the SD-WTC with non-causal encoder CSI, for

which we establish a new and improved achievability formula

that (in some cases) strictly outperforms the previously best

known coding schemes for this scenario. The secrecy-capacity

of a WTC with random states observed non-causally by some

or all of the terminals is a highly challenging open problem

in information-theoretic security that have received noticeable

attention throughout the years (see, e.g., [4]–[6]. This interest

in such secure communication scenarios stems from trying

to understand how to optimally correlated the transmission

with the state observation while exploiting the additional

randomness offered by the knowledge of the state sequence

to further enhance the secrecy rate. The optimal integration of

these two ingredient is yet to be fully understood.

A. Problem Setup

Let S, X , Y and Z be finite sets. The
(

S,X ,Y,Z,WS ,WY,Z|X,S

)

DMSD-WTC with non-causal

encoder CSI is illustrated in Fig. 1. A state sequence s ∈ Sn

is generated in and i.i.d. manner according to WS and is

revealed in a non-causal fashion to the sender, who chooses

a message m from the set
[

1 : 2nR
]

. The sender then maps

the observed state sequence s and the chosen message m
into a sequence x ∈ Xn (the mapping may be random).

The sequence x is transmitted over the DMSD-WTC with

transition probability WY,Z|X,W . The output sequences

y ∈ Yn and z ∈ Zn are observed by the receiver and the

eavesdropper, respectively. Based on y, the receiver produces

an estimate m̂ of m. The eavesdropper tries to glean whatever

it can about the message from z.

Remark 1 (Most General Model) Before rigorously defin-

ing the setup and stating the result, we note that the considered

model is the most general instance of a SD-WTC with non-

causal CSI known at some or all of the terminals. The broadest

model one may consider is when the SD-WTC WỸ ,Z̃|X,S1,S2,S3

is driven by a triple of correlated state random variables

(S1, S2, S3) ∼ WS1,S2,S3
, where S1 is known to the trans-

mitter, S2 is known to the receiver and S3 is available at the

eavesdropper’s site. However, setting S = S1, Y = (Ỹ , S2),
Z = (Z̃, S3) in SD-WTC with non-causal encoder CSI and

defining the channel’s transition probability as

WY,Z|X,S=W(Ỹ ,S2),(Z̃,S3)|X,S1
=WS2,S3|S1

WỸ ,Z̃|X,S1,S2,S3
,

one clearly recovers this (prima facie) general SD-WTC from

the model with non-causal encoder CSI only.

Definition 1 (Code) An (n,R)-code cn for the SD-WTC with

non-causal encoder CSI has a message set Mn ,
[

1 : 2nR
]

,

a stochastic encoder fn : Mn×Sn → P(Xn) and a decoder

φn : Yn → M̂n, where M̂n = Mn ∪ {e} and e /∈ Mn.

For any message distribution PM ∈ P(Mn) and any

(n,R)-code cn, the induced joint PMF on Sn ×Mn ×Xn ×
Yn ×Zn × M̂n is:

P (cn)(s,m,x,y, z,m̂) = Wn
S (s)PM (m)fn(x|m, s)

×Wn
Y,Z|X,S(y, z|x, s)1

{

m̂=φn(y)
}. (1)

The performance of cn is evaluated in terms of its rate R, the

maximal decoding error probability and the SS-metric.

Definition 2 (Maximal Error Probability) The maximal er-

ror probability of an (n,R)-code cn is

e(cn) = max
m∈Mn

em(cn), (2)

where em(cn) =
∑

(s,x)∈Sn×Xn

Wn
S (s)fn(x|m, s)

∑

y∈Yn:
φn(y) 6=m

Wn
Y |X,S

(y|x, s).

Definition 3 (Information Leakage and SS Metric) Let cn
be an (n,R)-code for the SD-WTC with non-causal encoder

CSI and PM ∈ P(Mn). The information leakage to the

eavesdropper under the message PMF PM ∈ P(Mn) is

ℓ(PM , cn) = Icn(M ;Z), (3)

where the subscript cn denotes that the mutual information

term is calculated with respect to the marginal P
(cn)
M,Z of (1).



The SS metric with respect to cn is

ℓSem(cn) = max
PM∈P(Mn)

ℓ(PM , cn). (4)

Remark 2 SS requires that the code cn works well for all

message PMFs. This means that the mutual information term

in (4) is maximized over PM when the code cn is known. In

other words, although not stated explicitly, the maximizing PM

may depend on cn.

Definition 4 (Achievability) A number R ∈ R+ is called an

achievable SS-rate for the SD-WTC with non-causal encoder

CSI, if for every ǫ > 0 and sufficiently large n, there exists a

CR (n,R)-code cn with e(cn) ≤ ǫ and ℓSem(cn) ≤ ǫ.

Definition 5 (SS-Capacity) The SS-capacity CSem of the SD-

WTC with non-causal encoder CSI is the supremum of the set

of achievable SS-rates.

B. Main Results

The main result of this work is a novel lower bound on the

SS-capacity of the SD-WTC with non-causal encoder CSI. Our

achievability formula strictly outperforms the best previously

known coding scheme for the considered scenario. To state

our main result, let U and V be finite alphabets and for any

QU,V,X|S : S → P(U × V × X ) define

RA

(

QU,V,X|S

)

, min











I(V ;Y |U)− I(V ;Z|U),

I(U, V ;Y )− I(U, V ;S),

I(U, V ;Y )− I(U ;S)− I(V ;Z|U)











, (5)

where the mutual information terms are calculated with respect

to the joint distribution WSQU,V,X|SWY,Z|X,S .

Theorem 1 (SD-WTC SS-Capacity Lower Bound) The

SS-capacity of the SD-WTC with non-causal encoder CSI is

lower bounded as

CSem ≥ RA , max
QU,V,X|S

RA

(

QU,V,X|S

)

, (6)

and one may restrict the cardinalities of U and V to |U| ≤
|S||X |+ 5 and |V| ≤ |S|2|X |2 + 5|S||X |+ 3.

An extended outline of the proof of Theorem 1 is given

in Section IV (see [10, Section VI-B] for the full details),

and is based on a novel superposition coding scheme for

secrecy. The superposition codebook encodes the entire secret

message in its outer layer, meaning that no information is

carried by the inner layer of the code. Nonetheless, the rate of

the lower layer codebook is chosen to allow the eavesdropper

to decode it. This results in the eavesdropper ‘wasting’ his

channel resources on decoding the lower layer, leaving it

with insufficient resources to unveil the secret message. The

legitimate decoder, on the other hand, decodes both layers of

the codebook. The transmission is correlated with the observed

state sequence by means of the likelihood encoder [7] and SS

is established using the stronger SCL (both the superposition

version from [10, Lemma 1] and the heterogeneous SCL from

[11, Lemma 1]).

Remark 3 (Cardinality Bounds) The cardinality bounds on

the auxiliary random variables U and V in Theorem 1 are

established by standard application of the Eggleston-Fenchel-

Carathéodory theorem twice. The details are omitted.

III. SPECIAL CASES AND EXAMPLES

A. Comparison to the Encoder and Decoder CSI Case

Consider the case when the state sequence S is also avail-

able to the legitimate receiver, i.e., when Y is replaced with

(Y, S). The scenario when the encoder CSI is causal was

studies by Chia and El-Gamal in [6], where a lower bound on

the weak-secrecy capacity CEnc−Dec−CSI
Weak was established. To

restate their result, let T be a finite set and for any PT ∈ P(T )
and PX|T,S : S × T → P(X ) define

RCE

(

PTPX|T,S

)

, min

{

I(T ;Y |S) , H(S|T,Z)

+
[

I(T ;Y, S)− I(T ;Z)
]+

}

,

(7a)

where [x]+ = max(0, x) and the mutual information terms are

calculated with respect to WSPTPX|T,SWY,Z|X,S . Theorem 1

in [6] states that

CEnc−Dec−CSI
Weak ≥ REnc−Dec−CSI

CE , max
PTPX|T,S

RCE

(

PTPX|T,S

)

.

(7b)

The independence between T and S is an outcome of the

causality restriction on encoder CSI.

In effect, the result of [6, Theorem 1] was not expressed as

in (7). Rather, the authors derived two separate lower bounds

on CEnc−Dec−CSI
Weak and stated their achievability result as the

maximum between the two. Be it as it may, it is readily verified

that (7) is an equivalent representation of [6, Theorem 1].

Furthermore, [6, Remark 3.1] effectively asserts that whenever

I(T ;Y, S) ≥ I(T ;Z), allowing correlation between T and S
does not outcome in higher secrecy-rates. However, no such

claim was established when the inequality is reversed.

Although studying the causal model, the authors of [6]

showed that their result is at least as good as the best

previously known scheme for the non-causal encoder CSI

scenario. The latter scheme is obtained from [4, Theorem 2]

- an achievable weak-secrecy rate for the SC-WTC with non-

causal CSI at the encoder only - by replacing Y with (Y, S)
(see Remark 1). All the more so, an example was provided

in [6] where it is shown that in some cases REnc−Dec−CSI
CE

achieves strictly higher rates than [4, Theorem 2] (see also

[5]). As stated in the following proposition, our achievable

formula RA is at least as good as RCE, when the legitimate

receiver also has access to S.

To formulate the relation between the result of Theorem 1

and [6, Theorem 1], note that when the legitimate receiver also

observes the state sequence, RA becomes

REnc−Dec−CSI
A = max

QU,V,X|S

REnc−Dec−CSI
A

(

QU,V,X|S

)

, (8a)



where for any QU,V,X|S : S → P(U × V × X ),

REnc−Dec−CSI
A

(

QU,V,X|S

)

is obtained from RA in (5) by

replacing Y therein with (Y, S).

Proposition 2 The following relation holds:

REnc−Dec−CSI
CE ≤ max

PT,X|S

REnc−Dec−CSI
CE

(

PT,X|S

)

≤ REnc−Dec−CSI
A . (9)

The proof of Proposition 2 shows that REnc−Dec−CSI
A recovers

REnc−Dec−CSI
CE by either setting U = T and V = S or setting

U = 0 and V = (T, S) (the choice of the auxiliaries varies

depending on whether I(T ;Y, S) ≥ I(T ;Z) or not). The full

details are omitted (see [10, Appendix E]).

A few remarks are at hand regarding the result of

Proposition 2:

1) As seen in (9), our formula reduces to a maximization

of REnc−Dec−CSI
CE

(

PT,X|S

)

over a domain of distribution

that allow correlation between T and S. This is since our

coding scheme was tailored for the non-causal CSI scenario,

in contrast to the causal construction from [6] that results

in restricting T and S to be independent. Although, this

correlation is unnecessary when I(T ;Y, S) ≥ I(T ;Z), it

may be the case that a correlated T and S are better when

I(T ;Y, S) < I(T ;Z).

2) The coding scheme from [6] uses the state sequence to

explicitly generate a key (of the largest rate possible while

still keeping the eavesdropper ignorant of it), which is used

to one-time-pad a part of the confidential message; the

other part of the message is protected via a wiretap code

(whenever wiretap coding is possible). Our coding scheme,

however, does not involve any explicit key generation (nor

key agreement) phase. Instead, our code is based on a

superposition codebook that fully encodes the confidential

message in its outer layer, and SS is ensured by making

the eavesdropper ‘waste’ channel resources on decoding the

inner layer codeword that carries no confidential information

whatsoever. Nonetheless, the relation between our scheme

(when adjusted to the encoder-decoder CSI scenario) and the

one-time-pad-based scheme from [6] is observed as follows.

Note that to recover REnc−Dec−CSI
CE from REnc−Dec−CSI

A

we introduce the state random variable S as part as the

auxiliary random variable V . Doing so, essentially, uses the

state sequence to randomize the choice of the transmitted

codeword for a prescribed confidential message m. Since S

is also known to the decoder, it can reverse this randomized

choice and backtrack to the transmitted message. The

eavesdropper, being ignorant of the state sequence, cannot

do the same. This is an alternative perspective of the one-

time-pad operation: randomly choosing a codeword from

a cluster of codewords associated with each confidential

message. Making these clusters large enough (so that

they overlap), allows only a party that has access to the key

used for the randomized choice to isolate the original message.

3) Our coding scheme outcomes in SS and a vanishing

maximal error probability, while achieving possibly higher

rates than [6], where only weak-secrecy and a vanishing

average error probability were guaranteed. Thus, an upgrade

of both performance metrics from [6] is possible, without

inflicting any loss of rate. Furthermore, our scheme is based

on a single transmission block, while [6, Theorem 1] relies

on transmitting many such blocks. The purpose of a multiple-

block transmission is to generate the key at each block from

the state sequence of the previous block, thus simplifying the

security analysis as far as the independence of the generated

key and the eavesdropper’s channel observation.

B. Comparison to Previous Schemes for the SD-WTC with

Non-Causal Encoder CSI

The result of Theorem 1 recovers the previously best known

achievable formula for the SD-WTC with non-causal encoder

CSI from [4, Theorem 2]. Moreover, our achievability is

strictly better than [4, Theorem 2] for some SD-WTCs. In

[4, Theorem 2] it is stated that the weak-secrecy capacity of

the considered SD-WTC is lower bounded by

REnc−CSI
CHV , max

PU,X|S

REnc−CSI
CHV

(

PU,X|S

)

, (10a)

where for any PU,X|S : S → P(U × X ),

REnc−CSI
CHV

(

PU,X|S

)

, min

{

I(U ;Y )− I(U ;Z),

I(U ;Y )− I(U ;S)

}

,

(10b)

and the mutual information terms are taken with respect to

WSPU,X|SWY,Z|X,S , i.e., U−(X,S)−(Y,Z) forms a Markov

Chain.

First note that Theorem 1 recovers REnc−CSI
CHV by setting

U = 0 in RA (while relabeling V as U ). Consequently,

RA ≥ REnc−CSI
CHV . (11)

On top of that, in [10, Section V-C] we provide an example

that shows that there exist SD-WTCs for which the inequality

in (11) is strict. Due to lack of space, the example and

the derivation of the strict relation is not included in this

document. The derivation relies on the main idea behind the

example from [6] used for showing the superiority of their

schemes over previously known achievable result for the SD-

WTC with non-causal CSI at both the encoder and the decoder.

Our example falls outside of the framework considered in [6].

IV. OUTLINE OF PROOF OF THEOREM 1

We give a detailed description of the codebook construction

and of the encoding and decoding processes. Due to space

limitation, the analysis of reliability and SS is omitted and only

the resulting rate bounds accompanied by broad explenations

are stated. The reader is referred to [10, Section VI-B] for the

full details. Fix ǫ > 0 and a conditional PMF QU,V,X|S : S →
P(U × V × X ).

Codebook Bn: We use a superposition codebook where

the outer layer also encodes the confidential message. The

codebook is constructed independently of the state sequence



S, but with sufficient redundancy to correlate the transmission

with S.

Let I and J be two independent random variables uniformly

distributed over In ,
[

1 : 2nR1
]

and Jn ,
[

1 : 2nR2
]

,

respectively. Let B
(n)
U ,

{

u(i,BU )
}

i∈In
be an inner layer

codebook generated as i.i.d. samples of Qn
U . For every i ∈ In,

let B
(n)
V (i) ,

{

v(i, j,m,BV )
}

(j,m)∈Jn×Mn
be a collection of

2n(R2+R) vectors of length n drawn according to the distri-

bution Qn
V |U=u(i,BU ). We use Bn to denote our superposition

codebook, i.e., the collection of the inner and all the outer

layer codebooks. The encoder and decoder are described next

for a fixed superposition codebook Bn.

Encoder f
(Bn)
n : The encoding phase is based on the

likelihood-encoder [7], which, in turn, allows us to approx-

imate the (rather cumbersome) induced joint distribution by a

much simpler distribution which we use for the analysis.

To send m ∈ Mn upon observing the state sequence s ∈
Sn, the encoder randomly chooses (i, j) ∈ In×Jn according

to

P (Bn)(i, j|m, s)=
Qn

S|U,V

(

s
∣

∣u(i,BU ),v(i, j,m,BV )
)

∑

(i′,j′)

Qn
S|U,V

(

s
∣

∣u(i′,BU ),v(i′, j′,m,BV )
) ,

(12)

where QS|U,V is the conditional marginal of QS,U,V defined

by QS,U,V (s, u, v) =
∑

x∈X WS(s)QU,V,X|S(u, v, x|s), for

every (s, u, v) ∈ S × U × V . The channel input sequence

is then generated by feeding the chosen u- and v-codewords

along with the state sequence into a DMC QX|U,V,S .

Decoder φ
(Bn)
n : Upon observing y ∈ Yn, the decoder

searches for a unique triple (̂i, ĵ, m̂) ∈ In × Jn ×Mn such

that
(

u(̂i,BU ),v(̂i, ĵ, m̂,BV ),y
)

∈ T n
ǫ (QU,V,Y ). If such a

unique triple is found, then set φ
(Bn)
n (y) = m̂; otherwise,

φ
(Bn)
n (y) = e.

The triple (Mn, f
(Bn)
n , φ

(Bn)
n ) defined with respect to the

codebook Bn constitutes an (n,R)-code cn.

Main Idea Behind Analysis: The key step is to show that

the joint PMF induced by the above encoding and decoding

scheme, say P (Bn), is close in total variation to a new (and

simpler) distribution Γ(Bn), which is used for the reliability

and security analyses. For any PM ∈ P(Mn), Γ
(Bn) is defined

by

Γ(Bn)(m, i, j,u,v, s,x,y, z, m̂) = PM (m)2−n(R1+R2)

× 1{
u=u(i,BU )

}

∩
{

v=v(i,j,m,BV )
}Qn

S|U,V (s|u,v)

×Qn
X|U,V,S(x|u,v, s)W

n
Y,Z|X,S(y, z|x, s)1

{

φ
(Bn)
n (y)=m̂

},

(13)

Namely, with respect to Γ(Bn), the indices (i, j) ∈ In × Jn

are drawn independently and uniformly each over its alphabet.

The, the sequence s is generated by feeding the corresponding

u- and v-codewords into the DMC Qn
S|U,V

. It can be shown the

with respect to a random superposition codebook Bn, P (Bn)

and Γ(Bn) are close in total variation in several senses (both

in expectation and with high probability), if

R1 > I(U ;S) (14a)

R1 +R2 > I(U, V ;S), (14b)

The proof of the approximation is based on the stronger SCL

for superposition codes from [10, Lemma 1].

Having that, both the reliability and the security analysis are

preformed with respect to Γ(Bn) instead of P (Bn). Standard

joint-typicality decoding arguments fir superposition codes

show that reliability follows provided that

R+R2 < I(V ;Y |U), (15a)

R+R1 +R2 < I(U, V ;Y ). (15b)

With the help of the heterogeneous stronger SCL from [11,

Lemma 1], SS is ensured if

R2 > I(V ;W |U). (16)

This rate bound essentially means that the rates of the code-

books are chosen so that the eavesdropper can decode the inner

layer codeword. This makes him waste channel resources on

decoding a codeword that carries no confidential information.

The remaining resources are insufficient for extracting any

information on the outer layer codeword, which, in turn, results

in our code being semantically-secure. Finally, applying the

Fourier-Motzkin Elimination on (14), (15) and (16) shows that

RA

(

QU,V,X|S

)

is achievable.
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