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Part |:

Measuring Information Flows in

Smoothed Deep Neural Networks
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o What drives the evolution of internal representations?
o What are properties of learned representations?

o How fully trained networks process information?
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o Formally: T, = Sy + Z;, where Sy := f,(Ty_1) and Z; ~ N(0,0%1y)

F—— o ————
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— Good proxy of det. DNN wrt performance & learned representations

—= Mutual information can be efficiently estimated over noisy DNN!
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Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)
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Future Goals: Improve scalability in d; & fast computational algorithm

@ Scalability: Manifold hypothesis and/or lower dimensional embeddings
® Algorithms: Integrate high dimensional Gaussian conv. into DNN arch.
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Noisy version of DNN from [Shwartz-Tishby’17]:

@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP
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@ weight orthonormality regularization
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Noisy version of DNN from [Shwartz-Tishby’17]:

@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 tanh MLP

@ Verified in multiple experiments

== Compression of I(X;Ty) driven by clustering of representations

Consequences and Future Goals: I(X;T}) quantifies rep. complexity

QO(I(X?TE))+6) < 6_0(52)

® Prove gen. bounds: P (gen(X",Y",L) > NG <

® Regularization and prunning: Algorithmic & architectural advances

® Visualization and interpretability: Heatmap of DNN neural activity
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Implicit (Latent Variable) Generative Models

Goal: Learn a model Qg ~ P € P(RY) to approximate data distribution

Method: Complicated transformation of a simple latent variable
o Latent variable Z ~ Q7 € P(RP), p < d

@ Expand Z to RY space via (random) transformation Qg?fz

= Generative model: Qy(-) := [z, Qg?fzﬂz)d@z(z)

Latent Space Target Space

Minimum Distance Estimation: Solve |0* € argmin§(P,Qy)
0
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o Cost: c(z,y) = ||z — y|| for transporting = to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: Wi (P, Q) := inf E X =Y
nx,y €N(P,Q)

Comments:
@ Robustness to Supp. Mismatch: W, (P, Q) < oo, VP, Q € P1(R?)
o Metric: (Pl(Rd),W1> is metric space (metrizes weak convergence)

@ Duality: W (P, Q) = sup Ep[f] —Eg[f] = W-GAN (minimax)
feLipy (RY)
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0 Q=0Qy (Y =gs(Z) gen. sample) 3

Discriminator Net
dy

Real or
Fake?

o f=d, (Lip, constraint)

Generator Net

Yo

I Generated Sample I I

— |inf Wi (P,Qp) & inf sup Ed,(X) —Ed,(9s(2))
Y 9 ©: d,eLip, (RY)
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Generative Adversarial Networks
NVIDIA’s ProGAN 2.0 [Karras et al'19]

14/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

15/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

Estimation: We don't have P but data

15/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

Estimation: We don't have P but data

o {X;}, areiid. samples from P € P(R?)

15/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

Estimation: We don't have P but data
o {X;}, areiid. samples from P € P(R?)

n
@ Empirical distribution P, := % > Ox,
i=1

15/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

Estimation: We don't have P but data
o {X;}, areiid. samples from P € P(R?)

n
@ Empirical distribution P, := % > Ox,
i=1

== Inherently we work with W1 (P, Q)

15/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

Estimation: We don't have P but data
o {X;}, areiid. samples from P € P(R?)

n
@ Empirical distribution P, := % > Ox,
i=1

== Inherently we work with W1 (P, Q)

Optimization: Can solve infyg W, (P, Qy) approximately

15/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

Estimation: We don't have P but data
o {X;}, areiid. samples from P € P(R?)

n
@ Empirical distribution P, := % > Ox,
i=1

== Inherently we work with W1 (P, Q)

Optimization: Can solve infyg W, (P, Qy) approximately
Find 0, st. Wi (P, Q; ) < infg Wi (P, Qp) + €

15/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

Estimation: We don't have P but data
o {X;}, areiid. samples from P € P(R?)

n
@ Empirical distribution P, := % > Ox,
i=1

== Inherently we work with W1 (P, Q)

Optimization: Can solve infyg W, (P, Qy) approximately
Find 0, st. Wi (P, Q; ) < infg Wi (P, Qp) + €

Generalization: W, (P, Qén) — OPT <2W; (P,,P) +¢

15/20



Implicit Generative Models: Generalization

Goal: Solve OPT := infg W (P, Qp) exactly (find 6*)

Estimation: We don't have P but data
o {X;}, areiid. samples from P € P(R?)

n
@ Empirical distribution P, := % > Ox,
i=1

== Inherently we work with W1 (P, Q)

Optimization: Can solve infyg W, (P, Qy) approximately
Find 0, st. Wi (P, Q; ) < infg Wi (P, Qp) + €

Generalization: W, (P, Qén) — OPT <2W; (P,,P) +¢

—> Boils down to empirical approximation question under W,

15/20
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Empirical Approximation in High Dimensions

Question: What can we say about Wy (P, P)?

Theorem (Dudley’69)
For d > 3 and P1(R?) 3> P < Leb(RY): EW; (P, P)=<n"

@ Implication: Too slow given dimensionality of real-world data

® Question: Can smoothing help alleviates CoD?
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where A, := N(0,0%1,) is a d-dimensional isotropic Gaussian.
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where A, := N(0,0%1,) is a d-dimensional isotropic Gaussian.

Interpretation: X ~ P, Y ~Q and Z1, 79 ~ N,
XLZlﬁX—I—ZlNP*NU & YLZQ$Y+ZQNQ*NJ

Properties: Preserves structure but enhances statistical convergence

o Retain duality: W\ (P.Q)= sup E[f(X +2)] —E[f(Y + 2)]
feLipy (RY)

@ Inherit metric structure: Topologically equivalent to unsmooth W

o Stability: |W\” (P, Q) — W, (P, Q)| < 20V/d for all P,Q

o Fast emp. convergence: W\”)(P,, P) =< n=/2 in all dimensions!
17/20
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@ Generalization: W) (P,Q; ) —infg W\” (P, Q) Sn™7, Vd

Q Limit distributions: Asymptotic dist. of MDE and empirical error

@ Inequalities: Web of relationships between smooth distances

—= Compatible for high-dimensional learning and inference!

Future Goals: More distances, kernel, and efficient algorithms
® More distances: p-Wasserstein distances, f-divergences, and IPMs
® More kernels: Optimize over choice of smoothing kernel

® Efficient algorithms: Fast computational methods

’Next-generation systems: benchmark performance & resource efficiency
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@ Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

@ Adapt classic learning setup to incorporate privacy constraints
@ Theory: Bound the risk when compared to non-privatized learner

@ Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

o Distill storage question from particular tech. & incorporate physics
o Study information capacity (systems size, storage time, temp.)

Physical Layer Security:

o Beneficial properties but impractical assumptions (known channel)

o Bridge gaps via adversarial models & connect to adversarial learning
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Want to know more?

Website: http://people.ece.cornell.edu/zivg/
Email: goldfeld@cornell.edu
Office: 322 Rhodes Hall

Spring 2021: ECE 6970 Statistical Distances for Machine Learning

Thank youl!
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