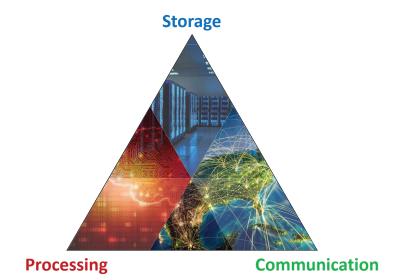
Estimating the Information Flow in Deep Neural Networks

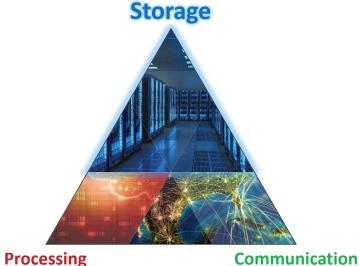
Ziv Goldfeld

MIT

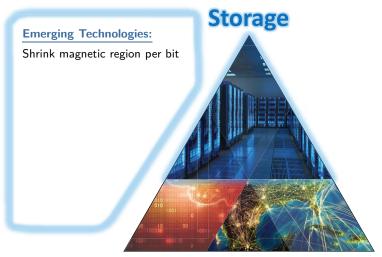




Complex System: Multi-component system driven by local interactions

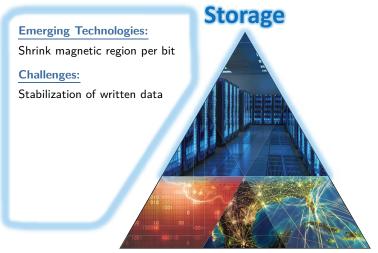


Complex System: Multi-component system driven by local interactions



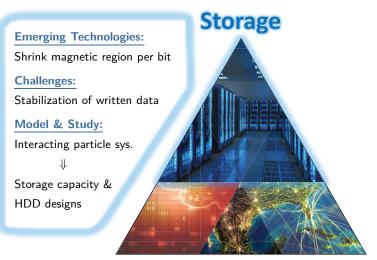
Processing

Complex System: Multi-component system driven by local interactions



Processing

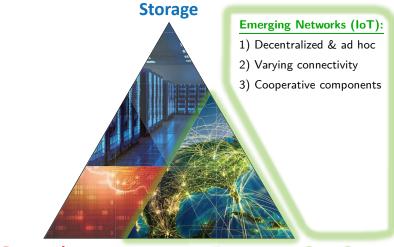
Complex System: Multi-component system driven by local interactions

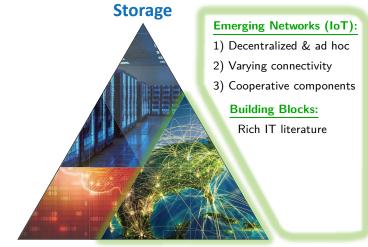


Processing

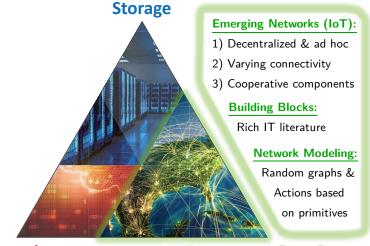
Complex System: Multi-component system driven by local interactions

Processing



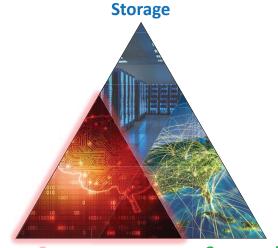


Complex System: Multi-component system driven by local interactions



Processing

Complex System: Multi-component system driven by local interactions



Processing

• Unprecedented practical success in hosts of tasks

Unprecedented practical success in hosts of tasks

- Unprecedented practical success in hosts of tasks
- Lacking theory:

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - ▶ What drives the evolution of hidden representations?
 - What are properties of learned representations?

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - ► How fully trained networks process information?

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

:

Some past attempts to understand effectiveness of deep learning

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Some past attempts to understand effectiveness of deep learning
 - Optimization dynamics in parameter space [Saxe-McClelland-Ganguli'14, Choromanska-et al'15, Wei-Lee-Ma'18]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Some past attempts to understand effectiveness of deep learning
 - Optimization dynamics in parameter space
 [Saxe-McClelland-Ganguli'14, Choromanska-et al'15, Wei-Lee-Ma'18]
 - ► Classes of efficiently representable functions
 [Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

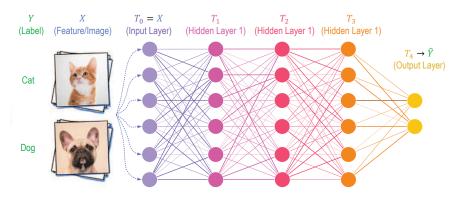
- Some past attempts to understand effectiveness of deep learning
 - Optimization dynamics in parameter space [Saxe-McClelland-Ganguli'14, Choromanska-et al'15, Wei-Lee-Ma'18]
 - ► Classes of efficiently representable functions
 [Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]
 - ► Information Bottleneck Theory
 [Tishby-Zaslavsky1'15, Shwartz-Tishby'17, Saxe *et al.*'18]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

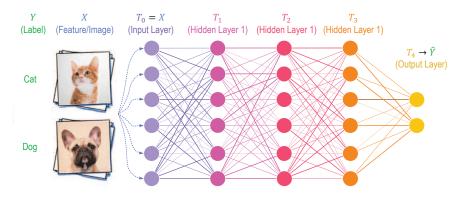
- Some past attempts to understand effectiveness of deep learning
 - Optimization dynamics in parameter space [Saxe-McClelland-Ganguli'14, Choromanska-et al'15, Wei-Lee-Ma'18]
 - ► Classes of efficiently representable functions
 [Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]
 - ► Information Bottleneck Theory
 [Tishby-Zaslavsky1'15, Shwartz-Tishby'17, Saxe et al.'18]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - ▶ What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - ► How fully trained networks process information?

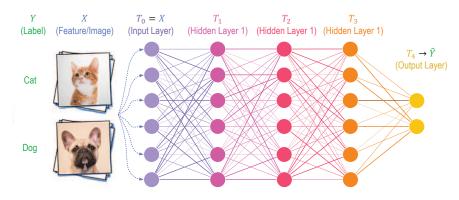
- Some past attempts to understand effectiveness of deep learning
 - Optimization dynamics in parameter space
 [Saxe-McClelland-Ganguli'14, Choromanska-et al'15, Wei-Lee-Ma'18]
 - ► Classes of efficiently representable functions
 [Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]
 - ► Information Bottleneck Theory
 [Tishby-Zaslavsky1'15, Shwartz-Tishby'17, Saxe et al.'18]
- ★ Goal: Explain 'compression' in Information Bottleneck framework



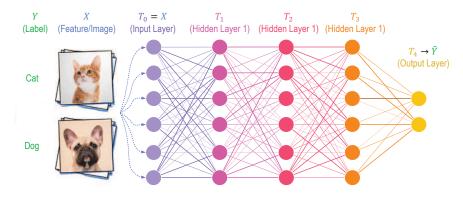
Feedforward DNN for Classification:



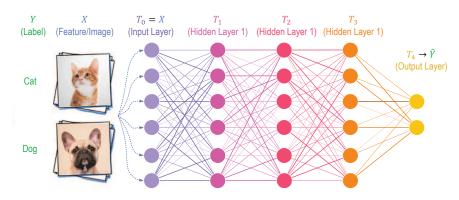
• Deterministic DNN: $T_{\ell} = f_{\ell}(T_{\ell-1})$ (MLP: $T_{\ell} = \sigma(W_{\ell}T_{\ell-1} + b_{\ell})$)



- Deterministic DNN: $T_{\ell} = f_{\ell}(T_{\ell-1})$ (MLP: $T_{\ell} = \sigma(W_{\ell}T_{\ell-1} + b_{\ell})$)
- Joint Distribution: $P_{X,Y}$

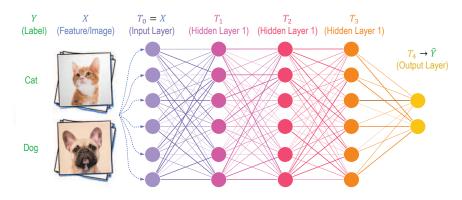


- Deterministic DNN: $T_{\ell} = f_{\ell}(T_{\ell-1})$ (MLP: $T_{\ell} = \sigma(W_{\ell}T_{\ell-1} + b_{\ell})$)
- Joint Distribution: $P_{X,Y} \implies P_{X,Y} \cdot P_{T_1,...,T_L|X}$



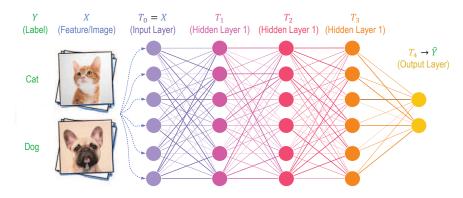
- Deterministic DNN: $T_{\ell} = f_{\ell}(T_{\ell-1})$ (MLP: $T_{\ell} = \sigma(W_{\ell}T_{\ell-1} + b_{\ell})$)
- Joint Distribution: $P_{X,Y} \implies P_{X,Y} \cdot P_{T_1,...,T_L \mid X}$
- **IB Theory:** Track MI pairs $(I(X;T_\ell),I(Y;T_\ell))$ (information plane)

Feedforward DNN for Classification:



IB Theory Claim: Training comprises 2 phases

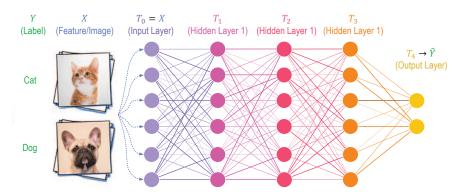
Feedforward DNN for Classification:



IB Theory Claim: Training comprises 2 phases

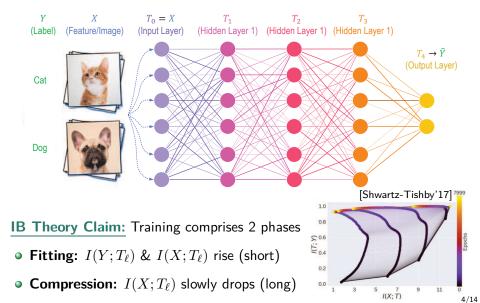
• Fitting: $I(Y;T_{\ell})$ & $I(X;T_{\ell})$ rise (short)

Feedforward DNN for Classification:



IB Theory Claim: Training comprises 2 phases

- Fitting: $I(Y;T_{\ell})$ & $I(X;T_{\ell})$ rise (short)
- Compression: $I(X;T_{\ell})$ slowly drops (long)



Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_\ell)$ is independent of the DNN parameters

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_\ell)$ is independent of the DNN parameters

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

Continuous X:

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

• Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) - h(T_{\ell}|X)$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

• Continuous X: $I(X; T_{\ell}) = h(T_{\ell}) - h(T_{\ell}|X)$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

• Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) - h(\tilde{f}_{\ell}(X)|X)$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

• Continuous
$$X$$
:
$$I(X;T_{\ell}) = h(T_{\ell}) - \underbrace{h(\tilde{f}_{\ell}(X)|X)}_{\ell}$$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

$$I(X;T_{\ell}) = h(T_{\ell}) - h(\tilde{f}_{\ell}(X)|X) = \infty$$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

- Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) h(\tilde{f}_{\ell}(X)|X) = \infty$
- Discrete *X*:

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

- Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) h(\tilde{f}_{\ell}(X)|X) = \infty$
- **Discrete** X: The map $X \mapsto T_{\ell}$ is injective*

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

- Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) h(\tilde{f}_{\ell}(X)|X) = \infty$
- Discrete X: The map $X\mapsto T_\ell$ is injective $\implies I(X;T_\ell)=H(X)$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

- Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) h(\tilde{f}_{\ell}(X)|X) = \infty$
- Discrete X: The map $X \mapsto T_{\ell}$ is injective* $\Longrightarrow I(X; T_{\ell}) = H(X)$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

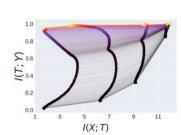
 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

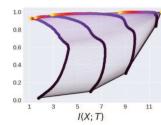
Why?

- Continuous X: $I(X;T_\ell) = h(T_\ell) h(\tilde{f}_\ell(X)|X) = \infty$
- Discrete X: The map $X \mapsto T_{\ell}$ is injective $\implies I(X; T_{\ell}) = H(X)$

Past Works:

[Shwartz-Tishby'17, Saxe *et al.*'18]





• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

• Plots via binning-based estimator of $I(X;T_\ell)$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

 \implies Plotted values are $I(X; Bin(T_{\ell}))$

ullet Plots via binning-based estimator of $I(X;T_\ell)$, for $X\sim \mathsf{Unif}(\mathsf{dataset})$

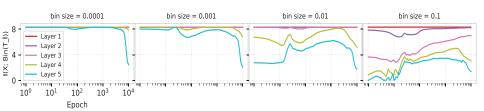
 \implies Plotted values are $I(X; \operatorname{Bin}(T_{\ell})) \stackrel{??}{pprox} I(X; T_{\ell})$

• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

 \implies Plotted values are $I\left(X; \operatorname{Bin}(T_{\ell})\right) \stackrel{??}{pprox} I(X; T_{\ell})$ No

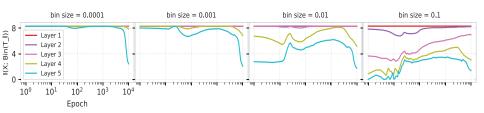
• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

 \implies Plotted values are $I(X; \mathsf{Bin}(T_\ell)) \stackrel{??}{\approx} I(X; T_\ell)$ No!



• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

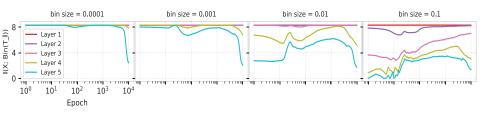
$$\implies$$
 Plotted values are $I(X; \mathsf{Bin}(T_\ell)) \stackrel{??}{pprox} I(X; T_\ell)$ No!



• Smaller bins \implies Closer to truth: $I(X;T_\ell)=\ln(2^{12})\approx 8.31$

• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

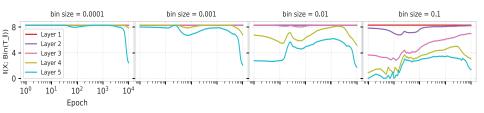
$$\implies$$
 Plotted values are $I(X; \mathsf{Bin}(T_\ell)) \stackrel{??}{pprox} I(X; T_\ell)$ No!



- Smaller bins \implies Closer to truth: $I(X;T_\ell)=\ln(2^{12})\approx 8.31$
- Binning introduces "noise" into estimator (not present in the DNN)

ullet Plots via binning-based estimator of $I(X;T_\ell)$, for $X\sim \mathsf{Unif}(\mathsf{dataset})$

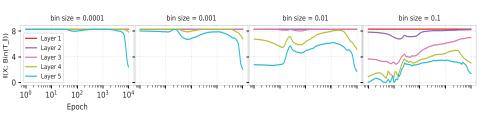
$$\implies$$
 Plotted values are $I(X; \mathsf{Bin}(T_\ell)) \stackrel{??}{pprox} I(X; T_\ell)$ No!



- Smaller bins \implies Closer to truth: $I(X;T_\ell)=\ln(2^{12})\approx 8.31$
- Binning introduces "noise" into estimator (not present in the DNN)
- Plots showing estimation errors

ullet Plots via binning-based estimator of $I(X;T_\ell)$, for $X\sim \mathsf{Unif}(\mathsf{dataset})$

$$\implies$$
 Plotted values are $I(X; \mathsf{Bin}(T_\ell)) \stackrel{??}{pprox} I(X; T_\ell)$ No!



- Smaller bins \implies Closer to truth: $I(X;T_\ell) = \ln(2^{12}) \approx 8.31$
- Binning introduces "noise" into estimator (not present in the DNN)
- Plots showing estimation errors
- **Real Problem:** $I(X;T_{\ell})$ is meaningless in det. DNNs

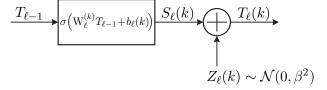
Modification: Inject (small) Gaussian noise to neurons' output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

Modification: Inject (small) Gaussian noise to neurons' output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

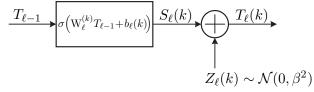
• Formally: $T_\ell = f_\ell(T_{\ell-1}) + Z_\ell$, where $Z_\ell \sim \mathcal{N}(0, \beta^2 \mathrm{I})$



Modification: Inject (small) Gaussian noise to neurons' output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

• Formally: $T_\ell = f_\ell(T_{\ell-1}) + Z_\ell$, where $Z_\ell \sim \mathcal{N}(0, \beta^2 \mathrm{I})$

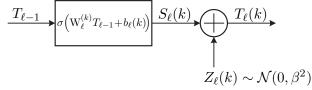


 $\implies X \mapsto T_\ell$ is a **parametrized channel** that depends on DNN param.!

Modification: Inject (small) Gaussian noise to neurons' output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

• Formally: $T_\ell = f_\ell(T_{\ell-1}) + Z_\ell$, where $Z_\ell \sim \mathcal{N}(0, \beta^2 \mathrm{I})$

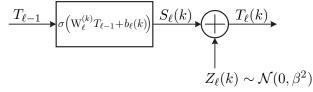


- $\implies X \mapsto T_\ell$ is a **parametrized channel** that depends on DNN param.!
- $\implies I(X;T_{\ell})$ is a **function** of weights and biases!

Modification: Inject (small) Gaussian noise to neurons' output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

• Formally: $T_\ell = f_\ell(T_{\ell-1}) + Z_\ell$, where $Z_\ell \sim \mathcal{N}(0, \beta^2 \mathrm{I})$

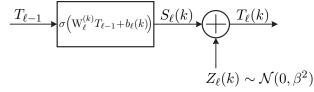


- $\implies X \mapsto T_\ell$ is a **parametrized channel** that depends on DNN param.!
- $\implies I(X;T_{\ell})$ is a **function** of weights and biases!
- Operational Perspective:

Modification: Inject (small) Gaussian noise to neurons' output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

• Formally: $T_{\ell} = f_{\ell}(T_{\ell-1}) + Z_{\ell}$, where $Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$



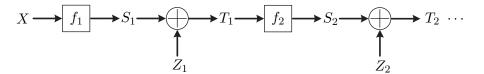
- $\implies X \mapsto T_\ell$ is a **parametrized channel** that depends on DNN param.!
- $\implies I(X;T_{\ell})$ is a **function** of weights and biases!
- Operational Perspective:

Performance & learned representations similar to det. DNNs ($\beta \approx 10^{-1}$)

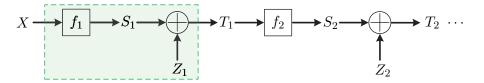
7/14

Mutual Information in Noisy DNNs

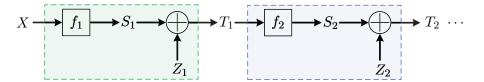
Noisy DNN:



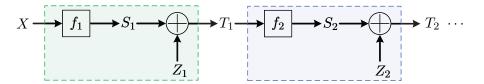
Noisy DNN:



Noisy DNN:

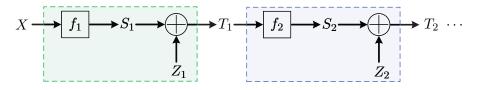


Noisy DNN: $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$



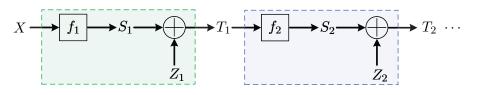
Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$

$$X \longrightarrow f_{1} \longrightarrow S_{1} \longrightarrow T_{1} \longrightarrow f_{2} \longrightarrow S_{2} \longrightarrow T_{2} \cdots$$

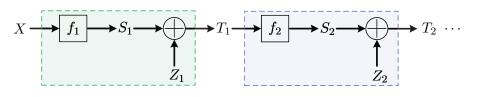


• Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset

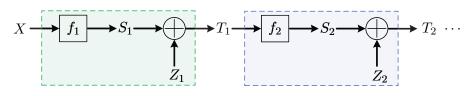
Noisy DNN: $S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$



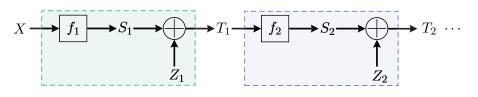
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$



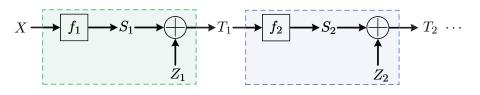
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_\ell)=h(T_\ell)-\frac{1}{m}\sum_{i=1}^m h(T_\ell|X=x_i)$
 - Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$



- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_\ell)=h(T_\ell)-\frac{1}{m}\sum_{i=1}^m h(T_\ell|X=x_i)$
 - Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$

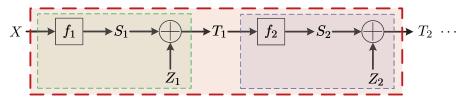


- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_\ell)=h(T_\ell)-\frac{1}{m}\sum_{i=1}^m h(T_\ell|X=x_i)$
 - Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + \mathbf{Z}_{\ell} \sim P * \boldsymbol{\varphi}$



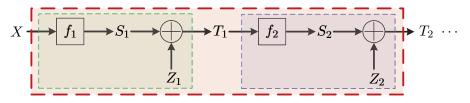
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_\ell)=h(T_\ell)-\frac{1}{m}\sum_{i=1}^m h(T_\ell|X=x_i)$
 - Structure: $S_\ell \perp Z_\ell \implies T_\ell = S_\ell + Z_\ell \sim P * \varphi$
- ***** Know the distribution φ of Z_{ℓ} (noise injected by design)

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



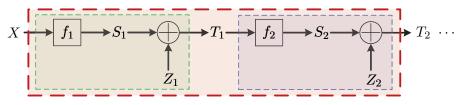
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
 - Structure: $S_\ell \perp Z_\ell \implies T_\ell = S_\ell + Z_\ell \sim P * \varphi$
- *** Know** the distribution φ of Z_{ℓ} (noise injected by design)

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$

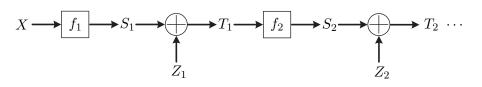


- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
 - Structure: $S_\ell \perp Z_\ell \implies T_\ell = S_\ell + Z_\ell \sim P * \varphi$
- *** Know** the distribution φ of Z_{ℓ} (noise injected by design)
- $igoplus P_{S_\ell}$ and $P_{S_\ell|X}$ are extremely complicated to compute/evaluate

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$

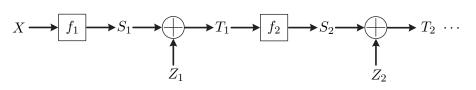


- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
 - Structure: $S_{\ell} \perp Z_{\ell} \implies T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$
- **%** Know the distribution φ of Z_{ℓ} (noise injected by design)
- $\ \ \ \ P_{S_\ell}$ and $P_{S_\ell|X}$ are extremely complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass



Differential Entropy Estimation under Gaussian Convolutions

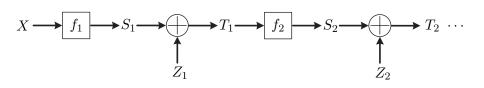
Estimate $h(P*\varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0, \beta^2 I_d)$).



Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P*\varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0, \beta^2 I_d)$).

<u>Estimation Results</u> [G.-Greenewald-Polyanskiy'18]:

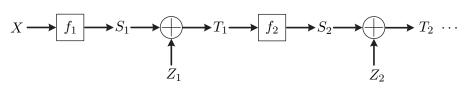


Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P*\varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0, \beta^2 I_d)$).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

► Efficient & parallelizable estimator $h(\hat{P}_n * \varphi) \approx h(P * \varphi)$



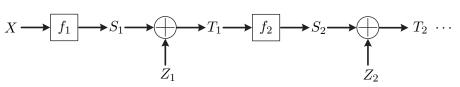
Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P*\varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0, \beta^2 I_d)$).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

- ▶ Efficient & parallelizable estimator $h(\hat{P}_n * \varphi) \approx h(P * \varphi)$
- ▶ **Guarantees:** Estimation risk is $O(1/\sqrt{n})$ (all constants explicit)*
- \star Exponentially large in d though constants, which is provably necessary.

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



Differential Entropy Estimation under Gaussian Convolutions

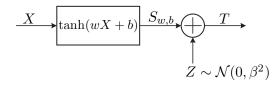
Estimate $h(P*\varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0,\beta^2\mathrm{I}_d)$).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

- ▶ Efficient & parallelizable estimator $h(\hat{P}_n * \varphi) \approx h(P * \varphi)$
- ▶ **Guarantees:** Estimation risk is $O(1/\sqrt{n})$ (all constants explicit)*
- **Faster Rate:** kNN/KDE est. via 'noisy' samples attain $O\left(n^{-\frac{a}{b+d}}\right)$

Back to Noisy DNNs

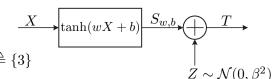
Single Neuron Classification:



Single Neuron Classification:

 $\bullet \ \, \textbf{Input:} \, \, X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$

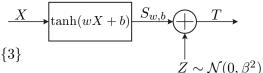
$$\mathcal{X}_{y=-1} \triangleq \{-3, -1, 1\}$$
 , $\mathcal{X}_{y=1} \triangleq \{3\}$

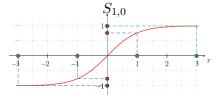


Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$

$$\mathcal{X}_{y=-1} \triangleq \{-3,-1,1\}$$
 , $\mathcal{X}_{y=1} \triangleq \{3\}$

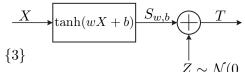


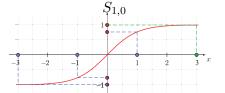


Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$

$$\mathcal{X}_{y=-1} \triangleq \{-3, -1, 1\}$$
 , $\mathcal{X}_{y=1} \triangleq \{3\}$



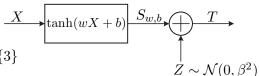


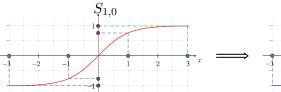
® Center & sharpen transition (\iff increase w and keep b=-2w)

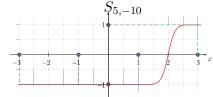
Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$

$$\mathcal{X}_{y=-1} \triangleq \{-3,-1,1\}$$
 , $\mathcal{X}_{y=1} \triangleq \{3\}$



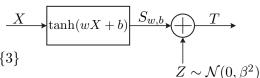


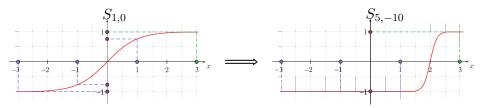


Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$

$$\mathcal{X}_{y=-1} \triangleq \{-3, -1, 1\} , \mathcal{X}_{y=1} \triangleq \{3\}$$





✓ Correct classification performance

Single Neuron Classification:

 $X \longrightarrow \tanh(wX+b) \longrightarrow C$ • Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$ $\mathcal{X}_{v=-1} \triangleq \{-3, -1, 1\}$, $\mathcal{X}_{v=1} \triangleq \{3\}$ **Mutual Information:**

 $X \longrightarrow \tanh(wX+b) \longrightarrow S_{w,b}$

Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$

$$\mathcal{X}_{y=-1} \triangleq \{-3, -1, 1\}$$
 , $\mathcal{X}_{y=1} \triangleq \{3\}$

• Mutual Information: $I(X;T) = I(S_{w,b}; S_{w,b} + Z)$

Single Neuron Classification:

- Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$
- $\mathcal{X}_{n=-1} \triangleq \{-3, -1, 1\}, \mathcal{X}_{n=1} \triangleq \{3\}$

• Mutual Information: $I(X;T) = I(S_{w.b}; S_{w.b} + Z)$

 $X \longrightarrow \tanh(wX+b) \longrightarrow S_{w,b}$

 $\implies I(X;T)$ is # bits (nats) transmittable over AWGN with symbols

$$S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \}$$

Single Neuron Classification:

- Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$
- $\mathcal{X}_{y=-1} \triangleq \{-3, -1, 1\}$, $\mathcal{X}_{y=1} \triangleq \{3\}$
- Mutual Information: $I(X;T) = I(S_{w,b};S_{w,b}+Z)$

 $X \longrightarrow \tanh(wX+b)$

$$\implies I(X;T)$$
 is # bits (nats) transmittable over AWGN with symbols

$$S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \} \longrightarrow \{\pm 1\}$$

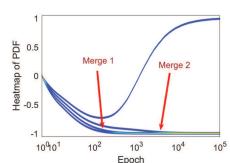
Single Neuron Classification:

- Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$
- $\mathcal{X}_{y=-1} \triangleq \{-3, -1, 1\}$, $\mathcal{X}_{y=1} \triangleq \{3\}$
- $\mathcal{X}_{y=-1}=\{-3,-1,1\}$, $\mathcal{X}_{y=1}=\{3\}$ $Z \sim \mathcal{N}(0,\beta^2)$ Mutual Information: $I(X;T)=I(S_{w,b};S_{w,b}+Z)$

 $X \rightarrow \tanh(wX+b) S_{w,b}$

 $\implies I(X;T)$ is # bits (nats) transmittable over AWGN with symbols

$$S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \} \longrightarrow \{\pm 1\}$$



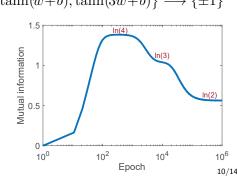
Single Neuron Classification:

- Input: $X \sim \mathsf{Unif}\{\pm 1, \pm 3\}$
- $\mathcal{X}_{n=-1} \triangleq \{-3, -1, 1\}$, $\mathcal{X}_{n=1} \triangleq \{3\}$
- Mutual Information: $I(X;T) = I(S_{w,b}; S_{w,b} + Z)$

$$\implies I(X;T)$$
 is # bits (nats) transmittable over AWGN with symbols

$$S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \} \longrightarrow \{\pm 1\}$$

Epoch



 $Z \sim \mathcal{N}(0, \beta^2)$

 $X \rightarrow \tanh(wX+b) S_{w,b}$

Noisy version of DNN from [Shwartz-Tishby'17]:

Noisy version of DNN from [Shwartz-Tishby'17]:

• Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

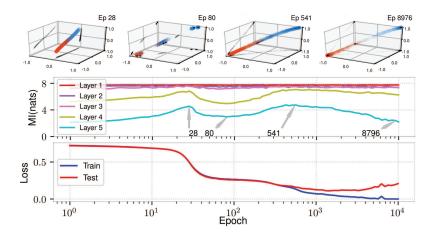
Noisy version of DNN from [Shwartz-Tishby'17]:

• Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

• Noise std.: Set to $\beta = 0.01$

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input & 12–**10**–**7**–**5**–**4**–**3**–2 MLP arch.
- Noise std.: Set to $\beta = 0.01$



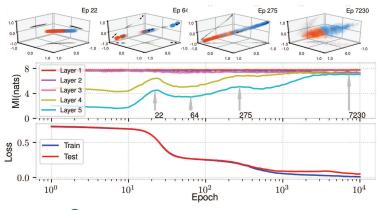
Noisy version of DNN from [Shwartz-Tishby'17]:

• Binary Classification: 12-bit input & 12–**10**–**7**–**5**–**4**–**3**–2 MLP arch.

• Noise std.: Set to $\beta = 0.01$

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- Noise std.: Set to $\beta = 0.01$



weight orthonormality regularization

Noisy version of DNN from [Shwartz-Tishby'17]:

- **Binary Classification:** 12-bit input & 12–**10**–**7**–**5**–**4**–**3**–2 MLP arch.
- Noise std.: Set to $\beta=0.01$
- Verified in multiple additional experiments

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- Noise std.: Set to $\beta = 0.01$
- Verified in multiple additional experiments
- \implies Compression of $I(X;T_{\ell})$ driven by clustering of representations

Circling back to Deterministic DNNs

• $I(X;T_{\ell})$ is constant

Circling back to Deterministic DNNs

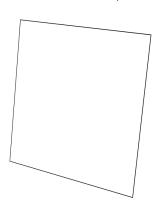
ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering

- $I(X;T_{\ell})$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):

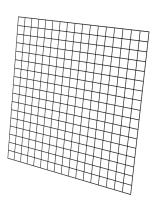
- ullet $I(X;T_\ell)$ is constant \Longrightarrow Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)

- \bullet $I(X;T_{\ell})$ is constant \Longrightarrow Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$

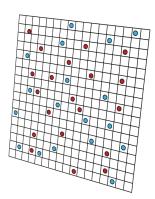
- $I(X;T_{\ell})$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$



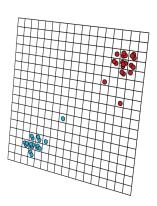
- \bullet $I(X;T_{\ell})$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$



- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell})) \uparrow$

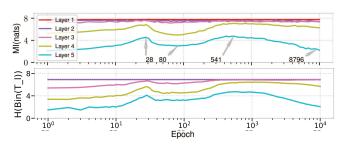


- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell})) \downarrow$



- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_{\ell})$ and $H(\text{Bin}(T_{\ell}))$ highly correlated!*

- \bullet $I(X;T_{\ell})$ is constant \Longrightarrow Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_\ell)$ and $H(\mathsf{Bin}(T_\ell))$ highly correlated!*



- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_{\ell})$ and $H(Bin(T_{\ell}))$ highly correlated!*
- **Det. DNNs:** $H(\mathsf{Bin}(T_\ell)) = I(X; \mathsf{Bin}(T_\ell))$ compresses

- ullet $I(X;T_\ell)$ is constant \Longrightarrow Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_{\ell})$ and $H(\text{Bin}(T_{\ell}))$ highly correlated!*
- **Det. DNNs:** $H(\mathsf{Bin}(T_\ell)) = I(X; \mathsf{Bin}(T_\ell))$ compresses
 - ✗ Incapable of accurately estimating MI values

- \bullet $I(X;T_{\ell})$ is constant \Longrightarrow Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_{\ell})$ and $H(Bin(T_{\ell}))$ highly correlated!*
- **Det. DNNs:** $H(\mathsf{Bin}(T_\ell)) = I(X; \mathsf{Bin}(T_\ell))$ compresses
 - Incapable of accurately estimating MI values
 - ✓ Does track clustering!

- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_{\ell})$ and $H(\text{Bin}(T_{\ell}))$ highly correlated!*
- **Det. DNNs:** $H(\mathsf{Bin}(T_\ell)) = I(X; \mathsf{Bin}(T_\ell))$ compresses
 - Incapable of accurately estimating MI values
 - ✓ Does track clustering!
- ⇒ Past works were not showing MI but clustering (via binned-MI)!

• Reexamined Information Bottleneck Compression:

- Reexamined Information Bottleneck Compression:
 - $lackbox{I}(X;T)$ fluctuations in det. DNNs are theoretically impossible

Reexamined Information Bottleneck Compression:

- $lackbox{I}(X;T)$ fluctuations in det. DNNs are theoretically impossible
- lackbox Yet, past works presented (binned) I(X;T) dynamics during training

- Reexamined Information Bottleneck Compression:
 - ightharpoonup I(X;T) fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs

- Reexamined Information Bottleneck Compression:
 - ightharpoonup I(X;T) fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - Developed estimator for accurate MI estimation over this framework

- Reexamined Information Bottleneck Compression:
 - ightharpoonup I(X;T) fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - Developed estimator for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression

- Reexamined Information Bottleneck Compression:
 - lacksquare I(X;T) fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - Developed estimator for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering

- Reexamined Information Bottleneck Compression:
 - ightharpoonup I(X;T) fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented (binned) I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - Developed estimator for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering
 - **Clustering** is the common phenomenon of interest!

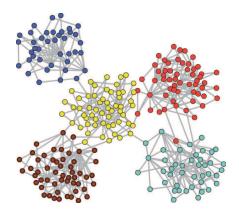
• Track Clustering in High-Dimensions:

- Track Clustering in High-Dimensions:
 - Lower-dimensional embedding

- Track Clustering in High-Dimensions:
 - Lower-dimensional embedding
 - Summarizing statistics

• Track Clustering in High-Dimensions:

- Lower-dimensional embedding
- Summarizing statistics
- ► Graph clusterability [Czumaj-Peng-Sohler'15]



- Track Clustering in High-Dimensions:
 - Lower-dimensional embedding
 - Summarizing statistics
 - ► Graph clusterability [Czumaj-Peng-Sohler'15]
- Role of Compression/Clustering:

• Track Clustering in High-Dimensions:

- Lower-dimensional embedding
- Summarizing statistics
- ► Graph clusterability [Czumaj-Peng-Sohler'15]

Role of Compression/Clustering:

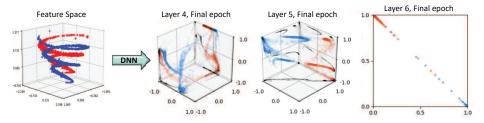
Is it necessary? Desirable?

• Track Clustering in High-Dimensions:

- Lower-dimensional embedding
- Summarizing statistics
- ► Graph clusterability [Czumaj-Peng-Sohler'15]

Role of Compression/Clustering:

► Is it necessary? Desirable?



Track Clustering in High-Dimensions:

- Lower-dimensional embedding
- Summarizing statistics
- ► Graph clusterability [Czumaj-Peng-Sohler'15]

Role of Compression/Clustering:

- ► Is it necessary? Desirable?
- Design tool for DNN architectures

• Track Clustering in High-Dimensions:

- Lower-dimensional embedding
- Summarizing statistics
- Graph clusterability [Czumaj-Peng-Sohler'15]

Role of Compression/Clustering:

- ► Is it necessary? Desirable?
- Design tool for DNN architectures

Algorithmic Perspective:

Track Clustering in High-Dimensions:

- Lower-dimensional embedding
- Summarizing statistics
- Graph clusterability [Czumaj-Peng-Sohler'15]

Role of Compression/Clustering:

- ► Is it necessary? Desirable?
- Design tool for DNN architectures

• Algorithmic Perspective:

▶ Better understanding of internal representation evolution & final state

• Track Clustering in High-Dimensions:

- Lower-dimensional embedding
- Summarizing statistics
- ► Graph clusterability [Czumaj-Peng-Sohler'15]

Role of Compression/Clustering:

- ► Is it necessary? Desirable?
- Design tool for DNN architectures

• Algorithmic Perspective:

- ▶ Better understanding of internal representation evolution & final state
- lacktriangle Enhanced DNN training alg. (regularize intermediate layers wrt I(Y;T))

Track Clustering in High-Dimensions:

Lower-dimensional embedding

Summarizing statistics

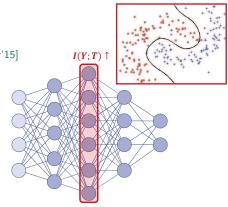
Graph clusterability [Czumaj-Peng-Sohler'15]

Role of Compression/Clustering:

- Is it necessary? Desirable?
- Design tool for DNN architectures

• Algorithmic Perspective:

- Better understanding of internal representation evolution & final state
- Enhanced DNN training alg. (regularize intermediate layers wrt I(Y;T))



References

- [1] Z. Goldfeld, E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B. Kingsbury and Y. Polyanskiy, "Estimating information flow in neural networks," Arxiv preprint https://arxiv.org/abs/1810.05728, October 2018.
- [2] Z. Goldfeld, K. Greenewald and Y. Polyanskiy, "Estimating differential entropy under Gaussian convolutions," Submitted to the *IEEE Transactions on Information Theory*, October 2018.

 Arxiv: https://arxiv.org/abs/1810.11589
- [3] Z. Goldfeld, G. Bresler and Y. Polyanskiy, "Information storage in the stochastic Ising model," Submitted to the *IEEE Transactions on Information Theory*, May 2018.

Arxiv: https://arxiv.org/abs/1805.03027

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

• Emerging technologies drastically shrink magnetic region per bit

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

Approach:

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as **Interacting Particle System:**

Hard-drive topology

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as **Interacting Particle System:**

ullet Hard-drive topology \Longrightarrow Graph

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

- ullet Hard-drive topology \Longrightarrow Graph
- Interactions

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

- ullet Hard-drive topology \Longrightarrow Graph
- ullet Interactions \Longrightarrow Stochastic dynamics

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

- ullet Hard-drive topology \Longrightarrow Graph
- ullet Interactions \Longrightarrow Stochastic dynamics

Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as **Interacting Particle System:**

- ullet Hard-drive topology \Longrightarrow Graph
- ullet Interactions \Longrightarrow Stochastic dynamics

Setup: Design initial configuration and recover data after t time

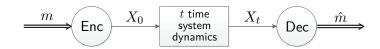
Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as **Interacting Particle System:**

- ullet Hard-drive topology \Longrightarrow Graph
- ullet Interactions \Longrightarrow Stochastic dynamics

Setup: Design initial configuration and recover data after t time



Motivation: Demand for high-capacity data storage devices

- Emerging technologies drastically shrink magnetic region per bit
- Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as **Interacting Particle System:**

- ullet Hard-drive topology \Longrightarrow Graph
- ullet Interactions \Longrightarrow Stochastic dynamics

Setup: Design initial configuration and recover data after t time

$$\xrightarrow{m} \text{Enc} \xrightarrow{X_0} \xrightarrow{t \text{ time system dynamics}} \xrightarrow{X_t} \text{Dec} \xrightarrow{\hat{m}}$$

[G.-Bresler-Polyanskiy'18] Performance benchmarks & hard-drive designs

Motivation: Modern networks are large, decentralized and ad hoc

Motivation: Modern networks are large, decentralized and ad hoc

Motivation: Modern networks are large, decentralized and ad hoc

• Most devices are simple & low-complexity

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network
- Cooperation for long-distance communication (mitigate interference)

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network
- Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks \implies Entire network

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network
- Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks \implies Entire network

P2P, feedback, relay, uplink, downlink channels

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network
- Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks \implies Entire network

- P2P, feedback, relay, uplink, downlink channels
- Public vs. private vs. confidential transmissions

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network
- Cooperation for long-distance communication (mitigate interference)

 $\underline{\mathsf{Modus}\;\mathsf{Operandi:}}\;\mathsf{Primitive\;\mathsf{building\;blocks}}\;\;\Longrightarrow\;\;\mathsf{Entire\;network}$

- P2P, feedback, relay, uplink, downlink channels
- Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network
- Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks \implies Entire network

- P2P, feedback, relay, uplink, downlink channels
- Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

• Stochastic connectivity patterns (random / small-world / free-scale)

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network
- Cooperation for long-distance communication (mitigate interference)

$\underline{\mathsf{Modus}\;\mathsf{Operandi:}}\;\mathsf{Primitive\;\mathsf{building\;blocks}}\;\;\Longrightarrow\;\;\mathsf{Entire\;network}$

- P2P, feedback, relay, uplink, downlink channels
- Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

- Stochastic connectivity patterns (random / small-world / free-scale)
- Local interactions distilled from primitive results

Motivation: Modern networks are large, decentralized and ad hoc

- Most devices are simple & low-complexity
- Nodes constantly join and leave the network
- Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks ⇒ Entire network

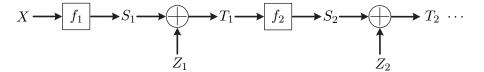
- P2P, feedback, relay, uplink, downlink channels
- Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

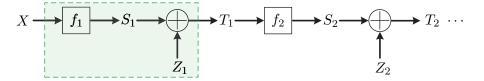
- Stochastic connectivity patterns (random / small-world / free-scale)
- Local interactions **distilled** from primitive results

Q: Reliable (& secure) information passing protocols? Fundamental limits?

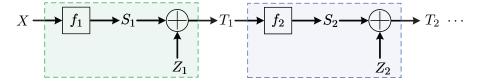
Noisy DNN:



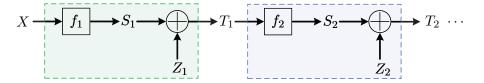
Noisy DNN:

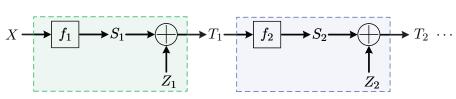


Noisy DNN:

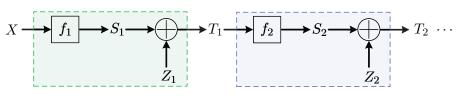


Noisy DNN: $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$



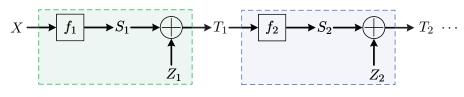


Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



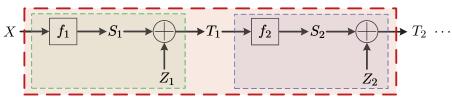
• Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



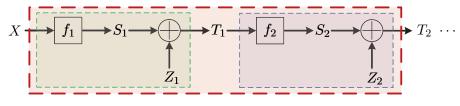
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



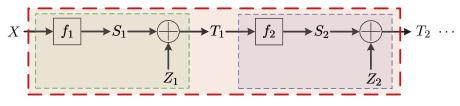
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



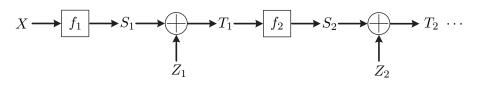
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $\Pathermode{ } P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $lap{P}{P}_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



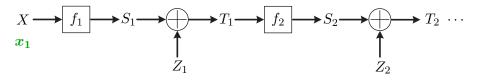
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $igoplus P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



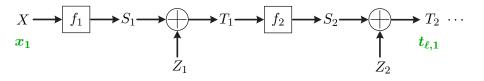
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $lacktriangledown P_{T_\ell}$ are f extremely complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



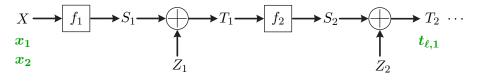
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $lap{8}$ P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- ℜ But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



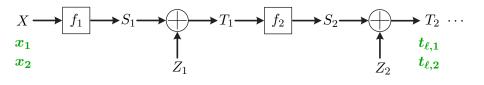
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $igotimes P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



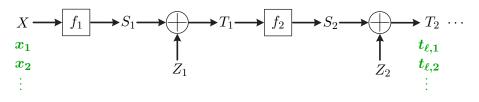
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $lap{8}$ P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



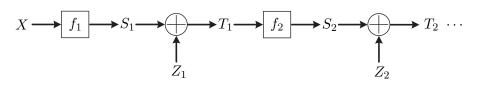
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $igotimes P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$

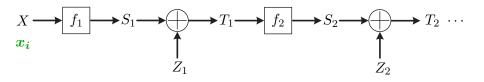


- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $igotimes P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$

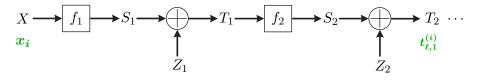


- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $\Pathermall{\$}$ P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values



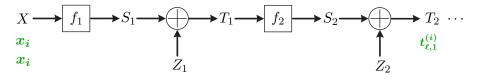
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $\Pathermall{\$} P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - **Sampling** $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



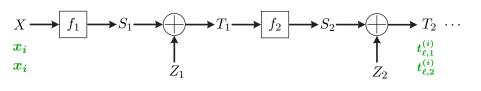
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $\Pathermall{\$} P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



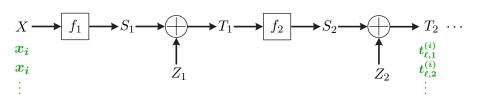
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $\Pathermall{\$} P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- ℜ But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - **Sampling** $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



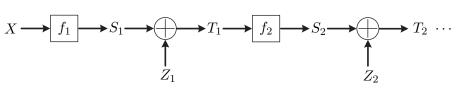
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $\Pathermall{\$} P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - **Sampling** $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$

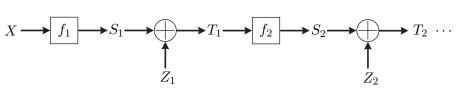


- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X; T_{\ell}) = h(T_{\ell}) \frac{1}{m} \sum_{i=1}^{m} h(T_{\ell}|X = x_i)$
- $\Pathermall{\$} P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- ℜ But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

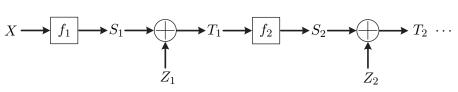
Noisy DNN: $S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$



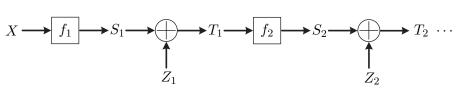
 \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**



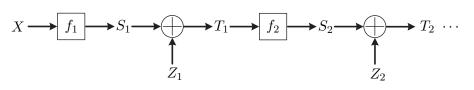
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density



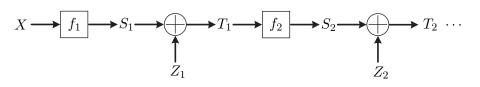
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - ullet Most results assume lower bounded density \Longrightarrow Inapplicable



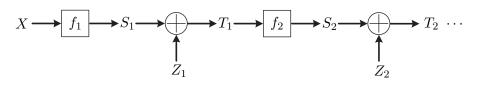
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:



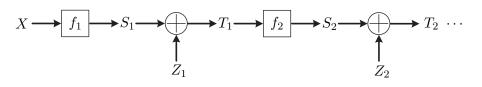
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:
 - KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]



- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:
 - KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
 - Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

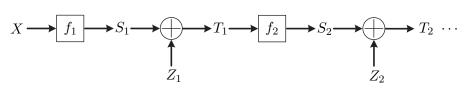


- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density
 — Inapplicable
 - 2 Works Drop Assumption:
 - KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
 - Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
 - Assume: $\operatorname{supp} = [0,1]^d$ & Periodic BC & $s \in (0,2]$



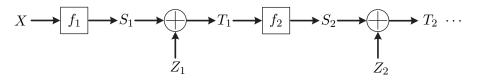
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:
 - KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
 - Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
 - Assume: $supp = [0, 1]^d$ & Periodic BC & $s \in (0, 2] \Longrightarrow Inapplicable^*$
 - * Except sub-Gaussian result from [Han-Jiao-Weissman-Wu'17]

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



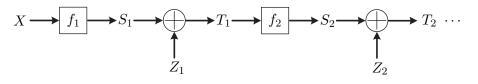
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density
 — Inapplicable
 - 2 Works Drop Assumption:
 - KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
 - Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
 - Assume: $supp = [0,1]^d$ & Periodic BC & $s \in (0,2] \Longrightarrow Inapplicable^*$
 - $\bullet \ \, {\bf Rate:} \quad {\rm Risk} \leq O\left(n^{-\frac{\alpha s}{\beta s+d}}\right) \text{,} \quad {\rm w}/\ \alpha,\beta \in \mathbb{N} \text{, s smoothness, d dimension}$

Noisy DNN: $S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$



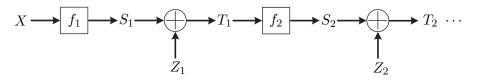
Exploit structure: We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:

Noisy DNN: $S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$



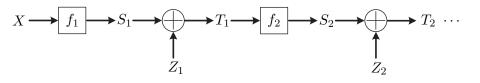
- **Exploit structure:** We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:
- Genie1: Sample $P = P_{S_{\ell}}$ and $P = P_{S_{\ell}|X=x_i}$ (sample $T_{\ell-1}$ & apply f_{ℓ})

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



- **Solution** Exploit structure: We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:
- Genie1: Sample $P = P_{S_{\ell}}$ and $P = P_{S_{\ell}|X=x_i}$ (sample $T_{\ell-1}$ & apply f_{ℓ})
- **Genie2:** Know the distribution φ of Z_ℓ (noise injected by design)

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$

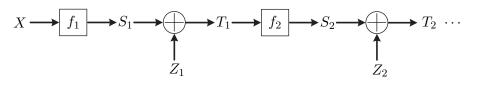


- **Exploit structure:** We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:
- Genie1: Sample $P = P_{S_{\ell}}$ and $P = P_{S_{\ell}|X=x_i}$ (sample $T_{\ell-1}$ & apply f_{ℓ})
- **Genie2:** Know the distribution φ of Z_ℓ (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P*\varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0,\beta^2\mathrm{I}_d)$).

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



- **Exploit structure:** We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:
- Genie1: Sample $P = P_{S_{\ell}}$ and $P = P_{S_{\ell}|X=x_i}$ (sample $T_{\ell-1}$ & apply f_{ℓ})
- **Genie2:** Know the distribution φ of Z_ℓ (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P*\varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0,\beta^2\mathrm{I}_d)$).

Nonparametric Class: Depends on DNN architecture (nonlinearities)

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

lacktriangle Curse of Dimensionality: Sample complexity exponential in d

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

f R Curse of Dimensionality: Sample complexity exponential in d

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

floors Curse of Dimensionality: Sample complexity exponential in d

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Comments:

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

f R Curse of Dimensionality: Sample complexity exponential in d

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Comments:

 \bullet Plug-in: \hat{h}_{SP} is just plug-in est. for the functional $\mathsf{T}_{\varphi}(P) \triangleq h(P * \varphi)$

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Comments:

- ullet Plug-in: \hat{h}_{SP} is just plug-in est. for the functional $\mathsf{T}_{\varphi}(P) \triangleq h(P * \varphi)$
- ullet Mixture: \hat{h}_{SP} is the diff. entropy of a **known** Gaussian mixture

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

flaor Curse of Dimensionality: Sample complexity exponential in d

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Comments:

- $\bullet \ \mathbf{Plug-in:} \ \hat{h}_{\mathsf{SP}} \ \mathsf{is just plug-in \ est.} \ \mathsf{for \ the \ functional} \ \mathsf{T}_{\varphi}(P) \triangleq h(P * \varphi)$
- ullet Mixture: \hat{h}_{SP} is the diff. entropy of a **known** Gaussian mixture
- Computing: Can be efficiently computed via MC integration

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d riangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \geq 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \operatorname{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

$$\begin{split} \sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \\ & \leq \frac{1}{2(4\pi\beta^2)^{\frac{d}{4}}} \log \left(\frac{n \left(2 + 2\beta\sqrt{(2+\epsilon)\log n} \right)^d}{(\pi\beta^2)^{\frac{d}{2}}} \right) \left(2 + 2\beta\sqrt{(2+\epsilon)\log n} \right)^{\frac{d}{2}} \frac{1}{\sqrt{n}} \\ & + \left(c_{\beta,d}^2 + \frac{2c_{\beta,d}d(1+\beta^2)}{\beta^2} + \frac{8d(d+2\beta^4 + d\beta^4)}{\beta^4} \right) \frac{2}{n} \\ & \text{where } c_{\beta,d} \triangleq \frac{d}{2}\log(2\pi\beta^2) + \frac{d}{\beta^2}. \end{split}$$

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \geq 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique:

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P| \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \geq 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to
$$\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$$
 and \mathcal{R}^c

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to
$$\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$$
 and \mathcal{R}^c

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \operatorname{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P| \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \geq 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Comments:

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Comments:

ullet Faster rate than $O\left(n^{-rac{lpha s}{eta s+d}}
ight)$ for kNN/KDE est. via 'noisy' samples

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \operatorname{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Comments:

- ullet Faster rate than $O\left(n^{-rac{lpha s}{eta s+d}}
 ight)$ for kNN/KDE est. via 'noisy' samples
- Explicit expression enables concrete error bounds in simulations

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \operatorname{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Comments:

- ullet Faster rate than $O\left(n^{-rac{lpha s}{eta s+d}}
 ight)$ for kNN/KDE est. via 'noisy' samples
- Explicit expression enables concrete error bounds in simulations
- Extension: P with sub-Gaussian marginals (ReLU + Weight regular.)

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$

$$\sup \mathbb{E}|h(P*\varphi) - h(\hat{P}_n * \varphi)| \le \sup \mathbb{E}|h_{\mathcal{R}}(P*\varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$$

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}]$

$$\sup \mathbb{E} |h(P*\varphi) - h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P*\varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$$

• Inside $R: \triangleright -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$

$$\sup \mathbb{E} |h(P * \varphi) - h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P * \varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P * \varphi)|$$

• Inside $R: \triangleright -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.

$$\implies$$
 Focus on analyzing $\mathbb{E}\Big|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\Big|$

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$ $\sup \mathbb{E}|h(P*\varphi) - h(\hat{P}_n*\varphi)| \leq \sup \mathbb{E}|h_{\mathcal{R}}(P*\varphi) - h_{\mathcal{R}}(\hat{P}_n*\varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$

- Inside $R:
 ightharpoonup -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.
 - \Longrightarrow Focus on analyzing $\mathbb{E}\Big|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\Big|$
 - Bias & variance analysis

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E} \left[-\log p(X) \mathbb{1}_{\{X \in \mathcal{R}\}} \right]$

$$\sup \mathbb{E} |h(P*\varphi) - h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P*\varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$$

• Inside
$$R: \triangleright -t \log t$$
 modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.

$$\implies$$
 Focus on analyzing $\mathbb{E}\Big|\big(P*\varphi\big)(x)-(\hat{P}_n*\varphi)(x)\Big|$

► Bias & variance analysis

$$\implies \mathbb{E}\left|(P * \varphi)(x) - (\hat{P}_n * \varphi)(x)\right| \le c_1 \sqrt{\frac{(P * \tilde{\varphi})(x)}{n}}, \quad \tilde{\varphi} = \mathcal{N}\left(0, \frac{\beta^2}{2} \mathbf{I}\right)$$

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$ $\sup \mathbb{E}|h(P*\varphi) - h(\hat{P}_n*\varphi)| \leq \sup \mathbb{E}|h_{\mathcal{R}}(P*\varphi) - h_{\mathcal{R}}(\hat{P}_n*\varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$

• Inside
$$R$$
: $ightharpoonup -t \log t$ modulus of cont. for $x\mapsto x\log x$ & Jensen's ineq.

$$\implies$$
 Focus on analyzing $\mathbb{E}\Big|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\Big|$

► Bias & variance analysis

$$\implies \mathbb{E}\left|(P*\varphi)(x) - (\hat{P}_n*\varphi)(x)\right| \le c_1 \sqrt{\frac{(P*\tilde{\varphi})(x)}{n}}, \quad \tilde{\varphi} = \mathcal{N}\left(0, \frac{\beta^2}{2}I\right)$$

Plug back in & Convex analysis

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$ $\sup \mathbb{E}|h(P*\varphi) - h(\hat{P}_n*\varphi)| \leq \sup \mathbb{E}|h_{\mathcal{R}}(P*\varphi) - h_{\mathcal{R}}(\hat{P}_n*\varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$

• Inside
$$R$$
: $ightharpoonup -t \log t$ modulus of cont. for $x\mapsto x\log x$ & Jensen's ineq.

$$\implies$$
 Focus on analyzing $\mathbb{E}\Big|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\Big|$

► Bias & variance analysis

$$\implies \mathbb{E}\left|(P * \varphi)(x) - (\hat{P}_n * \varphi)(x)\right| \le c_1 \sqrt{\frac{(P * \tilde{\varphi})(x)}{n}}, \quad \tilde{\varphi} = \mathcal{N}\left(0, \frac{\beta^2}{2}I\right)$$

▶ Plug back in & Convex analysis

$$\implies \sup \mathbb{E}|h_{\mathcal{R}}(P * \varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| \le c_2 \log \left(\frac{n\lambda(\mathcal{R})}{c_3}\right) \sqrt{\frac{\lambda(\mathcal{R})}{n}}$$

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

 $\bullet \ \, \textbf{Restricted Entropy:} \qquad h_{\mathcal{R}}(p) \mathop = \limits_{}^{} \mathbb{E} \big[-\log p(X) \mathbb{1}_{\{X \in \mathcal{R}\}} \big]$

$$\sup \mathbb{E} |h(P*\varphi) - h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P*\varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$$

• Inside
$$R:
ightharpoonup -t \log t$$
 modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.
$$\implies \text{Focus on analyzing} \quad \mathbb{E} \left| (P * \varphi)(x) - (\hat{P}_n * \varphi)(x) \right|$$

$$\implies \sup \mathbb{E}|h_{\mathcal{R}}(P * \varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| \le c_2 \log \left(\frac{n\lambda(\mathcal{R})}{c_3}\right) \sqrt{\frac{\lambda(\mathcal{R})}{n}}$$

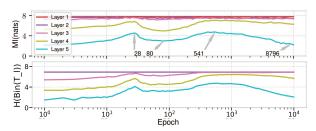
 $\implies \sup \mathbb{E}|nR(1 * \varphi) - nR(1 * n * \varphi)| \le c_2 \log\left(-\frac{1}{c_3}\right) \sqrt{-\frac{1}{n}}$

• Outside R: $O\left(\frac{1}{n}\right)$ decay via Chi-squared distribution tail bounds

 $\implies \mathbb{E}\left| (P * \varphi)(x) - (\hat{P}_n * \varphi)(x) \right| \le c_1 \sqrt{\frac{(P * \tilde{\varphi})(x)}{n}}, \quad \tilde{\varphi} = \mathcal{N}\left(0, \frac{\beta^2}{2} \mathbf{I}\right)$

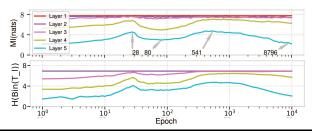
Binning vs True Mutual Information

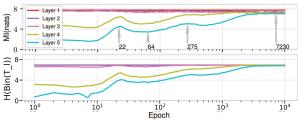
Comparing to Previously Shown MI Plots:



Binning vs True Mutual Information

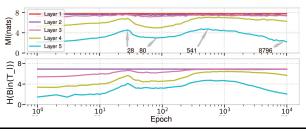
Comparing to Previously Shown MI Plots:

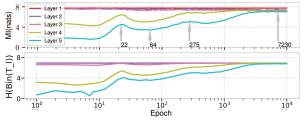




Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:





 \implies Past works were not showing MI but clustering (via binned-MI)!