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We will introduce the data processing inequality (DPI) here. In essence, the DPI shows that the f -
divergence between two distributions does not decrease when we push it through a transition kernel. This
can be thought of as follows: pushing two observations X and Y through a channel will only make it harder
to distinguish between them.
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Theorem 1 (Data Processing Inequality) Let PX , QX ∈ P(X ) and PY |X be a transition kernel from
(X ,F) to (Y,G). Let PY , QY ∈ P(Y) be the transformation of PX and QX , respectively, when pushed through
PY |X , i.e., PX(B) =

∫
X PY |X(B | x)dPX(x). Then, for any f -divergence, we have that

Df (PX‖QX) ≥ Df (PY ‖QY ).

Example 7.1

1. Gaussian Convolutions: Let X ∼ PX , X ′ ∼ QX , and Z,Z ′ ∼ Nσ := N (0, σ2Id) be independent random
variables. Define Y := X+Z and Y ′ := X ′+Z ′. Here, the transition kernel is PY |X(· | x) = N (x, σ2Id).

Recall that for two independent random variables W ∼ µ and W ′ ∼ ν, it holds that W + W ′ ∼ µ ∗ ν
where µ ∗ ν is the convolution of µ and ν defined as

(µ ∗ ν)(A) =

∫
X

∫
Y
1{x+y∈A}dµ(x)dν(y),

for any measurable A ⊆ X + Y := {x + y : x ∈ X , y ∈ Y} (note that if µ ∈ P(X ) and ν ∈ P(Y), then
µ ∗ ν ∈ P(X + Y)).

It follows that Y ∼ PX ∗ Nσ and Y ′ ∼ QX ∗ Nσ. The DPI implies

Df (PX‖QX) ≥ Df (PX ∗ Nσ‖QX ∗ Nσ).

2. Deterministic Functions: Let X ∼ PX , X ′ ∼ QX and set Y = g(X), Y ′ = g(X ′) for a deterministic
measurable g. The transition kernel is PY |X(· | x) = δg(x)(·), where δa is the Dirac measure centered at
a ∈ X , i.e., δa(A) = 1A(a), for any A measurable.

(i) Let E be any measurable event, define g(x) = 1{x∈E} and set Y = g(X). Note that Y is a binary
random variable with PY ({1}) = PX(E). This implies that Y = 1{X∈E} ∼ Ber(PX(E)) and
Y ′ = 1{X′∈E} ∼ Ber(QX(E)). By the data processing inequality, we obtain

Df (PX‖QX) ≥ Df

(
Ber
(
PX(E)

)∥∥∥Ber
(
QX(E)

))
,

for all measurable E.
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(ii) Consider g(x1, x2) = x1, and let X = (X1, X2) ∼ PX1,X2, X ′ = (X ′
1, X

′
2) ∼ QX1,X2, Y =

g(X1, X2) = X1, and Y ′ = g(X ′
1, X

′
2) = X ′

1. It follows that Y ∼ PX1 and Y ∼ QX1. Apply-
ing the data processing inequality gives

Df (PX1,X2‖QX1,X2) ≥ Df (PX1‖QX1)

By Item (iv) from the properties of f -divergences we have that if PX2|X1
= QX2|X1

then equality
above holds.

Proof of DPI: Throughout this proof we use the shorthand dP
dQ = dP/dλ

dQ/dλ , where λ is a measure that dominates

both P and Q (e.g., λ = P +Q), and dP/dλ is the Radon-Nikodym derivative of P w.r.t. λ.

First, recall that if PXY = PXPY |X and QXY = QXPY |X , then

Df (PX ‖ QX) = Df (PXY ‖ QXY ) = EQXY

[
f

(
dPXY
dQXY

)]
.

Using the law of total expectation, we get

EQXY

[
f

(
dPXY
dQXY

)]
= EQY

[
EQX|Y

[
f

(
dPXY
dQXY

) ∣∣∣∣Y ]] .
As f is convex, applying Jensen’s inequality yields

EQY

[
EQX|Y

[
f

(
dPXY
dQXY

) ∣∣∣∣Y ]] ≥ EQY

[
f

(
EQX|Y

[
dPXY
dQXY

∣∣∣∣Y ])] .
To conclude the proof, it suffices to show that

EQX|Y

[
dPXY
dQXY

∣∣∣∣Y ] =
dPY
dQY

.

It holds that

EQX|Y

[
dPXY
dQXY

∣∣∣∣Y ] =

∫
X

dPXY
dQXY

dQX|Y =

∫
X

dPY dPX|Y

dQY dQX|Y
dQX|Y =

∫
X

dPY
dQY

dPX|Y =
dPY
dQY

.
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