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We will introduce the data processing inequality (DPI) here. In essence, the DPI shows that the f-
divergence between two distributions does not decrease when we push it through a transition kernel. This
can be thought of as follows: pushing two observations X and Y through a channel will only make it harder
to distinguish between them.

Px
Qx

— Py
Py x

— Qy

Theorem 1 (Data Processing Inequality) Let Px,Qx € P(X) and Py|x be a transition kernel from
(X, F) to (),G). Let Py,Qy € P(Y) be the transformation of Px and Qx, respectively, when pushed through
Py|x, i.e., Px(B) = Jx Py|x(B | z)dPx(x). Then, for any f-divergence, we have that

D¢(Px||Qx) = Dy(Py|Qy).
Example 7.1

1. Gaussian Convolutions: Let X ~ Px, X' ~ Qx, and Z,Z' ~ N, := N(0,0%1;) be independent random
variables. DefineY := X+Z andY' := X'+Z'. Here, the transition kernel is Py x (- | ) = N (z,0%1g).

Recall that for two independent random variables W ~ p and W' ~ v, it holds that W + W' ~ pxv
where p* v is the convolution of 1 and v defined as

(1 v)(A) = /X /y 1o yeaydn(z)du(y),

for any measurable AC X +Y :={x+y:x e X, ye€ Y} (note that if p € P(X) and v € P(Y), then
pxvePX+Y)).

It follows that Y ~ Px * Ny and Y’ ~ Qx * N,,. The DPI implies

Dy(Px||Qx) > Dy(Px * N [|Qx * No).

2. Deterministic Functions: Let X ~ Py, X' ~ Qx and set Y = g(X), Y’ = g(X') for a deterministic
measurable g. The transition kernel is Py|x (- | ¥) = 64(4)(-), where &, is the Dirac measure centered at
a€ X, ie., 0,(A) = 14(a), for any A measurable.

(i) Let E be any measurable event, define g(v) = liepy and set Y = g(X). Note that Y is a binary
random variable with Py ({1}) = Px(E). This implies that Y = lixcpy ~ Ber(Px(E)) and
Y' = lyxepy ~ Ber(Qx(E)). By the data processing inequality, we obtain

Ds(Px|Qx) > Dy <Ber(PX(E))HBer(QX(E))),

for all measurable E.



(i) Consider g(xi,z2) = z1, and let X = (X1,X2) ~ Px, x,, X' = (X{,X}) ~ Qx,x,, ¥ =
9(X1,X2) = X1, and Y' = g(X{, X)) = X{. It follows that Y ~ Px, and Y ~ Qx,. Apply-
ing the data processing inequality gives

Dy (Px, x,1|Qx,,x5) = Dy(Px, |Qx,)

By Item (iv) from the properties of f-divergences we have that if Px, x, = Qx,|x, then equality
above holds.

Proof of DPI: Throughout this proof we use the shorthand j—g = jgéji, where )\ is a measure that dominates

both P and @ (e.g., A = P+ @), and dP/d\ is the Radon-Nikodym derivative of P w.r.t. A.

First, recall that if Pxy = PxPy|x and Qxy = Qx Py|x, then

Dy(Px || Qx) = Dy(Pxy || @xy) = Egyy [f (:gﬁi)] .

Using the law of total expectation, we get
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As f is convex, applying Jensen’s inequality yields
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To conclude the proof, it suffices to show that
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It holds that
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