Lecture 7: Data Processing Inequality

Lecturer: Prof. Ziv Goldfeld

Scriber: Aaron Lou, Net ID: al968

Assistant Editor: Kia Khezeli

We will introduce the data processing inequality (DPI) here. In essence, the DPI shows that the f-divergence between two distributions does not decrease when we push it through a transition kernel. This can be thought of as follows: pushing two observations X and Y through a channel will only make it harder to distinguish between them.

$$\begin{array}{cccc} P_X & \longrightarrow & P_Y \\ Q_X & \longrightarrow & P_{Y|X} & \longrightarrow & Q_Y \end{array}$$

Theorem 1 (Data Processing Inequality) Let $P_X, Q_X \in \mathcal{P}(\mathcal{X})$ and $P_{Y|X}$ be a transition kernel from $(\mathcal{X}, \mathcal{F})$ to $(\mathcal{Y}, \mathcal{G})$. Let $P_Y, Q_Y \in \mathcal{P}(\mathcal{Y})$ be the transformation of P_X and Q_X , respectively, when pushed through $P_{Y|X}$, i.e., $P_X(B) = \int_{\mathcal{X}} P_{Y|X}(B \mid x) dP_X(x)$. Then, for any f-divergence, we have that

$$D_f(P_X || Q_X) \ge D_f(P_Y || Q_Y).$$

Example 7.1

1. <u>Gaussian Convolutions:</u> Let $X \sim P_X$, $X' \sim Q_X$, and $Z, Z' \sim \mathcal{N}_{\sigma} := \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ be independent random variables. Define Y := X + Z and Y' := X' + Z'. Here, the transition kernel is $P_{Y|X}(\cdot \mid x) = \mathcal{N}(x, \sigma^2 \mathbf{I}_d)$. Recall that for two independent random variables $W \sim \mu$ and $W' \sim \nu$, it holds that $W + W' \sim \mu * \nu$ where $\mu * \nu$ is the convolution of μ and ν defined as

$$(\mu * \nu)(A) = \int_{\mathcal{X}} \int_{\mathcal{V}} \mathbb{1}_{\{x+y \in A\}} \mathrm{d}\mu(x) \mathrm{d}\nu(y),$$

for any measurable $A \subseteq \mathcal{X} + \mathcal{Y} := \{x + y : x \in \mathcal{X}, y \in \mathcal{Y}\}$ (note that if $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$, then $\mu * \nu \in \mathcal{P}(\mathcal{X} + \mathcal{Y})$).

It follows that $Y \sim P_X * \mathcal{N}_{\sigma}$ and $Y' \sim Q_X * \mathcal{N}_{\sigma}$. The DPI implies

$$D_f(P_X||Q_X) \ge D_f(P_X * \mathcal{N}_\sigma||Q_X * \mathcal{N}_\sigma).$$

- 2. <u>Deterministic Functions:</u> Let $X \sim P_X$, $X' \sim Q_X$ and set Y = g(X), Y' = g(X') for a deterministic measurable g. The transition kernel is $P_{Y|X}(\cdot \mid x) = \delta_{g(x)}(\cdot)$, where δ_a is the Dirac measure centered at $a \in \mathcal{X}$, i.e., $\delta_a(A) = \mathbb{1}_A(a)$, for any A measurable.
 - (i) Let E be any measurable event, define $g(x) = \mathbb{1}_{\{x \in E\}}$ and set Y = g(X). Note that Y is a binary random variable with $P_Y(\{1\}) = P_X(E)$. This implies that $Y = \mathbb{1}_{\{X \in E\}} \sim \operatorname{Ber}(P_X(E))$ and $Y' = \mathbb{1}_{\{X' \in E\}} \sim \operatorname{Ber}(Q_X(E))$. By the data processing inequality, we obtain

$$D_f(P_X||Q_X) \ge D_f\Big(\mathrm{Ber}\big(P_X(E)\big)\Big\|\mathrm{Ber}\big(Q_X(E)\big)\Big),$$

for all measurable E.

(ii) Consider $g(x_1,x_2)=x_1$, and let $X=(X_1,X_2)\sim P_{X_1,X_2}$, $X'=(X'_1,X'_2)\sim Q_{X_1,X_2}$, $Y=g(X_1,X_2)=X_1$, and $Y'=g(X'_1,X'_2)=X'_1$. It follows that $Y\sim P_{X_1}$ and $Y\sim Q_{X_1}$. Applying the data processing inequality gives

$$D_f(P_{X_1,X_2}||Q_{X_1,X_2}) \ge D_f(P_{X_1}||Q_{X_1})$$

By Item (iv) from the properties of f-divergences we have that if $P_{X_2|X_1} = Q_{X_2|X_1}$ then equality above holds.

Proof of DPI: Throughout this proof we use the shorthand $\frac{dP}{dQ} = \frac{dP/d\lambda}{dQ/d\lambda}$, where λ is a measure that dominates both P and Q (e.g., $\lambda = P + Q$), and $dP/d\lambda$ is the Radon-Nikodym derivative of P w.r.t. λ .

First, recall that if $P_{XY} = P_X P_{Y|X}$ and $Q_{XY} = Q_X P_{Y|X}$, then

$$D_f(P_X \parallel Q_X) = D_f(P_{XY} \parallel Q_{XY}) = \mathbb{E}_{Q_{XY}} \left[f\left(\frac{\mathrm{d}P_{XY}}{\mathrm{d}Q_{XY}}\right) \right].$$

Using the law of total expectation, we get

$$\mathbb{E}_{Q_{XY}}\left[f\left(\frac{\mathrm{d}P_{XY}}{\mathrm{d}Q_{XY}}\right)\right] = \mathbb{E}_{Q_Y}\left[\mathbb{E}_{Q_{X|Y}}\left[f\left(\frac{\mathrm{d}P_{XY}}{\mathrm{d}Q_{XY}}\right)\bigg|Y\right]\right].$$

As f is convex, applying Jensen's inequality yields

$$\mathbb{E}_{Q_Y}\left[\mathbb{E}_{Q_{X|Y}}\left[f\left(\frac{\mathrm{d}P_{XY}}{\mathrm{d}Q_{XY}}\right)\bigg|Y\right]\right] \geq \mathbb{E}_{Q_Y}\left[f\left(\mathbb{E}_{Q_{X|Y}}\left[\frac{\mathrm{d}P_{XY}}{\mathrm{d}Q_{XY}}\bigg|Y\right]\right)\right].$$

To conclude the proof, it suffices to show that

$$\mathbb{E}_{Q_{X|Y}}\left\lceil \frac{\mathrm{d}P_{XY}}{\mathrm{d}Q_{XY}} \middle| Y \right\rceil = \frac{\mathrm{d}P_Y}{\mathrm{d}Q_Y}.$$

It holds that

$$\mathbb{E}_{Q_{X|Y}}\left[\frac{\mathrm{d}P_{XY}}{\mathrm{d}Q_{XY}}\middle|Y\right] = \int_{\mathcal{X}}\frac{\mathrm{d}P_{XY}}{\mathrm{d}Q_{XY}}\mathrm{d}Q_{X|Y} = \int_{\mathcal{X}}\frac{\mathrm{d}P_{Y}\mathrm{d}P_{X|Y}}{\mathrm{d}Q_{Y}\mathrm{d}Q_{X|Y}}\mathrm{d}Q_{X|Y} = \int_{\mathcal{X}}\frac{\mathrm{d}P_{Y}}{\mathrm{d}Q_{Y}}\mathrm{d}P_{X|Y} = \frac{\mathrm{d}P_{Y}}{\mathrm{d}Q_{Y}}.$$