Optimality of the Plug-in Estimator for Differential Entropy Estimation under Gaussian Convolutions

Ziv Goldfeld, Kristjan Greenewald, Yury Polyanskiy and Jonathan Weed

MIT, MIT-IBM Watson Al Lab

International Symposium on Information Theory
July 9th, 2019

Setup: Estimate h(X + Z) for d-dimensional, independent X and Z:

Setup: Estimate h(X + Z) for d-dimensional, independent X and Z:

• $X \sim P$, where $P \in \mathcal{F}_d$ is unknown (nonparametric class)

Setup: Estimate h(X + Z) for d-dimensional, independent X and Z:

- $X \sim P$, where $P \in \mathcal{F}_d$ is unknown (nonparametric class)
- $Z \sim \mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

Setup: Estimate h(X + Z) for d-dimensional, independent X and Z:

- $X \sim P$, where $P \in \mathcal{F}_d$ is unknown (nonparametric class)
- $Z \sim \mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

Resources: An estimator \hat{h} of h(X+Z) can use

Setup: Estimate h(X + Z) for d-dimensional, independent X and Z:

- ullet $X\sim P$, where $P\in\mathcal{F}_d$ is unknown (nonparametric class)
- $Z \sim \mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

Resources: An estimator \hat{h} of h(X+Z) can use

 $\mathbf{0}$ n i.i.d. samples $X^n \triangleq (X_i)_{i=1}^n$ from P.

Setup: Estimate h(X + Z) for d-dimensional, independent X and Z:

- ullet $X\sim P$, where $P\in\mathcal{F}_d$ is unknown (nonparametric class)
- $Z \sim \mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

Resources: An estimator \hat{h} of h(X+Z) can use

- $\mathbf{0}$ n i.i.d. samples $X^n \triangleq (X_i)_{i=1}^n$ from P.
- **②** Knowledge of \mathcal{N}_{σ} .

Setup: Estimate h(X + Z) for d-dimensional, independent X and Z:

- $X \sim P$, where $P \in \mathcal{F}_d$ is unknown (nonparametric class)
- $Z \sim \mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

Resources: An estimator \hat{h} of h(X+Z) can use

- ② Knowledge of \mathcal{N}_{σ} .

Absolute Error Minimax Risk:

$$\mathcal{R}^{\star}(n, \sigma, \mathcal{F}_d) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_d} \mathbb{E} \Big| h(P * \mathcal{N}_{\sigma}) - \hat{h}(X^n, \sigma) \Big|$$

Setup: Estimate h(X + Z) for d-dimensional, independent X and Z:

- $X \sim P$, where $P \in \mathcal{F}_d$ is unknown (nonparametric class)
- $Z \sim \mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

Resources: An estimator \hat{h} of h(X+Z) can use

- ② Knowledge of \mathcal{N}_{σ} .

Absolute Error Minimax Risk:

$$\mathcal{R}^{\star}(n, \sigma, \mathcal{F}_d) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_d} \mathbb{E} \Big| h(P * \mathcal{N}_{\sigma}) - \hat{h}(X^n, \sigma) \Big|$$

§ Sample complexity $n^*(\eta, \sigma, \mathcal{F}_d)$: least n needed for η -gap estimation.

Information Bottleneck Theory [Tishby-Zaslavsky'15, Shwartz-Tishby'17]
 Estimate mutual information between layers of a DNN

- Information Bottleneck Theory [Tishby-Zaslavsky'15, Shwartz-Tishby'17] Estimate mutual information between layers of a DNN
- Unsupervised Learning [Hjelm et al'18, Oord-Li-Vinyals'18]
 Mutual information for learning representations (Deep InfoMax, CPC)

- Information Bottleneck Theory [Tishby-Zaslavsky'15, Shwartz-Tishby'17] Estimate mutual information between layers of a DNN
- Unsupervised Learning [Hjelm et al'18, Oord-Li-Vinyals'18]

 Mutual information for learning representations (Deep InfoMax, CPC)
- * IT measure degenerate over DNNs with fixed parameters

- Information Bottleneck Theory [Tishby-Zaslavsky'15, Shwartz-Tishby'17] Estimate mutual information between layers of a DNN
- Unsupervised Learning [Hjelm et al'18, Oord-Li-Vinyals'18]

 Mutual information for learning representations (Deep InfoMax, CPC)
- **★** IT measure degenerate over DNNs with fixed parameters
- ⇒ Study Info. Flow in DNNs: Stochastic DNNs via noise injection [Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

- Information Bottleneck Theory [Tishby-Zaslavsky'15, Shwartz-Tishby'17] Estimate mutual information between layers of a DNN
- Unsupervised Learning [Hjelm et al'18, Oord-Li-Vinyals'18]
 Mutual information for learning representations (Deep InfoMax, CPC)
- ***** IT measure **degenerate** over DNNs with fixed parameters
- ⇒ Study Info. Flow in DNNs: Stochastic DNNs via noise injection [Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

$$T_{\ell-1} \longrightarrow \sigma\left(\mathbf{W}_{\ell}^{(k)}T_{\ell-1} + b_{\ell}(k)\right) \xrightarrow{S_{\ell}(k)} T_{\ell}(k) \longrightarrow T_{\ell}(k)$$

$$Z_{\ell}(k) \sim \mathcal{N}(0, \sigma^{2})$$

 $ext{ ext{ ext{ iny Can} sample }} S_\ell ext{ (gen. model) & want to estimate } h(T_\ell) = h(S_\ell + Z_\ell)_{3/17}$

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Method: Estimate $h(P * \mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P * \mathcal{N}_{\sigma}$

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

<u>Method:</u> Estimate $h(P * \mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P * \mathcal{N}_{\sigma}$

Theoretical Guarantees:

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

<u>Method:</u> Estimate $h(P*\mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P*\mathcal{N}_{\sigma}$

Theoretical Guarantees:

Most results assume lower bounded density

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

<u>Method:</u> Estimate $h(P * \mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P * \mathcal{N}_{\sigma}$

Theoretical Guarantees:

ullet Most results assume lower bounded density \Longrightarrow Inapplicable

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

<u>Method:</u> Estimate $h(P*\mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P*\mathcal{N}_{\sigma}$

Theoretical Guarantees:

- ullet Most results assume lower bounded density \Longrightarrow Inapplicable
- Applicable Here:

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

<u>Method:</u> Estimate $h(P*\mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P*\mathcal{N}_{\sigma}$

Theoretical Guarantees:

- Most results assume lower bounded density
 — Inapplicable
- Applicable Here:
 - [Han-Jiao-Weissman-Wu'17]: KDE + Best poly. approximation

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Method: Estimate $h(P*\mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P*\mathcal{N}_{\sigma}$

Theoretical Guarantees:

- Most results assume lower bounded density
 — Inapplicable
- Applicable Here:
 - [Han-Jiao-Weissman-Wu'17]: KDE + Best poly. approximation
 - $\implies P$ subgaussian, Risk_{KDE} $\leq O\left(n^{-\frac{2}{2+d}}\right)$ (Analysis: restricted smoothness)*

* Omitting multiplicative polylogarithmic factors.

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

<u>Method:</u> Estimate $h(P*\mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P*\mathcal{N}_{\sigma}$

Theoretical Guarantees:

- Most results assume lower bounded density

 Inapplicable
- Applicable Here:
 - [Han-Jiao-Weissman-Wu'17]: KDE + Best poly. approximation
 - $\implies P$ subgaussian, $\operatorname{Risk}_{\mathsf{KDE}} \leq O\left(n^{-\frac{2}{2+d}}\right)$ (Analysis: restricted smoothness)*
 - [Berrett-Samworth-Yuan'19]: Weighted kNN (Kozachenko-Leonenko)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Method: Estimate $h(P*\mathcal{N}_{\sigma})$ via i.i.d. (noisy) samples from $P*\mathcal{N}_{\sigma}$

Theoretical Guarantees:

- Most results assume lower bounded density
 — Inapplicable
- Applicable Here:
 - [Han-Jiao-Weissman-Wu'17]: KDE + Best poly. approximation
 - $\implies P$ subgaussian, $\operatorname{Risk}_{\mathsf{KDE}} \leq O\left(n^{-\frac{2}{2+d}}\right)$ (Analysis: restricted smoothness)*
 - 2 [Berrett-Samworth-Yuan'19]: Weighted kNN (Kozachenko-Leonenko)
 - $\implies P$ compactly supported, $\operatorname{Risk}_{\mathsf{w}-\mathsf{kNN}} \leq O(1/\sqrt{n})$ (dependence on d?)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \overset{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Our Estimator: $\hat{h}(X^n, \sigma) \triangleq h(\hat{P}_{X^n} * \mathcal{N}_{\sigma})$, where $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Our Estimator:
$$\hat{h}(X^n, \sigma) \triangleq h(\hat{P}_{X^n} * \mathcal{N}_{\sigma})$$
, where $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Comment: \hat{h} is **plug-in** estimator for $\mathsf{T}_{\sigma}(P) \triangleq h(P * \mathcal{N}_{\sigma})$

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Our Estimator:
$$\hat{h}(X^n, \sigma) \triangleq h(\hat{P}_{X^n} * \mathcal{N}_{\sigma})$$
, where $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Comment: \hat{h} is **plug-in** estimator for $\mathsf{T}_{\sigma}(P) \triangleq h(P * \mathcal{N}_{\sigma})$

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Our Estimator:
$$\hat{h}(X^n, \sigma) \triangleq h(\hat{P}_{X^n} * \mathcal{N}_{\sigma})$$
, where $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Comment: \hat{h} is **plug-in** estimator for $\mathsf{T}_{\sigma}(P) \triangleq h(P * \mathcal{N}_{\sigma})$

Nonparametric Classes:

Output Compact Support: $\mathcal{F}_d \triangleq \{P | \operatorname{supp}(P) \subseteq [-1,1]^d\}$

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Our Estimator:
$$\hat{h}(X^n, \sigma) \triangleq h(\hat{P}_{X^n} * \mathcal{N}_{\sigma})$$
, where $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Comment: \hat{h} is **plug-in** estimator for $\mathsf{T}_{\sigma}(P) \triangleq h(P * \mathcal{N}_{\sigma})$

- **① Compact Support:** $\mathcal{F}_d \triangleq \{P | \operatorname{supp}(P) \subseteq [-1, 1]^d\}$

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Our Estimator:
$$\hat{h}(X^n, \sigma) \triangleq h(\hat{P}_{X^n} * \mathcal{N}_{\sigma})$$
, where $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Comment: \hat{h} is **plug-in** estimator for $\mathsf{T}_{\sigma}(P) \triangleq h(P * \mathcal{N}_{\sigma})$

- **① Compact Support:** $\mathcal{F}_d \triangleq \{P | \operatorname{supp}(P) \subseteq [-1, 1]^d\}$
- **Relation:** Exists K'>0 such that $\mathcal{F}_d\subseteq\mathcal{F}_{d,K'}^{(\mathsf{SubG})}$

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \mathcal{N}_{\sigma})$ based on $X^n \stackrel{iid}{\sim} P \in \mathcal{F}_d$ and knowledge of \mathcal{N}_{σ} .

Our Estimator:
$$\hat{h}(X^n, \sigma) \triangleq h(\hat{P}_{X^n} * \mathcal{N}_{\sigma})$$
, where $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Comment:
$$\hat{h}$$
 is **plug-in** estimator for $T_{\sigma}(P) \triangleq h(P * \mathcal{N}_{\sigma})$

- **① Compact Support:** $\mathcal{F}_d \triangleq \{P | \operatorname{supp}(P) \subseteq [-1, 1]^d\}$
- ② Subgaussian: $\mathcal{F}_{d,K}^{(\mathsf{SubG})} \triangleq \{P|X \sim P \text{ is } K\text{-SubG}\}$ where X is K-SubG if $\mathbb{E}e^{\alpha^\mathsf{T}(X-\mathbb{E}X)} < e^{\frac{1}{2}K^2\|\alpha\|^2}$, $\forall \alpha \in \mathbb{R}^d$.

Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any
$$\sigma > 0, \ d \ge 1$$
, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(\mathsf{SubG})}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{X^n} * \mathcal{N}_{\sigma}) \right| \leq C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$

where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c.

Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0, \ d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(\mathsf{SubG})}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{X^n} * \mathcal{N}_{\sigma}) \right| \leq C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$

where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c.

Comments:

Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0, \ d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(\mathsf{SubG})}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{X^n} * \mathcal{N}_{\sigma}) \right| \leq C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$

where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c.

Comments:

• Explicit Expression: Enables concrete error bounds

Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any
$$\sigma > 0$$
, $d \ge 1$, we have
$$\sup_{P \in \mathcal{F}_{d,K}^{(\operatorname{SubG})}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{X^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$

where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c.

Comments:

- Explicit Expression: Enables concrete error bounds
- Minimax Rate Optimal: Attains parametric rate $O(n^{-\frac{1}{2}})$

Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0, \ d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(\mathsf{SubG})}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{X^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$

where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c.

Comments:

- Explicit Expression: Enables concrete error bounds
- Minimax Rate Optimal: Attains parametric rate $O(n^{-\frac{1}{2}})$

Proof (initial step): Based on [Polyanskiy-Wu'16]

$$\left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{X^n} * \mathcal{N}_{\sigma}) \right| \lesssim W_1(P * \mathcal{N}_{\sigma}, \hat{P}_{X^n} * \mathcal{N}_{\sigma})$$

Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma > 0$, $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_{d,K}^{(\mathsf{SubG})}} \mathbb{E} \left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{X^n} * \mathcal{N}_{\sigma}) \right| \le C_{\sigma,d,K} \cdot n^{-\frac{1}{2}}$$

where $C_{\sigma,d,K} = O_{\sigma,K}(c^d)$ for a constant c.

Comments:

- Explicit Expression: Enables concrete error bounds
- Minimax Rate Optimal: Attains parametric rate $O(n^{-\frac{1}{2}})$

Proof (initial step): Based on [Polyanskiy-Wu'16]

$$\left| h(P * \mathcal{N}_{\sigma}) - h(\hat{P}_{X^n} * \mathcal{N}_{\sigma}) \right| \lesssim W_1(P * \mathcal{N}_{\sigma}, \hat{P}_{X^n} * \mathcal{N}_{\sigma})$$

 \Longrightarrow Analyze empirical 1-Wasserstein distance under Gaussian convolutions

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X-Y||^p)^{1/p}$$

infimum over all couplings of ${\cal P}$ and ${\cal Q}$

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X-Y||^p)^{1/p}$$

infimum over all couplings of ${\cal P}$ and ${\cal Q}$

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf \left(\mathbb{E} ||X - Y||^p \right)^{1/p}$$

infimum over all couplings of ${\cal P}$ and ${\cal Q}$

Empirical 1-Wasserstein Distance:

ullet Distribution P on \mathbb{R}^d

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X-Y||^p)^{1/p}$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

ullet Distribution P on $\mathbb{R}^d \implies \mathsf{i.i.d.}$ Samples $(X_i)_{i=1}^n$

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X - Y||^p)^{1/p}$$

infimum over all couplings of P and Q

- ullet Distribution P on $\mathbb{R}^d \implies$ i.i.d. Samples $(X_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X-Y||^p)^{1/p}$$

infimum over all couplings of ${\cal P}$ and ${\cal Q}$

- ullet Distribution P on $\mathbb{R}^d \implies$ i.i.d. Samples $(X_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X-Y||^p)^{1/p}$$

infimum over all couplings of P and Q

- ullet Distribution P on $\mathbb{R}^d \implies$ i.i.d. Samples $(X_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X-Y||^p)^{1/p}$$

infimum over all couplings of ${\cal P}$ and ${\cal Q}$

- ullet Distribution P on $\mathbb{R}^d \implies$ i.i.d. Samples $(X_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X-Y||^p)^{1/p}$$

infimum over all couplings of P and Q

Empirical 1-Wasserstein Distance:

- ullet Distribution P on $\mathbb{R}^d \implies$ i.i.d. Samples $(X_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any d, we have $\mathbb{E}W_1(P*\mathcal{N}_\sigma, \hat{P}_{X^n}*\mathcal{N}_\sigma) \leq O_{\sigma,d}(n^{-\frac{1}{2}})$

<u>p-Wasserstein Distance:</u> For two distributions P and Q on \mathbb{R}^d and $p \geq 1$

$$W_p(P,Q) \triangleq \inf (\mathbb{E}||X-Y||^p)^{1/p}$$

infimum over all couplings of ${\cal P}$ and ${\cal Q}$

Empirical 1-Wasserstein Distance:

- ullet Distribution P on $\mathbb{R}^d \implies$ i.i.d. Samples $(X_i)_{i=1}^n$
- Empirical distribution $\hat{P}_{X^n} \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any d, we have $\mathbb{E}W_1(P*\mathcal{N}_\sigma,\hat{P}_{X^n}*\mathcal{N}_\sigma)\leq O_{\sigma,d}(n^{-\frac{1}{2}})=O_\sigma(c^dn^{-\frac{1}{2}})$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any
$$d$$
, we have $\mathbb{E}W_1(P*\mathcal{N}_\sigma,\hat{P}_{X^n}*\mathcal{N}_\sigma) \leq O_{\sigma,d}(n^{-\frac{1}{2}}) = O_\sigma(c^dn^{-\frac{1}{2}})$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any
$$d$$
, we have $\mathbb{E}W_1(P*\mathcal{N}_\sigma,\hat{P}_{X^n}*\mathcal{N}_\sigma) \leq O_{\sigma,d}(n^{-\frac{1}{2}}) = O_\sigma(c^dn^{-\frac{1}{2}})$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any
$$d$$
, we have $\mathbb{E}W_1(P * \mathcal{N}_{\sigma}, \hat{P}_{X^n} * \mathcal{N}_{\sigma}) \leq O_{\sigma,d}(n^{-\frac{1}{2}}) = O_{\sigma}(c^d n^{-\frac{1}{2}})$

•
$$\mathsf{D}_{KL}(P\|Q) \le \log(1 + \chi^2(P\|Q))$$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any
$$d$$
, we have $\mathbb{E}W_1(P*\mathcal{N}_\sigma,\hat{P}_{X^n}*\mathcal{N}_\sigma) \leq O_{\sigma,d}(n^{-\frac{1}{2}}) = O_\sigma(c^d n^{-\frac{1}{2}})$

- $\mathsf{D}_{KL}(P\|Q) \le \log(1 + \chi^2(P\|Q))$
- Bounding χ^2 with q = PDF of $P * \mathcal{N}_{\sigma}$:

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any d, we have $\mathbb{E}W_1(P*\mathcal{N}_\sigma,\hat{P}_{X^n}*\mathcal{N}_\sigma) \leq O_{\sigma,d}(n^{-\frac{1}{2}}) = O_\sigma(c^dn^{-\frac{1}{2}})$

- $D_{KL}(P||Q) \le \log(1 + \chi^2(P||Q))$
- Bounding χ^2 with q = PDF of $P * \mathcal{N}_{\sigma}$:

$$\mathbb{E}\chi^2\left(\hat{P}_{X^n}*\mathcal{N}_\sigma\Big\|P*\mathcal{N}_\sigma\right) = \frac{1}{n}\left(\int_{\mathbb{R}^d}\mathbb{E}\frac{(\varphi(z-X)-q(z))^2}{q(z)}\mathrm{d}z\right) = \frac{1}{n}I_{\chi^2}(X;Y)$$

$$I_{\chi^2}(X;Y) \triangleq \chi^2(P_{X,Y} || P_X \otimes P_Y) , \quad X \sim P, Y = X + Z$$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any d, we have $\mathbb{E}W_1(P*\mathcal{N}_\sigma,\hat{P}_{X^n}*\mathcal{N}_\sigma) \leq O_{\sigma,d}(n^{-\frac{1}{2}}) = O_\sigma(c^dn^{-\frac{1}{2}})$

- $D_{KL}(P||Q) \le \log(1 + \chi^2(P||Q))$
- Bounding χ^2 with q = PDF of $P * \mathcal{N}_{\sigma}$:

$$\mathbb{E}\chi^2\left(\hat{P}_{X^n}*\mathcal{N}_\sigma\middle\|P*\mathcal{N}_\sigma\right) = \frac{1}{n}\left(\int_{\mathbb{R}^d}\mathbb{E}\frac{(\varphi(z-X)-q(z))^2}{q(z)}\mathrm{d}z\right) = \frac{1}{n}I_{\chi^2}(X;Y)$$

$$I_{\chi^2}(X;Y) \triangleq \chi^2(P_{X,Y}\|P_X\otimes P_Y), \quad X\sim P,\, Y=X+Z$$

$$\implies$$
 $\mathsf{D}_{KL} = O\left(\frac{1}{n}\right) \text{ if } I_{\chi^2}(X;Y) < \infty.$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any d, we have $\mathbb{E}W_1(P*\mathcal{N}_\sigma,\hat{P}_{X^n}*\mathcal{N}_\sigma) \leq O_{\sigma,d}(n^{-\frac{1}{2}}) = O_\sigma(c^dn^{-\frac{1}{2}})$

Main Idea: Consider D_{KL} instead

- $D_{KL}(P||Q) < \log(1 + \chi^2(P||Q))$
 - Bounding χ^2 with q = PDF of $P * \mathcal{N}_{\sigma}$:

bounding
$$\chi$$
 with $q = 1$ broom $1 + 5 v_{\sigma}$

$$\mathbb{E}\chi^2\left(\hat{P}_{X^n}*\mathcal{N}_\sigma\Big\|P*\mathcal{N}_\sigma\right) = \frac{1}{n}\left(\int_{\mathbb{R}^d}\mathbb{E}\frac{(\varphi(z-X)-q(z))^2}{q(z)}\mathsf{d}z\right) = \frac{1}{n}I_{\chi^2}(X;Y)$$

 $I_{\chi^2}(X;Y) \triangleq \chi^2(P_{X,Y} || P_X \otimes P_Y)$, $X \sim P, Y = X + Z$

Question: Is I_{χ^2} finite, like $\log(1 + \mathsf{SNR})$, for any finite-2nd-moment X?

 \implies $\mathsf{D}_{KL} = O\left(\frac{1}{n}\right) \text{ if } I_{\chi^2}(X;Y) < \infty.$

8/17

Define:
$$I_{\chi^2}(X;Y) \triangleq \chi^2(P_{X,Y} || P_X \otimes P_Y), Y = X + Z, X \sim P, Z \sim \mathcal{N}_{\sigma}.$$

$$\underline{\textbf{Define:}}\ I_{\chi^2}(X;Y) \triangleq \chi^2(P_{X,Y} \| P_X \otimes P_Y), \ Y = X + Z, \ X \sim P, \ Z \sim \mathcal{N}_{\sigma}.$$

Question: Decay rate of $\mathbb{E}\delta(P*\mathcal{N}_{\sigma},\hat{P}_{X^n}*\mathcal{N}_{\sigma})$ for different $\delta(\cdot,\cdot)$?

Define:
$$I_{\chi^2}(X;Y) \triangleq \chi^2(P_{X,Y} || P_X \otimes P_Y), Y = X + Z, X \sim P, Z \sim \mathcal{N}_{\sigma}.$$

Question: Decay rate of $\mathbb{E}\delta(P*\mathcal{N}_{\sigma},\hat{P}_{X^n}*\mathcal{N}_{\sigma})$ for different $\delta(\cdot,\cdot)$?

Answer: Dichotomy – all depends on whether $I_{\chi^2}(X;Y)$ is finite (!)

Define:
$$I_{\chi^2}(X;Y) \triangleq \chi^2(P_{X,Y} || P_X \otimes P_Y)$$
, $Y = X + Z$, $X \sim P$, $Z \sim \mathcal{N}_{\sigma}$.

Question: Decay rate of $\mathbb{E}\delta(P*\mathcal{N}_{\sigma},\hat{P}_{X^n}*\mathcal{N}_{\sigma})$ for different $\delta(\cdot,\cdot)$?

Answer: Dichotomy – all depends on whether $I_{\chi^2}(X;Y)$ is finite (!)

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

- If P_X has bounded support, then $I_{\chi^2}(X;Y) < \infty$;
- ② If P_X be K-subgaussian with $K < \frac{\sigma}{2}$, then $I_{\chi^2}(X;Y) < \infty$;
- ① If $K > \sqrt{2\sigma}$, then $I_{\chi^2}(X;Y) = \infty$ for some K-subgaussian P.

10/17

$$\mathbb{E}\Big[\delta\Big(\hat{P}_{X^n}*\mathcal{N}_{\sigma},P*\mathcal{N}_{\sigma}\Big)\Big]symp ???$$

$$\mathbb{E}\Big[\delta\Big(\hat{P}_{X^n}*\mathcal{N}_{\sigma},P*\mathcal{N}_{\sigma}\Big)\Big]symp ???$$

In All Dimensions: (and different "distances" δ)

ullet W_1 and $\|\cdot\|_{\mathsf{TV}}$ are always $O\left(rac{1}{\sqrt{n}}
ight)$

$$\mathbb{E}\Big[\delta\Big(\hat{P}_{X^n}*\mathcal{N}_{\sigma},P*\mathcal{N}_{\sigma}\Big)\Big]\,symp ???$$

- ullet W₁ and $\|\cdot\|_{\mathsf{TV}}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$
- ullet W $_2$ is $O\left(rac{1}{\sqrt{n}}
 ight)$ or $\omega\left(rac{1}{\sqrt{n}}
 ight)$. But always $O\left(n^{-rac{1}{4}}
 ight)$

$$\mathbb{E}\Big[\delta\Big(\hat{P}_{X^n}*\mathcal{N}_{\sigma},P*\mathcal{N}_{\sigma}\Big)\Big]\,symp ???$$

- W_1 and $\|\cdot\|_{\mathsf{TV}}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$
- W₂ is $O\left(\frac{1}{\sqrt{n}}\right)$ or $\omega\left(\frac{1}{\sqrt{n}}\right)$. But always $O\left(n^{-\frac{1}{4}}\right)$
- D_{KL} is $\frac{1}{n}$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$

$$\mathbb{E}\Big[\delta\Big(\hat{P}_{X^n}*\mathcal{N}_{\sigma},P*\mathcal{N}_{\sigma}\Big)\Big] symp ???$$

- W_1 and $\|\cdot\|_{\mathsf{TV}}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$
- W₂ is $O\left(\frac{1}{\sqrt{n}}\right)$ or $\omega\left(\frac{1}{\sqrt{n}}\right)$. But always $O\left(n^{-\frac{1}{4}}\right)$
- D_{KL} is $\frac{1}{n}$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$
- χ^2 is $O\left(\frac{1}{n}\right)$ or $=\infty$

$$\mathbb{E}\Big[\delta\Big(\hat{P}_{X^n}*\mathcal{N}_{\sigma},P*\mathcal{N}_{\sigma}\Big)\Big] symp ???$$

In All Dimensions: (and different "distances" δ)

- ullet W₁ and $\|\cdot\|_{\mathsf{TV}}$ are always $O\left(\frac{1}{\sqrt{n}}\right)$
- W₂ is $O\left(\frac{1}{\sqrt{n}}\right)$ or $\omega\left(\frac{1}{\sqrt{n}}\right)$. But always $O\left(n^{-\frac{1}{4}}\right)$
- D_{KL} is $\frac{1}{n}$ or $\omega\left(\frac{1}{n}\right)$. But always $O\left(\frac{1}{\sqrt{n}}\right)$
- χ^2 is $O\left(\frac{1}{n}\right)$ or $=\infty$

Surprise: The dichotomy is fully governed by $I_{\chi^2}(X;Y)\stackrel{?}{=}\infty$

Let
$$P = \hat{P}_{X^n} * \mathcal{N}$$
, $Q = P * \mathcal{N}$.

$$h(P) - h(Q) = \left\{ \mathbb{E}_P - \mathbb{E}_Q \left[\log \frac{1}{Q(X)} \right] \right\} - D(P||Q)$$

Let
$$P = \hat{P}_{X^n} * \mathcal{N}$$
, $Q = P * \mathcal{N}$.

$$h(P) - h(Q) = \left\{ \mathbb{E}_P - \mathbb{E}_Q \left[\log \frac{1}{Q(X)} \right] \right\} - D(P \| Q)$$

$$\leq \left\{ \mathbb{E}_P - \mathbb{E}_Q \left[\log \frac{1}{Q(X)} \right] \right\}$$

Let
$$P = \hat{P}_{X^n} * \mathcal{N}$$
, $Q = P * \mathcal{N}$.

$$h(P) - h(Q) = \left\{ \mathbb{E}_P - \mathbb{E}_Q \left[\log \frac{1}{Q(X)} \right] \right\} - D(P \| Q)$$

$$\leq \left\{ \mathbb{E}_P - \mathbb{E}_Q \left[\log \frac{1}{Q(X)} \right] \right\}$$

$$\leq \sqrt{\operatorname{Var}_Q \left[\log \frac{1}{Q} \right]} \cdot \sqrt{\chi^2(P \| Q)}$$

Let $P = \hat{P}_{X^n} * \mathcal{N}$, $Q = P * \mathcal{N}$.

$$h(P) - h(Q) = \left\{ \mathbb{E}_P - \mathbb{E}_Q \left[\log \frac{1}{Q(X)} \right] \right\} - D(P \| Q)$$

$$\leq \left\{ \mathbb{E}_P - \mathbb{E}_Q \left[\log \frac{1}{Q(X)} \right] \right\}$$

$$\leq \sqrt{\operatorname{Var}_Q \left[\log \frac{1}{Q} \right]} \cdot \sqrt{\chi^2(P \| Q)}$$

$$\lesssim \sqrt{\chi^2(P \| Q)}$$

Last step: Use the fact that $Q = (\text{something}) * \mathcal{N}_{\sigma}$.

Is Exponentiality in Dimension Necessary?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^{\star}(\eta,\sigma,\mathcal{F}_d)=\Omega\left(\frac{2^{\gamma(\sigma)d}}{nd}\right)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ .

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^\star(\eta,\sigma,\mathcal{F}_d)=\Omega\Big(\frac{2^{\gamma(\sigma)d}}{\eta d}\Big)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ .

$$\Longrightarrow O\left(c^d n^{-\frac{1}{2}}\right)$$
 rate attained by plugin estimator is sharp in n and d

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^{\star}(\eta,\sigma,\mathcal{F}_d)=\Omega\Big(\frac{2^{\gamma(\sigma)d}}{\eta d}\Big)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ .

$$\implies O\left(c^d n^{-\frac{1}{2}}\right)$$
 rate attained by plugin estimator is sharp in n and d

Proof (main ideas):

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^{\star}(\eta,\sigma,\mathcal{F}_d)=\Omega\Big(\frac{2^{\gamma(\sigma)d}}{\eta d}\Big)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ .

$$\Longrightarrow O\left(c^d n^{-\frac{1}{2}}\right)$$
 rate attained by plugin estimator is sharp in n and d

Proof (main ideas):

• Relate $h(P*\mathcal{N}_\sigma)$ to Shannon entropy H(Q) $\mathrm{supp}(Q) = \mathsf{peak\text{-}constrained AWGN capacity achieving codebook } \mathcal{C}_d$

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed'19)

For any $\sigma>0$, sufficiently large d and sufficiently small $\eta>0$, we have $n^\star(\eta,\sigma,\mathcal{F}_d)=\Omega\Big(\frac{2^{\gamma(\sigma)d}}{\eta d}\Big)$, where $\gamma(\sigma)>0$ is monotonically decreasing in σ .

$$\implies O\left(c^d n^{-\frac{1}{2}}\right)$$
 rate attained by plugin estimator is sharp in n and d

Proof (main ideas):

- Relate $h(P * \mathcal{N}_{\sigma})$ to Shannon entropy H(Q) supp $(Q) = \mathsf{peak}\text{-}\mathsf{constrained}$ AWGN capacity achieving codebook \mathcal{C}_d
- \bullet H(Q) estimation sample complexity $\Omega\left(\frac{|\mathcal{C}_d|}{\eta\log|\mathcal{C}_d|}\right)$

Comparison: General-purpose est. accessing sample of $X+Z\sim P*\mathcal{N}_{\sigma}$

Comparison: General-purpose est. accessing sample of $X + Z \sim P * \mathcal{N}_{\sigma}$

LOO KDE Estimator from [Kandasamy et al.'15]

Comparison: General-purpose est. accessing sample of $X + Z \sim P * \mathcal{N}_{\sigma}$

- LOO KDE Estimator from [Kandasamy et al.'15]
- Kozachenko-Leonenko (KL) kNN Estimator [Kozachenko-Leonenko'87]

Comparison: General-purpose est. accessing sample of $X + Z \sim P * \mathcal{N}_{\sigma}$

- LOO KDE Estimator from [Kandasamy et al.'15]
- Kozachenko-Leonenko (KL) kNN Estimator [Kozachenko-Leonenko'87]
- Weighted KL (wKL) Estimator from [Berrett-Samworth-Yuan'19]

Comparison: General-purpose est. accessing sample of $X + Z \sim P * \mathcal{N}_{\sigma}$

- LOO KDE Estimator from [Kandasamy et al.'15]
- Kozachenko-Leonenko (KL) kNN Estimator [Kozachenko-Leonenko'87]
- Weighted KL (wKL) Estimator from [Berrett-Samworth-Yuan'19]

Bdd. Support: $P \propto 2^{-d} \sum_{x \in \{-1,1\}^d} \mathcal{N}(x, I_d) \cdot \mathbb{1}_{[-1,1]^d}$ (truncated GMM)

Comparison: General-purpose est. accessing sample of $X + Z \sim P * \mathcal{N}_{\sigma}$

- LOO KDE Estimator from [Kandasamy et al.'15]
- Kozachenko-Leonenko (KL) kNN Estimator [Kozachenko-Leonenko'87]
- Weighted KL (wKL) Estimator from [Berrett-Samworth-Yuan'19]

Bdd. Support: $P \propto 2^{-d} \sum_{x \in \{-1,1\}^d} \mathcal{N}(x, I_d) \cdot \mathbb{1}_{[-1,1]^d}$ (truncated GMM)

Unbounded Support: P as before but w/o truncation

Unbounded Support: P as before but w/o truncation

Setup: Noisy DNN for spiral dataset classification

Setup: Noisy DNN for spiral dataset classification

• Dataset: 2-dimensional 3-class spiral dataset

Setup: Noisy DNN for spiral dataset classification

• Dataset: 2-dimensional 3-class spiral dataset

• **Network:** 2–8–9–10–3 fully connected noisy ($\sigma = 0.2$) tanh DNN

Setup: Noisy DNN for spiral dataset classification

Dataset: 2-dimensional 3-class spiral dataset

• **Network:** 2–8–9–10–3 fully connected noisy ($\sigma = 0.2$) tanh DNN

• Classification: Trained to 98% test accuracy

Setup: Noisy DNN for spiral dataset classification

- Dataset: 2-dimensional 3-class spiral dataset
- Network: 2–8–9–10–3 fully connected noisy ($\sigma = 0.2$) tanh DNN
- Classification: Trained to 98% test accuracy
- ***** Estimating the entropy of 10-dimensional layer

Paper available at arXiv:1905.13576

Differential Entropy Estimation under Gaussian Convolutions:

- Differential Entropy Estimation under Gaussian Convolutions:
 - ▶ New high-dimensional & nonparametric functional estimation problem

- Differential Entropy Estimation under Gaussian Convolutions:
 - ▶ New high-dimensional & nonparametric functional estimation problem
- Intrinsically Difficult:

- Differential Entropy Estimation under Gaussian Convolutions:
 - ▶ New high-dimensional & nonparametric functional estimation problem
- Intrinsically Difficult:
 - Sample complexity is exponential in dimension

- Differential Entropy Estimation under Gaussian Convolutions:
 - ▶ New high-dimensional & nonparametric functional estimation problem
- Intrinsically Difficult:
 - Sample complexity is exponential in dimension
- Plug-in Estimator:

Paper available at arXiv:1905.13576

Differential Entropy Estimation under Gaussian Convolutions:

▶ New high-dimensional & nonparametric functional estimation problem

Intrinsically Difficult:

Sample complexity is exponential in dimension

• Plug-in Estimator:

lacksquare Attains parametric estimation rate $O\left(c^d n^{-\frac{1}{2}}\right)$

Paper available at arXiv:1905.13576

Differential Entropy Estimation under Gaussian Convolutions:

▶ New high-dimensional & nonparametric functional estimation problem

• Intrinsically Difficult:

Sample complexity is exponential in dimension

• Plug-in Estimator:

- lacksquare Attains parametric estimation rate $O\left(c^d n^{-\frac{1}{2}}\right)$
- ▶ Empirically outperforms general-purpose estimation via 'noisy' samples

Paper available at arXiv:1905.13576

Differential Entropy Estimation under Gaussian Convolutions:

▶ New high-dimensional & nonparametric functional estimation problem

Intrinsically Difficult:

Sample complexity is exponential in dimension

• Plug-in Estimator:

- lacktriangle Attains parametric estimation rate $O\left(c^d n^{-\frac{1}{2}}\right)$
- ▶ Empirically outperforms general-purpose estimation via 'noisy' samples
- ullet Gaussian Smoothed Empirical Approximation: χ^2 dichotomy

- Differential Entropy Estimation under Gaussian Convolutions:
 - ▶ New high-dimensional & nonparametric functional estimation problem
- Intrinsically Difficult:
 - Sample complexity is exponential in dimension
- Plug-in Estimator:
 - ightharpoonup Attains parametric estimation rate $O\left(c^d n^{-\frac{1}{2}}\right)$
 - ▶ Empirically outperforms general-purpose estimation via 'noisy' samples
- ullet Gaussian Smoothed Empirical Approximation: χ^2 dichotomy
- arXiv:1810.05728: Study MI trends during DNN training (estimation)

Paper available at arXiv:1905.13576

- Differential Entropy Estimation under Gaussian Convolutions:
 - ▶ New high-dimensional & nonparametric functional estimation problem
- Intrinsically Difficult:
 - ▶ Sample complexity is exponential in dimension
- Plug-in Estimator:
 - lacktriangle Attains parametric estimation rate $O\left(c^d n^{-\frac{1}{2}}\right)$
 - ▶ Empirically outperforms general-purpose estimation via 'noisy' samples
- ullet Gaussian Smoothed Empirical Approximation: χ^2 dichotomy
- arXiv:1810.05728: Study MI trends during DNN training (estimation)

Thank you!