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Q Knowledge of N,.

Absolute Error Minimax Risk:

R*(n, 0, Fg) 2 inf sup E|h(P +N,) — h(X™, a)’
h PeFy

@® Sample complexity n*(n, o, F;): least n needed for 1-gap estimation.
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Té—l O'(ng)T£71+bz(k)> S[(k) Tg(k)
Zy(k) ~ N (0,0?)

@ Can sample S; (gen. model) & want to estimate h(T}) = h(S¢ + Z)
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Estimate h(P * N,) based on X" e F4 and knowledge of N,.

Method: Estimate h(P x N ) via i.i.d. (noisy) samples from P x N

Theoretical Guarantees:

o Most results assume lower bounded density = Inapplicable

o Applicable Here:
Q [Han-Jiao-Weissman-Wu’17]: KDE + Best poly. approximation

— P subgaussian, Riskxpg <O (n_ 2”2r_d> (Analysis: restricted smoothness)*

Q [Berrett-Samworth-Yuan’19]: Weighted kNN (Kozachenko-Leonenko)
—> P compactly supported, Risky_xnn < O(1/y/n) (dependence on d?)
417



Plug-in Estimator

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * N,) based on X" e F4 and knowledge of N,.

5/17



Plug-in Estimator

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * N,) based on X" e F4 and knowledge of N,.

~ A A n
Our Estimator: h(X",0) £ h(Pxn % Ny), where Pxn £ 1 3 b,

5/17



Plug-in Estimator

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * N,) based on X" e F4 and knowledge of N,.

~ A A n
Our Estimator: h(X",0) £ h(Pxn % Ny), where Pxn £ 1 3 b,

Comment: h is plug-in estimator for T,(P) £ h(P x N,)

5/17



Plug-in Estimator

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * N,) based on X" e F4 and knowledge of N,.

~ A~ A n
Our Estimator: h(X",0) £ h(Pxn % Ny), where Pxn £ 1 3 b,
Comment: h is plug-in estimator for T,(P) £ h(P x N,)

Nonparametric Classes:

5/17



Plug-in Estimator

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * N,) based on X" e F4 and knowledge of N,.

~ A~ A n
Our Estimator: h(X",0) £ h(Pxn % Ny), where Pxn £ 1 3 b,
Comment: h is plug-in estimator for T,(P) £ h(P x N,)

Nonparametric Classes:

@ Compact Support: F,; = {P|supp(P) C [-1,1]¢}

5/17



Plug-in Estimator

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * N,) based on X" e F4 and knowledge of N,.

~ A~ A n
Our Estimator: h(X",0) £ h(Pxn % Ny), where Pxn £ 1 3 b,
Comment: h is plug-in estimator for T,(P) £ h(P x N,)

Nonparametric Classes:

@ Compact Support: F,; = {P|supp(P) C [-1,1]¢}
O Subgaussian: .F(S“bG) £ {P|X ~ P is K-SubG}
where X is K-SubG if  Ee® X—EX) < o3K%al® vy ¢ RY,

5/17



Plug-in Estimator

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * N,) based on X" e F4 and knowledge of N,.

~ A~ A n
Our Estimator: h(X",0) £ h(Pxn % Ny), where Pxn £ 1 3 b,
Comment: h is plug-in estimator for T,(P) £ h(P x N,)

Nonparametric Classes:

@ Compact Support: F,; = {P|supp(P) C [-1,1]¢}
O Subgaussian: .F(S“bG) £ {P|X ~ P is K-SubG}
where X is K-SubG if  Ee® X—EX) < o3K%al® vy ¢ RY,

® Relation: Exists K’ > 0 such that F; C Fésﬁ?c)

5/17



Plug-in Estimator

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * N,) based on X" e F4 and knowledge of N,.

~ A~ A n
Our Estimator: h(X",0) £ h(Pxn % Ny), where Pxn £ 1 3 b,
Comment: h is plug-in estimator for T,(P) £ h(P x N,)

Nonparametric Classes:

@ Compact Support: F,; = {P|supp(P) C [-1,1]¢}
O Subgaussian: .F(S“bG) £ {P|X ~ P is K-SubG}
where X is K-SubG if  Ee® X—EX) < o3K%al® vy ¢ RY,

® Relation: Exists K’ > 0 such that F; C ‘thsll(l'l’)G)

— Use F, for Lower Bounds & FéS”bG) for Upper Bounds

5/17



Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)

For any o >0, d > 1, we have
sup E ‘h(P * Ny) — h(PXn *NG)‘ < Cordk n2
Pe]_-(SubG)
d,K

where Cy gk = Oo, x(c?) for a constant c.

6/17



Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)

For any o >0, d > 1, we have

sup E ‘h(P * Ny) — h(Pxn *NG)‘ < Cordk ‘n72
PE]_-(SubG)
d,K

where Cy gk = Oo, x(c?) for a constant c.

Comments:

6/17



Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)
For any o >0, d > 1, we have
sup E ‘h(P * Ny) — h(Pxn *Ng)‘ < Cordk ‘n72
PeFe®
where Cy gk = Oo, x(c?) for a constant c.

Comments:

o Explicit Expression: Enables concrete error bounds

6/17



Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)

For any o >0, d > 1, we have

sup E ‘h(P * Ny) — h(Pxn *Ng)‘ < Cordk ‘n72

PeFe®

where Cy gk = Oo, x(c?) for a constant c.

Comments:
o Explicit Expression: Enables concrete error bounds

1
o Minimax Rate Optimal: Attains parametric rate O(n™2)

6/17



Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)
For any o >0, d > 1, we have

sup B |h(PxNy) = h(Pxn + N;)| < Cogrc ™3
PeFe®
where Cy gk = Oo, x(c?) for a constant c.

Comments:
o Explicit Expression: Enables concrete error bounds

1
o Minimax Rate Optimal: Attains parametric rate O(n™2)

Proof (initial step): Based on [Polyanskiy-Wu'16]

[R(P + No) = h(Pxn 5 No)| S Wi(P # Ny, Pron 5 NG)

6/17



Structured Estimator - Convergence Rate

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)
For any o >0, d > 1, we have

sup E ‘h(P * Ny) — h(Pxn *Ng)‘ < Cordk ‘n72

PeFe®

where Cy gk = Oo, x(c?) for a constant c.
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o Minimax Rate Optimal: Attains parametric rate O(n™2)

Proof (initial step): Based on [Polyanskiy-Wu'16]

[R(P + No) = h(Pxn 5 No)| S Wi(P # Ny, Pron 5 NG)

— Analyze empirical 1-Wasserstein distance under Gaussian convolutions
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Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)
For any d, we have EW; (P % Ny, Pxn % Ny) < Oy q(n"2) = Oy (cn"2)

Main Idea: Consider D, instead

o Dgr(P|Q) <log (1+ Xx*(P||Q))

o Bounding x? with ¢ = PDF of P x N,:

Ey? (an *./\/(,HP *No) — % (/Rd]E(w(z — il; q(z))zdz) B %IX2(X;Y)

— Dgr=0 (%) if IX2(X;Y) < 00.

Question: Is 1,2 finite, like log(1 + SNR), for any finite-2nd-moment X?
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Define: I,2(X;Y) £ x*(Pxy||Px @ Py), Y =X+ Z, X ~ P, Z ~ N,.
Question: Decay rate of E§(P N, Pxn  N,) for different §(-,-)?

Answer: Dichotomy — all depends on whether 1,»(X;Y') is finite (!)

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)

Q If Px has bounded support, then I,2(X;Y) < oo,

Q If Px be K-subgaussian with K < §, then 1,2(X;Y) < oo,

Q If K > /20, then I,2(X;Y) = oo for some K-subgaussian P.
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Gaussian Smoothed Distances & x*-Dichotomy (2)

La(X;Y)
= 00 < ©o
6 =Dk, 5= yx? §=w; 6 =Dy, §=1Illrv
§=Ww? & Ps is K-SG 5= x? =W

! ! !

Rate =w (%) | [Ex?C 119 = oo| |Rate=0 (%) Rate=0 (1) | | Rate = 0 (i>

—
<=
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Summary (for Subgaussian P)

]E[d(ﬁxn */\/'U,P*/\/',,>] = 7?77

In_All Dimensions: (and different “distances” 9)

o Wy and || - ||tv are always O (ﬁ)

o Wy is O (ﬁ) or w (ﬁ) But always O <n_i>

o Dgris L orw (%) But always O (ﬁ)

o 2 isO(%) or = 00
Surprise: The dichotomy is fully governed by 1,2 (X;Y) %
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For the impatient: direct flight from Y2 to h

Let P = Pxn x N, Q = Px .
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Let P=Pxnx N, Q=P xN.
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For the impatient: direct flight from Y2 to h

Let P=Pxnx N, Q=P xN.

hP) - h(Q) = {]Ep _Eqg [log
[

S VxX(PIQ)

Last step: Use the fact that Q = (something) * N .
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Is Exponentiality in Dimension Necessary?

Theorem (Goldfeld-Greenewald-Polyanskiy-Weed’19)
For any o > 0, sufficiently large d and sufficiently small n > 0, we have

n*(n, o, Fq) = Q(zzs—:l)d), where (o) >0 is monotonically decreasing in o.

= 0 (cdn_%) rate attained by plugin estimator is sharp in n and d

Proof (main ideas):

o Relate h(P * N,) to Shannon entropy H(Q)
supp(Q) = peak-constrained AWGN capacity achieving codebook Cy4

o H(Q) estimation sample complexity 2 (n_‘lofg_d|IC7|>
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Simulations - Synthetic Experiments

Comparison: General-purpose est. accessing sample of X + Z ~ P x N,

O LOO KDE Estimator from [Kandasamy et al.'15]
Q Kozachenko-Leonenko (KL) kNN Estimator [Kozachenko-Leonenko'87]

©Q Weighted KL (wKL) Estimator from [Berrett-Samworth-Yuan'19]

Bdd. Support: P « 27¢ Ywef—1,134 N (2, 14) - 1y 3ja (truncated GMM)

Entropy
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Simulations - Synthetic Experiments

Unbounded Support: P as before but w/o truncation

d=15, sigma=0.1

30 —— Plug-in estimator (ours)
—=— KL estimator
—=— wKL estimator (Berret et al. [8])
20 —=— KDE estimator
----- True (numerical integration)
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Samples
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—=— wKL estimator (Berret et al. [8])
—=— KDE estimator
----- True (numerical integration)
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Setup: Noisy DNN for spiral dataset classification

Dataset: 2-dimensional 3-class spiral dataset

Network: 2-8-9-10-3 fully connected noisy (¢ = 0.2) tanh DNN

o.:-f:“ ‘A%“A.
o a
™ “.
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Simulations - Noisy Deep Neural Network Example

Setup: Noisy DNN for spiral dataset classification

o Dataset: 2-dimensional 3-class spiral dataset

o Network: 2-8-9-10-3 fully connected noisy (o = 0.2) tanh DNN

o Classification: Trained to 98% test accuracy

@ Estimating the entropy of 10-dimensional layer

2 —— Plugin estimator (ours)
—— kNN estimator
1 —— KDE estimator
. -~ True (numerical integration)
g
2 0
_1.
10! 10? 103 10* 10°

Samples
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Summary

Paper available at arXiv:1905.13576

o Differential Entropy Estimation under Gaussian Convolutions:

» New high-dimensional & nonparametric functional estimation problem

o Intrinsically Difficult:

» Sample complexity is exponential in dimension

o Plug-in Estimator:
» Attains parametric estimation rate O (cdn_%>

» Empirically outperforms general-purpose estimation via ‘noisy’ samples
o Gaussian Smoothed Empirical Approximation: y? dichotomy
o arXiv:1810.05728: Study MI trends during DNN training (estimation)

Thank you!
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