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9 Unsupervised Learning:

> Data: {X;} iid Px samples (no labels!)
» Goal: Learn underlying structure of data, e.g., Qx ~ Px

> Examples: Generative models, clustering, dim. reduction, etc.

Data Generated

=

o GANs [Goodfellow et al'14]:

> Sample-to-sample

> Artwork, coloring, super-resolution, simulations, etc.
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o If symmetric & §(P, Q) < 6(P,R) + 6(R, Q) then § is a metric!

Back to Generative Modeling: Pick d(-,-) and train generator to

inf, 5(PX, gg;)

() Both perspectives coincide if 4(,-) is the 1-Wasserstein metric

() Wasserstein GAN achieves SOTA performance [Arjovsky et a/'17]
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o Couplings: II(P,Q) = {7TX,Y € P(RY x RY) ’7TX =P &ny = Q}

o Cost: c(z,y) = ||z — yl| for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein metric: Wy (P, Q) £ inf E;||X-Y]|
‘Irx,ye]:[(P,Q)

Comments:
o Operational Meaning: Minimize work of transporting P to @
o Robustness to Supp. Mismatch: W (P, Q) < oo, VP, Q € P;(R?)

o Metric: (’Pl (Rd),Wl) is metric space (metrizes weak* convergence)
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1-Wasserstein: W;(P,Q) £ inf E:[|X-Y
(PQE  nfEX Y|

Kantorovich-Rubinstein Duality: Equivalent representation

Wi(P,Q) = sup Epf(X)-Eqf(Y)
1 <1

Back to GANs:

Real Sample

o P = Px (X (real) data sample)
°0 Q= Qg?; (Y = go(Z) gen. sample)
o f=d, (w/ 1-Lip constraint) ﬂ

—> Frameworks Coincide:

inf Wy (Px,QQ)) =inf  sup  Ed,(X)-Ed,(gs(2))
o ¥ o ldplip<t
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where I:(X;Y) £ Dk (mx y| P ® Q) is the mutual information
The Good:
o Regularizer favors weakly-dependent coupling

o S (P, Q) is strongly convex optimization problem

o Two-sample statistical efficiency (for certain costs):

Theorem (Genevay et al’19)

For C*° and L-Lipschitz cost ¢, and any d > 1, € > 0:
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(P,Q) ) o(X,Y) + el (X;Y)

where I:(X;Y) £ Dk (mx y| P ® Q) is the mutual information

The Bad (Specializing to Distance Cost):

o ¢(z,y) = ||z — y|| does not fall under the theorem’s framework
° sgf) is not a metric on P;(RY) for any ¢ > 0 (nor Sinkhorn loss)

@ Dual form includes two potentials and regularizer:

X+ [ XY
€

Sle)(P,Q): sup Epgg |u(X)+v(Y)—ee €

u,veC(RY)

— No direct correspondence to minimax GAN formulation
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Definition (ZG-Greenewald’19)
For o > 0, the Gaussian-smoothed OT (GOT) between P and Q is

W (P,Q) 2 Wi (P Ny, Q * Ny),

where N, = N(0,0214) is a d-dimensional isotropic Gaussian.

Interpretation: X ~ P, Y ~ Q and Z1,Z5 ~ N,

X172, = X+Zi~PxN,
Y17, — Y-l—ZQNQ*Ng

—> W, distance between smoothed distributions

GAN-Compatibility: GOT is W; but between convolved distributions

o KR Duality: W\”) (P, Q) = sup| ;<1 Ef (X + Z) = Ef(Y + 2)
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High Level: GOT inherits the metric structure of 1-Wasserstein

Theorem (ZG-Greenewald’19)

(731 (R%), Wga)> is metric space, Yo > 0 (and W\”) metrizes weak* conv.).

Key Idea for Proof: Use Characteristic functions ¢p(t) = Ep[e?*] and:
el [

Span, (1) = 6p(D)dn; (t) together with g, (1) = ¢~ 2 #0, Vi,

Corollary (ZG-Greenewald’19)
Let P,, P € P(RY), n > 1. Then: W\")(P,, P) = 0 iff Wy(P,,P) — 0

# GOT induces exact same topology as classic Wasserstein
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Theorem (ZG-Greenewald’19)

Fix P,Q € P1(R%). The following hold:
Qo Wg") (P, Q) is continuous and mono. non-increasing in o € [0, +00)
O limy—0 Wi (P,Q) = Wi(P,Q)
Q limy_oo Wga) (P,Q) # 0, for some P,Q € P1(R%)

Key Idea for Proof: Use dual form to relate Wg") and W as:

Lemma (ZG-Greenewald’19)

Fix P,Q € Pl(]Rd), and 0 < 01 < 09 < +00. We have
W (P, Q) < W (P, Q) < W™ (P, Q) + 2dy/03 — o?.
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High Level: W{”) (P, Q) is well-behaved func. of o (fixed P,Q € Py(R%))

Theorem (ZG-Greenewald’19)

Fix P,Q € P1(R%) and o}, \ o > 0. Let:
o {m}, s.t. mp € II(P x N, ,Q * Ny, ) is optimal for Wgo’“)(,u, v)
Then 7, —— © (weak*ly) such that:
k—o0
o me (P *N,,Qx*Ny)
o  is optimal for W\ (11, v))

Comments:
o In words: Not only opt. values converge, but also optimizers
o o = 0: Gaussian-smoothed opt. plans converge to W; opt. coupling.

o Proof Idea: I'-convergence (CoV) & Tightness of II(u, v) (Topology)
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Gaussian-Smoothed OT - Statistical Efficiency

High Level: Fast convergence of empirical approx. under W§")

Theorem (ZG-Greenewald-Polyanskiy-Weed’19)
For any d > 1 and o > 0, we have: EW\")(P,, P) < (£)

Comments:
o True for any subgauassian P (entropic OT assumes compact supp(P))

o Generalizes to subgauassian noise distributions with monotone density

9 Implies fast convergence of the other empirical approx. setups:
> One-Sample: E’Wﬁ”)(ﬁn,Q) ~ WP, Q)‘ o) (n—%) (GANS)

» Two-Sample: E‘W§”)(15n, Qn) — WY’)(P,Q)) €0 <n—%>

) GOT alleviated curse of dimensionality in GAN framework
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Gaussian-Smoothed OT - Summary

|GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

o Attain competitive performance
o Consume fewer resources

o Backed up by (useful) sample complexity guarantees

Ongoing Work:
o Empirical: GOT-GAN design & test

o Algorithmic: Enhanced alg. tailored for GOT structure

o Theoretical: \/ﬁWY’) (Pn,P) limiting dist., hypothesis testing, etc.

16/17
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> Entropic OT: partial solution but not a metric nor GAN compatible

o Gaussian-Smoothed OT: Convolve distributions w/ Gaussians

17/17



o Generative Adversarial Networks: SOTA generative models

> Two perspectives: ‘minimax game' and ‘min statistical distance’
P Under 1-Wasserstein metric both coincide

> Wasserstein GANs produce outstanding empirical results

o Curse of Dimensionality: Approximate distributions from samples
P Empirical approximation unde