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7. Two-Neuron Leaky-ReLU Network
Example

To expand upon Section ??, we provide here a second ex-
ample to illustrate the relation between clustering and com-
pression of mutual information. In particular, this exam-
ple also shows that as opposed to the claim from (Saxe
et al., 2018), non-saturating nonlinearities can achieve com-
pression. Consider the non-saturating Leaky-ReLU nonlin-
earity R(x) , max(x, x/10). Let X = X0 ∪ X1/4, with
X0 = {1, 2, 3, 4} and X1/4 = {5, 6, 7, 8}, and labels 0 and
1/4, respectively. We train the network via GD with learn-
ing rate 0.001 and mean squared loss. Initialization (shown
in Fig. 9(a)) was chosen to best illustrate the connection be-
tween the Gaussians’ motion and mutual information. The
network converges to a solution where w1 < 0 and b1 is
such that the elements in X1/4 cluster. The output of the first
layer is then negated using w2 < 0 and the bias ensures
that the elements in X0 are clustered without spreading out
the elements in X1/4. Figs. 9(b) show the Gaussian motion
at the output of the first layer and the resulting clustering.
For the second layer (Fig. 9(c)), the clustered bundle X1/4

is gradually raised by growing b2, such that its elements
successively split as they cross the origin; further tightening
of the bundle is due to shrinking |w2|. Fig. 9(d) shows the
mutual information of the first (blue) and second (red) lay-
ers. The merging of the elements in X1/4 after their initial
divergence is clearly reflected in the mutual information.
Likewise, the spreading of the bundle, and successive split-
ting and coalescing of the elements in X1/4 are visible in the
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spikes in the red mutual information curve. The figure also
shows how the bounds on I

(
X;T (k)

)
precisely track its

evolution.

8. Experimental Details
8.1. SZT Model

In this section we provide additional experimental details
and results for the SZT model discussed in Section ?? of
the main paper.

To regularize the network weights, we followed (Cisse et al.,
2017) and adopted their approach for enforcing an orthonor-
mality constraint. Specifically, we first update the weights
{W`}`∈[L] using the standard gradient descent step, and
then perform a secondary update to set

W` ←W` − α
(
W`W

T
` − Id`

)
W`,

where the regularization parameter α controls the strength
of the orthonormality constraint. The value of α was
was selected from the set {1.0 × 10−5, 2.0 × 10−5, 3.0 ×
10−5, 4.0×10−5, 5.0×10−5, 6.0×10−5, 7.0×10−5} and
the optimal value was found to be equal to 5.0× 10−5 for
both the tanh and ReLU.

In Fig. 10 we present additional experimental results that
provide further insight into the clustering and compres-
sion phenomena for both tanh and ReLU nonlinearities.
Fig. 10(a) shows what happens when the additive noise has
a high variance. In this case, although saturation still occurs
(see the histograms on top of Fig. 10(a)) and the Gaussians
still cluster together (see the scatter plots on the right for the
epoch 54 and epoch 8990), compression overall is very mild.
The effect of increasing the noise parameter was explained
in Section ?? of the main text (see, in particular, Fig. ??(d)
therein). Comparing Fig. 10(a) to Fig. ??(a) of the main
text, for which β = 0.005 was used and compression was
observed, further highlights the effect of large β. Recall
that smaller β values correspond to narrow Gaussians, while
larger β values correspond to wider Gaussians. When β is
small, even Gaussians that belong to the same cluster are dis-
tinguishable so long as they are not too close. When clusters
tighten, the in-class movement brings these Gaussians closer
together, effectively merging them, and causing a reduction
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Figure 9. Two-layer leaky ReLU network: (a) network parameters as a function of epoch, (b,c) the corresponding PDFs pT1(k) and pT2(k),
and (d) the mutual information for both layers.

in mutual information (compression). One the other hand,
for large β, the in-class movement is blurred at the outset
(before clusters tighten). Thus, the only effect on mutual
information is the separation between the clusters: as these
blobs move away from each other, mutual information rises.

Based on the above observation, we can conclude that while
the two notions of “clustering Gaussians” and “compres-
sion/decrease in mutual information” are strongly related in
the low-beta regime, once the noise becomes large, these
phenomena decouple, i.e., the network may cluster inputs
and neurons may saturate, but this will not be reflected in a
decrease of mutual information.

Finally, we present results for ReLU activation without
weight normalization (Fig. 10(b)) and with orthonormal
weight regularization (Fig. 10(c)). We see that both these
networks exhibit almost no compression. For Fig. 10(c),
the lack of compression is attributed to regularization of
the weight matrices, as explained in Section ?? of the main
text. For Fig. 10(b), the reduction in compression can be
explained by the fact that although ReLU forces saturation
of the neurons at the origin (which promotes clustering),
since the positive axes remain unconstrained, the Gaussians
can move off towards infinity without bound. This is visible
from the histograms in the top row of Fig. 10(b), where,
for example, in layer 5 the neurons can take arbitrarily
large positive values (note that the bin corresponding to
the value 5 accumulates all the values from 5 to infinity).
Therefore, the clustering at the origin and the potential drop
in mutual information is counterbalanced by the spread of
Gaussians along the positive axes and the potential increase
of mutual information it causes. Eventually, this leads to the
approximately constant profile of the mutual information
plot in Fig. 10(b).

The behavior of the weight-normalized ReLU in Fig. 10(c)
is similar to Fig. 10(b), although now the growth of the
network weights is bounded and the saturation around origin
is reduced. For example, for layers 4 and 5 we can see
an upward trend in the mutual information, which is then
flattened at the end of training. This occurs since more
Gaussians are moving away from the origin, although their

motion remains bounded (see the histograms on the top and
the scatter plots on the right), thus decreasing the clustering
density, leading to the rise in the mutual information profile.
Once the Gaussians are prevented from moving any further
along the positive axes, a slight compression occurs and the
mutual information flattens.

8.2. Spiral Model

In this section we present results for another synthetic ex-
ample. We generated data in the form of spiral as in Fig. 11.
The network architecture was similar to SZT model, except
that the size of each layer was set to 3.

Fig. 12 shows MI estimates I(X;T`) computed using SP
estimator and the discrete entropy estimatesH

(
Bin(T`)

)
for

weight un-normalized Fig. 12 (a) and normalized models
Fig. 12 (b) and using additive noise β = 0.005. Similar
as in the main paper, the results in the figure illustrate a
connection between clustering and compression.

Finally, in Fig. 13 we also show an estimate of H
(
Bin(T`)

)
for the case of deterministic DNN trained on spiral data.
For the particular choice of the bin size, the result of the
estimated entropy reveal a certain level of clustering granu-
larity.

8.3. MNIST CNN

In this section, we describe in detail the architecture of the
MNIST CNN models used in Sections ?? and ?? in the main
paper.

The MNIST CNNs were trained using PyTorch (Paszke
et al., 2017) version 0.3.0.post4. The CNNs use the fol-
lowing fairly standard architecture with two convolutional
layers, two fully connected layers, and batch normalization.

1. 2-d convolutional layer with 1 input channel, 16 output
channels, 5x5 kernels, and input padding of 2 pixels

2. Batch normalization

3. Tanh() activation function
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(c)

Figure 10. SZT model with (a) tanh nonlinearity and additive noise β = 0.01 without weight normalization, (b) ReLU nonlinearity and
β = 0.01 without weight normalization, (c) ReLU nonlinearity and β = 0.01 with weight normalization. Test classification accuracy is
97%, 96%, and 97%, respectively.
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Figure 11. Generated spiral data for binary classification problem.

4. Zero-mean additive Gaussian noise with variance β2

or dropout with a dropout probability of 0.2

5. 2x2 max-pooling

6. 2-d convolutional layer with 16 input channels, 32
output channels, 5x5 kernels, and input padding of 2
pixels

7. Batch normalization

8. Tanh() activation function

9. Zero-mean additive Gaussian noise with variance β2

or dropout with a dropout probability of 0.2

10. 2x2 max-pooling

11. Fully connected layer with 1586 (32x7x7) inputs and
128 outputs

12. Batch normalization

13. Tanh() activation function

14. Zero-mean additive Gaussian noise with variance β2

or dropout with a dropout probability of 0.2

15. Fully connected layer with 128 inputs and 10 outputs

All convolutional and fully connected layers have
weights and biases, and the weights are initialized us-
ing the default initialization, which draws weights from
Unif[−1/

√
m, 1/

√
m], with m the fan-in to a neuron in the

layer. Training uses cross-entropy loss, and is performed
using stochastic gradient descent with no momentum, 128
training epochs, and 32-sample minibatches. The initial
learning rate is 5× 10−3, and it is reduced following a geo-
metric schedule such that the learning rate in the final epoch

is 5×10−4. To improve the test set performance of our mod-
els, we applied data augmentation to the training set by trans-
lating, rotating, and shear-transforming each training exam-
ple each time it was selected. Translations in the x- and y-
directions were drawn uniformly from {−2,−1, 0, 1, 2}, ro-
tations were drawn from Unif(−10◦, 10◦), and shear trans-
forms were drawn from Unif(−10◦, 10◦).

To obtain more reliable performance results, we train eight
different models and report the mean number of errors and
standard deviation of the number of errors on the MNIST
validation set. To ensure that the internal representations of
different models are comparable, which is necessary for the
use of the cosine similarity measure between internal rep-
resentations, for each noise condition (deterministic, noisy
with β = 0.05, noisy with β = 0.1, noisy with β = 0.2,
noisy with β = 0.5, and dropout with p = 0.2), we use a
common random seed (different for the eight replications,
of course) so the models have the same initial weights and
access the training data in the same order (use the same
minibatches).

At test time, all models are fully deterministic: the additive
noise blocks and dropout layers are replaced by identities.
Thus, in the figures and text in the main paper, “Layer 1”
is the output of step 5 (2x2 max-pooling), “Layer 2” is the
output of step 10 (2x2 max-pooling), “Layer 3” is the output
of step 13 (Tanh() activation function), and “Layer 4” is the
output of step 15 (fully connected layer with 10 outputs).

9. Sample Propagation Estimator - Theoretic
Guarantees

In this section we state performance guarantees for the SP
estimator. We cite several foundational theorems from our
work (Goldfeld et al., 2019), where this estimation problem
is thoroughly studied. An anonymized copy of that paper is
found at the end of the supplement and cited when needed.
Proofs of all other results are relegated to Supplement 10.

9.1. Preliminary Definitions

Consider the estimation of the differential entropy h(S +
Z) = h(P ∗ϕβ) based on n i.i.d. samples of S ∼ P , where
P is unknown and belongs to some nonparametric class,
and ϕβ (a PDF of an isotropic Gaussian with parameter β)
is known. The minimax absolute-error risk over a given
nonparametric class of distributions F is

R?(n, β,F) , inf
ĥ

sup
P∈F

E
∣∣∣h(P ∗ ϕβ)− ĥ(Sn, β)

∣∣∣ , (5)

where ĥ is the estimator and Sn , (Si)i∈[n] are the sam-
ples from P . In (5), by P ∗ ϕβ we mean either: (i)
(P ∗ ϕβ)(x) =

∫
p(u)ϕβ(x − u)du = (p ∗ ϕβ)(x), when

P is continuous with density p; or (ii) (P ∗ ϕβ)(x) =
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(a)

(b)

Figure 12. (a) Evolution of I(X;T`) and training/test losses across training epochs for Spiral dataset with β = 0.005 and tanh nonlin-
earities. The scatter plots on the right are the values of Layer 5 (d5 = 3) at the arrow-marked epochs on the mutual information plot.
The bottom plot shows the entropy estimate H

(
Bin(T`)

)
across epochs for bin size B = 10β. (b) Same setup as in (a) but with a

regularization that encourages orthonormal weight matrices.

∑
u: p(u)>0 p(u)ϕβ(x − u), if P is discrete with PMF p.

This convolved distribution can be defined generally in a
way that the two instances above as special cases using
measure-theoretic concepts (see (Goldfeld et al., 2019)). Re-
gardless of the nature of P , however, we stress that P ∗ϕβ is

always a continuous distribution since it corresponds to the
random variable S + Z, where Z is an isotropic Gaussian
vector. The sample complexity n?(η, β,F) is defined as
the smallest number of samples n required to achieve a risk
value less than or equal to a specified constant η in (5).
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Figure 13. H
(
Bin(T`)

)
estimate for deterministic net using spiral data. Bin size was set to B = 0.001.

Let Fd be the set of distributions P with supp(P ) ⊆
[−1, 1]d.1 Furthermore, let F (SG)

d,µ,K be the class of K-
subgaussian distributions, where we adopt the subgaussian-
ity definition from (Hsu et al., 2012). Namely, P ∈ F (SG)

d,µ,K ,
for µ ≥ 0 and K > 0, if X ∼ P satisfies ‖EX‖ ≤ µ and

E
[

exp
(
αT (X − EX)

)]
≤ exp

(
0.5K2‖α‖2

)
,∀α ∈ Rd,

(6)
i.e., every one-dimensional projection of X is subgaussian.
Clearly, there exists a K ′ > 0 such that Fd ⊆ F (SG)

d,0,K′ . We
therefore state our lower bound results (Theorem 2) for Fd,
while the upper bound (Theorem 3) is given forF (SG)

d,µ,K . The
class Fd corresponds to hidden layers with bounded nonlin-
earities (such as tanh or sigmoid), while F (SG)

d,µ,K accounts
for ReLU nonlinearities (when, for example, the input X is
itself subgaussian).

9.2. Sample Complexity is Exponential in Dimension

We start with Theorem 1 from (Goldfeld et al., 2019), which
states that the sample complexity of any good estimator of
h(P ∗ ϕβ) (to within an additive gap η) is exponential in d.

Theorem 2 (Theorem 1 from (Goldfeld et al., 2019)). The
following holds:

1. Fix β > 0. There exist d0(β) ∈ N, η0(β) > 0 and
γ(β) > 0 (monotonically decreasing in β), such that
for all d ≥ d0(β) and η < η0(β) we have sample

complexity n?(η, β,Fd) ≥ Ω
(

2γ(β)d

dη

)
.

2. Fix d ∈ N. There exist β0(d), η0(d) > 0, such that
for all β < β0(d) and η < η0(d) we have sample

complexity n?(η, β,Fd)≥Ω
(

2d

ηd

)
.

The exponent γ(β) being monotonically decreasing in β
suggests that larger values of β are favorable for estima-
tion. Part 1 of the theorem states that an exponential sample
complexity is inevitable when d is large. As a complemen-
tary result, the second part gives a sample complexity lower
bound valid in any dimension for a small noise parameter.

1Any support included in a compact subset of Rd would do.
We focus on the case of supp(P ) ⊆ [−1, 1]d due to its correspon-
dence to a noisy DNN with tanh nonlinearities.

Nonetheless, the result accounts for orders of β considered
in this work.
Remark 1 (Critical β Values). Theorem 2 is stated in
asymptotic form for simplicity. We note that, for any d,
the critical β0(d) value from the second part can be ex-
tracted by following the constants through the proof (which
relies on Proposition 3 from (Wu & Yang, 2016)). These
critical values are not unreasonably small. For example for
d = 1, a careful analysis gives that Theorem 2 holds for all
β < 0.08, which is satisfied by most of the experiments in
this paper. This threshold on β changes very slowly when in-
creasing d due to the rapid decay of the PDF of the normal
distribution.

9.3. Estimation Risk Bounds

We next focus on analyzing the performance of the SP mu-
tual information estimator. We start by citing Theorem 2
of (Goldfeld et al., 2019), where the risk of the entropy
estimation problem is bounded. Recall that the estimator of
h(P ∗ ϕβ) is h(P̂Sn ∗ ϕβ), where Sn = (Si)

n
i=1 is an i.i.d.

sample set from P and P̂Sn is their empirical distribution.
The following theorem shows that the expected absolute er-
ror of this estimator decays at a rate of estimation O

(
cd√
n

)
,

for a numerical constant c and all dimensions d. A better
rate of convergence with n cannot be attained due to the
parametric estimation lower bound (see, e.g., Proposition 1
of (Chen, 1997)). The exponential dependence in d is also
necessary as established by Theorem 2.
Theorem 3 (Theorem 2 from (Goldfeld et al., 2019)). Fix
β > 0, d ≥ 1. Then

sup
P∈F(SG)

d,µ,K

E
∣∣∣h(P ∗ ϕβ)− h(P̂Sn ∗ ϕβ)

∣∣∣
≤
(

1√
2

+
K

β

)d
2

×

(
8
(
2µ4 +32d2K4 +d(d+ 2)(K+β/

√
2)4
)

β4

) 1
2

× exp

(
3d

16
+

µ2

4(K + β/
√

2)2

)
1√
n
. (7)

Remark 2 (Improved Constant for Bounded Support). The-
orem 3 also applies to the narrower nonparametric class Fd
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in place of F (SG)
d,µ,K . By directly analyzing this bounded sup-

port scenario2 (P ∈ Fd) one may improve the constant fac-

tor in Theorem 3 to give a bound of max{1, β−d}2d+2
√

d
n .

Remark 3 (Comparison to Generic Estimators). Note that
one could always sample ϕβ and add the obtained noise
samples to Sn to obtain a sample set from P ∗ ϕβ . These
samples can be used to get a proxy of h(P ∗ ϕβ) via a kNN-
or a KDE-based differential entropy estimator. However,
P ∗ ϕβ violates the boundedness away from zero assump-
tion that most of the convergence rate results in the liter-
ature rely on (Levit, 1978; Hall, 1984; Joe, 1989; Hall &
Morton, 1993; Tsybakov & Van der Meulen, 1996; Haje
& Golubev, 2009; Sricharan et al., 2012; Singh & Póczos,
2016; Kandasamy et al., 2015). Two recent works that
weakened/dropped the boundedness from below assumption,
providing general-purpose estimators whose risk bounds
are valid in our setup, are (Han et al., 2017) and (Berrett
et al., 2019). However, the analysis of the KDE-based esti-
mator proposed in (Han et al., 2017) holds only for Lipschitz
smoothness parameters up to s ≤ 2 and attains the slow
rate (overlooking multiplicative polylogarithmic factors) of
O
(
n−

s
s+d
)
. The second work (Berrett et al., 2019) studies

a weighted-kNN estimator in the high smoothness regime
and proved its asymptotic efficiency. However, no explicit
risk bounds were derived in that work and empirically the
estimator is significantly outperformed by h(P̂Sn ∗ϕβ) (see
Section V of (Goldfeld et al., 2019)).

We now show how the theoretical guarantee on the accuracy
of the differential entropy estimator (Theorem 3) translates
to mutual information estimation via the SP estimator from
(??). To formulate the claim, recall that T` = S` + Z`,
where S` ∼ PS` = Pf`(T`−1) and Z` ∼ N (0, β2Id`) are
independent. Thus,

h(T`) = h(PS` ∗ ϕβ) (8a)
h(T`|X = x) = h(PS`|X=xi ∗ ϕβ). (8b)

Provided n i.i.d. samples X = {Xi}i∈[n] from PX , the
DNN’s generative model enables sampling from PS` and
PS`|X as follows:

1. Unconditional Sampling: To generate the sample set
from PS` , feed each Xi, for i ∈ [n], into the DNN and
collect the outputs it produces at the (` − 1)-th layer.
The function f` is then applied to each collected output
to obtain Sn` , {S`,1, S`,2, . . . , S`,n}, which is a set
of n i.i.d. samples from PS` .

2. Conditional Sampling Given X: To generate i.i.d.
samples from PS`|X=xi , for i ∈ [n], we feed Xi into

2e.g., by employing Proposition 5 from (Polyanskiy & Wu,
2016) to control the entropy difference via a Wasserstein 1 distance
and them using Theorem 6.15 from (Villani, 2006) to bound the
latter by an expression that lands itself for an elementary analysis.

the DNN n times, collect outputs from T`−1 corre-
sponding to different noise realizations, and apply f`
on each. Denote the obtained samples by Sn` (Xi).3

The knowledge of ϕβ and the generated samples Sn` and
Sn` (Xi) can be used to estimate the unconditional and the
conditional entropies, from (8a) and (8b), respectively.

For notational simplicity, the layer index ` is dropped for
the remainder of this subsection. With the above sampling
procedure we construct an estimator ÎSP

(
Xn, ĥ

)
of I(X;T )

based on a given estimator ĥ(An, β) of h(P ∗ ϕβ) for P ∈
Fd that uses i.i.d. samples An = (A1, . . . , An) from P and
knowledge of ϕβ . Assume that ĥ attains

sup
P∈Fd

E
∣∣∣h(P ∗ ϕβ)− ĥ(An, β)

∣∣∣ ≤ ∆β,d(n). (9)

An example of such an ĥ is the estimator h(P̂Sn ∗ϕβ) from
Theorem 3; the corresponding ∆β,d(n) term is the RHS of
(7). Our SP mutual information estimator is (see (??))

ÎSP

(
Xn, ĥ, β

)
, ĥ(Sn, β)− 1

n

n∑
i=1

ĥ
(
Sn(Xi), β

)
. (10)

The following theorem bounds the expected absolute error
of ÎSP

(
Xn, ĥ, β

)
. The proof is given in Supplement 10.1.

Theorem 4. For the above described setup, we have

sup
PX

E
∣∣∣I(X;T )−ÎSP

(
Xn, ĥ, β

) ∣∣∣
≤ 2∆β,d(n) +

d log
(

1 + 1
β2

)
4
√
n

. (11)

Theorem ?? of the main text is an immediate consequence
of Theorems 3 and 4. Interestingly, the quantity 1

β2 is the
signal-to-noise ratio (SNR) between S and Z. The larger β
is the easier estimation becomes, since the noise smooths
out the complicated PX distribution. Also note that the
dimension of the ambient space in which X lies does not
appear in the absolute-risk bound for estimating I(X;T ).
The bound depends only on the dimension of T (through
∆β,d). This is because the additive noise resides in the T
domain, limiting the possibility of encoding the rich struc-
ture of X into T in full. On a technical level, the blurring
effect caused by the noise enables uniformly lower bound-
ing infx h(T |X = x) and thereby controlling the variance

3The described sampling procedure is valid for any layer ` ≥ 2.
For ` = 1, S1 coincides with f1(X) but the conditional sam-
ples are undefined. Nonetheless, noting that for the first layer
h(T1|X) = h(Z) = d

2
log(2πeβ2), we see that no estimation of

the conditional entropy is needed. The mutual information estima-
tor given in (10) is modified by replacing the subtracted term with
h(Z).
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of the estimator for each conditional entropy. In turn, this
reduces the impact of X on the estimation of I(X;T ) to
that of an empirical average converging to its expected value
with rate 1√

n
.

9.4. Sample Propagation Estimator Bias

The results of the previous subsection are of a minimax
flavor. That is, they state worst-case convergence rates of
h(P ∗ ϕβ) estimation over a nonparametric class of distri-
butions. In practice, the true distribution may not be one
that attains these worst-case rates, and convergence may be
faster. However, while variance of h(P̂Sn ∗ ϕβ) can be em-
pirically evaluated using bootstrapping, there is no empirical
test for the bias. Specifically, even if multiple estimations
of h(P ∗ ϕβ) via h(P̂Sn ∗ ϕβ) consistently produce similar
values, this does not necessarily suggest that these values
are close to the true h(P ∗ ϕβ). To have a guideline to the
least number of samples needed to avoid biased estimation,
we present the following lower bound on the estimation
bias.

Theorem 5. Fix β > 0, d ≥ 1, and let ε ∈(
1−

(
1− 2Q

(
1
2β

))d
, 1

]
, where Q is the Q-function.4

Set k? ,
⌊

1

βQ−1
(

1
2

(
1−(1−ε)

1
d

))
⌋

, whereQ−1 is the inverse

of the Q-function. By the choice of ε, clearly k? ≥ 2, and
the bias of the SP estimator over the class Fd is bounded as

sup
P∈Fd

∣∣∣h(P ∗ϕβ)−Eh(P̂Sn ∗ϕβ)
∣∣∣≥ log

(
k
d(1−ε)
?

n

)
−Hb(ε).

(12)
Consequently, the bias cannot be less than a given δ > 0 so
long as n ≤ kd(1−ε)? · e−(δ+Hb(ε)).

Theorem 5 is proved in Supplement 10.2. Since Hb(ε)
shrinks with ε, for sufficiently small ε values the lower
bound from (12) shows that the SP estimator will not have
negligible bias unless n > k

d(1−ε)
? is satisfied. The con-

dition ε > 1 −
(

1− 2Q
(

1
2β

))d
is non-restrictive in any

relevant regime of β and d. For instance, for typical β val-
ues we work with - around 0.1 - this lower bound is at most
0.0057 for all dimensions up to at least d = 104. Setting,
e.g., ε = 0.01 (for which Hb(0.01) ≈ 0.056), the corre-
sponding k? equals 3 for d ≤ 11 and 2 for 12 ≤ d ≤ 104.
Thus, with these parameters, in order to have negligible
bias the number of estimation samples n should be at least
20.99d, for any conceivably relevant dimension d.

4The Q-function is defined as Q(x) , 1√
2π

∫∞
x
e−

t2

2 dt.

9.5. Computing the Sample Propagation Estimator

Evaluating the SP mutual information estimator requires
computing the differential entropy of a Gaussian mixture.
Although it cannot be computed in closed form, this section
presents a method for approximate computation via MCI
(Robert, 2004). To simplify the presentation, we present the
method for an arbitrary Gaussian mixture without referring
to the notation of the estimation setup.

Let g(t) , 1
n

∑
i∈[n] ϕβ(t−µi) be a d-dimensional n-mode

Gaussian mixture, with {µi}i∈[n] ⊂ Rd and ϕβ as the PDF
of N (0, β2Id). Let C ∼ Unif{µi}i∈[n] be independent of
Z ∼ N (0, β2Id) and note that V , C + Z ∼ g.

We use MCI (Robert, 2004) to compute h(g). First note that

h(g) = −E log g(V )

= − 1

n

∑
i∈[n]

E
[

log g(µi + Z)
∣∣∣C = µi

]
= − 1

n

∑
i∈[n]

E log g(µi + Z), (13)

where the last step follows by the independence of Z and C.
Let

{
Z

(i)
j

}
i∈[n]
j∈[nMC]

be n× nMC i.i.d. samples from ϕβ . For

each i ∈ [n], we estimate the i-th summand on the RHS of
(13) by

L̂
(i)
MC ,

1

nMC

∑
j∈[nMC]

log g
(
µi + Z

(i)
j

)
, (14a)

which produces

ĥMC ,
1

n

∑
i∈[n]

L̂
(i)
MC (14b)

as our estimate of h(g). Define the mean squared error
(MSE) of ĥMC as

MSE
(
ĥMC

)
, E

[(
ĥMC − h(g)

)2]
. (15)

We have the following bounds on the MSE for tanh and
ReLU networks.

Theorem 6 (MSE Bounds for MC Estimator). The
following holds:

1. AssumeC ∈ [−1, 1]d almost surely (i.e., tanh network),
then

MSE
(
ĥMC

)
≤ 2d(2 + β2)

β2

1

n · nMC
. (16)
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2. Assume MC , E‖C‖22 <∞ (e.g., ReLU network with
bounded second moments), then

MSE
(
ĥMC

)
≤ 9dβ2 + 8(2 + β

√
d)MC + 3(11β

√
d+ 1)

√
MC

β2

× 1

n · nMC
. (17)

The proof of Theorem 6 is found in Supplement 10.3. The
MSE bounds scale only linearly with the dimension d, mak-
ing β2 in the denominator often the dominating factor ex-
perimentally.

10. Proofs
10.1. Proof of Theorem 4

Fix PX , define g(x) , h(T |X = x) = h(PS|X=x ∗ ϕβ)
and write

I(X;T ) = h(T )−h(T |X) = h(PS ∗ϕβ)−Eg(X). (18)

Applying the triangle inequality to (10) we obtain

E
∣∣∣ÎSP (Xn, ĥ, β

)
− I(X;T )

∣∣∣
≤ E

∣∣∣ĥ(Sn, β)− h(PS ∗ ϕβ)
∣∣∣

+ E

∣∣∣∣∣ 1n
n∑
i=1

ĥ
(
Sn(Xi), β

)
− Eg(X)

∣∣∣∣∣
≤ E

∣∣∣ĥ(Sn, β)− h(PS ∗ ϕβ)
∣∣∣︸ ︷︷ ︸

(I)

+
1

n

n∑
i=1

E
∣∣∣ĥ(Sn(Xi), β

)
− g(Xi)

∣∣∣︸ ︷︷ ︸
(II)

+ E

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− Eg(X)

∣∣∣∣∣︸ ︷︷ ︸
(III)

(19)

By assumption (9) and because supp(PS) ⊆ [−1, 1]d, we
have

E
∣∣∣ĥ(Sn, β)− h(PS ∗ ϕβ)

∣∣∣ ≤ ∆β,d(n). (20)

Similarly, for any fixed Xn = xn, supp(PS|X=xi) ⊆
[−1, 1]d for all xi, where i ∈ [n], and hence

E
[ ∣∣∣ĥ(Sn(Xi), β)− g(Xi)

∣∣∣ ∣∣∣∣Xn = xn
]

(a)
= E

∣∣∣ĥ(Sn(xi), β
)
− h(PS|X=xi ∗ ϕβ)

∣∣∣

≤ ∆β,d(n), (21)

where (a) is because for a fixed xi, sampling from PS|X=xi

corresponds to drawing multiple noise realization for the
previous layers of the DNN. Since these noises are inde-
pendent of X , we may remove the conditioning from the
expectation. Taking an expectation on both sides of (21)
and the law of total expectation we have

(II) =
1

n

n∑
i=1

E
∣∣∣ĥ(Sn(Xi))− g(Xi)

∣∣∣ ≤ ∆β,d(n). (22)

Turning to term (III), observe that
{
g(Xi)

}
i∈[n] are i.i.d

random variables. Hence

1

n

n∑
i=1

g(Xi)− Eg(X) (23)

is the difference between an empirical average and the ex-
pectation. By monotonicity of moments we have

(III)2 =

(
E

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− Eg(X)

∣∣∣∣∣
)2

≤ E

( 1

n

n∑
i=1

g(Xi)− Eg(X)

)2


=
1

n
var
(
g(X)

)
≤ 1

4n

(
sup
x
h(pT |X=x)− inf

x
h(pT |X=x)

)2

.

(24)

The last inequality follows since var(A) ≤ 1
4 (supA −

inf A)2 for any random variable A.

It remains to bound the supremum and infimum of
h(pT |X=x) uniformly in x ∈ Rd0 . By definition T = S+Z,
where S and Z are independent and Z ∼ N (0, β2Id).
Therefore, for all x ∈ Rd0

h(pT |X=x) ≥ h(S+Z|S,X = x) =
d

2
log(2πeβ2), (25)

where we have used the independence of Z and (S,X) and
the fact that conditioning cannot increase entropy. On the
other hand, denoting the entries of T by T ,

(
T (k)

)
k∈[d],

we can obtain an upper bound as

h(pT |X=x) = h(T |X = x) ≤
d∑
k=1

h
(
T (k)

∣∣X = x
)
,

(26)
since independent random variables maximize differential
entropy. Now for any k ∈ [d], we have

var
(
T (k)

∣∣X = x
)
≤ E

[
T 2(k)

∣∣X = x
]
≤ 1 + β2, (27)
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since S(k) ∈ [−1, 1] almost surely. For a fixed variance the
Gaussian distribution maximizes differential entropy, and
therefore

h(pT |X=x) ≤ d

2
log
(
2πe(1 + β2)

)
. (28)

for all x ∈ Rd0 . Substituting the lower bound (25) and
upper bound (28) into (24) gives

(III)2 ≤

d log
(

1 + 1
β2

)
4
√
n

2

. (29)

Inserting this along with (20) and (22) into the bound (19)
bounds the expected estimation error as

E
∣∣∣ÎSP(Xn,ĥ, β

)
−I(X;T )

∣∣∣≤2∆β,d(n) +
d log

(
1+ 1

β2

)
4
√
n

.

(30)
Taking the supremum over PX concludes the proof.

10.2. Proof of Theorem 5

First note that since h(q) is concave in q and because
EP̂Sn = P , by Jensen’s inequality we have

Eh(P̂Sn ∗ ϕβ) ≤ h(P ∗ ϕβ). (31)

Now, let W ∼ Unif([n]) be independent of (Sn, Z) and
define Y = SW + Z. We have the following lemma.

Lemma 1. The following equality holds:

h(P ∗ ϕβ)− Eh(P̂Sn ∗ ϕβ) = I(Sn;Y ). (32)

Proof. We expand I(Sn;Y ) = h(Y ) − h(Y |Sn) and de-
note by FA the cumulative distribution function (CDF) of
a random variable A. Let T = S + Z ∼ P ∗ ϕβ and first
note that

FY (y) = P
(
SW+Z ≤ y

)
=

1

n

n∑
i=1

P(Si+Z ≤ y) = FT (y).

(33)
Thus, h(Y ) = h(P ∗ ϕβ).

It remains to show that h(Y |Sn) = Eh(P̂Sn ∗ ϕβ). Fix
Sn = sn and consider

FY |Sn(y|sn) = P
(
SW+Z ≤ y

∣∣Sn = sn
)

=
1

n
P
(
si+Z ≤ y

)
,

(34)
which implies that the density pY |Sn=sn = P̂sn ∗ ϕβ . Con-
sequently, h(Y |Sn = sn) = h(P̂sn ∗ϕβ), and by definition
of conditional entropy h(Y |Sn) = Eh(P̂Sn ∗ γ).

Using the lemma, we have∣∣∣∣ sup
P∈Fd

Eh(P ∗ ϕβ)− h(P̂Sn ∗ ϕβ)

∣∣∣∣ = sup
P∈Fd

I(Sn;Y ),

(35)
where the right hand side is the mutual information between
n i.i.d. random samples Si from P and the random vector
Y = SW +Z, formed by choosing one of the Si’s at random
and adding Gaussian noise.

To obtain a lower bound on the supremum, we consider
the following P . Partition the hypercube [−1, 1]d into kd

equal-sized smaller hypercubes, each of side length k. De-
note these smaller hypercubes as C1,C2, . . . ,Ckd (the exact
order does not matter). For each i ∈ [kd] let ci ∈ Ci be the
centroid of the hypercube Ci. Let C , {ci}k

d

i=1 and choose
P as the uniform distribution over C.

By the mutual information chain rule and the non-negativity
of discrete entropy, we have

I(Sn;Y ) = I(Sn;Y, SW )− I(Sn;SW |Y )

(a)

≥ I(Sn;SW )−H(SW |Y )

= H(SW )−H(SW |Sn)−H(SW |Y ), (36)

where step (a) uses the independence of (Sn,W ) and
Z. Clearly H(SW ) = log |C|, while H(SW |Sn) ≤
H(SW ,W |Sn) ≤ H(W ) = log n, via the independence
of W and Sn. For the last (subtracted) term in (36) we use
Fano’s inequality to obtain

H(SW |Y ) ≤ H
(
SW
∣∣ψC(Y )

)
≤ Hb

(
Pe(C)

)
+ Pe(C) · log |C|, (37)

where ψC : Rd → C is a function for decoding SW from Y
and Pe(C) , P

(
SW 6= ψC(Y )

)
is the probability that ψC

commits an error.

Fano’s inequality holds for any decoding function ψC . We
choose ψC as the maximum likelihood decoder, i.e., upon
observing a y ∈ Rd it returns the closest point to y in
C. Denote by Di , ψ−1C (ci) the decoding region on ci,
i.e., the region

{
y ∈ Rd

∣∣ψC(y) = ci
}

that ψC maps to ci.
Note that Di = Ci for all i ∈ [kd] for which Ci doesn’t
intersect with the boundary of [−1, 1]d. When Y = SW+Z,
SW ∼ Unif(C) and the probability of error for the decoder
ψC is bounded as:

Pe(C) =
1

kd

kd∑
i=1

P
(
ψC(ci + Z) 6= ci

∣∣∣SW = ci

)

=
1

kd

kd∑
i=1

P
(
ci + Z /∈ Di

)
(a)

≤ P
(
‖Z‖∞ >

2/k

2

)
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(b)
= 1−

(
1− 2Q

(
1

kβ

))d
, (38)

where (a) holds since the Ci have sides of length 2/k and
the error probability is largest for i ∈ [kd] such that Ci is in
the interior of [−1, 1]d. Step (b) follows from independence
and the definition of the Q-function.

Taking k = k? in (38) as given in the statement of the
theorem gives the desired bound Pe(C) ≤ ε. Collecting the
pieces and inserting back to (36), we obtain

I(Sn;Y ) ≥ log

(
k
d(1−ε)
?

n

)
−Hb(ε). (39)

Together with (35) this concludes the proof.

10.3. Proof of Theorem 6

Denote the joint distribution of (C,Z, V ) by PC,Z,V .
Marginal or conditional distributions are denoted as usual
by keeping only the relevant subscripts. Lowercase p is
used to denote a PMF or a PDF depending on whether the
random variable in the subscript is discrete or continuous.
In particular, pC is the PMF of C, pC|V is the conditional
PMF of C given V , while pZ = ϕβ and pV = g are the
PDFs of Z and V , respectively.

First observe that the estimator is unbiased:

EĥMC = − 1

n · nMC

n∑
i=1

nMC∑
j=1

E log g
(
µi + Z

(i)
j

)
= h(g).

(40)
Therefore, the MSE expands as

MSE
(
ĥMC

)
=

1

n2 · nMC

n∑
i=1

var
(

log g(µi + Z)
)
. (41)

We next bound the variance of log g(µi + Z) via Poincaré
inequality for the Gaussian measure N (0, β2Id) (with
Poincaré constant β2). For each i ∈ [n], we have

var
(

log g(µi + Z)
)
≤ β2E

[∥∥∇ log g(µi + Z)
∥∥2
2

]
. (42)

We proceed with separate derivations of (16) and (17).

10.3.1. MSE BOUND FOR BOUNDED SUPPORT

Since ‖C‖2 ≤
√
d almost surely, Proposition 3 from

(Polyanskiy & Wu, 2016) implies∥∥∇ log g(v)
∥∥
2
≤ ‖v‖2 +

√
d

β2
. (43)

Inserting this into the Poincaré inequality and using (a +
b)2 ≤ 2a2 + 2b2 we have,

var
(

log g(µi + Z)
)
≤ 2d(4 + β2)

β2
, (44)

for each i ∈ [n]. Together with (41), this concludes the
proof of (16).

10.3.2. MSE BOUND FOR BOUNDED SECOND MOMENT

To prove (17), we use Proposition 2 from (Polyanskiy &
Wu, 2016) to obtain∥∥∇ log g(v)

∥∥
2
≤ 1

β2

(
3‖v‖2 + 4E‖C‖2

)
. (45)

Via the Poincaré inequality from (42), the variance is
bounded as

var
(

log g(µi + Z)
)

≤ 1

β2
E
[
(3‖µi + Z‖2 + 4E‖C‖)2

]
≤ 1

β2

(
9dβ2 + 16MC + 24β

√
dMC

+ 3‖µi‖2
(

3 + 9β
√
d+ 8β

√
dMC

))
, (46)

where the last step uses Hölder’s inequality (namely,
E‖C‖2 ≤

√
E‖C‖22). The proof of (17) is concluded by

plugging (46) into the MSE expression from (41) and noting
that 1

n

∑n
i=1 ‖µi‖2 ≤

√
MC .
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