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Abstract—There is a recent growing interest in measuring
mutual information between the data X and an internal repre-
sentation 7" of a deep neural network (DNN). In particular, the
evolution of /(X;7T) during training attracted much attention
in the context of the Information Bottleneck theory. However,
in deterministic networks with strictly monotone nonlinearities
(e.g., tanh or sigmoid) 7(X; 7)) is either a constant independent of
the network’s parameters (discrete X) or infinite (continuous X),
making the mutual information a vacuous quantity. A possible
remedy for this issue is the recently proposed paradigm of
noisy DNNs, where the outputs of the hidden activities are
perturbed by (small) Gaussian noises, making the X — T
map a stochastic parameterized channel. This work focuses on
the nonparametric differential entropy estimation problem that
arises in this setup: the estimation of h(S + Z), where S is
the sampled variable while Z is an isotropic Gaussian with
known parameters. Our main motivation it to provide estimation
techniques and error bounds that are applicable in practice for
real-life DNNs. We first show that the sample complexity of any
good estimator must scale exponentially with dimension. Then, a
natural estimator for h(S + Z) is proposed which approximates
it via a the entropy of a Gaussian mixture. A convergence rate
of O (Lg /4
all constants explicit and the dependence on dimension and
noise parameters made clear. We observe that (i) the inherent
smoothness of the convolved distribution does not require any
additional smoothness assumptions on the nonparametric class
of distributions, and (ii) our explicit modeling of S and Z allows

_ _as
avoiding the undesirable O (n~ #s+d | convergence rates that are

typical under unstructured smoothness assumptions, with s being
a smoothness parameter and «, 5 € N. A Monte Carlo integration
method for efficient computation of the estimator is proposed and
theoretical guarantees on the accuracy of the computed values
are provided. Finally, several simulations illustrate the superi-
ority of our estimator over general-purpose differential entropy
estimators for the considered model, including an experiment
over a small noisy DNN.

is derived for the absolute-error risk, with

I. INTRODUCTION

Estimating the differential entropy of an unknown distribu-
tion P from independently and identically distributed (i.i.d.)
samples from P is by now a well-studied statistical estima-
tion problem. It is an instance of the general framework of
nonparametric functional estimation, where one aims estimate
a functional of the underlying distribution P (in our case,
the entropy), rather than the distribution itself. Specifically,
suppose P is supported on R?, absolutely continuous with
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respect to (w.r.t.) the Lebesgue measure and has density p.
Letting {X1,...,X,} be n i.i.d. samples from p, the goal is
to estimate the differential entropy

h) £ = [ pla)togple)ds

from the empirical observations { X1, ..., X,, }. While estimat-
ing the entropy of discrete distributions P is well understood
with known sharp bounds on the minimax risk [1], [2] and
estimators attaining the minimax rates [2]-[4], differential
entropy estimation remains a more challenging task.

There are two prevailing approaches for estimating the
nonsmooth differential entropy functional: the first relying on
kernel density estimators (KDEs) [5], and the other using
k nearest neighbor (kNN) techniques (see, e.g., [6] for a
comprehensive survey). Analyzing the performance of differ-
ential entropy estimators typically requires restricting attention
to smooth nonparametric density classes and assuming the
underlying densities are bounded away from zero. Various
works apply only for densities that are uniformly bounded
away from zero [5], [7], while others restrict the densities’
closeness to zero on average [8], [9]. In practice, however,
even the Gaussian distribution violates the boundedness from
below assumptions, rendering this restriction highly unnatural.
Even more so, these estimators often have the associated
risk converging as O (rfﬁ), where d is the dimension,

s is a smoothness parameter', and «, 3 are positive inte-
gers. This convergence rate quickly deteriorates with larger
dimensions, becoming ineffective for bounding the error of
implemented estimators in high-dimensional settings. Further-
more, the above results include implicit constants that depend
on d (possibly exponentially) that may (when combined with
the weak decay w.r.t. n) significantly increase the number of
samples required to achieve a desired estimator accuracy.
Our work is motivated by the problem of mutual information
estimation over deep neural networks (DNNs), where the
dimension of the ambient space is inherently large. There
has been a recent surge of interest in this estimation scenario
[12]-[15] partially driven by the Information Bottleneck (IB)
theory for DNNs [16]. An intriguing claim from [16] is that
the mutual information I(X;T), between the network’s input
X and a given hidden layer 7', undergoes the so-called ‘com-

'Commonly, the values of s are assumed to be rather small; e.g., in the
recent works [10], where the kNN-based estimator from [11] was analyzed
without the boundedness from below assumption on the densities, the results
hold from s € [0, 2).



pression’ phase as the DNN’s training progresses. Namely,
after a short ‘fitting’ phase at the beginning of training,
I(X;T) exhibits a slow long-term decrease, which, according
to [16], explains the excellent generalization performance of
DNNs. The main caveat in the supporting empirical results
provided in [16] (and the partially opposing results from
the followup work [12]) is that in a deterministic DNN the
mapping T = f(X) is almost always injective when the
activation functions are strictly monotone. As a result, I(X;T)
is either infinite (when the data distribution Py is continuous)
or a constant (when Px is discrete?). Thus, when the DNN
is deterministic, I(X;T) is not an informative quantity to
consider. As explained in [17], the reason why [12], [16] miss
this fact stems from an inadequate application of the binning-
based mutual information estimator used in their plots of the
evolution of I(X;T) during training.

As a remedy for the constant/infinite mutual information is-
sue, [17] proposed the framework of noisy DNNs, where each
neuron adds a small amount of Gaussian noise (i.i.d. across all
neurons) after applying the activation function. The injected
noise makes the map X ~— T a stochastic parameterized
channel, and as a consequence, I(X;T) is a finite quantity that
depends on the network’s parameters. Interestingly, although
the primary purpose of the noise injection in [17] was to
ensure that J(X;7T) is a meaningful quantity, experimentally
they find that DNN’s performance is optimized at non-zero
noise variance, thus providing a natural way for selecting this
parameter. Adopting the noisy DNN framework from [17], our
goal is to set the groundwork for estimating I(X;T) in real-
life DNNs while providing theoretical guarantees that are not
vacuous when d is relatively large. We exploit the structure of
the noisy DNN to alleviate the above described deficiencies of
generic (KDE- or kNN-based) differential entropy estimators
for high-dimensional data. Specifically, the structure allows
removing any smoothness or boundedness assumptions on
the sampled density®, while attaining a significantly faster
convergence rate as described below.

In a noisy DNN each hidden layer can be written as 7' =
S+Z, where S is a deterministic function of the previous layer
and Z is a centered isotropic Gaussian. The DNN’s generative
model enables sampling S by feeding data samples up the
network; the distribution of Z is known since the noise is
injected by design. Estimating mutual information boils down
to the following new differential entropy estimation problem
(see Section III of the full paper [18]): Let S ~ P be an
arbitrary (continuous / discrete / mixed) random variable with
values in R? and Z ~ N'(0,5%1,) be an independent isotropic
Gaussian. Upon observing n i.i.d. samples S™ = (S,...,S,,)
from P and assuming o is known, we aim to estimate h(S +

2The mapping from X to T is almost always (except for a measure-zero
set of weights) injective whenever the nonlinearities are, thereby causing
I(X;T) = H(X) for any hidden layer T', even if T consists of a single
neuron.

3In fact, the boundedness from below assumption is not valid for noisy
DNNSs since the Gaussian density can get arbitrarily close to 0. Therefore,
many of the above mentioned minimax results do not apply for our entropy
estimation framework.

Z) = h(P x ¢), where ¢ denotes the Gaussian probability
density function (PDF).* To investigate the decision-theoretic
fundamental limit, we consider the minimax absolute-error risk
of differential entropy estimation:

Ri(n,0) £ inf sup Egn |R(P %) —h(S™,0)|, (1)
h PeFy
where F is a nonparametric class of d-dimensional probabil-
ity distributions and h is the estimator. The sample complexity
nj(n,o) is the smallest number of samples (up to constant
factors) for which estimation within an additive gap 7 is
possible. The of this work is to (i) provide lower bounds on the
sample complexity of this estimation problem in terms of d, o
and 7, and (ii) design an estimator h that attains the minimax
rates up to polylogarithmic factors.
We first show an unavoidable exponential dependence of the
sample complexity on dimension. Specifically, it is established
* 27(e)d . ...
that n%(n,o) = Q ( o ), where (o) is a positive, mono-
tonic decreasing function of o. Furthermore, it is known that
the parametric estimation rate under the absolute-error loss
cannot decay at a rate faster than ﬁ (see, e.g., [19, Propo-
sition 1]). To achieve this lower bound up to polylogarithmic
factors, we propose an estimator that approximates h(P * ¢)
via the differential entropy of a Gaussian mixture with centers
at the sample points {S;};_,. We first construct the empirical
measure Pg. 2 1™ §g., where Jg, is the Dirac measure
associated with S;, and then consider the estimator

hep 2 B (Psn « (p) . )

The subscript SP stands for ‘sample propagation’, which
stands for our technique for sampling S in DNN settings.
When P belongs to a class of compactly supported distri-
butions on R? (corresponding to a tanh/sigmoid DNN), we
show that the absolute error of this estimator is bounded by
Co (logn)d/2

= with the constant C, 4 (that also depends on d
exponentially) explicitly characterized. The full version of this
work [18] contains an extension of this result to the class of
d-dimensional distribution with subgaussian marginals (which
accounts for ReLU DNNs with subgaussian inputs). The
derived convergence rate coincides with the minimax lower
bound up to polylogarithmic factors making it near minimax
rate-optimal. More importantly, it significantly improves upon
the O (n_ﬂaier> convergence guarantees of generic differen-
tial entropy estimators. This is, of course, expected since hsp
is tailored for our particular estimation setup, while generic
KDE- or kNN-based estimators are not designed to exploit
the T =S + Z structure nor the ‘clean’ samples S™.

Finally, we provide the groundwork for practical imple-
mentations of the SP estimator. An efficient implementations
of hsp based on Monte Carlo (MC) integration is proposed.
Since hsp is simply the entropy of a known Gaussian mixture,
MC integration using samples from this mixture allows a

4See the notation section at the end of the introduction for a preciese
definition of P * ¢ when P is discrete / continuous / mixed.



simple computation of hsp. We provide bou(?fcl)s on the MSE

o,d

of the computed value that converge as Pyt where n is
the number of centers in the mixture®, nyc is the number of
MC samples, and CS\ZC) is an explicit constant that depends
linearly on the dimension. MSE bounds are provided both for
compactly supported distributions p (tanh/sigmoid networks),
as well as distributions with a bounded second moment (e.g.,
ReLU network with weight regularization). Several simula-
tions (including an estimation experiment over a small DNN
for classifying a spiral dataset) visualize the gain of the ad-
hoc hsp estimator over its general-purpose counterparts, both
in the rate of error decay and in its scalability with dimension.

Notations: Throughout this work logarithms are taken w.r.t.
the natural base. For an integer & > 1, we set [k] =

{i € Z‘l < i < k}. For a real number p > 1, the LP-

d ()
(Z @)
while ||z|lcc = maxj<i<q|2(7)|. Probability distributions are
denoted by uppercase letters such as P or (). The support of
a d-dimensional distribution P, denoted by supp(P), is the
smallest set R C RY such that P(R) = 1. If P is discrete, the
corresponding probability mass function (PMF) is designated
by p, i.e., p(z) = P({z}), for z € supp(P). With some abuse
of notation, the PDF associated with a continuous distribution
is also denoted by p. Whether p is a PMF or a PDF is of no
consequence for most of our results; whenever the distinction
is important, the nature of p will be clarified.

norm of x € R? is denoted by |z|, =

Since our estimation setting considers the sum of inde-
pendent random variables S + Z, we oftentimes deal with
convolutions. For two probability measure ;2 and v on R,
their convolution is defined by

e = [ [ 1ate+ putdoma)

where 1 4 is the indicator of the Borel set A. If S ~ p and
Z ~ v are independent random variables, then S+ Z ~ px*v.
In this work, Z is always an isotropic Gaussian whose PDF
is denoted by . The random variable S, however, may be
discrete, continuous or mixed. Regardless of the nature of
S ~ P, the random variable S + Z is always continuous
and its PDF is denoted by P * . By the latter we mean
(P @)(2) = fpup(w)p(e — w)du = (p * )(x). when P
is continuous with density p. If P is discrete with PMF p,
then (P * ¢)(z) = > .. ,u)>oP(u)p(z — u). For a mixed
distribution P, Lebesgue’s decomposition theorem allows to
write Px as the sum of two expressions as above. Henceforth,
we typically overlook the exact structure of P * ¢ only
mentioning it when it is consequential.

5The number of centers is the number of samples used for estimation.

IT. RESULTS FOR DIFFERENTIAL ENTROPY ESTIMATION
UNDER GAUSSIAN CONVOLUTIONS

A. Preliminary Definitions

Let Fy be the set of distributions P with supp(P) C
[~1,1]4.5 The minimax absolute-error risk over F is

RA(n,0) 2 inf sup Egn |h(P %) — h(S™, )|, (3)

h PeFqy
where h is an estimator of h(P * ¢) based on the empirical
data S™ = (S1,...,Sy) of i.i.d. samples from P and the noise
parameter 0. The sample complexity n%(n, o) is defined as
the smallest number of samples (up to constant factors) for
which estimation within an additive gap 7 is possible. Namely,

n}(n,o) = min {n|R§(n,a) < 77}. )

In the full version of this work [18] we show that the
sample complexity is exponential in d. The argument relates
the estimation of h(P * ) to estimating the discrete entropy
of a random variable distributed over a capacity achieving
codebook for the peak-constrained additive white Gaussian
noise (AWGN) channel. See Theorems 1 and 2 of [18].

B. Absolute-Error Risk Convergence Rates

We turn to analyze the performance of the SP estimator
from (2). Recall that hsp 2 h (Psn *cp), where Pgn £
LS | ds, is the empirical measure associated with S™. The
following theorem shows that the expected absolute error
of hsp decays like O (M\/g(”) for all dimensions d. We
provide explicit constants (in terms of ¢ and d), which present

an exponential dependence on the dimension, in accordance
to aforementioned the sample complexity lower bounds.

Theorem 1 (Absolute-Error Risk for Bounded Support)
Fix 0 >0, d > 1 and any € > 0. The absolute-error risk of
the SP estimator (2) over the class Fy, for all n sufficiently
large, is bounded as

sup Egn
PeFy

h(P x ) — iLSP’

d
2

w2+ 20,/ @ ellogn ) | (24+20y/ @ e logn)

<lo
=08 (r02)% 2(4mo?) Vn
2¢5 ad(1 + o2 8d(d + 20 + do?)\ 2
’ o o n

where ¢4 = $log(2n0?) + 4. In particular,

Polylog(n)>
sup Egn —F ], (6)
PcF, Vn

and the right-hand sides (RHSs) of (5) and (6) are, respec-
tively, explicit and implicit upper bounds on the minimax
absolute-error risk Rjj(n, o).

h(P * ) — BSP’ =054 <

©Any support included in a compact subset of R would do. We focus on
the case of supp(P) C [—1,1]¢ due to its correspondence to a noisy DNN
with tanh nonlinearities.



An outline of the proof is given in Section III; see Section
V-D of [18] for the full derivation. Several things to note about
the result are the following:

1) The theorem does not assume any smoothness conditions
on the distributions in F; due to the inherent smoothing
introduced by the convolution with the Gaussian density.
Another way to understand this is that while the dif-
ferential entropy h(g) is not a smooth functional of the
underlying density g, our functional is T.,(P) £ h(Px),
which is smooth.

2) The result does not rely on P being bounded away from
zero. We circumvent the need for such an assumption by
observing that although the convolved density P * ¢ can
be arbitrarily close to zero, it is easily lower bounded
inside R,, = [~1,1]% + B4(0,0/(2+ ¢)logn) (ie., a
Minkowski sum of [—1,1]? with a d-dimensional sphere
or radius o/ (2 + €) log n). The analysis inside the region
exploits the tlog (%) modulus of continuity for the map
x +— xlogx combined with some calculus of variations
techniques; the integral outside the region is controlled
using tail bounds for the Chi-squared distribution.

3) In relation to general-purpose differential entropy estima-
tors, one could always sample ¢ and add up these noise
sample to S™ to obtain a sample set from P x ¢. These
samples can be used to get a proxy of h(Px¢) via a kKNN-
or a KDE-based differential entropy estimator. However,
as mentioned above, P x ¢ violated the boundedness
away from zero assumption that most of the convergence
rate results in the literature rely on. The only result
we are aware of that analyses a differential entropy
estimator (namely, the kNN-based estimator from [11])
without assuming the density is bounded from below
[10] relies on the density being supported inside [0, 1],
satisfying periodic boundary conditions and having a
Holder smoothness parameter s € (0, 2]. The convolved
density P ¢ satisfies neither of these three conditions.

4) Because the SP estimator is constructed to exploit the
particular structure of our estimation setup it achieves a
fast convergence rate of (%5(”)

with unstructured differential entropy estimators typically

converges as the slower O (n_/*:ﬂli This highlights the
advantage of ad-hoc estimation as opposed to general-
purpose estimation.

). The risk associated

Remark 1 (Extension of Theorem 1) Theorem 1 provides
convergence rates when estimating differential entropy (or
mutual information) over DNNs with bounded activation func-
tions, such as tanh or sigmoid. To account for networks
with unbounded nonlinearities, such as the popular ReLU
networks, the full paper [18] includes an extension of Theorem
1 the nonparametric class of d-dimensional distributions with
subgaussian marginals (see Theorem 4 therein).

Remark 2 (Near Minimax Rate-Optimality) A
convergence rate faster than cannot be attained for

un

parameter estimation under the absolute-error loss. This
follows from, e.g., Proposition 1 of [19], which establishes
this convergence rate as a lower bound for the parametric
estimation problem given n i.i.d. samples. Consequently, the
convergence rate of Oy q (M\ﬁ%(”)) established in Theorem
1 for the SP estimator is near minimax rate-optimal (i.e., up

to logarithmic factors).

C. Computing the Samples Propagation Estimator

Evaluating hsp requires computing the differential entropy
of a Gaussian mixture. Although it cannot be computed in
closed form, this section presents a method for approximate
computation via MC integration [20]. To simplify the presenta-
tion, we present the method for an arbitrary Gaussian mixture
without referring to the notation of the estimation setup.

Let g(t) £ L>7" ot — p;) be a d-dimensional, n-
mode Gaussian mixture, with centers {z;}", C R Let
C ~ Unif ({p;}7,) be independent of Z ~ ¢ and note that
V £ C + Z ~ g. First note that

1 n
h(g) = —E1l V)=—=>» EIl i+ Z), 7
(9) ogg(V) n; ogg(ui+2), (D
where the last uses the independence of Z and C. Let
{ZJ(-Z)} iefn) be m X nmc iid. samples from . For each

j€[nmc]
i € [n], we ‘estimate the i-th summand on the RHS of (7) by

nmc

(i 1 i
fﬁn)cénMC;lOgg (m+Zj(-)), ®)

which produces hmc 2 L3 [0) as our estimate of

h(g). Define the mean squared error (MSE) of hmc as
. R 2

MSE (hMc) £ ]EL(hMC - h(g)) . We have the following

bounds on the MSE for tanh/sigmoid and ReLU networks,
i.e., when the support or the second moment of C' is bounded,
respectively.

Theorem 2 (MSE Bounds for MC Computation)

1) Assume C € [—1,1]% almost surely (i.e., tanh / sigmoid
networks), then

1 2d(2+0?)
—.

MSE (iLMc> < ©)

n-nmuc g

2) Assume M = E|C||2 < oo (e.g., ReLU networks with
weight regularization), then

MSE (EMC)
1 9do?+8(24+0Vd)M+3(110Vd+1)VM
~ n-nmc o2 '

(10)

A full proof of Theorem 2 is found in [18, Section V-G].
The argument exploits the Gaussian Poincaré inequality to
reduce the analysis to that of the log-mixture distribution
gradient. The bounds on the MSE scale only linearly with



the dimension d. Experimentally, the dominating factor is the
o2 in the denominator.

III. PROOF OUTLINE FOR THEOREM 1

The analysis bounds the estimation error inside and outside
a certain high probability region with respect to ¢ £ P x
. Inside the high probability region we use the modulus of
continuity ¢log (%) for the function = — xlog z to dominate
the difference between certain integrals. Outside the region, the
estimation error is controlled via bounds on the tail probability
of the Chi-squared distribution.

Define R,, £ [~1,1]¢ + B(0, a,0) as the Minkowski sum
of the hypercube and a ball of radius a0, where o, > 1
will be specified later. For a PDF ¢ we denote hg, (q) =
ffRn q(v)logq(w)dx and define hg.(q) analogously with
respect to the complement of R,,. Denoting rgn = Pgn % o,
we have

sup Egn |h(q) — h(rgn)

PeFy

< sup Egn |hr,(¢) — hr, (rsn)| +2 sup |h7g% (q)|
PeFqy PeFq

(1)

Thus, we need to control the estimation inside R,, and show
that |hge (P * @)‘ is small for any P € Fg4. The former is is
controlled using the following Lemma.

Lemma 1 (Entropy Restricted to Finite Volume Set) Ler
R C R? be a region of finite Lebesgue measure. Then for all
n sufficiently large, we have

sup Egn|[hg (P * ) — hr(Pgn * ¢)|

PeFy
< _ nA(RZ A(R) 7 (12)
2(4mo?)a (ro?)2 n

where \ is the Lebesgue measure on R

The proof is omitted due to space limitations, but the deriva-
tion relies on the aforementioned tlog (%) modulus of con-
tinuity for the function x — zlogz and some calculus of
variations arguments. The second summand on the RHS of
(11) is handled using Lemma 2.

Lemma 2 (Entropy Restricted to Complement Region)
Let P be a distribution on R and R C R be a region of
finite Lebesgue measure such that (P * ¢)(z) < 1, for all
x € RS, and suppose S ~ P satisfies E||S||3 < oc. Then

|hre (P )|

2(cp.q + EIISI3) (EIIS|3 + 0d)

< (o +EISIR)® + ;

g

4 4
+ 8 (E”SH2 +Z d(2+d)> IP(T ¢ 'R), (13)

g

2 d
2

where c, , log(2ma?).

Provided these two auxiliary results, the proof of Theorem

1 follows by taking o, = /(2 + €) logn, with an arbitrarily
small € > 0 is. In the result of Lemma 1 we insert A\(R,) <

d
(2 +20+/(2+¢)log n) . The assumptions of Lemma 2 hold

by noting that for sufficiently large n we have (P p)(z) < 1
for all x € RS, uniformly in P € Fy. The moments of ||.S]]
are bounded by using ||S||> < V/d. Finally, we show that
P(T ¢ R,) < 1 by leveraging the tail bound for the Chi-
square distribution from [21, Equation (4.3)]. Combining the
above described pieces establishes the result.
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