Wiretap Channels with Random States Non-Causally Available at the Encoder

Ziv Goldfeld Joint work with Paul Cuff and Haim Permuter

Ben-Gurion University

2016 International Conference on the Science of Electrical Engineering

November 18th, 2016

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

Secrecy-Capacity:

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

Secrecy-Capacity: • Reliable Communication.

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

Secrecy-Capacity:

- Reliable Communication.
- Z^n contains no information about M.

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

Secrecy-Capacity: • Reliable Communication.

• Z^n contains no information about M.

Theorem (Csiszár-Körner 1978) $\mathsf{C}_{\mathsf{WTC}} = \max_{P_{U,X}} \left[I(U;Y) - I(U;Z) \right]$ Joint distribution: $P_{U,X}P_{Y,Z|X}$

• Pad nR message bits with $n\tilde{R}$ random garbage bits.

• Pad nR message bits with $n\tilde{R}$ random garbage bits.

ullet Pad nR message bits with $n ilde{R}$ random garbage bits.

• Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$

ullet Pad nR message bits with $n ilde{R}$ random garbage bits.

- Random Codebook: (Message, Padding) $o U^n \sim P_U^n$
- Reliability: $R + \tilde{R} < I(U; Y)$.

ullet Pad nR message bits with $n ilde{R}$ random garbage bits.

- Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$
- Reliability: $R + \tilde{R} < I(U; Y)$.
- Security: $\tilde{R} > I(U; Z)$.

[Pelfand-Pinsker 1980]

[Pelfand-Pinsker 1980]

Capacity:

[Pelfand-Pinsker 1980]

Capacity: Reliable Communication.

[Pelfand-Pinsker 1980]

Capacity: Reliable Communication.

Theorem (Gelfand-Pinsker 1980)

$$\mathsf{C}_{\mathsf{GP}} = \max_{P_{U,X|S}} \left[I(U;Y) - I(U;S) \right]$$

Joint distribution: $P_{U,X|S}P_{Y|X,S}$

• Pad nR message bits with $n\tilde{R}$ skillfully chosen bits.

• Pad nR message bits with $n\tilde{R}$ skillfully chosen bits.

• Pad nR message bits with $n\tilde{R}$ skillfully chosen bits.

• Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$

ullet Pad nR message bits with $n ilde{R}$ skillfully chosen bits.

- Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$
- Correlating U^n with S^n : $\tilde{R} > I(U; S)$.

• Pad nR message bits with $n\tilde{R}$ skillfully chosen bits.

- Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$
- Correlating U^n with S^n : $\tilde{R} > I(U; S)$.
- Reliability: $R + \tilde{R} < I(U;Y)$.

Similarities:

Capacity expression.

- Capacity expression.
- Encoding.

- Capacity expression.
- Encoding.
- \bullet Converse (i.i.d. S^n in GP setting allows skipping a step).

- Capacity expression.
- Encoding.
- ullet Converse (i.i.d. S^n in GP setting allows skipping a step).
- Target asymptotic probabilistic relations:

- Capacity expression.
- Encoding.
- Converse (i.i.d. S^n in GP setting allows skipping a step).
- Target asymptotic probabilistic relations:
 - ▶ Gelfand-Pinsker Channel: $\hat{M} = M$ (and M independent of S^n).

- Capacity expression.
- Encoding.
- ullet Converse (i.i.d. S^n in GP setting allows skipping a step).
- Target asymptotic probabilistic relations:
 - ▶ Gelfand-Pinsker Channel: $\hat{M} = M$ (and M independent of S^n).
 - Wiretap Channel: $\hat{M} = M$ and M independent of \mathbb{Z}^n .

Secrecy-Capacity:

Secrecy-Capacity:

Reliable Communication.

Secrecy-Capacity:

- Reliable Communication.
- Z^n contains no information about M.

Same Encoding [Chen-Han Vinck 2006]

Naive Approach:

Same Encoding [Chen-Han Vinck 2006]

Naive Approach: Combining wiretap coding with GP coding.

 Message
 Padding

 00101101000110100010101100
 01001011101010

Transmitted together in one block

Same Encoding [Chen-Han Vinck 2006]

Naive Approach: Combining wiretap coding with GP coding.

Message

Padding

0010110100011010001011100 01001011101010

Transmitted together in one block

Theorem (Chen-Han Vinck 2006)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ \frac{I(U;Z)}{I}, I(U;S) \right\} \right]$$
Joint distribution: $P_S P_{U,X|S} P_{Y,Z|X,S}$

Wiretap Channels with Encoder and Decoder CSI

Key Extraction Scheme [Chia-El Gamal 2012]

Assume S^n is know to Receiver Y = (Y, S).

Wiretap Channels with Encoder and Decoder CSI

Key Extraction Scheme [Chia-El Gamal 2012]

Assume S^n is know to Receiver Y = (Y, S).

• Extract secret random bits from S^n .

Key Extraction Scheme [Chia-El Gamal 2012]

Assume S^n is know to Receiver Y = (Y, S).

- Extract secret random bits from S^n .
- ullet One-Time-Pad the message M.

Key Extraction Scheme [Chia-El Gamal 2012]

Assume S^n is know to Receiver Y = (Y, S).

- Extract secret random bits from S^n .
- ullet One-Time-Pad the message M.
- Point-to-point transmission (ignore **Eve**).

Key Extraction Scheme [Chia-El Gamal 2012]

Assume S^n is know to Receiver Y = (Y, S).

- Extract secret random bits from S^n .
- ullet One-Time-Pad the message M.
- Point-to-point transmission (ignore **Eve**).

Theorem (Chia-El Gamal 2012)

$$C_{\mathsf{GP-WTC}} \ge \max_{P_{U,X|S}} \min \left\{ H(S|U,Z), I(U;Y|S) \right\}$$
Joint distribution: $P_S P_{U,X|S} P_{Y,Z|X,S}$

Note: They consider causal state information.

This region is adapted to take advantage of non-causal state information.

Key Extraction Scheme [Chia-El Gamal 2012]

Assume S^n is know to Receiver Y = (Y, S).

- Extract secret random bits from S^n .
- ullet One-Time-Pad the message M.
- Point-to-point transmission (ignore **Eve**).

Theorem (Chia-El Gamal 2012)

$$\mathsf{C}_{\mathsf{GP-WTC}} \ge \max_{P_{U,X|S}} \min \left\{ H(S|U,Z), I(U;Y|S) \right\}$$
Joint distribution: $P_S P_{U,X|S} P_{Y,Z|X,S}$

Better than previous scheme!

Note: They consider causal state information.

This region is adapted to take advantage of non-causal state information.

Combined Scheme [Chia-El Gamal 2012]

Combine Wiretap Codes with Key Extraction:

Combined Scheme [Chia-El Gamal 2012]

Combine Wiretap Codes with Key Extraction: Assume Y = (Y, S).

Combined Scheme [Chia-El Gamal 2012]

Combine Wiretap Codes with Key Extraction: Assume Y = (Y, S).

Combined Scheme [Chia-El Gamal 2012]

Combine Wiretap Codes with Key Extraction: Assume Y = (Y, S).

One-Time-Padded with Key

Theorem (Chia-El Gamal 2012)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{P_{U,X|S}} \min \left\{ \begin{array}{l} H(S|U,Z) + \big[I(U;Y,S) - I(U;Z)\big]^+, \\ I(U;Y|S) \end{array} \right\}$$

$$Joint \ distribution: \ P_S P_{U,X|S} P_{Y,Z|X,S}$$

Superposition Code:

• *U*ⁿ index is **padding** only.

- *U*ⁿ index is **padding** only.
- ullet V^n index is massage and padding only.

- *U*ⁿ index is **padding** only.
- Vⁿ index is massage and padding only.
- ullet **U**ⁿ decoded by **Eve**

- Uⁿ index is padding only.
- Vⁿ index is massage and padding only.
- \bullet U^n decoded by **Eve** \Longrightarrow waste channel resources.

- Uⁿ index is padding only.
- Vⁿ index is massage and padding only.
- ullet Uⁿ decoded by **Eve** \Longrightarrow waste channel resources.
- All secrecy comes from V^n .

- Uⁿ index is padding only.
- Vⁿ index is massage and padding only.
- \bullet U^n decoded by **Eve** \Longrightarrow waste channel resources.
- All secrecy comes from V^n .
 - ★ Analysis: Likelihood Encoder & Strong Soft-Covering Lemma ★

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\I(U;Y)-I(U;S) \geq 0}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

Joint distribution: $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\ \boldsymbol{I(U;Y)-I(U;S)} \geq 0}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

Joint distribution: $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

Inner layer reliably decodable by the receiver.

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\I(U;Y)-I(U;S)\geq 0}} \min \left\{ \begin{array}{c} \boldsymbol{I(V;Y|U)-I(V;Z|U)},\\I(U,V;Y)-I(U,V;S) \end{array} \right\}$$

Joint distribution: $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

- Inner layer reliably decodable by the receiver.
- Total secrecy rate of outer layer.

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\I(U;Y)-I(U;S)\geq 0}} \min \left\{ \begin{array}{l} I(V;Y|U)-I(V;Z|U),\\ \boldsymbol{I(U,V;Y)}-I(\boldsymbol{U,V;S}) \end{array} \right\}$$

Joint distribution: $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

- Inner layer reliably decodable by the receiver.
- Total secrecy rate of outer layer.
- **Total communication** rate of entire superposition codebook.

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\I(U;Y)-I(U;S) \geq 0}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

Joint distribution: $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

Relation to Previous Schemes:

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\I(U;Y)-I(U;S) \geq 0}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

Joint distribution: $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

Relation to Previous Schemes:

• Upgrade from weak-secrecy to semantic-security.

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\I(U;Y)-I(U;S)\geq 0}} \min \left\{ \begin{array}{l} I(V;Y|U)-I(V;Z|U),\\ I(U,V;Y)-I(U,V;S) \end{array} \right\}$$

Joint distribution: $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

Relation to Previous Schemes:

- Upgrade from weak-secrecy to semantic-security.
- Recovers Chia-El Gamal's result when Y = (Y, S).

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\I(U;Y)-I(U;S) \geq 0}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

Joint distribution: $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

Relation to Previous Schemes:

- Upgrade from weak-secrecy to semantic-security.
- Recovers Chia-El Gamal's result when Y = (Y, S).
- ullet Beats previous regions even when S^n **not** known to Receiver.

$$C = \max_{P_{A|S}} \min \{ I(A; S_1), 1 - h(\alpha) - I(A; S|S_1) \}$$

Our scheme is optimal [Bassi-Pinatanida-Shamai 2016]:

$$C = \max_{P_{A|S}} \min \{ I(A; S_1), 1 - h(\alpha) - I(A; S|S_1) \}$$

► 1st auxiliary - key agreement over BEC.

$$C = \max_{P_{A|S}} \min \{ I(A; S_1), 1 - h(\alpha) - I(A; S|S_1) \}$$

- ▶ 1st auxiliary key agreement over BEC.
- ▶ 2nd auxiliary **transmission** over BSC (indep. of state and key).

$$C = \max_{P_{A|S}} \min \{ I(A; S_1), 1 - h(\alpha) - I(A; S|S_1) \}$$

- 1st auxiliary key agreement over BEC.
- 2nd auxiliary transmission over BSC (indep. of state and key).
- Chen-Han Vinck scheme is suboptimal:

$$C = \max_{P_{A|S}} \min \{ I(A; S_1), 1 - h(\alpha) - I(A; S|S_1) \}$$

- 1st auxiliary key agreement over BEC.
- 2nd auxiliary transmission over BSC (indep. of state and key).
- Chen-Han Vinck scheme is suboptimal:
 - Only one auxiliary lacks flexibility to play both roles!

Gelfand-Pinsker wiretap channel

Gelfand-Pinsker wiretap channel

► Combination of two fundamental problems.

- Gelfand-Pinsker wiretap channel
 - Combination of two fundamental problems.

Novel superposition coding scheme

Gelfand-Pinsker wiretap channel

Combination of two fundamental problems.

Novel superposition coding scheme

lacktriangle Recovers best known rate when S^n known to Receiver [Chia-El Gamal].

Gelfand-Pinsker wiretap channel

Combination of two fundamental problems.

Novel superposition coding scheme

- lacktriangle Recovers best known rate when S^n known to Receiver [Chia-El Gamal].
- Strictly better than best known rate when S^n not known to Receiver.

Gelfand-Pinsker wiretap channel

Combination of two fundamental problems.

Novel superposition coding scheme

- lacktriangle Recovers best known rate when S^n known to Receiver [Chia-El Gamal].
- Strictly better than best known rate when S^n not known to Receiver.

Thank you!