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Storing Information Inside Matter

© Writing data = Perturb local state of particles

© Atomic/subatomic interactions evolves local states

© Stable for “long” = Enables later data recovery

Goals:

@ Distill notion of storage from particular technology
@ Capture interparticle interaction and system’s dynamics

@ How much data can be stored and for how long?
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Operational Framework
m X, t time X, @ o~
system —_—
dynamics

Stochastic Ising Model:

@ Graph (V,&): topology of the storage medium.
@ Gibbs measure: on Q= {—1,+1}V at inverse temp.
(o) o e PHO) = f Loguwyes @)

@ Glauber dynamics (discrete time): At config. o €

© Select site for update v ~ Unif(V)
O Refresh o(v) ~ 7r(~ ){a(w)}w;ﬁv) @) favors spin of neighbours’ maj.

Warm (5 small) = Weak interactions
Cold (B large) = Strong interactions
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Measuring Information Storage
m X t steps X m
0 of Galuber ¢
dynamics

Information Capacity: IL(t) & maxp, 1(Xo; Xz)

@ Joint distribution: (X, X;) ~ Px, P!, P - transition kernel.

@ Desired operational meaning: size of maximal codebook.

@ Graph: 2D /n x \/n grid

@® Warm: n-fold DM BSC (% + 0(1)) after t = O(n).

@ Cold: Can interactions (memory) help?
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Initial Observations

In(t) = maxpy I(Xo; X¢)

Timet=0: I,(0)=mn

@ Uniform Upper Bound: I,(t) <n, Vt (DPI)

Linear Time: I,(t) = ©O(n)
@ Converse: See above.

@ Achievability: Linear codes (Gilbert-Varshamov)

Q1: What (if anything) can be stored for infinite time?
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Storing for Infinite Time

For the zero-temp. SIM on \/n x \/n grid 2 limy 00 In(t) = O(y/n)

Achievability

o Stable Config.: 0 € Q is stable if P(o,0) =1 (ground states).

@ All 2-striped config. are stable.
® # Stripes = 2°0V") & X ~ Unif ({Stripes}) — I = Q(+v/n)

Converse:
@ Lemma: Zero-temp. SIM is absorb. MC & Stripes are absorb. set

® Absorb. MC
— lim P(X, € {Stripes}) =1 — I = 0(v/n)
t—00
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Storing for Infinite Time

For the zero-temp. SIM on \/n x \/n grid 2 limy 00 In(t) = O(y/n)

Achievability

o Stable Config.: 0 € Q is stable if P(o,0) =1 (ground states).
@ All 2-striped config. are stable.

® # Stripes = 2°0V") & X ~ Unif ({Stripes}) — I = Q(y/n)
Converse:

@ Lemma: Zero-temp. SIM is absorb. MC & Stripes are absorb. set

® Absorb. MC
= lim IP’(Xt € {Stripes}) =1 = I = O(y/n)
t—00

Q2: Can we do better than /n for finite superlinear ¢?
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@ Codebook Construction:
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» Separate by all-minus 2-strips
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Let a(n) = o(n). Then 3¢ > 0 s.t. I,(t) = Q (L> , Vt <c-a(n)-n.

@ Codebook Construction:

v

Tile grid with mono. sub-squares of side \/a(n)
Separate by all-minus 2-strips
x4 ~ unif(c), c& { with this structure}

K 21og(c| = 0 (;2) Yaol

v
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Jn
@ Continuous-Time: Updates according to i.i.d. Poiss(1/n) clocks.

L(t) ~ I (1 + 0(1))t),  t ~ suplog(n)
= Non-interacting portions are independent.

o Tensorization: I,(LC)(t) > K - max,, I ([XOC)L3 [Xt(C)]l)
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Storing w(4/n) Bits for Superlinear Time
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Storing w(4/n) Bits for Superlinear Time

Let a(n) = o(n). Then 3¢ > 0 s.t. I,(t) = Q (L> , Vt <c-a(n)-n.

Sub-Square: @

1—aq

o Flip Prob.: ¢ 2P (r <t), 7=inf {t|X;" =8 & X{” =8},

o Lifshitz Law [LST 2014]: Jc,v > 0 s.t. P(T < c-a(n) n) < e77Valn)
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Minor Tweaks - Major Impact

Grid with External Field:

o Hamiltonian: H(o) = — ( > o(wo(w)+h Y a(v))

{u,v}eé veY
@ Tie-Breaker: Any h > 0 = Tied neighborhood goes +1

= All square-tilings with a(n) = const are stable.

Honeycomb Lattice (no external field):

o deg(v) = 3, Yv in interior

— |Stable set| = O(n)

For zero-temp. SIM on Honeycomb lattice with
n vertices: I,(t) = ©(n), Vt
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@ A new model for information storage inside physical matter:

> Distilled from any particular storage technologies

» Accounts for interparticle interactions

(]

Interactions (low temperature) improve storage capability:
» Warm: Information capacity nullifies after linear time
» Cold: Storing for superlinear times (even infinity) in zero-temp. SIM
@ Variations of zero-temp. dynamics:
» Grid with External Field: I,(t) = ©(n), Vvt
» Honeycomb Lattice: I,(t) = 6(n), Vt
= Favorable over grid without external field (I,({X’) =0(/n))

(]

Additional Results: Positive but low temp.
@ Future Directions: Improved zero-temp. UB/LB & 3D lattices...
@ Available on arXiv: https://arxiv.org/abs/1805.03027


https://arxiv.org/abs/1805.03027
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We’'ve Seen:

Time | Inf. Capacity | Comments
t=0 I(t)=n Upper bound V¢t
=0(n) I,(t) =06(n) No loss for t = Iin(n)
= O(a(n)n) L) = Q( " ) t=nlogn = IL,(t) =Q (logn)
a(n) = o(n) " o)) | ¢ = plte —s I, (¢ ) Q(nt=)
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Further Questions:

© Upper bounds better than n for ¢ < c0?
» Control absorption prob. max P, (Xt is absorbed\Xo = U) >1—€ny

@ Improved scheme for superlinear time?

> Nesting infinitely many sub-squares with vanishing growth rates.
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