The Gelfand-Pinsker Wiretap Channel: Higher Secrecy Rates via a Novel Superposition Code

Ziv Goldfeld, Paul Cuff and Haim Permuter

Ben Gurion University and Princeton University

The 2017 IEEE International Symposium on Information Theory
Aachen

June 29th, 2017

The Wiretap Channel

The Wiretap Channel

• Reliable & Secure Commun.

The Wiretap Channel

• Reliable & Secure Commun.

Theorem (Csiszár-Körner 1978)

$$C_{WTC} = \max_{P_{U,X}} [I(U;Y) - I(U;Z)]$$
(Joint dist. $P_{U,X}P_{Y,Z|X}$)

The Wiretap Channel

• Reliable & Secure Commun.

Theorem (Csiszár-Körner 1978)

$$\mathsf{C}_{\mathsf{WTC}} \! = \! \max_{P_{U,X}} \! \left[I(U;Y) \! - \! I(U;Z) \right]$$

(Joint dist. $P_{U,X}P_{Y,Z|X}$)

The Wiretap Channel

• Reliable & Secure Commun.

Theorem (Csiszár-Körner 1978)

$$C_{\mathsf{WTC}} = \max_{P_{U,X}} \big[I(U;Y) - I(U;Z) \big]$$
(Joint dist. $P_{U,X} P_{Y,Z|X}$)

The Gelfand-Pinsker Channel

The Wiretap Channel

• Reliable & Secure Commun.

Theorem (Csiszár-Körner 1978)

$$C_{WTC} = \max_{P_{U,X}} [I(U;Y) - I(U;Z)]$$
(Joint dist. $P_{U,X}P_{Y,Z|X}$)

The Gelfand-Pinsker Channel

Reliable Communication.

The Wiretap Channel

Reliable & Secure Commun.

Theorem (Csiszár-Körner 1978)

$$\mathsf{C}_{\mathsf{WTC}}\!=\!\max_{P_{U,X}}\!\big[I(U;Y)\!-\!I(U;Z)\big]$$

(Joint dist. $P_{U,X}P_{Y,Z|X}$)

The Gelfand-Pinsker Channel

Reliable Communication.

Theorem (Gelfand-Pinsker 1980)

$$\mathsf{C}_{\mathsf{GP}} \! = \! \max_{P_{U,X\mid S}} \! \left[I(U;Y) \! - \! I(U;S) \right]$$

(Joint dist. $P_{U,X|S}P_{Y|X,S}$)

• Pad nR message bits with $n\tilde{R}$ redundancy bits.

• Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$

- Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$
- Padding:

- Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$
- Padding: WTC Security: $\tilde{R} > I(U; Z)$

- Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$
- Padding: WTC Security: $\tilde{R} > I(U; Z)$
 - ▶ GP Channel Correlation: $\tilde{R} > I(U; S)$

- Random Codebook: (Message, Padding) $\rightarrow U^n \sim P_U^n$
- Padding: WTC Security: $\tilde{R} > I(U; Z)$
 - ▶ GP Channel Correlation: $\tilde{R} > I(U; S)$
- Reliability: $R + \tilde{R} < I(U;Y)$.

Secrecy Capacity: Reliable and Secure Communication.

Secrecy Capacity: Reliable and Secure Communication.

Naive Approach:

Secrecy Capacity: Reliable and Secure Communication.

Naive Approach: Combine wiretap coding with GP coding.

Secrecy Capacity: Reliable and Secure Communication.

Naive Approach: Combine wiretap coding with GP coding.

Theorem (Chen-Han Vinck 2006) $\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ \boldsymbol{I(U;Z)}, \boldsymbol{I(U;S)} \right\} \right]$ (Joint distribution $P_S P_{U,X|S} P_{Y,Z|X,S}$)

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

Why and When?

Chen-Han Vinck scheme always preforms wiretap coding.

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

- Chen-Han Vinck scheme always preforms wiretap coding.
- Strong Eavesdropper

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

- Chen-Han Vinck scheme always preforms wiretap coding.
- Strong Eavesdropper ⇒ Wiretap coding is useless

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

Why and When?

- Chen-Han Vinck scheme always preforms wiretap coding.
- Strong Eavesdropper ⇒ Wiretap coding is useless

A Simple Alternative:

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

Why and When?

- Chen-Han Vinck scheme always preforms wiretap coding.
- Strong Eavesdropper ⇒ Wiretap coding is useless

A Simple Alternative: S^n is known to Receiver Y = (Y, S)

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

Why and When?

- Chen-Han Vinck scheme always preforms wiretap coding.

A Simple Alternative: S^n is known to Receiver Y = (Y, S)

1 Extract secret random bits from S^n .

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

- Chen-Han Vinck scheme always preforms wiretap coding.
- Strong Eavesdropper ⇒ Wiretap coding is useless
- A Simple Alternative: S^n is known to Receiver Y = (Y, S)
 - **1** Extract secret random bits from S^n .
 - ② One-time pad the message M.

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

- Chen-Han Vinck scheme always preforms wiretap coding.
- Strong Eavesdropper ⇒ Wiretap coding is useless
- A Simple Alternative: S^n is known to Receiver Y = (Y, S)
 - **1** Extract secret random bits from S^n .
 - $oldsymbol{0}$ One-time pad the message M.
 - Point-to-point transmission (ignore Eve).

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

- Chen-Han Vinck scheme always preforms wiretap coding.
- Strong Eavesdropper ⇒ Wiretap coding is useless
- A Simple Alternative: S^n is known to Receiver Y = (Y, S)
 - **1** Extract secret random bits from S^n .
 - $oldsymbol{0}$ One-time pad the message M.
 - Point-to-point transmission (ignore Eve).

$$\implies \textbf{Achieves:} \ \left| \max_{P_{U,X|S}} \min \left\{ H(S|U,Z), I(U;Y|S) \right\} \right|$$

Key Extraction Scheme [Chia-El Gamal 2012]

$$\mathsf{C}_{\mathsf{GP-WTC}} > \max_{P_{U,X|S}} \left[I(U;Y) - \max \left\{ I(U;Z), I(U;S) \right\} \right]$$

Why and When?

- Chen-Han Vinck scheme always preforms wiretap coding.
- Strong **Eavesdropper** \Longrightarrow Wiretap coding is useless
- **A Simple Alternative:** S^n is known to Receiver Y = (Y, S)
 - **1** Extract secret random bits from S^n .
 - $oldsymbol{2}$ One-time pad the message M.
 - Point-to-point transmission (ignore Eve).

$$\implies \textbf{Achieves:} \ \left| \max_{P_{U,X|S}} \min \left\{ H(S|U,Z), I(U;Y|S) \right\} \right|$$

Can strictly outperform previous scheme!

Superposition Coding for the GP Wiretap Channel

Main Ideas:

Superposition Coding for the GP Wiretap Channel

Main Ideas:

Main Ideas:

Main Ideas:

 Uⁿ better seen by Eve (no inner layer wiretap coding).

Main Ideas:

 Uⁿ better seen by Eve (no inner layer wiretap coding).

Main Ideas:

 Uⁿ better seen by Eve (no inner layer wiretap coding).

Main Ideas:

- Uⁿ better seen by Eve (no inner layer wiretap coding).
- Advantage to legitimate users in outer layer.

Main Ideas:

- Uⁿ better seen by Eve (no inner layer wiretap coding).
- Advantage to legitimate users in outer layer.

Main Ideas:

- Uⁿ better seen by Eve (no inner layer wiretap coding).
- Advantage to legitimate users in outer layer.

010010111010101 11010101110 00101101000010101100

Main Ideas:

- Uⁿ better seen by Eve (no inner layer wiretap coding).
- Advantage to legitimate users in outer layer.

010010111010101 11010101110 00101101000010101100

Main Ideas:

- Uⁿ better seen by Eve (no inner layer wiretap coding).
- Advantage to legitimate users in outer layer.

Main Ideas:

- Uⁿ better seen by Eve (no inner layer wiretap coding).
- Advantage to legitimate users in outer layer.

Main Ideas:

- Uⁿ better seen by Eve (no inner layer wiretap coding).
- Advantage to legitimate users in outer layer.

★ Use extra security resources as key to OTP data in inner layer ★

Theorem (Prabhakaran-Eswaran-Ramchandran 2012)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\U\mid S}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

Theorem (Prabhakaran-Eswaran-Ramchandran 2012)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\U+S}} \min \left\{ \begin{array}{l} \boldsymbol{I(V;Y|U)} - \boldsymbol{I(V;Z|U)},\\ \boldsymbol{I(U,V;Y)} - \boldsymbol{I(U,V;S)} \end{array} \right\}$$

Joint distribution $P_S P_U P_{V,X|S,U} P_{Y,Z|X,S}$.

Total secrecy rate of outer layer.

Theorem (Prabhakaran-Eswaran-Ramchandran 2012)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\U\mid S}} \min \left\{ \begin{array}{c} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

- Total secrecy rate of outer layer.
- Total communication rate of entire superposition codebook.

Theorem (Prabhakaran-Eswaran-Ramchandran 2012)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\ \boldsymbol{U} \perp \boldsymbol{S}}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

- Total secrecy rate of outer layer.
- Total communication rate of entire superposition codebook.
- \bullet $U \perp S$

Theorem (Prabhakaran-Eswaran-Ramchandran 2012)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\ \boldsymbol{U} \perp \boldsymbol{S}}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

- Total secrecy rate of outer layer.
- Total communication rate of entire superposition codebook.
- $U \perp S \implies$ No GP coding in the inner layer!

Relax Independence:

Relax Independence:

★ Analysis via **Likelihood Encoder** & **Superposition Strong SCL** ★

Relax Independence:

★ Analysis via **Likelihood Encoder** & **Superposition Strong SCL** ★

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\I(U;Y) \geq I(U;S)}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

Relax Independence:

★ Analysis via **Likelihood Encoder** & **Superposition Strong SCL** ★

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \ge \max_{\substack{P_{U,V,X|S}:\\ \boldsymbol{I(U;Y)} \ge \boldsymbol{I(U;S)}}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

Joint distribution $P_S P_{U,V,X|S} P_{Y,Z|X,S}$.

• Inner layer supports GP coding.

Relax Independence:

★ Analysis via **Likelihood Encoder** & **Superposition Strong SCL** ★

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\ \boldsymbol{I(U;Y)} \geq \boldsymbol{I(U;S)}}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

- Inner layer supports GP coding.
 - ⇒ Required for achieving optimality in some cases.

Relax Independence:

★ Analysis via **Likelihood Encoder** & **Superposition Strong SCL** ★

Theorem (ZG-Cuff-Permuter 2016)

$$\mathsf{C}_{\mathsf{GP-WTC}} \geq \max_{\substack{P_{U,V,X|S}:\\ \boldsymbol{I(U;Y)} \geq \boldsymbol{I(U;S)}}} \min \left\{ \begin{array}{l} I(V;Y|U) - I(V;Z|U),\\ I(U,V;Y) - I(U,V;S) \end{array} \right\}$$

- Inner layer supports GP coding.
 - \implies Required for achieving optimality in some cases.
- Captures all previous results & Upgrades to semantic security.

Special Thanks to A. Bunin, S. Shamai and P. Piantanida

• Main Channel: Memory with Stuck-at-Faults + Binary Erasure.

- Main Channel: Memory with Stuck-at-Faults + Binary Erasure.
- Eve: Knows input & state Z = (X, S)

- Main Channel: Memory with Stuck-at-Faults + Binary Erasure.
- Eve: Knows input & state Z = (X, S)

- Main Channel: Memory with Stuck-at-Faults + Binary Erasure.
- Eve: Knows input & state Z = (X, S)

- Main Channel: Memory with Stuck-at-Faults + Binary Erasure.
- Eve: Knows input & state $Z = (X, S) \implies$ No wiretap coding.

- Main Channel: Memory with Stuck-at-Faults + Binary Erasure.
- ullet Eve: Knows input & state $Z=(X,S) \implies$ No wiretap coding.
- Secrecy: Shared key K

- Main Channel: Memory with Stuck-at-Faults + Binary Erasure.
- ullet Eve: Knows input & state $Z=(X,S) \implies$ No wiretap coding.
- ullet Secrecy: Shared key $K \Longrightarrow \mathsf{OTP} + \mathsf{Inner}$ layer GP coding.

- Main Channel: Memory with Stuck-at-Faults + Binary Erasure.
- ullet Eve: Knows input & state $Z=(X,S) \implies$ No wiretap coding.
- ullet Secrecy: Shared key $K \Longrightarrow \mathsf{OTP} + \mathsf{Inner}$ layer GP coding.
 - \implies Capacity = Our Results

- Main Channel: Memory with Stuck-at-Faults + Binary Erasure.
- ullet Eve: Knows input & state $Z=(X,S) \implies$ No wiretap coding.
- ullet Secrecy: Shared key $K \Longrightarrow \mathsf{OTP} + \mathsf{Inner}$ layer GP coding.
 - \implies Capacity = Our Results > Prabhakaran *et al.*

• The Gelfand-Pinsker wiretap channel

- The Gelfand-Pinsker wiretap channel
 - Combination of two fundamental IT setups.

The Gelfand-Pinsker wiretap channel

- Combination of two fundamental IT setups.
- Simultaneously exploit state for reliability and security.

- The Gelfand-Pinsker wiretap channel
 - Combination of two fundamental IT setups.
 - Simultaneously exploit state for reliability and security.
- Novel superposition coding lower bounds

The Gelfand-Pinsker wiretap channel

- Combination of two fundamental IT setups.
- Simultaneously exploit state for reliability and security.

Novel superposition coding lower bounds

Recovers all past results.

The Gelfand-Pinsker wiretap channel

- Combination of two fundamental IT setups.
- Simultaneously exploit state for reliability and security.

Novel superposition coding lower bounds

- Recovers all past results.
- Strictly outperforms previous benchmark [Prabhakaran et al. 2012].

The Gelfand-Pinsker wiretap channel

- Combination of two fundamental IT setups.
- Simultaneously exploit state for reliability and security.

Novel superposition coding lower bounds

- Recovers all past results.
- ▶ Strictly outperforms previous benchmark [Prabhakaran et al. 2012].
- Upgrades all previous results to semantic security.

The Gelfand-Pinsker wiretap channel

- Combination of two fundamental IT setups.
- Simultaneously exploit state for reliability and security.

Novel superposition coding lower bounds

- Recovers all past results.
- ▶ Strictly outperforms previous benchmark [Prabhakaran et al. 2012].
- Upgrades all previous results to semantic security.
- Available on arXiv: https://arxiv.org/abs/1608.00743v1.

The Gelfand-Pinsker wiretap channel

- Combination of two fundamental IT setups.
- Simultaneously exploit state for reliability and security.

Novel superposition coding lower bounds

- Recovers all past results.
- Strictly outperforms previous benchmark [Prabhakaran et al. 2012].
- Upgrades all previous results to semantic security.
- Available on arXiv: https://arxiv.org/abs/1608.00743v1.

Thank you!

The Wiretap Channel

Pad nR message bits with nR random garbage bits.

The Wiretap Channel

Pad nR message bits with $n\tilde{R}$ random garbage bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

The Wiretap Channel

Pad nR message bits with $n\tilde{R}$ random garbage bits.

 Message
 Padding

 0010110100011100
 0100010011

Trans. together in one block

• Codebook: $U^n \sim Q_U^n$

The Wiretap Channel

Pad nR message bits with nRrandom garbage bits.

Message **Padding** 0010110100011100 0100010011

Trans. together in one block

Codebook:

 $egin{aligned} oldsymbol{U^n} &\sim Q_U^n \ ilde{R} &> oldsymbol{I(U;Z)} \end{aligned}$ Security:

The Wiretap Channel

Pad nR message bits with $n\tilde{R}$ random garbage bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

• Codebook: $U^n \sim Q_U^n$

ullet Security: $ilde{R} > I(U;Z)$

• Reliability: $R + \tilde{R} < I(U; Y)$

The Wiretap Channel

Pad nR message bits with $n\tilde{R}$ random garbage bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

• Codebook: $U^n \sim Q_U^n$

ullet Security: $ilde{R} > I(U;Z)$

• Reliability: $R + \tilde{R} < I(U;Y)$

The Gelfand-Pinsker Channel

Pad nR message bits with nR skillfully chosen bits.

The Wiretap Channel

Pad nR message bits with $n\tilde{R}$ random garbage bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

• Codebook: $U^n \sim Q_U^n$

ullet Security: $ilde{R} > I(U;Z)$

• Reliability: $R + \tilde{R} < I(U;Y)$

The Gelfand-Pinsker Channel

Pad nR message bits with $n\tilde{R}$ skillfully chosen bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

The Wiretap Channel

Pad nR message bits with $n\tilde{R}$ random garbage bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

• Codebook: $U^n \sim Q_U^n$

ullet Security: $ilde{R} > I(U;Z)$

• Reliability: $R + \tilde{R} < I(U;Y)$

The Gelfand-Pinsker Channel

Pad nR message bits with $n\tilde{R}$ skillfully chosen bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

Codebook:

 $U^n \sim Q_U^n$

The Wiretap Channel

Pad nR message bits with $n\tilde{R}$ random garbage bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

• Codebook: $U^n \sim Q_U^n$

ullet Security: $ilde{R} > I(U;Z)$

• Reliability: $R + \tilde{R} < I(U; Y)$

The Gelfand-Pinsker Channel

Pad nR message bits with $n\tilde{R}$ skillfully chosen bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

- Codebook: $U^n \sim Q_U^n$
- Correlation: $\tilde{R} > I(U;S)$

The Wiretap Channel

Pad nR message bits with $n\tilde{R}$ random garbage bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

• Codebook: $U^n \sim Q_U^n$

ullet Security: $ilde{R} > I(U;Z)$

• Reliability: $R + \tilde{R} < I(U;Y)$

The Gelfand-Pinsker Channel

Pad nR message bits with nR skillfully chosen bits.

Message Padding 0010110100011100 0100010011

Trans. together in one block

- Codebook: $U^n \sim Q_U^n$
- Correlation: $\ddot{R} > I(U;S)$
- Reliability: $R + \tilde{R} < I(U;Y)$