Semantic Security versus Active Adversaries

Ziv Goldfeld Joint work with Paul Cuff and Haim Permuter

Ben Gurion University

Information Theory and Applications Workshop

February 15th, 2017

Information Theoretic Security over Noisy Channels

Information Theoretic Security over Noisy Channels

Pros:

Information Theoretic Security over Noisy Channels

Pros:

Security versus computationally unbounded eavesdroppers.

Information Theoretic Security over Noisy Channels

Pros:

- Security versus computationally unbounded eavesdroppers.
- 2 No shared key Harness intrinsic randomness of noisy channel.

Information Theoretic Security over Noisy Channels

Pros:

- Security versus computationally unbounded eavesdroppers.
- 2 No shared key Harness intrinsic randomness of noisy channel.

Cons:

Information Theoretic Security over Noisy Channels

Pros:

- Security versus computationally unbounded eavesdroppers.
- 2 No shared key Harness intrinsic randomness of noisy channel.

Cons:

• Eve's channel assumed to be fully known & constant in time.

Information Theoretic Security over Noisy Channels

Pros:

- Security versus computationally unbounded eavesdroppers.
- **No shared key** Harness intrinsic randomness of noisy channel.

Cons:

- Eve's channel assumed to be fully known & constant in time.
- Security metrics insufficient for (some) applications.

Information Theoretic Security over Noisy Channels

Pros:

- Security versus computationally unbounded eavesdroppers.
- 2 No shared key Harness intrinsic randomness of noisy channel.

Cons:

- Eve's channel assumed to be fully known & constant in time.
- Security metrics insufficient for (some) applications.

Our Goal: Stronger metrics and remove "known channel" assumption.

$$\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$$
 - a sequence of (n,R) -codes

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

$$\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$$
 - a sequence of (n,R) -codes

• Weak Secrecy: $\frac{1}{n}I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n \to \infty]{} 0.$

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

 $\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$ - a sequence of (n,R)-codes

• Weak Secrecy: $\frac{1}{n}I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n \to \infty]{} 0$. Only leakage <u>rate</u> vanishes

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

$$\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$$
 - a sequence of (n,R) -codes

• Weak Secrecy: $\frac{1}{n}I_{C_n}(\underline{M}; Z^n) \xrightarrow[n \to \infty]{} 0$.

$$\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$$
 - a sequence of (n,R) -codes

- Weak Secrecy: $\frac{1}{n}I_{\mathcal{C}_n}(\underline{M};Z^n) \xrightarrow[n \to \infty]{} 0$.
- Strong Secrecy: $I_{\mathcal{C}_n}(M; \mathbb{Z}^n) \xrightarrow[n \to \infty]{} 0.$

$$\mathsf{U}[1:2^{nR}] \overset{}{\sim} M \quad \mathsf{Alice} \quad \overset{X^n}{\longrightarrow} Q_{Y,Z|X} \quad \overset{Y^n}{\longrightarrow} \quad \mathsf{Eve} \quad \overset{\hat{M}}{\longrightarrow} \quad \mathsf{Eve} \quad \mathsf{M}$$

$$\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$$
 - a sequence of (n,R) -codes

- Weak Secrecy: $\frac{1}{n}I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n\to\infty]{} 0$.
- Strong Secrecy: $I_{\mathcal{C}_n}(M; \mathbb{Z}^n) \xrightarrow[n \to \infty]{} 0$. Security only on <u>average</u>

$$\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$$
 - a sequence of (n,R) -codes

- Weak Secrecy: $\frac{1}{n}I_{\mathcal{C}_n}(\underline{M};\underline{Z^n}) \xrightarrow[n \to \infty]{} 0$.
- Strong Secrecy: $I_{\mathcal{C}_n}(M; Z^n) \xrightarrow[n \to \infty]{} 0$.

$$\mathsf{U}[1:2^{nR}] \overset{}{\sim} \overset{}{M} \overset{}{\longrightarrow} \mathsf{Alice} \overset{}{\xrightarrow{X^n}} \overset{}{\longrightarrow} \mathsf{Eve} \overset{}{\cancel{M}} \overset{}{\longrightarrow} \mathsf{Eve} \overset{}{\cancel{M}}$$

$$\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$$
 - a sequence of (n,R) -codes

- Weak Secrecy: $\frac{1}{n}I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n\to\infty]{} 0$.
- Strong Secrecy: $I_{\mathcal{C}_n}(M; Z^n) \xrightarrow[n \to \infty]{} 0$.
- Semantic Security: [Bellare-Tessaro-Vardy 2012]

$$\mathsf{U}[1:2^{nR}] \overset{}{\sim} \overset{}{M} \quad \mathsf{Alice} \quad \overset{}{X^n} \quad \mathsf{Q}_{Y,Z|X} \quad \overset{}{Z^n} \quad \mathsf{Eve} \quad \overset{}{M} \quad \mathsf{Eve} \quad \mathsf{E$$

$$\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$$
 - a sequence of (n,R) -codes

- Weak Secrecy: $\frac{1}{n}I_{C_n}(M;Z^n) \xrightarrow[n\to\infty]{} 0$.
- Strong Secrecy: $I_{\mathcal{C}_n}(M; Z^n) \xrightarrow[n \to \infty]{} 0$.
- Semantic Security: [Bellare-Tessaro-Vardy 2012]

$$\max_{P_M}I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n o \infty]{} 0.$$

Degraded [Wyner 1975], General [Csiszár-Körner 1978]

 $\left\{\mathcal{C}_{n}\right\}_{n\in\mathbb{N}}$ - a sequence of (n,R)-codes

- Weak Secrecy: $\frac{1}{n}I_{C_n}(\underline{M}; Z^n) \xrightarrow[n \to \infty]{} 0$.
- Strong Secrecy: $I_{\mathcal{C}_n}(M; Z^n) \xrightarrow[n \to \infty]{} 0$.
- Semantic Security: [Bellare-Tessaro-Vardy 2012]

$$\max_{P_M}I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n o \infty]{} 0.$$

★ A single code must work well for all message PMFs ★

Strong Soft-Covering Lemmas

• Random Codebook: $C_n = \{U^n(w)\}_w \stackrel{iid}{\sim} Q_U^n$.

• Random Codebook: $C_n = \{U^n(w)\}_w \overset{iid}{\sim} Q_U^n$.

- Random Codebook: $C_n = \{U^n(w)\}_w \overset{iid}{\sim} Q_U^n$.
- ullet Induced Output Distribution: Codebook $\mathcal{C}_n \implies V^n \sim P_{V^n}^{(\mathcal{C}_n)}$

- $\bullet \ \ {\bf Random} \ \ {\bf Codebook:} \ \ {\bf C}_n = \left\{ U^n(w) \right\}_w \stackrel{iid}{\sim} Q^n_U.$
- ullet Induced Output Distribution: Codebook $\mathcal{C}_n \implies V^n \sim P_{V^n}^{(\mathcal{C}_n)}$
- Target IID Distribution: Q_V^n (Q_V is the marginal of $Q_UQ_{V|U}$).

- $\bullet \ \ {\bf Random} \ \ {\bf Codebook:} \ \ {\bf C}_n = \left\{ U^n(w) \right\}_w \stackrel{iid}{\sim} Q^n_U.$
- ullet Induced Output Distribution: Codebook $\mathcal{C}_n \implies V^n \sim P_{V^n}^{(\mathcal{C}_n)}$
- Target IID Distribution: Q_V^n (Q_V is the marginal of $Q_UQ_{V|U}$).

- Random Codebook: $C_n = \{U^n(w)\}_w \overset{iid}{\sim} Q_U^n$.
- ullet Induced Output Distribution: Codebook $\mathcal{C}_n \implies V^n \sim P_{V^n}^{(\mathcal{C}_n)}$
- Target IID Distribution: Q_V^n (Q_V is the marginal of $Q_UQ_{V|U}$).
 - \star Goal: Choose $ilde{R}$ (codebook size) s.t. $P_{V^n}^{(\mathcal{C}_n)} pprox Q_V^n \star$

$$\tilde{R} > I_Q(U;V) \implies P_{V^n}^{(\mathcal{C}_n)} \approx Q_V^n$$

$$\text{Unif}[1:2^{n\tilde{R}}] \xrightarrow{V_n} \mathcal{C}_n = \{u^n(w)\} \xrightarrow{U^n} Q_{V|U} \xrightarrow{V^n} \sim P_{V^n}^{(\mathcal{C}_n)} \approx Q_V^n$$

$$\tilde{R} > I_Q(U;V) \implies P_{V^n}^{(\mathcal{C}_n)} \approx Q_V^n$$

• Wyner 1975: $\mathbb{E}_{\mathsf{C}_n} \frac{1}{n} D\Big(P_{V^n}^{(\mathsf{C}_n)} \Big| \Big| Q_V^n \Big) \xrightarrow[n \to \infty]{} 0.$

$$\tilde{R} > I_Q(U;V) \implies P_{V^n}^{(\mathcal{C}_n)} \approx Q_V^n$$

- Wyner 1975: $\mathbb{E}_{\mathsf{C}_n} \frac{1}{n} D\Big(P_{V^n}^{(\mathsf{C}_n)} \Big| \Big| Q_V^n \Big) \xrightarrow[n \to \infty]{} 0.$
- ullet Han-Verdú 1993: $\mathbb{E}_{\mathsf{C}_n} \Big| \Big| P_{V^n}^{(\mathsf{C}_n)} Q_V^n \Big| \Big|_{\mathsf{TV}} \xrightarrow[n \to \infty]{} 0.$

$$\tilde{R} > I_Q(U;V) \implies P_{V^n}^{(\mathcal{C}_n)} \approx Q_V^n$$

- Wyner 1975: $\mathbb{E}_{\mathsf{C}_n} \frac{1}{n} D\Big(P_{V^n}^{(\mathsf{C}_n)} \Big| \Big| Q_V^n \Big) \xrightarrow[n \to \infty]{} 0.$
- Han-Verdú 1993: $\mathbb{E}_{\mathsf{C}_n} \left\| P_{V^n}^{(\mathsf{C}_n)} Q_V^n \right\|_{\mathsf{TV}} \xrightarrow[n \to \infty]{} 0.$
 - Also provided converse.

$$\tilde{R} > I_Q(U;V) \implies P_{V^n}^{(\mathcal{C}_n)} \approx Q_V^n$$

- Wyner 1975: $\mathbb{E}_{\mathsf{C}_n} \frac{1}{n} D\Big(P_{V^n}^{(\mathsf{C}_n)} \Big| \Big| Q_V^n \Big) \xrightarrow[n \to \infty]{} 0.$
- Han-Verdú 1993: $\mathbb{E}_{\mathsf{C}_n} \left| \left| P_{V^n}^{(\mathsf{C}_n)} Q_V^n \right| \right|_{\mathsf{TV}} \xrightarrow[n \to \infty]{} 0.$
 - Also provided converse.
- Hou-Kramer 2014: $\mathbb{E}_{\mathsf{C}_n} D\Big(P_{V^n}^{(\mathsf{C}_n)}\Big|\Big|Q_V^n\Big) \xrightarrow[n \to \infty]{} 0.$

Strong Soft-Covering Lemma

Lemma (ZG-Cuff-Permuter 2016)

If $ilde{R}>I_Q(U;V)$, then there exist $\gamma_1,\gamma_2>0$ s.t. for n large enough

$$\left\|\mathbb{P}_{\mathsf{C}_n}\bigg(D\Big(P_{V^n}^{(\mathsf{C}_n)}\Big|\Big| \frac{Q_V^n}{V}\Big) > e^{-n\gamma_1}\right) \leq e^{-e^{n\gamma_2}}$$

Lemma (ZG-Cuff-Permuter 2016)

If $ilde{R} > I_Q(U;V)$, then there exist $\gamma_1,\gamma_2>0$ s.t. for n large enough

$$\left\|\mathbb{P}_{\mathsf{C}_n}\bigg(D\Big(P_{V^n}^{(\mathsf{C}_n)}\Big|\Big| \frac{Q_V^n}{V}\Big) > e^{-n\gamma_1}\right) \leq e^{-e^{n\gamma_2}}$$

Satisfy exponentially many security constraints:

Lemma (ZG-Cuff-Permuter 2016)

If $ilde{R} > I_Q(U;V)$, then there exist $\gamma_1,\gamma_2>0$ s.t. for n large enough

$$\mathbb{P}_{\mathsf{C}_n}\bigg(D\Big(P_{V^n}^{(\mathsf{C}_n)}\Big|\Big| \textcolor{red}{Q_V^n}\bigg) > e^{-n\gamma_1}\bigg) \leq e^{-e^{n\gamma_2}}$$

- Satisfy exponentially many security constraints:
 - Semantic security.

Lemma (ZG-Cuff-Permuter 2016)

If $\tilde{R} > I_O(U;V)$, then there exist $\gamma_1, \gamma_2 > 0$ s.t. for n large enough

$$\mathbb{P}_{\mathsf{C}_n}\bigg(D\Big(P_{V^n}^{(\mathsf{C}_n)}\Big|\Big| \textcolor{red}{Q_V^n}\bigg) > e^{-n\gamma_1}\bigg) \leq e^{-e^{n\gamma_2}}$$

- Satisfy exponentially many security constraints:
 - Semantic security.
 - ► Eavesdropper's channel uncertainty & active adversaries.

Lemma (ZG-Cuff-Permuter 2016)

If $ilde{R} > I_Q(U;V)$, then there exist $\gamma_1,\gamma_2>0$ s.t. for n large enough

$$\left\|\mathbb{P}_{\mathsf{C}_n}\bigg(D\Big(P_{V^n}^{(\mathsf{C}_n)}\Big|\Big| \textcolor{red}{Q_V^n}\bigg) > e^{-n\gamma_1}\right) \leq e^{-e^{n\gamma_2}}$$

- Satisfy exponentially many security constraints:
 - Semantic security.
 - ► Eavesdropper's channel uncertainty & active adversaries.
- Extensions: Heterogeneous version, superposition codes.

Some Applications

[Ozarow-Wyner 1984]

ullet Eve: Can observe any $\lfloor \alpha n \rfloor$, $lpha \in [0,1]$, of transmitted symbols.

[Ozarow-Wyner 1984]

- ullet Eve: Can observe any $\lfloor \alpha n \rfloor$, $lpha \in [0,1]$, of transmitted symbols.
- Transmitted:

Ziv Goldfeld

[Ozarow-Wyner 1984]

- Eve: Can observe any $|\alpha n|$, $\alpha \in [0,1]$, of transmitted symbols.
- Transmitted:

Observed:

- Eve: Can observe any $|\alpha n|$, $\alpha \in [0,1]$, of transmitted symbols.
- Transmitted:

- Observed:
 - ★ Ensure security versus all possible choices of observations ★

[Ozarow-Wyner 1984]

Ozarow-Wyner 1984: Noiseless main channel

- Ozarow-Wyner 1984: Noiseless main channel
 - Rate equivocation region.

- Ozarow-Wyner 1984: Noiseless main channel
 - Rate equivocation region.
 - Coset coding.

- Ozarow-Wyner 1984: Noiseless main channel
 - Rate equivocation region.
 - Coset coding.
- Nafea-Yener 2015: Noisy main channel

- Ozarow-Wyner 1984: Noiseless main channel
 - Rate equivocation region.
 - Coset coding.
- Nafea-Yener 2015: Noisy main channel
 - Built on coset code construction.

- Ozarow-Wyner 1984: Noiseless main channel
 - Rate equivocation region.
 - Coset coding.
- Nafea-Yener 2015: Noisy main channel
 - Built on coset code construction.
 - Lower & upper bounds Not match in general.

Semantic Security:

$$\max_{\substack{P_M,\mathcal{S}:\\ |\mathcal{S}|=\lfloor \alpha n\rfloor}} I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n\to\infty]{} 0.$$

$$\max_{\substack{P_M,\mathcal{S}:\\ |\mathcal{S}|=\lfloor \alpha n\rfloor}} I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n\to\infty]{} 0.$$

Theorem (ZG-Cuff-Permuter 2016)

For any
$$\alpha \in [0,1]$$

$$C_{\mathsf{Semantic}}(\alpha) = C_{\mathsf{Weak}}(\alpha) = \max_{Q_{U,X}} \left[I(U;Y) - \alpha I(U;X) \right]$$

Semantic Security:
$$\max_{\substack{P_M,\mathcal{S}:\\ |\mathcal{S}|=|\alpha n|}} I_{\mathcal{C}_n}(M;Z^n) \xrightarrow[n \to \infty]{} 0.$$

Theorem (ZG-Cuff-Permuter 2016)

For any
$$\alpha \in [0,1]$$

$$C_{\mathsf{Semantic}}(\alpha) = C_{\mathsf{Weak}}(\alpha) = \max_{Q_{U,X}} \left[\boldsymbol{I}(\boldsymbol{U};\boldsymbol{Y}) - \alpha \boldsymbol{I}(\boldsymbol{U};\boldsymbol{X}) \right]$$

• RHS is the secrecy-capacity of WTC I with erasure DMC to Eve.

$$\max_{\substack{P_M, \mathcal{S}: \\ |\mathcal{S}| = \lfloor \alpha n \rfloor}} I_{\mathcal{C}_n}(M; Z^n) \xrightarrow[n \to \infty]{} 0.$$

Theorem (ZG-Cuff-Permuter 2016)

For any $\alpha \in [0,1]$

$$C_{\mathsf{Semantic}}(\alpha) = C_{\mathsf{Weak}}(\alpha) = \max_{Q_{U,X}} \left[I(U;Y) - \alpha I(U;X) \right]$$

- RHS is the secrecy-capacity of WTC I with erasure DMC to Eve.
- Standard (erasure) wiretap code & Stronger tools for analysis.

Models main and eavesdropper channel uncertainty.

- Models main and eavesdropper channel uncertainty.
- Worst case analysis for reliability and security.

- Models main and eavesdropper channel uncertainty.
- Worst case analysis for reliability and security.
- Type Constrained States: Allowed s^n have empirical dist. $pprox Q_S$:

- Models main and eavesdropper channel uncertainty.
- Worst case analysis for reliability and security.
- Type Constrained States: Allowed s^n have empirical dist. $pprox Q_S$:

Theorem (ZG-Cuff-Permuter 2016)

$$C_{\mathsf{Semantic}} = \max_{Q_{U,X}} \left[I(U;Y) - I(U;Z|S) \right]$$
 (Joint PMF: $Q_S Q_{U,X} Q_{Y,Z|X,S}$)

- Models main and eavesdropper channel uncertainty.
- Worst case analysis for reliability and security.
- Type Constrained States: Allowed s^n have empirical dist. $pprox Q_S$:

Theorem (ZG-Cuff-Permuter 2016)

$$C_{\mathsf{Semantic}} = \max_{Q_{U,X}} \left[I(U;Y) - I(U;Z|S) \right] \quad \textit{(Joint PMF: } Q_S Q_{U,X} Q_{Y,Z|X,S} \textit{)}$$

★ Subsumes WTC II model and result ★

• Strong SCLs: Homogeneous, Heterogeneous, Superposition

- Strong SCLs: Homogeneous, Heterogeneous, Superposition
 - ▶ Double-exponential decay of $\mathbb{P}(\text{soft-covering not happening})$.

- Strong SCLs: Homogeneous, Heterogeneous, Superposition
 - ▶ Double-exponential decay of $\mathbb{P}(\text{soft-covering not happening})$.
 - Satisfy exponentially many soft-covering constraints.

- Strong SCLs: Homogeneous, Heterogeneous, Superposition
 - ▶ Double-exponential decay of $\mathbb{P}(\text{soft-covering not happening})$.
 - Satisfy exponentially many soft-covering constraints.

Some Applications:

- Strong SCLs: Homogeneous, Heterogeneous, Superposition
 - ▶ Double-exponential decay of $\mathbb{P}(\text{soft-covering not happening})$.
 - Satisfy exponentially many soft-covering constraints.

Some Applications:

Upgrade IT proofs to semantic security.

- Strong SCLs: Homogeneous, Heterogeneous, Superposition
 - ▶ Double-exponential decay of $\mathbb{P}(\text{soft-covering not happening})$.
 - Satisfy exponentially many soft-covering constraints.

Some Applications:

- Upgrade IT proofs to semantic security.
- Wiretap channels of type II with a noisy main channel.

- Strong SCLs: Homogeneous, Heterogeneous, Superposition
 - ▶ Double-exponential decay of $\mathbb{P}(\text{soft-covering not happening})$.
 - Satisfy exponentially many soft-covering constraints.

Some Applications:

- Upgrade IT proofs to semantic security.
- Wiretap channels of type II with a noisy main channel.
- Arbitrarily varying wiretap channels.

- Strong SCLs: Homogeneous, Heterogeneous, Superposition
 - ▶ Double-exponential decay of $\mathbb{P}(\text{soft-covering not happening})$.
 - Satisfy exponentially many soft-covering constraints.

Some Applications:

- Upgrade IT proofs to semantic security.
- Wiretap channels of type II with a noisy main channel.
- Arbitrarily varying wiretap channels.

Thank you!