Estimating the Information Flow in Deep Neural

Networks

Ziv Goldfeld

MIT
IT Forum, Information Systems Laboratory, Stanford University

November 9th, 2018

Collaborators: E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen,
B. Kingsbury and Y. Polyanskiy

MIT-IBM Watson Al Lab

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

» What drives the evolution of hidden representations?

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

» What drives the evolution of hidden representations?

» What are properties of learned representations?

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen'18]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen'18]
» Opt. in parameter space [Saxe'14, Choromanska'l5, Wei'18]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:

» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen'18]
» Opt. in parameter space [Saxe'14, Choromanska'l5, Wei'18]

> Classes of efficiently representable functions [Montufar'14, Poggio'17]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:
» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning
> Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen'18]
» Opt. in parameter space [Saxe'14, Choromanska'l5, Wei'18]
> Classes of efficiently representable functions [Montufar'14, Poggio'17]
> Information theory [Tishby'17, Saxe'l8, Gabrié'18]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:
» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning
> Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen'18]
» Opt. in parameter space [Saxe'14, Choromanska'l5, Wei'18]
> Classes of efficiently representable functions [Montufar'14, Poggio'17]
> Information theory [Tishby'17, Saxe'18, Gabrié'18]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

@ Unprecedented practical success in hosts of tasks

@ Lacking theory:
» What drives the evolution of hidden representations?
» What are properties of learned representations?

» How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning
> Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen'18]
» Opt. in parameter space [Saxe'14, Choromanska'l5, Wei'18]
> Classes of efficiently representable functions [Montufar'14, Poggio'17]
> Information theory [Tishby'17, Saxe'18, Gabrié'18]

% Goal: Explain ‘compression’ in Information Bottleneck framework

Estimating Information Flow in DNNs 2/16

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

. T, -7
(Output Layer)

Dog

Estimating Information Flow in DNNs 3/16

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

‘ T, -7
O\ (Output Layer)

Dog

@ Deterministic DNN: T, = fg(Tg_l) (MLP: Ty = U(W@Tg_l —i—bg))

Estimating Information Flow in DNNs

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

‘ T, -7
O\ (Output Layer)

Dog

@ Deterministic DNN: T, = fg(Tg_l) (MLP: Ty = U(W@Tg_l —i—bg))

@ Joint Distribution: Pxy

Estimating Information Flow in DNNs

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

‘ T, -7
O\ (Output Layer)

Dog

@ Deterministic DNN: T, = fg(Tg_l) (MLP: Ty = U(W@Tg_l —i—bg))

o Joint Distribution: Pxy = Pxy-Pp__7,x

Estimating Information Flow in DNNs

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)

Dog

@ Deterministic DNN: T, = fg(Tg_l) (MLP: Ty = U(W@Tg_l —i—bg))
@ Joint Distribution: Pxy = Pxy Pp .1 x

@ IB Theory: Track Ml pairs (I(X;T;),I(Y;T;)) (information plane)

Estimating Information Flow in DNNs 3/16

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

. T, -7
(Output Layer)

Dog

IB Theory Claim: Training comprises 2 phases

Estimating Information Flow in DNNs 3/16

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

‘ T, -7
O\ (Output Layer)

Dog

IB Theory Claim: Training comprises 2 phases

o Fitting: I(Y;Ty) & I(X;Ty) rise (short)

Estimating Information Flow in DNNs

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)

Dog

IB Theory Claim: Training comprises 2 phases

o Fitting: I(Y;Ty) & I(X;Ty) rise (short)

o Compression: I(X;Ty) slowly drops (long)

Estimating Information Flow in DNNs

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T T,

TS
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1)

(Hidden Layer 1) (Hidden Layer 1)

T, -7
;. ' g ' (Output Layer)
Cat < Z

Dog

[Tishby'17] 7sso

IB Theory Claim: Training comprises 2 phases ** L

sos6 2
o Fitting: I(Y;T;) & I(X;Ty) rise (short) Zos i
@ Compression: [(X;T) slowly drops (long) o # !

Estimating Information Flow in DNNs

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?

@ Continuous X:

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = h(Ty) — h(Ty| X)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = h(Ty) — h(Tp| X)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I[(X;Ty) = h(Ty) — h(fo(X)|X)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I[(X;Ty) = h(Ty) — h(fo(X)|X)
N———

=—00

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: [(X;Ty) = WTy) — h(fo(X)|X) = o0

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: [(X;Ty) = WTy) — h(fo(X)|X) = o0

@ Discrete X:

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
@ Continuous X: [(X;Ty) = WTy) — h(fo(X)|X) = o0
@ Discrete X: The map X — Ty is injective*

* For almost all weight matrices and bias vectors

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
@ Continuous X: [(X;Ty) = MTy) — h(fo(X)|X) = 00
o Discrete X: The map X — T} is injective* = I(X;Ty) = H(X)

* For almost all weight matrices and bias vectors

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
@ Continuous X: [(X;Ty) = MTy) — h(fo(X)|X) = oo
o Discrete X: The map X — T} is injective* — I(X;Ty) = H(X)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation
Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
@ Continuous X: [(X;Ty) = MTy) — h(fo(X)|X) = oo
o Discrete X: The map X — T} is injective* = I(X;1;) = H(X)

Past Works:

10

08 08

[Schwartz-Ziv& Tishby'17, -
Saxe et al. '18] =,

6 06

4 04

0.2 0.2

0.0 00

1 3 S 7 9 1

X T

Estimating Information Flow in DNNs 4/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

Estimating Information Flow in DNNs 5/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)
—> Plotted values are I(X;Bin(1}))

Estimating Information Flow in DNNs 5/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)
—> Plotted values are I(X;Bin(1})) < I(X;Ty)

Estimating Information Flow in DNNs 5/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)
—> Plotted values are I(X;Bin(1})) 5 I(X;Ty) No!

Estimating Information Flow in DNNs 5/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

—> Plotted values are I(X;Bin(1})) 5 I(X;Ty) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1

~8" NG < T
:I — Layer 1
E —— Layer2
j=
g 4- — Layer3 i T i
2 taye"; /\M/V/.\\
= — Layer

0-, ., e S R 8

AL B R L R AR T E ERR t (A e R AL e Rl |
10 10t 102 10° 10%
Epoch

Estimating Information Flow in DNNs

5/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

—> Plotted values are I(X;Bin(1})) 5 I(X;Ty) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1

~8" NG < T
:I — Layer 1
E —— Layer2
j=
g 4- — Layer3 i T i
2 taye"; /\M/V/.\\
= — Layer

0-, ,, e S R 8

R R B AN ST SRR

AL B R L R AR T E ERR t
10 10t 102 10° 10%
Epoch

@ Smaller bins = Closer to truth: I(X;T;) = In(2!?) ~ 8.31

Estimating Information Flow in DNNs 5/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)
—> Plotted values are I(X;Bin(1})) 5 I(X;Ty) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- NG < T
:I — Layer 1
E —— Layer2
j=
g 4- — Layer3 i T i
5 Layer 4

— AM/V/.\\
0 0 ‘ s i e i 3

I B R AL Rt T Foy ny E L B B R L B B B R L B L S B B L B B B T B B B B B B B B B R AR RRNIL'
100 10t 102 10® 10%

Epoch
@ Smaller bins = Closer to truth: I(X;T;) = In(2!?) ~ 8.31

@ Binning introduces “noise” into estimator (not present in the DNN)

Estimating Information Flow in DNNs

5/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)
—> Plotted values are I(X;Bin(1})) 5 I(X;Ty) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- NG < T
:I — Layer 1
E —— Layer2
j=
g 4- — Layer3 i T i
5 Layer 4

— AM/V/.\\
0 0 ‘ s i e i 3

I B R AL Rt T Foy ny E L B B R L B B B R L B L S B B L B B B T B B B B B B B B B R AR RRNIL'
100 10t 102 10® 10%

Epoch
@ Smaller bins = Closer to truth: I(X;T;) = In(2!?) ~ 8.31

@ Binning introduces “noise” into estimator (not present in the DNN)

@ Plots showing estimation errors

Estimating Information Flow in DNNs

5/16

What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

77
—> Plotted values are I(X;Bin(1}y)) ~ I(X;T) No!
bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
= Layer 1 \ 7 N T~
— Layer2 \\/;//
= 4 - — Layer3 T i 1
Layer 4

— /\M’/V/.\\
0 0 ‘ s s i 3

I B R AL Rt I T ny E L B B R L B B B R L B L S B B L B B B T B B B B B B B B B R AR RRNIL'
100 10t 102 10® 10%

Epoch

[

1(X; Bin(T_I))

@ Smaller bins = Closer to truth: I(X;T;) = In(2!?) ~ 8.31

@ Binning introduces “noise” into estimator (not present in the DNN)
@ Plots showing estimation errors

& Real Problem: I(X;T}) is meaningless in det. DNNs

Estimating Information Flow in DNNs 5/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

e Formally: T, = fy(Ty_1) + Zs, where Z; ~ N(0, 321)

Ty—1 Sy(k) Ty (k)

o (W T, 10 (k)

Zé(k) ~ N(O7 /82)

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

e Formally: T, = fy(Ty_1) + Zs, where Z; ~ N(0, 321)

Ty—1 Sy(k) Ty (k)

o (W T, 10 (k)

Zé(k) ~ N(07 /82)

—> X +— Ty is a parametrized channel that depends on DNN param.!

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

e Formally: T, = fy(Ty_1) + Zs, where Z; ~ N(0, 321)

Ty—1 Sy(k) Ty (k)

o (W T, 10 (k)

Zy(k) ~ N(0,5%)

—> X +— Ty is a parametrized channel that depends on DNN param.!

= I(X;Ty) is a function of weights and biases!

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

e Formally: T, = fy(Ty_1) + Zs, where Z; ~ N(0, 321)

Ty—1 Sy(k) Ty (k)

o (W T, 10 (k)

Zy(k) ~ N(0,5%)

—> X +— Ty is a parametrized channel that depends on DNN param.!

= I(X;Ty) is a function of weights and biases!

@ Operational Perspective:

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

e Formally: T, = fy(Ty_1) + Zs, where Z; ~ N(0, 321)

Ty—1 Sy(k) Ty (k)

o (W T, 10 (k)

Zy(k) ~ N(0, 5?)
—> X +— Ty is a parametrized channel that depends on DNN param.!
= I(X;T}) is a function of weights and biases!

@ Operational Perspective:

Performance & learned representations similar to det. DNNs (8 ~ 107!)

Estimating Information Flow in DNNs 6/16

Mutual Information in Noisy DNNs

Mutual Information in Noisy DNNs

Noisy DNN:

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Al Za

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN:

———————————————————

X—E—» fi—>»5 : Ti—>» fo —>» 5 Ty -
: :
| |
| |
|

Zl | Zg

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN:

——————————————————————————————————————

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg = fg(Tg_l)

——————————————————————————————————————

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

——————————————————————————————————————

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

——————————————————————————————————————

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

——————————————————————————————————————

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 S0 MTy|X = ;)

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) — % (T X =)

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,B2I)

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset
= Mutual Information: [(X;7}) = h(1}) — % (T X =)

& Py, and Pr, x are extremely complicated to compute/evaluate

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Se + Ze, Ze ~ N(O,,B2I)

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset
= Mutual Information: [(X;7}) = h(1}) — % (T X =)
& Py, and Pr, x are extremely complicated to compute/evaluate

@ But both are easily sampled via the DNN forward pass

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset
= Mutual Information: I(X;T}) = h(T}) — 2 S0 MTy|X = ;)
& Py, and Pr, x are extremely complicated to compute/evaluate

@ But both are easily sampled via the DNN forward pass

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

1
T m
& Py, and Pr, x are extremely complicated to compute/evaluate
® But both are easily sampled via the DNN forward pass
y P P

» Sampling Pr,: Feed randomly chosen z;'s & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X—> fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -
I

Z1 Za

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

1
T m
& Py, and Pr, x are extremely complicated to compute/evaluate
® But both are easily sampled via the DNN forward pass
y P P

» Sampling Pr,: Feed randomly chosen z;'s & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— f1 —»5; Ti—>» fo —>» 5 T -
1 tea

Z1 Za

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

1
T m
& Py, and Pr, x are extremely complicated to compute/evaluate
® But both are easily sampled via the DNN forward pass
y P P

» Sampling Pr,: Feed randomly chosen z;'s & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— f1 —»5; Ti—>» fo —>» 5 T -
1 tea

T2 Z1 Za

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

1
T m
& Py, and Pr, x are extremely complicated to compute/evaluate
® But both are easily sampled via the DNN forward pass
y P P

» Sampling Pr,: Feed randomly chosen z;'s & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— f1 —»5; Ti—>» fo —>» 5 T -
1 tea

T2 7 Zs too

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

1
T m
& Py, and Pr, x are extremely complicated to compute/evaluate
® But both are easily sampled via the DNN forward pass
y P P

» Sampling Pr,: Feed randomly chosen z;'s & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— f1 —»5; Ti—>» fo —>» 5 T -
Ty tf,l

5?2 7 Zs t.z,z

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

1
T m
& Py, and Pr, x are extremely complicated to compute/evaluate
® But both are easily sampled via the DNN forward pass
y P P

» Sampling Pr,: Feed randomly chosen z;'s & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,B2I)

X— f1 —»5; Ti—>» fo —>» 5 T -

Z1 Za

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

_1
m
& Py, and Pr, x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
» Sampling Pr,: Feed randomly chosen z;'s & read T} values

» Sampling Pr, x—.,: Feed x; multiples times & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,B2I)

X— f1 —»5; Ti—>» fo —>» 5 T -

L

Z1 Za

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

_1
m
& Py, and Pr, x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
» Sampling Pr,: Feed randomly chosen z;'s & read T} values

» Sampling Pr, x—.,: Feed x; multiples times & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,B2I)

X— f1 —»5; Ti—>» fo —>» 5 T -

€Tr; té’i)

1
Z1 Z2

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

_1
m
& Py, and Pr, x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
» Sampling Pr,: Feed randomly chosen z;'s & read T} values

» Sampling Pr, x—.,: Feed x; multiples times & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,B2I)

X— f; >3, Ti—| fo — 5, 7 ...
-)
T Z1 Za

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

_1
m
& Py, and Pr, x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
» Sampling Pr,: Feed randomly chosen z;'s & read T} values

» Sampling Pr, x—.,: Feed x; multiples times & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,B2I)

X— i 5 T— fo =5 Ty -
o n
@i Z Z, ta

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

_1
m
& Py, and Pr, x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
» Sampling Pr,: Feed randomly chosen z;'s & read T} values

» Sampling Pr, x—.,: Feed x; multiples times & read T} values

Estimating Information Flow in DNNs 7/16

Mutual Information in Noisy DNNs

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,B2I)

X— i 5 T— fo =5 Ty -
o n
@i Z Z, s

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7}) = h(1}) (T X =)

_1
m
& Py, and Pr, x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
» Sampling Pr,: Feed randomly chosen z;'s & read T} values

» Sampling Pr, x—.,: Feed x; multiples times & read T} values

Estimating Information Flow in DNNs 7/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —>524><—|%—> Ty -

Al Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

Estimating Information Flow in DNNs 8/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —>524><—|%—> Ty -

Al Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

@ Most results assume lower bounded density

Estimating Information Flow in DNNs 8/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —>524><—|%—> Ty -

Al Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

@ Most results assume lower bounded density = Inapplicable

Estimating Information Flow in DNNs 8/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

@ Most results assume lower bounded density = Inapplicable

@ 2 Works Drop Assumption:

Estimating Information Flow in DNNs 8/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
© KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]

Estimating Information Flow in DNNs 8/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— f1 —»5; Ti—>» fo —>» 5 T -

Z1 Za

— Estimate I(X;Ty) from samples via general-purpose h(P) est.:
@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
© KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
© Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

Estimating Information Flow in DNNs 8/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,B2I)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
© KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
© Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

@ Assume: supp=1[0,1]¢ & Periodic BC & s€(0,2]

Estimating Information Flow in DNNs 8/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Se + Ze, Ze ~ N(O,,B2I)

X— f1 —»5; Ti—>» fo —>» 5 T -

Z1 Za

— Estimate I(X;Ty) from samples via general-purpose h(P) est.:
@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
© KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
© Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

@ Assume: supp=1[0,1]¢ & Periodic BC & s¢&(0,2] = Inapplicable*

* Except sub-Gaussian result from [Han-Jiao-Weissman-Wu'17]

Estimating Information Flow in DNNs 8/16

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Se + Ze, Ze ~ N(O,,B2I)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
© KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
@ Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
@ Assume: supp=1[0,1]¢ & Periodic BC & s¢&(0,2] = Inapplicable*
o Rate: Risk <O (n_ﬂ‘:—id), w/ a, B € N, s smoothness, d dimension

Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —>524><—|%—> Ty -

Al Za

@ Exploit structure: We know Ty = Sy + Z; ~ P * and:

Estimating Information Flow in DNNs 9/16

Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —>524><—|%—> Ty -

Al Za

@ Exploit structure: We know Ty = Sy + Z; ~ P * and:
@ Geniel: Sample P=Ps, and P = Pg,|x_,, (sample T;_; & apply f)

Estimating Information Flow in DNNs 9/16

Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —>524><—|%—> Ty -

Zl Z2

@ Exploit structure: We know Ty = Sy + Z; ~ P * and:
@ Geniel: Sample P=Ps, and P = Pg,|x_,, (sample T;_; & apply f)

@ Genie2: Know the distribution ¢ of Z; (noise injected by design)

Estimating Information Flow in DNNs 9/16

Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Z2

@ Exploit structure: We know Ty = Sy + Z; ~ P * and:
@ Geniel: Sample P=Ps, and P = Pg,|x_,, (sample T;_; & apply f)
@ Genie2: Know the distribution ¢ of Z; (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * @) based on n i.i.d. samples from P € F; (nonparametric
class) and knowledge of o (PDF of N'(0, 31)).

Estimating Information Flow in DNNs 9/16

Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

@ Exploit structure: We know Ty = Sy + Z; ~ P * and:
@ Geniel: Sample P=Ps, and P = Pg,|x_,, (sample T;_; & apply f)
@ Genie2: Know the distribution ¢ of Z; (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € F; (nonparametric
class) and knowledge of o (PDF of N'(0, 31)).

Nonparametric Class: Depends on DNN architecture (nonlinearities)

Estimating Information Flow in DNNs 9/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, =

o8

1
w 22 0s;

=1

ESP(Sna/B) = h(pn *)

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, =

o8

ds;

1
n i

=1

ESP(Sna/B) = h(pn *)

Comments:

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, =

o8

ds;

1
n i

=1

ESP(Sna/B) = h(pn *)

Comments:

@ Plug-in: hsp is just plug-in est. for the functional T,(P) £ h(P *)

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

o8

‘Sample Propagation’ Estimator: Empirical distribution P, = % ds,

=1

ESP(Sna/B) = h(pn *)

Comments:

@ Plug-in: hsp is just plug-in est. for the functional T,(P) £ h(P *)

o Mixture: hgp is the diff. entropy of a known Gaussian mixture

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

s

‘Sample Propagation’ Estimator: Empirical distribution P, = % ds,

=1

hsp (5™,) £ h(Py * ¢)
Comments:
@ Plug-in: hsp is just plug-in est. for the functional T,(P) £ h(P *)
o Mixture: hgp is the diff. entropy of a known Gaussian mixture
@ Computing: Can be efficiently computed via MC integration

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

N og n)4/
h(P * @) — hsp(S”,B)‘ <Opg (%) :

sup Egn
PeFy

sup Egn
PeFg

B(P) — hsp (5™, 5)|

. n(2+ zwm)d

< log

2(4m32) % (nB2)%
N () 2¢5.q4d(1 + 3?) N 8d(d + 2% + dﬁ‘*))

€3.d 52 B4
where cg 4 £ & log(2n3%) + ﬁ%.

(Qmm)%

Bl

SR

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique:

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds

Comments:

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

N og n)4/
h(P * @) — hsp(S”,B)‘ <Opg (%) :

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds

Comments:

@ Faster rate than O (n_ﬂ‘:—id> for kNN /KDE est. via ‘noisy’ samples

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

N og n)4/
h(P * @) — hsp(S”,B)‘ <Opg (%) :

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds
Comments:
@ Faster rate than O (n_ﬂ‘:—id) for kNN /KDE est. via ‘noisy’ samples

@ Explicit expression enables concrete error bounds in simulations

Estimating Information Flow in DNNs 11/16

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

A d/4
sup Egu [B(P+) — hisp(5",6)| < Op (%) .

PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds

Comments:

@ Faster rate than O (n_ﬂ‘:—frd) for kNN /KDE est. via ‘noisy’ samples
@ Explicit expression enables concrete error bounds in simulations

o Extension: P with sub-Gaussian marginals (ReLU + Weight regular.)

Estimating Information Flow in DNNs 11/16

Back to Noisy DNNs

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b)

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Sw.b T

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif (X_; U Xy)
X—l £ {_3a _L 1} ' ~)Cvl £ {3}
Z ~N(0,5%)

X—»tanh(wX +b)

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif (X_; U Xy)
X—l £ {_3a _L 1} ' ~)Cvl £ {3}
Z ~N(0,5%)

X—»tanh(wX +b)

@ Center & sharpen transition (<= increase w and keep b = —2w)

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:
X—»tanh(wX +b)

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:
X—»tanh(wX +b)

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}

[] Correct classification performance

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Sw.b T

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}

@ Mutual Information:

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Sw.b T

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}
@ Mutual Information: [(X;T) = I(Syp;Swp+ 2)

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b)

o Input: X ~ Unif (X_; U Xy)
X1 2{-3,-1,1}, &1 = {3}

@ Mutual Information: [(X;T) = I(Syp;Swp+ 2)

= I(X;T) is # bits (nats) transmittable over AWGN w. symbols
Sw.p = {tanh(—3w+b), tanh(—w+b), tanh (w+b), tanh (3w-+b) }

Z NN(0752)

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b)

o Input: X ~ Unif (X_; U Xy)
X1 2{-3,-1,1}, &1 = {3}
@ Mutual Information: [(X;T) = I(Syp;Swp+ 2)
= I(X;T) is # bits (nats) transmittable over AWGN w. symbols
Sw.p = {tanh(—=3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {1}

Z NN(0752)

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}

X—»tanh(wX +b)

@ Mutual Information: [(X;T) = I(Syp;Swp+ 2)
= I(X;T) is # bits (nats) transmittable over AWGN w. symbols
Sw.p = {tanh(—=3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {1}

1

Heatmap of PDF
o
o (9]

o
o

-1

Merge 1

Merge 2

10%0"

102

10°
Epoch

10*

10°

Z NN(0752)

Estimating Information Flow in DNNs 12/16

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}
@ Mutual Information: [(X;T) = I(Syp;Swp+ 2)

tanh(wX + b) Sw.b T

Z NN(0752)

= I(X;T) is # bits (nats) transmittable over AWGN w. symbols
Sw.p = {tanh(—=3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {1}

1

Heatmap of PDF
o
o (9]

o
o

-1

Merge 1

Merge 2

10%0"

102

10°
Epoch

10*

10°

Mutual information

1.5

Epoch
Estimating Information Flow in DNNs 12/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:
@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:
@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
@ Noise std.: Set to § = 0.01

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:

@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
@ Noise std.: Set to § = 0.01

Ep28 - Ep 80 - Ep 541 . Ep 8976

7 10 ®® 1o 10 10
Z ’ 7 “ g i
/ 00 -~ 00 00 g 00
/ 10 P — =0 10 1.0
i i i it
40 00 10 w a0 00 10 00
o0 10 10 o0 10 10 L ha 1o A

8 = — Layer1

:'L? —— Layer2 . — N\ o R e —
g4_ —LayerBM

= o
0 == : O 28,80, ., 3 I— —-8796,

2 0.5 7 — Train

S —— Test
0.0 g o o o T
10° 10! 102 103 104

Epoch

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:
@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
@ Noise std.: Set to § = 0.01

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks
Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:
@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
@ Noise std.: Set to § = 0.01

10? 103 104
Epoch

- RS |
10° 10!

@ weight orthonormality regularization

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:
@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
@ Noise std.: Set to § = 0.01

@ Verified in multiple additional experiments

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:
@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
@ Noise std.: Set to § = 0.01

@ Verified in multiple additional experiments

= Compression of I(X;Ty) driven by clustering of representations

Estimating Information Flow in DNNs 13/16

Circling back to Deterministic DNNs

o [(X;Ty) is constant

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering

o Alternative measures for clustering (det. and noisy DNNs):

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)

> Binned entropy H (Bin(T}))

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)

> Binned entropy H (Bin(T}))

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)

> Binned entropy H (Bin(T}))

Estimating Information Flow in DNNs 14/16

2]
pd
2
o
B
)
o
=

£

~

Q
)

(<))
o

(o}
)
X

Q

(4}
0

o0
=
O
=
O

is constant = Doesn’t measure clustering

)

o Alternative measures for clustering (det. and noisy DNNs):

Ty

o I(X;

up to 3D layers)

(
> Binned entropy H

» Scatter plots

Bin(T}))

(

14/16

Estimating Information Flow in DNNs

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H(Bin(Tg)) 1

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):
> Scatter plots (up to 3D layers)

> Binned entropy H (Bin(T}))

@ Noisy DNNs: I(X;7y) and H(Bin(1})) highly correlated!*

* When bin size chosen o noise std.

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):
> Scatter plots (up to 3D layers)

> Binned entropy H (Bin(T}))

@ Noisy DNNs: I(X;7y) and H(Bin(1})) highly correlated!*

AS'—LayeH
) — Layer2
g4_—Layer3M
2 | =
0 =it e 28.80, .,y 541 | 8796, .,
8-

o
T

H(BIin(T_l))
‘T

-
o
2
-
=)
-
o
R
-
o
%
0
53
2

* When bin size chosen « noise std.
Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T}))

@ Noisy DNNs: I(X;7y) and H(Bin(1})) highly correlated!*

o Det. DNNs: H (Bin(T})) = I(X;Bin(1;)) compresses

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T}))

@ Noisy DNNs: I(X;7y) and H(Bin(1})) highly correlated!*
o Det. DNNs: H (Bin(T})) = I(X;Bin(1;)) compresses

[l Incapable of accurately estimating MI values

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T}))

@ Noisy DNNs: I(X;7y) and H(Bin(1})) highly correlated!*
o Det. DNNs: H (Bin(T})) = I(X;Bin(1;)) compresses
[l Incapable of accurately estimating MI values

[l Does track clustering!

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T}))

@ Noisy DNNs: I(X;7y) and H(Bin(1})) highly correlated!*
o Det. DNNs: H (Bin(T})) = I(X;Bin(1;)) compresses
[l Incapable of accurately estimating MI values

[l Does track clustering!

—> Past works were not showing MI but clustering (via binned-MI)!

Estimating Information Flow in DNNs 14/16

Summa

@ Reexamined Information Bottleneck Compression:

Estimating Information Flow in DNNs 15/16

@ Reexamined Information Bottleneck Compression:

» I(X;T) fluctuations in det. DNNs are theoretically impossible

Estimating Information Flow in DNNs

@ Reexamined Information Bottleneck Compression:

» I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented I(X;T) dynamics during training

Estimating Information Flow in DNNs

@ Reexamined Information Bottleneck Compression:
» I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

Estimating Information Flow in DNNs

@ Reexamined Information Bottleneck Compression:
» I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

» SP estimator for accurate MI estimation over this framework

Estimating Information Flow in DNNs

@ Reexamined Information Bottleneck Compression:
» I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

» SP estimator for accurate MI estimation over this framework

» Clustering of the learned representations is the source of compression

Estimating Information Flow in DNNs

@ Reexamined Information Bottleneck Compression:
» I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

» SP estimator for accurate MI estimation over this framework

» Clustering of the learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

Estimating Information Flow in DNNs 15/16

@ Reexamined Information Bottleneck Compression:
» I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

» SP estimator for accurate MI estimation over this framework

» Clustering of the learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

—— Clustering is the common phenomenon of interest!

Estimating Information Flow in DNNs 15/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding

» Summarizing statistics

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding
» Summarizing statistics

> Graph clusterability measures [Czumaj-Peng-Sohler'15]

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding

» Summarizing statistics

> Graph clusterability measures [Czumaj-Peng-Sohler'15]

@ The Role of Compression:

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding
» Summarizing statistics

> Graph clusterability measures [Czumaj-Peng-Sohler'15]

@ The Role of Compression:

> Is compression necessary? Desirable?

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding
» Summarizing statistics

> Graph clusterability measures [Czumaj-Peng-Sohler'15]

@ The Role of Compression:
> Is compression necessary? Desirable?

> Design tool for DNN architectures

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding
» Summarizing statistics

> Graph clusterability measures [Czumaj-Peng-Sohler'15]

@ The Role of Compression:

> Is compression necessary? Desirable?

> Design tool for DNN architectures

o Algorithmic Perspective:

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding
» Summarizing statistics

> Graph clusterability measures [Czumaj-Peng-Sohler'15]

@ The Role of Compression:

> Is compression necessary? Desirable?

> Design tool for DNN architectures

o Algorithmic Perspective:

> Better understanding of internal representation evolution & final state

Estimating Information Flow in DNNs 16/16

Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding
» Summarizing statistics

> Graph clusterability measures [Czumaj-Peng-Sohler'15]

@ The Role of Compression:

> Is compression necessary? Desirable?

> Design tool for DNN architectures

o Algorithmic Perspective:
> Better understanding of internal representation evolution & final state

» Enhanced DNN training algorithms

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®

o Restricted Entropy: hg(p) = E[—log p(X)1ixery]

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py)| < supE|hg (P @) — hr (P, ¢)|+2sup |hre (P x ¢)]

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py)| < supE|hg (P @) — hr (P, ¢)|+2sup |hre (P x ¢)]

@ Inside R: » —tlogt modulus of cont. for z — xlogx & Jensen's ineq.

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py)| < supE|hg (P @) — hr (P, ¢)|+2sup |hre (P x ¢)]

@ Inside R: » —tlogt modulus of cont. for z — xlogx & Jensen's ineq.

= Focus on analyzing IE’(P s ©)(x) — (P, * go)(a:)‘

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py)| < supE|hg (P @) — hr (P, ¢)|+2sup |hre (P x ¢)]

@ Inside R: » —tlogt modulus of cont. for z — xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘

» Bias & variance analysis

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py)| < supE|hg (P @) — hr (P, ¢)|+2sup |hre (P x ¢)]

9 Inside R: » —tlogt modulus of cont. for z +— xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis

= E|(P+o)@)— Coxp)(@)| ey 28 5= N (0, 21)

n

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py)| < supE|hg (P @) — hr (P, ¢)|+2sup |hre (P x ¢)]

@ Inside R: » —tlogt modulus of cont. for z — xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis
— E|[(Px)@) - Barxp)@)] <er/ 2, 5 = v (0, 51)

» Plug back in & Convex analysis

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py)| < supE|hg (P @) — hr (P, ¢)|+2sup |hre (P x ¢)]

9 Inside R: » —tlogt modulus of cont. for z +— xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis
== E‘(P*@)(x)—(lsn*w)(x)’ < %, @ :N(O, ’%QI)
» Plug back in & Convex analysis
= Sup E[hr(P+p) — h (P)| <z log (AR /2R

n

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py)| < supE|hg (P @) — hr (P, ¢)|+2sup |hre (P x ¢)]

9 Inside R: » —tlogt modulus of cont. for z +— xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis
= E‘(P*@)(x)—(lsn*w)(x)’ < %, @ ZN(O, %21)
» Plug back in & Convex analysis
= Sup E[hr(P+p) — h (P)| <z log (AR /2R

n

@ Qutside R: O (%) decay via Chi-squared distribution tail bounds

MI(nats)
'S
'
| |

©
I

H(Bin(T_I))
i

o
T

Epoch

Estimating Information Flow in DNNs 16/16

Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

8 = —— Layer 1 ——
0 —LayerZW
24_—Layer3M
: e
0 =verr ' e —48.80 | S ST -
= 8-
C
E
=
S}
T o=y ey e ey e
10° 10 10? 103 10*
Epoch
8 = — Layer 1
:_VT, —— Layer2
24_—Layers
2 |=5e
0 = R 22, 84, 7, R— SRS /-~ 1
= 8-
_l
E
£ 4
<)
T omvery PR - T -
10° 10t 102 10° 104
Epoch

Estimating Information Flow in DNNs 16/16

Binning vs True Mutual Information

Comparing to Previously Shown Ml Plots:

_ 8 = —— Layer 1 R ———
) —layer2 " N\ __— T ——
e

0 = T 58,80 g Sy S 14—

©
I

H(BIn(T_I))
] B
IR

\

ey LR |
10° 10? 10? 103 10*
Epoch
8 = — Layer 1
:_,';; —— Layer2 N
24_-—Layers_/
3 ==
0 = R 22, 84, 7, R— SRS /-~ 1
= 8-
_l
E
£ 4
<)
T omvery PR - T -
10° 10t 102 10° 104
Epoch

= Past works were not showing MI but clustering (via binned-Ml)!

References

[1] Z. Goldfeld, E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B.
Kingsbury and Y. Polyanskiy, “Estimating information flow in DNNs,”
Submitted to the International Conference on Learning Representations
(ICLR-2019), New Orleans, Louisiana, US, May 2019.

Arxiv (extended): https://arxiv.org/abs/1810.05728

[2] Z. Goldfeld, K. Greenewald and Y. Polyanskiy, “Estimating differential
entropy under Gaussian convolutions,” Submitted to the /[EEE
Transactions on Information Theory, October 2018.

Arxiv: https://arxiv.org/abs/1810.11589

Estimating Information Flow in DNNs 16/16

https://arxiv.org/abs/1810.05728
https://arxiv.org/abs/1810.11589

