Estimating the Information Flow in Deep Neural Networks

Ziv Goldfeld

MIT

IT Forum, Information Systems Laboratory, Stanford University

November 9th, 2018

Collaborators: E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B. Kingsbury and Y. Polyanskiy

MIT-IBM Watson AI Lab

• Unprecedented practical success in hosts of tasks

- Unprecedented practical success in hosts of tasks
- Lacking theory:

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - ▶ What are properties of learned representations?

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - ► How fully trained networks process information?

:

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

:

Some past attempts to understand effectiveness of deep learning

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

:

- Some past attempts to understand effectiveness of deep learning
 - ► Shallow networks [Ge-Lee-Ma'17, Mei-Montanari-Nguyen'18]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Some past attempts to understand effectiveness of deep learning
 - ► Shallow networks [Ge-Lee-Ma'17, Mei-Montanari-Nguyen'18]
 - ▶ Opt. in parameter space [Saxe'14, Choromanska'15, Wei'18]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - ▶ What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

- Some past attempts to understand effectiveness of deep learning
 - ► Shallow networks [Ge-Lee-Ma'17, Mei-Montanari-Nguyen'18]
 - Opt. in parameter space [Saxe'14, Choromanska'15, Wei'18]
 - Classes of efficiently representable functions [Montufar'14, Poggio'17]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

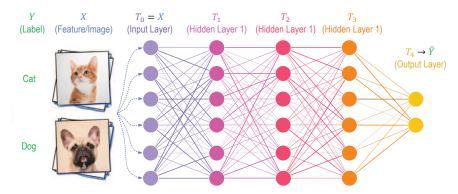
- Some past attempts to understand effectiveness of deep learning
 - ► Shallow networks [Ge-Lee-Ma'17, Mei-Montanari-Nguyen'18]
 - Opt. in parameter space [Saxe'14, Choromanska'15, Wei'18]
 - Classes of efficiently representable functions [Montufar'14, Poggio'17]
 - ▶ Information theory [Tishby'17, Saxe'18, Gabrié'18]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - ▶ What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - How fully trained networks process information?

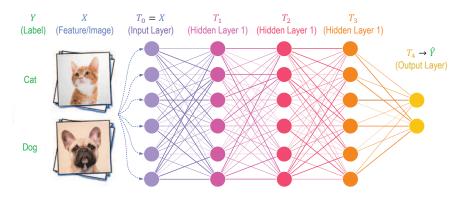
- Some past attempts to understand effectiveness of deep learning
 - ► Shallow networks [Ge-Lee-Ma'17, Mei-Montanari-Nguyen'18]
 - Opt. in parameter space [Saxe'14, Choromanska'15, Wei'18]
 - Classes of efficiently representable functions [Montufar'14, Poggio'17]
 - ▶ Information theory [Tishby'17, Saxe'18, Gabrié'18]

- Unprecedented practical success in hosts of tasks
- Lacking theory:
 - What drives the evolution of hidden representations?
 - What are properties of learned representations?
 - ▶ How fully trained networks process information?

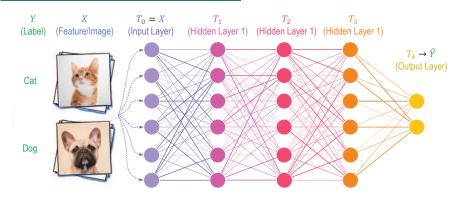
- Some past attempts to understand effectiveness of deep learning
 - ► Shallow networks [Ge-Lee-Ma'17, Mei-Montanari-Nguyen'18]
 - ▶ Opt. in parameter space [Saxe'14, Choromanska'15, Wei'18]
 - ► Classes of efficiently representable functions [Montufar'14, Poggio'17]
 - ▶ Information theory [Tishby'17, Saxe'18, Gabrié'18]
- ★ Goal: Explain 'compression' in Information Bottleneck framework



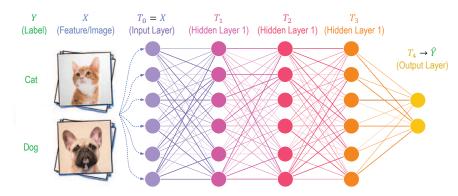
Feedforward DNN for Classification:



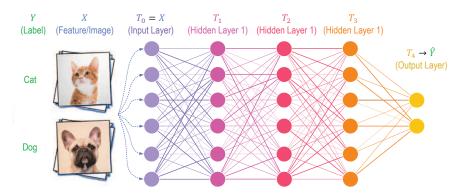
• Deterministic DNN: $T_\ell = f_\ell(T_{\ell-1})$ (MLP: $T_\ell = \sigma(W_\ell T_{\ell-1} + b_\ell)$)



- Deterministic DNN: $T_\ell = f_\ell(T_{\ell-1})$ (MLP: $T_\ell = \sigma(\mathrm{W}_\ell T_{\ell-1} + b_\ell)$)
- Joint Distribution: $P_{X,Y}$

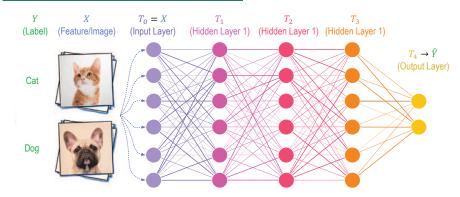


- Deterministic DNN: $T_\ell = f_\ell(T_{\ell-1})$ (MLP: $T_\ell = \sigma(\mathrm{W}_\ell T_{\ell-1} + b_\ell)$)
- Joint Distribution: $P_{X,Y} \implies P_{X,Y} \cdot P_{T_1,...,T_L \mid X}$



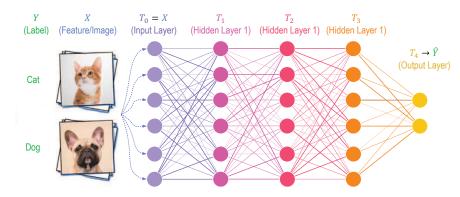
- Deterministic DNN: $T_{\ell} = f_{\ell}(T_{\ell-1})$ (MLP: $T_{\ell} = \sigma(W_{\ell}T_{\ell-1} + b_{\ell})$)
- Joint Distribution: $P_{X,Y} \implies P_{X,Y} \cdot P_{T_1,...,T_L|X}$
- **IB Theory:** Track MI pairs $(I(X;T_{\ell}),I(Y;T_{\ell}))$ (information plane)

Feedforward DNN for Classification:



IB Theory Claim: Training comprises 2 phases

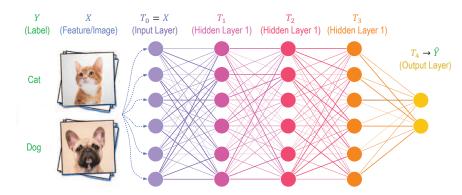
Feedforward DNN for Classification:



IB Theory Claim: Training comprises 2 phases

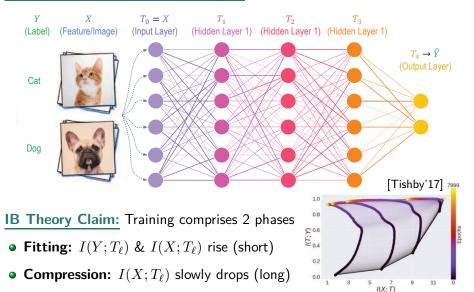
• Fitting: $I(Y;T_{\ell})$ & $I(X;T_{\ell})$ rise (short)

Feedforward DNN for Classification:



IB Theory Claim: Training comprises 2 phases

- Fitting: $I(Y; T_{\ell}) \& I(X; T_{\ell})$ rise (short)
- Compression: $I(X; T_{\ell})$ slowly drops (long)



Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

Continuous X:

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

$$I(X;T_{\ell}) = h(T_{\ell}) - h(T_{\ell}|X)$$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

• Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) - h(T_{\ell}|X)$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

$$I(X;T_{\ell}) = h(T_{\ell}) - h(\tilde{f}_{\ell}(X)|X)$$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

• Continuous *X*:

$$I(X;T_{\ell}) = h(T_{\ell}) - \underbrace{h(\tilde{f}_{\ell}(X)|X)}_{=-\infty}$$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

$$I(X;T_{\ell}) = h(T_{\ell}) - h(\tilde{f}_{\ell}(X)|X) = \infty$$

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

- Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) h(\tilde{f}_{\ell}(X)|X) = \infty$
- Discrete X:

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

- Continuous X: $I(X;T_{\ell}) = h(T_{\ell}) h(\tilde{f}_{\ell}(X)|X) = \infty$
- **Discrete** X: The map $X \mapsto T_{\ell}$ is injective*

* For almost all weight matrices and bias vectors

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

- Continuous X: $I(X;T_\ell) = h(T_\ell) h(\tilde{f}_\ell(X)|X) = \infty$
- Discrete X: The map $X \mapsto T_{\ell}$ is injective* $\Longrightarrow I(X; T_{\ell}) = H(X)$

* For almost all weight matrices and bias vectors

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

- Continuous X: $I(X;T_\ell) = h(T_\ell) h(\tilde{f}_\ell(X)|X) = \infty$
- Discrete X: The map $X \mapsto T_{\ell}$ is injective $\Longrightarrow I(X; T_{\ell}) = H(X)$

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

 $\implies I(X;T_{\ell})$ is independent of the DNN parameters

Why?

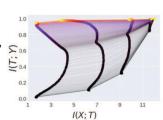
ullet Continuous X:

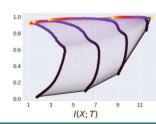
$$I(X;T_{\ell}) = h(T_{\ell}) - h(\tilde{f}_{\ell}(X)|X) = \infty$$

• Discrete X: The map $X \mapsto T_{\ell}$ is injective $\Longrightarrow I(X; T_{\ell}) = H(X)$

Past Works:

[Schwartz-Ziv&Tishby'17, Saxe *et al. '18*]





• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

 \implies Plotted values are $I(X; Bin(T_{\ell}))$

• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

 \implies Plotted values are $I(X; Bin(T_{\ell})) \stackrel{??}{\approx} I(X; T_{\ell})$

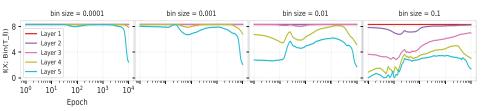
• Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$

 \implies Plotted values are $I(X; Bin(T_{\ell})) \stackrel{??}{\approx} I(X; T_{\ell})$ No

- Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$
 - \implies Plotted values are $I(X; Bin(T_{\ell})) \stackrel{??}{\approx} I(X; T_{\ell})$ No!

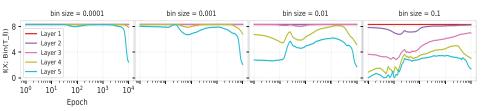


- Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$
 - \implies Plotted values are $I(X; Bin(T_{\ell})) \stackrel{??}{\approx} I(X; T_{\ell})$ No!



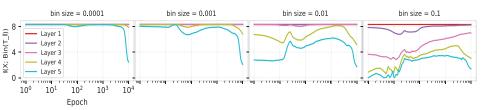
• Smaller bins \implies Closer to truth: $I(X;T_\ell)=\ln(2^{12})\approx 8.31$

- Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$
 - \implies Plotted values are $I(X; Bin(T_{\ell})) \stackrel{??}{\approx} I(X; T_{\ell})$ No!



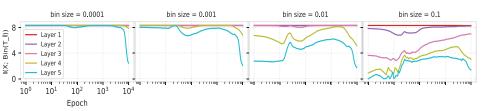
- Smaller bins \implies Closer to truth: $I(X;T_\ell) = \ln(2^{12}) \approx 8.31$
- Binning introduces "noise" into estimator (not present in the DNN)

- Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$
 - \implies Plotted values are $I(X; Bin(T_{\ell})) \stackrel{??}{\approx} I(X; T_{\ell})$ No!



- Smaller bins \implies Closer to truth: $I(X;T_\ell)=\ln(2^{12})\approx 8.31$
- Binning introduces "noise" into estimator (not present in the DNN)
- Plots showing estimation errors

- Plots via binning-based estimator of $I(X; T_{\ell})$, for $X \sim \mathsf{Unif}(\mathsf{dataset})$
 - \implies Plotted values are $I(X; \mathsf{Bin}(T_\ell)) \stackrel{??}{\approx} I(X; T_\ell)$ No!

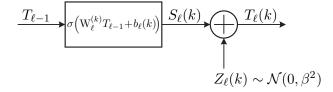


- Smaller bins \implies Closer to truth: $I(X;T_\ell)=\ln(2^{12})\approx 8.31$
- Binning introduces "noise" into estimator (not present in the DNN)
- Plots showing estimation errors
- **Real Problem:** $I(X;T_{\ell})$ is meaningless in det. DNNs

Modification: Inject (small) Gaussian noise to neurons' output

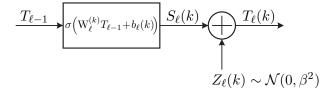
Modification: Inject (small) Gaussian noise to neurons' output

• Formally: $T_{\ell} = f_{\ell}(T_{\ell-1}) + Z_{\ell}$, where $Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$



Modification: Inject (small) Gaussian noise to neurons' output

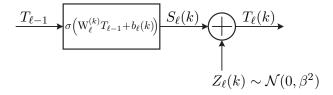
• Formally: $T_{\ell} = f_{\ell}(T_{\ell-1}) + Z_{\ell}$, where $Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$



 $\implies X \mapsto T_{\ell}$ is a **parametrized channel** that depends on DNN param.!

Modification: Inject (small) Gaussian noise to neurons' output

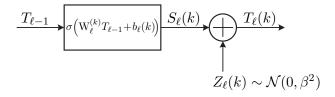
• Formally: $T_{\ell} = f_{\ell}(T_{\ell-1}) + Z_{\ell}$, where $Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$



- $\implies X \mapsto T_\ell$ is a **parametrized channel** that depends on DNN param.!
- $\implies I(X;T_{\ell})$ is a **function** of weights and biases!

Modification: Inject (small) Gaussian noise to neurons' output

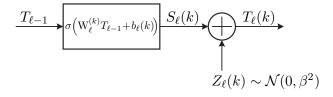
• Formally: $T_\ell = f_\ell(T_{\ell-1}) + Z_\ell$, where $Z_\ell \sim \mathcal{N}(0, \beta^2 \mathrm{I})$



- $\implies X \mapsto T_\ell$ is a **parametrized channel** that depends on DNN param.!
- $\implies I(X;T_{\ell})$ is a **function** of weights and biases!
- Operational Perspective:

Modification: Inject (small) Gaussian noise to neurons' output

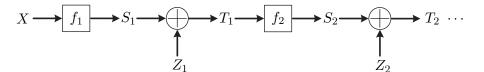
• Formally: $T_\ell = f_\ell(T_{\ell-1}) + Z_\ell$, where $Z_\ell \sim \mathcal{N}(0, \beta^2 \mathrm{I})$



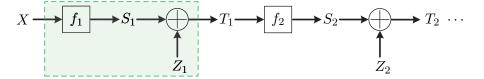
- $\implies X \mapsto T_\ell$ is a **parametrized channel** that depends on DNN param.!
- $\implies I(X;T_{\ell})$ is a **function** of weights and biases!
- Operational Perspective:

Performance & learned representations similar to det. DNNs ($\beta \approx 10^{-1}$)

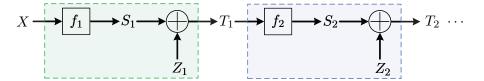
Noisy DNN:



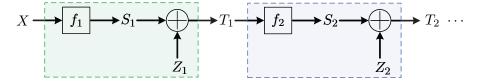
Noisy DNN:



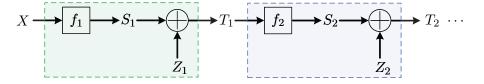
Noisy DNN:



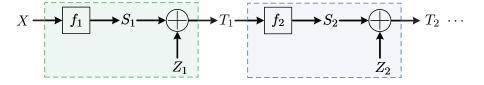
Noisy DNN: $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$



Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$

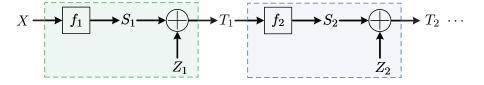


Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



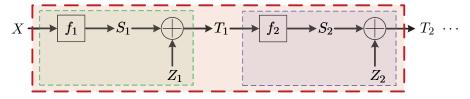
• Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



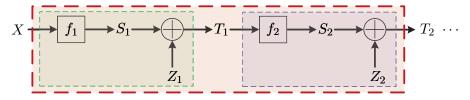
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



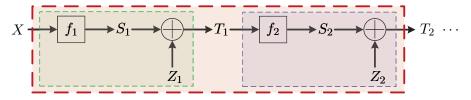
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



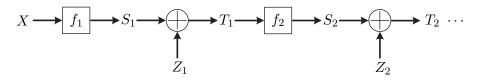
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



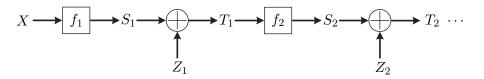
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- $lacktriangledown P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- ℜ But both are easily sampled via the DNN forward pass

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



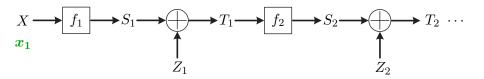
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- $lacktriangledown P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- ℜ But both are easily sampled via the DNN forward pass

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



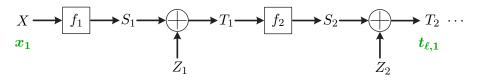
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- $lacktriangledown P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



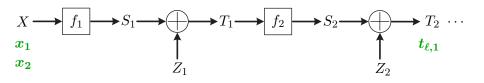
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- $lacktriangledown P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



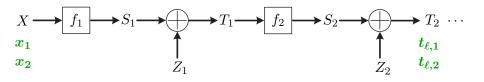
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- $lacktriangledown P_{T_\ell}$ and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** P_{T_ℓ} : Feed randomly chosen x_i 's & read T_ℓ values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



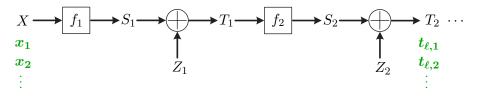
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



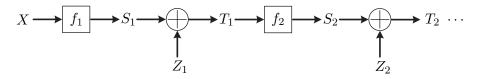
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



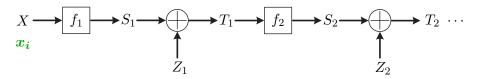
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - **Sampling** $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$

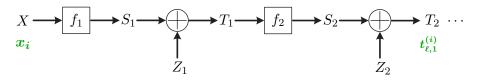


- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

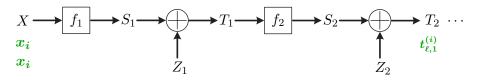
Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



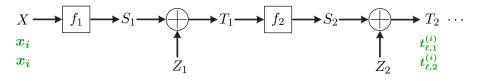
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values



- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

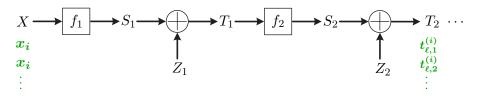


- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values



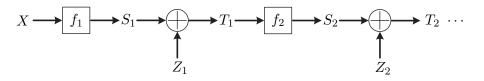
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



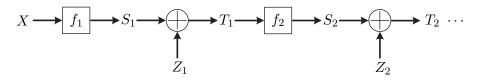
- Assume: $X \sim \mathsf{Unif}(\mathcal{X})$, where $\mathcal{X} \triangleq \{x_i\}_{i=1}^m$ is empirical dataset
- \Longrightarrow Mutual Information: $I(X;T_{\ell})=h(T_{\ell})-\frac{1}{m}\sum_{i=1}^{m}h(T_{\ell}|X=x_{i})$
- \Re P_{T_ℓ} and $P_{T_\ell|X}$ are **extremely** complicated to compute/evaluate
- But both are easily sampled via the DNN forward pass
 - ▶ Sampling $P_{T_{\ell}}$: Feed randomly chosen x_i 's & read T_{ℓ} values
 - ▶ Sampling $P_{T_{\ell}|X=x_i}$: Feed x_i multiples times & read T_{ℓ} values

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



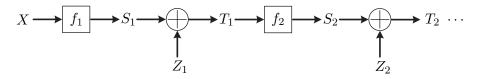
 \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



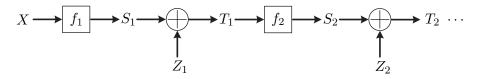
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



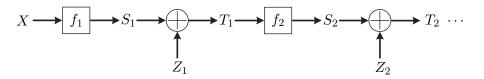
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



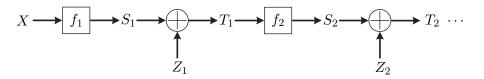
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$

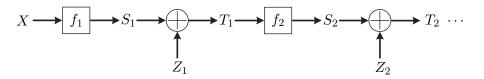


- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:
 - KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$

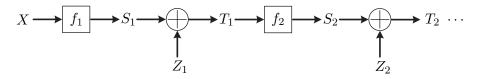


- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:
 - MDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
 - Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]



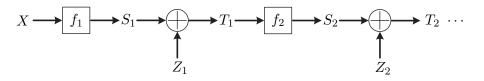
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:
 - KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
 - Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
 - Assume: $supp = [0, 1]^d$ & Periodic BC & $s \in (0, 2]$

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



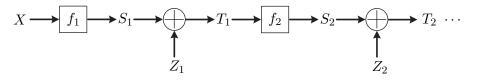
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:
 - MDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
 - Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
 - - * Except sub-Gaussian result from [Han-Jiao-Weissman-Wu'17]

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^2 I)$$



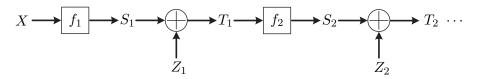
- \implies Estimate $I(X;T_{\ell})$ from samples via **general-purpose** h(P) **est.:**
 - Most results assume lower bounded density ⇒ Inapplicable
 - 2 Works Drop Assumption:
 - MDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
 - Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
 - ullet Assume: $\operatorname{supp} = [0,1]^d$ & Periodic BC & $s \in (0,2] \Longrightarrow \operatorname{Inapplicable*}$
 - $\bullet \ \, {\bf Rate:} \quad {\sf Risk} \leq O\left(n^{-\frac{\alpha s}{\beta s + d}}\right) \text{,} \quad {\sf w}/\ \alpha, \beta \in \mathbb{N} \text{, s smoothness, d dimension}$

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



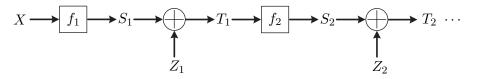
Exploit structure: We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



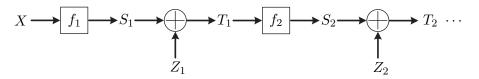
- **®** Exploit structure: We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:
- Genie1: Sample $P = P_{S_\ell}$ and $P = P_{S_\ell \mid X = x_i}$ (sample $T_{\ell-1}$ & apply f_ℓ)

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



- **Exploit structure:** We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:
- \bullet Genie1: Sample $P = P_{S_\ell}$ and $P = P_{S_\ell \mid X = x_i}$ (sample $T_{\ell-1}$ & apply f_ℓ)
- **Genie2:** Know the distribution φ of Z_{ℓ} (noise injected by design)

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$

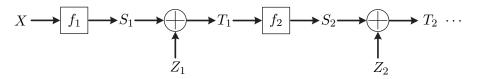


- **Exploit structure:** We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:
- \bullet Genie1: Sample $P = P_{S_\ell}$ and $P = P_{S_\ell \mid X = x_i}$ (sample $T_{\ell-1}$ & apply f_ℓ)
- **Genie2:** Know the distribution φ of Z_{ℓ} (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0, \beta^2 I_d)$).

Noisy DNN:
$$S_{\ell} \triangleq f_{\ell}(T_{\ell-1}) \implies T_{\ell} = S_{\ell} + Z_{\ell}, \quad Z_{\ell} \sim \mathcal{N}(0, \beta^{2}I)$$



- **8** Exploit structure: We know $T_{\ell} = S_{\ell} + Z_{\ell} \sim P * \varphi$ and:
- \bullet Genie1: Sample $P = P_{S_\ell}$ and $P = P_{S_\ell \mid X = x_i}$ (sample $T_{\ell-1}$ & apply f_ℓ)
- **Genie2:** Know the distribution φ of Z_{ℓ} (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate $h(P * \varphi)$ based on n i.i.d. samples from $P \in \mathcal{F}_d$ (nonparametric class) and knowledge of φ (PDF of $\mathcal{N}(0, \beta^2 I_d)$).

Nonparametric Class: Depends on DNN architecture (nonlinearities)

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

Curse of Dimensionality: Sample complexity exponential in *d*

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

\$ Curse of Dimensionality: Sample complexity exponential in d

'Sample Propagation' Estimator: Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

\$ Curse of Dimensionality: Sample complexity exponential in d

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Comments:

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

floor Curse of Dimensionality: Sample complexity exponential in d

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum\limits_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Comments:

ullet Plug-in: \hat{h}_{SP} is just plug-in est. for the functional $\mathsf{T}_{arphi}(P) \triangleq h(P * arphi)$

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

f R Curse of Dimensionality: Sample complexity exponential in d

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Comments:

- ullet Plug-in: \hat{h}_{SP} is just plug-in est. for the functional $\mathsf{T}_{arphi}(P) \triangleq h(P * arphi)$
- **Mixture:** \hat{h}_{SP} is the diff. entropy of a **known** Gaussian mixture

Abs. Error Minimax Risk: S^n are n i.i.d. samples from P, define

$$\mathcal{R}_{d}^{\star}(n,\beta) \triangleq \inf_{\hat{h}} \sup_{P \in \mathcal{F}_{d}} \mathbb{E}_{S^{n}} \left| h(P * \varphi) - \hat{h}(S^{n},\beta) \right|$$

floor Curse of Dimensionality: Sample complexity exponential in d

<u>'Sample Propagation' Estimator:</u> Empirical distribution $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

$$\hat{h}_{\mathsf{SP}}(S^n,\beta) \triangleq h(\hat{P}_n * \varphi)$$

Comments:

- ullet Plug-in: \hat{h}_{SP} is just plug-in est. for the functional $\mathsf{T}_{arphi}(P) \triangleq h(P * arphi)$
- Mixture: \hat{h}_{SP} is the diff. entropy of a known Gaussian mixture
- Computing: Can be efficiently computed via MC integration

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

$$\begin{split} \sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \\ & \leq \frac{1}{2(4\pi\beta^2)^{\frac{d}{4}}} \log \left(\frac{n \left(2 + 2\beta\sqrt{(2+\epsilon)\log n} \right)^d}{(\pi\beta^2)^{\frac{d}{2}}} \right) \left(2 + 2\beta\sqrt{(2+\epsilon)\log n} \right)^{\frac{d}{2}} \frac{1}{\sqrt{n}} \\ & + \left(c_{\beta,d}^2 + \frac{2c_{\beta,d}d(1+\beta^2)}{\beta^2} + \frac{8d(d+2\beta^4 + d\beta^4)}{\beta^4} \right) \frac{2}{n} \end{split}$$
 where $c_{\beta,d} \triangleq \frac{d}{2} \log(2\pi\beta^2) + \frac{d}{\beta^2}.$

Theorem (ZG-Greenewald-Polyanskiy '18)

For
$$\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$$
 and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \leq O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique:

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \leq O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Comments:

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Comments:

ullet Faster rate than $O\left(n^{-rac{lpha s}{eta s+d}}
ight)$ for kNN/KDE est. via 'noisy' samples

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Comments:

- ullet Faster rate than $O\left(n^{-rac{lpha s}{eta s+d}}
 ight)$ for kNN/KDE est. via 'noisy' samples
- Explicit expression enables concrete error bounds in simulations

Theorem (ZG-Greenewald-Polyanskiy '18)

For $\mathcal{F}_d \triangleq \{P | \mathsf{supp}(P) \subseteq [-1,1]^d\}$ and any $\beta > 0$ and $d \ge 1$, we have

$$\sup_{P \in \mathcal{F}_d} \mathbb{E}_{S^n} \left| h(P * \varphi) - \hat{h}_{\mathsf{SP}}(S^n, \beta) \right| \le O_\beta \left(\frac{(\log n)^{d/4}}{\sqrt{n}} \right).$$

Pf. Technique: Split analysis to $\mathcal{R} \triangleq [-1, 1]^d + \mathcal{B}(0, \sqrt{c \log n})$ and \mathcal{R}^c

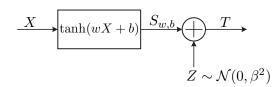
- Inside R: Modulus of cont. & Convex analysis & Functional opt.
- Outside R: Chi-squared distribution tail bounds

Comments:

- \bullet Faster rate than $O\left(n^{-\frac{\alpha s}{\beta s+d}}\right)$ for kNN/KDE est. via 'noisy' samples
- Explicit expression enables concrete error bounds in simulations
- Extension: P with sub-Gaussian marginals (ReLU + Weight regular.)

Back to Noisy DNNs

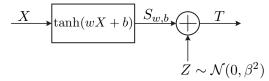
Single Neuron Classification:



Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

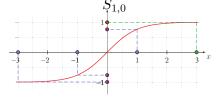
$$\mathcal{X}_{-1} \triangleq \{-3, -1, 1\}$$
 , $\mathcal{X}_1 \triangleq \{3\}$

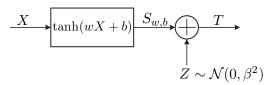


Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

$$\mathcal{X}_{-1}\triangleq\{-3,-1,1\}$$
 , $\mathcal{X}_{1}\triangleq\{3\}$

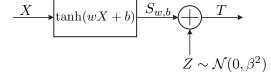


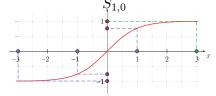


Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

$$\mathcal{X}_{-1} \triangleq \{-3, -1, 1\} \text{ , } \mathcal{X}_1 \triangleq \{3\}$$

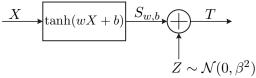


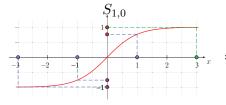


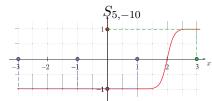
Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

$$\mathcal{X}_{-1}\triangleq\{-3,-1,1\}$$
 , $\mathcal{X}_{1}\triangleq\{3\}$



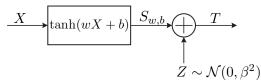


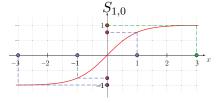


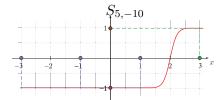
Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

$$\mathcal{X}_{-1}\triangleq\{-3,-1,1\}$$
 , $\mathcal{X}_{1}\triangleq\{3\}$



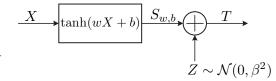




✓ Correct classification performance

Single Neuron Classification:

• Input: $X \sim \text{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$ $\mathcal{X}_{-1} \triangleq \{-3, -1, 1\}$, $\mathcal{X}_1 \triangleq \{3\}$



• Mutual Information:

Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

$$\mathcal{X}_{-1}\triangleq\{-3,-1,1\}$$
 , $\mathcal{X}_{1}\triangleq\{3\}$

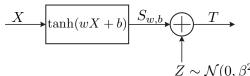
 $\begin{array}{c|c}
X & \tanh(wX+b) & S_{w,b} & T \\
\downarrow & & \downarrow \\
Z \sim \mathcal{N}(0, \beta^2)
\end{array}$

• Mutual Information: $I(X;T) = I(S_{w,b}; S_{w,b} + Z)$

Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

$$\mathcal{X}_{-1}\triangleq\{-3,-1,1\}$$
 , $\mathcal{X}_{1}\triangleq\{3\}$



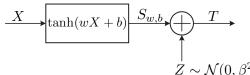
• Mutual Information: $I(X;T) = I(S_{w,b}; S_{w,b} + Z)$

 $\implies I(X;T)$ is # bits (nats) transmittable over AWGN w. symbols $S_{w,b} \triangleq \{\tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b)\}$

Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

$$\mathcal{X}_{-1}\triangleq\{-3,-1,1\}$$
 , $\mathcal{X}_{1}\triangleq\{3\}$



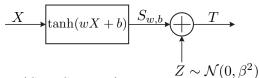
• Mutual Information: $I(X;T) = I(S_{w,b}; S_{w,b} + Z)$

$$\implies I(X;T)$$
 is $\#$ bits (nats) transmittable over AWGN w. symbols $\mathcal{S}_{w,b} \triangleq \{\tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b)\} \longrightarrow \{\pm 1\}$

Single Neuron Classification:

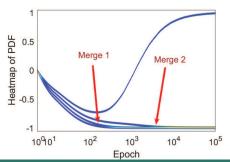
• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

$$\mathcal{X}_{-1}\triangleq\{-3,-1,1\}$$
 , $\mathcal{X}_{1}\triangleq\{3\}$



• Mutual Information: $I(X;T) = I(S_{w,b}; S_{w,b} + Z)$

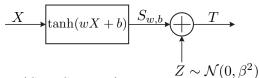
 $\implies I(X;T)$ is # bits (nats) transmittable over AWGN w. symbols $\mathcal{S}_{w,b} \triangleq \{\tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b)\} \longrightarrow \{\pm 1\}$



Single Neuron Classification:

• Input: $X \sim \mathsf{Unif}(\mathcal{X}_{-1} \cup \mathcal{X}_1)$

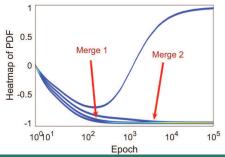
$$\mathcal{X}_{-1}\triangleq\{-3,-1,1\}$$
 , $\mathcal{X}_{1}\triangleq\{3\}$

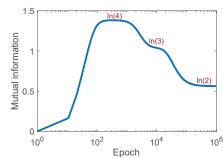


• Mutual Information: $I(X;T) = I(S_{w,b}; S_{w,b} + Z)$

 $\implies I(X;T)$ is # bits (nats) transmittable over AWGN w. symbols

$$S_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \} \longrightarrow \{\pm 1\}$$





Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

• Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

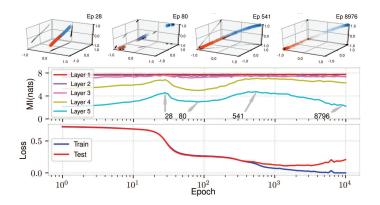
Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

• Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

• Noise std.: Set to $\beta = 0.01$

Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

- Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- Noise std.: Set to $\beta = 0.01$



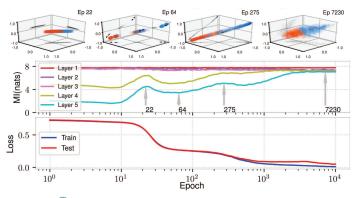
Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

• Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

• Noise std.: Set to $\beta = 0.01$

Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

- Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- Noise std.: Set to $\beta = 0.01$



weight orthonormality regularization

Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

- Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- Noise std.: Set to $\beta = 0.01$
- Verified in multiple additional experiments

Noisy version of DNN from [Schwartz-Ziv&Tishby'17]:

- Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.
- Noise std.: Set to $\beta = 0.01$
- Verified in multiple additional experiments
- \implies Compression of $I(X;T_{\ell})$ driven by clustering of representations

• $I(X;T_{\ell})$ is constant

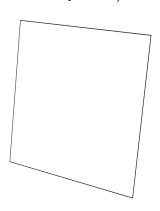
ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering

- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):

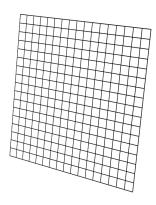
- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)

- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$

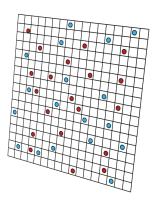
- \bullet $I(X;T_{\ell})$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$



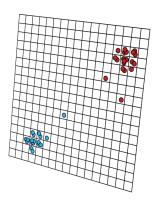
- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$



- \bullet $I(X;T_{\ell})$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell})) \uparrow$



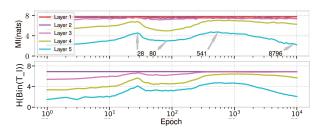
- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell})) \downarrow$



- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_{\ell})$ and $H(\text{Bin}(T_{\ell}))$ highly correlated!*

^{*} When bin size chosen \propto noise std.

- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_\ell)$ and $H(\mathsf{Bin}(T_\ell))$ highly correlated!*



^{&#}x27; When bin size chosen \propto noise std.

- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_\ell)$ and $H(Bin(T_\ell))$ highly correlated!*
- Det. DNNs: $H(Bin(T_{\ell})) = I(X; Bin(T_{\ell}))$ compresses

- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_\ell)$ and $H(Bin(T_\ell))$ highly correlated!*
- Det. DNNs: $H(Bin(T_{\ell})) = I(X; Bin(T_{\ell}))$ compresses
 - X Incapable of accurately estimating MI values

- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_{\ell})$ and $H(Bin(T_{\ell}))$ highly correlated!*
- Det. DNNs: $H(\mathsf{Bin}(T_\ell)) = I(X; \mathsf{Bin}(T_\ell))$ compresses
 - X Incapable of accurately estimating MI values
 - ✓ Does track clustering!

- ullet $I(X;T_\ell)$ is constant \implies Doesn't measure clustering
- Alternative measures for clustering (det. and noisy DNNs):
 - Scatter plots (up to 3D layers)
 - ▶ Binned entropy $H(Bin(T_{\ell}))$
- Noisy DNNs: $I(X;T_{\ell})$ and $H(Bin(T_{\ell}))$ highly correlated!*
- **Det. DNNs:** $H(\mathsf{Bin}(T_\ell)) = I(X; \mathsf{Bin}(T_\ell))$ compresses
 - X Incapable of accurately estimating MI values
 - ✓ Does track clustering!
- ⇒ Past works were not showing MI but clustering (via binned-MI)!

Summary

• Reexamined Information Bottleneck Compression:

- Reexamined Information Bottleneck Compression:
 - ightharpoonup I(X;T) fluctuations in det. DNNs are theoretically impossible

Reexamined Information Bottleneck Compression:

- $lackbox{I}(X;T)$ fluctuations in det. DNNs are theoretically impossible
- lacktriangle Yet, past works presented I(X;T) dynamics during training

- Reexamined Information Bottleneck Compression:
 - $lackbox{I}(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs

- Reexamined Information Bottleneck Compression:
 - $lackbox{I}(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - ▶ SP estimator for accurate MI estimation over this framework

- Reexamined Information Bottleneck Compression:
 - lacksquare I(X;T) fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - ▶ SP estimator for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression

- Reexamined Information Bottleneck Compression:
 - $lackbox{I}(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - SP estimator for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering

- Reexamined Information Bottleneck Compression:
 - $lackbox{I}(X;T)$ fluctuations in det. DNNs are theoretically impossible
 - lacktriangle Yet, past works presented I(X;T) dynamics during training
- Noisy DNN Framework: Studying IT quantities over DNNs
 - SP estimator for accurate MI estimation over this framework
 - Clustering of the learned representations is the source of compression
- Clarify Past Observations of Compression: in fact show clustering
 - **Clustering** is the common phenomenon of interest!

• Curse of Dimensionality: Track clustering in high-dimensions?

- Curse of Dimensionality: Track clustering in high-dimensions?
 - Lower-dimensional embedding

- Curse of Dimensionality: Track clustering in high-dimensions?
 - Lower-dimensional embedding
 - Summarizing statistics

- Curse of Dimensionality: Track clustering in high-dimensions?
 - Lower-dimensional embedding
 - Summarizing statistics
 - Graph clusterability measures [Czumaj-Peng-Sohler'15]

- Curse of Dimensionality: Track clustering in high-dimensions?
 - Lower-dimensional embedding
 - Summarizing statistics
 - Graph clusterability measures [Czumaj-Peng-Sohler'15]
- The Role of Compression:

- Curse of Dimensionality: Track clustering in high-dimensions?
 - Lower-dimensional embedding
 - Summarizing statistics
 - Graph clusterability measures [Czumaj-Peng-Sohler'15]
- The Role of Compression:
 - ► Is compression necessary? Desirable?

- Curse of Dimensionality: Track clustering in high-dimensions?
 - Lower-dimensional embedding
 - Summarizing statistics
 - Graph clusterability measures [Czumaj-Peng-Sohler'15]

• The Role of Compression:

- Is compression necessary? Desirable?
- Design tool for DNN architectures

- Curse of Dimensionality: Track clustering in high-dimensions?
 - Lower-dimensional embedding
 - Summarizing statistics
 - Graph clusterability measures [Czumaj-Peng-Sohler'15]
- The Role of Compression:
 - Is compression necessary? Desirable?
 - Design tool for DNN architectures
- Algorithmic Perspective:

- Curse of Dimensionality: Track clustering in high-dimensions?
 - Lower-dimensional embedding
 - Summarizing statistics
 - Graph clusterability measures [Czumaj-Peng-Sohler'15]

The Role of Compression:

- Is compression necessary? Desirable?
- Design tool for DNN architectures

Algorithmic Perspective:

▶ Better understanding of internal representation evolution & final state

- Curse of Dimensionality: Track clustering in high-dimensions?
 - ► Lower-dimensional embedding
 - Summarizing statistics
 - Graph clusterability measures [Czumaj-Peng-Sohler'15]

• The Role of Compression:

- Is compression necessary? Desirable?
- Design tool for DNN architectures

• Algorithmic Perspective:

- ▶ Better understanding of internal representation evolution & final state
- ► Enhanced DNN training algorithms

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$

$$\sup \mathbb{E}|h(P*\varphi) - h(\hat{P}_n*\varphi)| \le \sup \mathbb{E}|h_{\mathcal{R}}(P*\varphi) - h_{\mathcal{R}}(\hat{P}_n*\varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$$

- Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E} \left[-\log p(X) \mathbb{1}_{\{X \in \mathcal{R}\}} \right]$
- $\sup \mathbb{E} |h(P * \varphi) h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P * \varphi) h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P * \varphi)|$
 - Inside $R: \triangleright -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.

- Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$
- $\sup \mathbb{E} |h(P * \varphi) h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P * \varphi) h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P * \varphi)|$
 - Inside R: $-t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.
 - \implies Focus on analyzing $\mathbb{E} \left| (P * \varphi)(x) (\hat{P}_n * \varphi)(x) \right|$

- Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$
- $\sup \mathbb{E} |h(P * \varphi) h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P * \varphi) h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P * \varphi)|$
 - Inside $R: \triangleright -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.
 - \implies Focus on analyzing $\mathbb{E}\left|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\right|$
 - ► Bias & variance analysis

- Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}\left[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}\right]$
- $\sup \mathbb{E} |h(P*\varphi) h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P*\varphi) h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$
 - Inside $R: \triangleright -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.
 - \implies Focus on analyzing $\mathbb{E}\Big|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\Big|$
 - ► Bias & variance analysis

$$\implies \mathbb{E}\left|(P * \varphi)(x) - (\hat{P}_n * \varphi)(x)\right| \le c_1 \sqrt{\frac{(P * \tilde{\varphi})(x)}{n}}, \quad \tilde{\varphi} = \mathcal{N}\left(0, \frac{\beta^2}{2} \mathbf{I}\right)$$

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}]$

$$\sup \mathbb{E} \big| h(P * \varphi) - h(\hat{P}_n * \varphi) \big| \le \sup \mathbb{E} \big| h_{\mathcal{R}}(P * \varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi) \big| + 2\sup \big| h_{\mathcal{R}^c}(P * \varphi) \big|$$

- Inside $R: \triangleright -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.
 - \implies Focus on analyzing $\mathbb{E}\Big|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\Big|$
 - ► Bias & variance analysis

$$\implies \mathbb{E}\left|(P * \varphi)(x) - (\hat{P}_n * \varphi)(x)\right| \le c_1 \sqrt{\frac{(P * \tilde{\varphi})(x)}{n}}, \quad \tilde{\varphi} = \mathcal{N}\left(0, \frac{\beta^2}{2} \mathbf{I}\right)$$

▶ Plug back in & Convex analysis

- Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E}[-\log p(X)\mathbb{1}_{\{X \in \mathcal{R}\}}]$
- $\sup \mathbb{E} |h(P*\varphi) h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P*\varphi) h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P*\varphi)|$
 - Inside $R: \triangleright -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.
 - \implies Focus on analyzing $\mathbb{E}\Big|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\Big|$
 - ► Bias & variance analysis

$$\implies \mathbb{E}\left|(P * \varphi)(x) - (\hat{P}_n * \varphi)(x)\right| \le c_1 \sqrt{\frac{(P * \tilde{\varphi})(x)}{n}}, \quad \tilde{\varphi} = \mathcal{N}\left(0, \frac{\beta^2}{2} \mathbf{I}\right)$$

- ▶ Plug back in & Convex analysis
- $\implies \sup \mathbb{E}|h_{\mathcal{R}}(P * \varphi) h_{\mathcal{R}}(\hat{P}_n * \varphi)| \le c_2 \log \left(\frac{n\lambda(\mathcal{R})}{c_3}\right) \sqrt{\frac{\lambda(\mathcal{R})}{n}}$

Strategy: Split analysis to $\mathcal{R} \triangleq [-1,1]^d + \mathcal{B}(0,\sqrt{c\log n})$ and \mathcal{R}^c

• Restricted Entropy: $h_{\mathcal{R}}(p) \triangleq \mathbb{E} \left[-\log p(X) \mathbb{1}_{\{X \in \mathcal{R}\}} \right]$

$$\sup \mathbb{E} |h(P * \varphi) - h(\hat{P}_n * \varphi)| \le \sup \mathbb{E} |h_{\mathcal{R}}(P * \varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| + 2\sup |h_{\mathcal{R}^c}(P * \varphi)|$$

• Inside R: $> -t \log t$ modulus of cont. for $x \mapsto x \log x$ & Jensen's ineq.

$$\implies$$
 Focus on analyzing $\mathbb{E}\Big|(P*\varphi)(x)-(\hat{P}_n*\varphi)(x)\Big|$

▶ Bias & variance analysis

$$\implies \mathbb{E}\left|(P * \varphi)(x) - (\hat{P}_n * \varphi)(x)\right| \le c_1 \sqrt{\frac{(P * \tilde{\varphi})(x)}{n}}, \quad \tilde{\varphi} = \mathcal{N}\left(0, \frac{\beta^2}{2} \mathbf{I}\right)$$

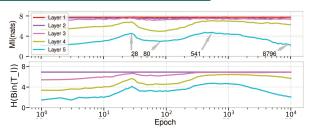
▶ Plug back in & Convex analysis

$$\implies \sup \mathbb{E}|h_{\mathcal{R}}(P * \varphi) - h_{\mathcal{R}}(\hat{P}_n * \varphi)| \le c_2 \log \left(\frac{n\lambda(\mathcal{R})}{c_3}\right) \sqrt{\frac{\lambda(\mathcal{R})}{n}}$$

• Outside R: $O\left(\frac{1}{n}\right)$ decay via Chi-squared distribution tail bounds

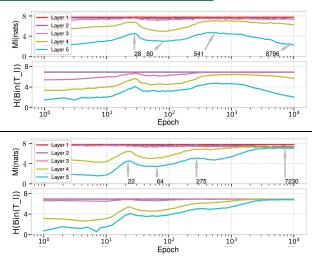
Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:



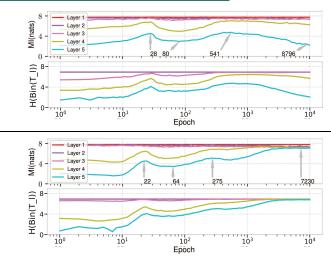
Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:



Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:



⇒ Past works were not showing MI but clustering (via binned-MI)!

References

- [1] Z. Goldfeld, E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B. Kingsbury and Y. Polyanskiy, "Estimating information flow in DNNs," Submitted to the *International Conference on Learning Representations (ICLR-2019)*, New Orleans, Louisiana, US, May 2019.

 Arxiv (extended): https://arxiv.org/abs/1810.05728
- [2] Z. Goldfeld, K. Greenewald and Y. Polyanskiy, "Estimating differential entropy under Gaussian convolutions," Submitted to the *IEEE Transactions on Information Theory*, October 2018.

Arxiv: https://arxiv.org/abs/1810.11589