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» How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning
> Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen'18]
» Opt. in parameter space [Saxe'14, Choromanska'l5, Wei'18]
> Classes of efficiently representable functions [Montufar'14, Poggio'17]
> Information theory [Tishby'17, Saxe'18, Gabrié'18]

% Goal: Explain ‘compression’ in Information Bottleneck framework
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@ Deterministic DNN: T, = fg(Tg_l) (MLP: Ty = U(W@Tg_l —i—bg))
@ Joint Distribution: Pxy = Pxy Pp .1 x
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Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T T,

TS
(Label) (Feature/lmage)  (InputLayer)  (Hidden Layer 1)

(Hidden Layer 1) (Hidden Layer 1)

T, -7
;. ' g ' (Output Layer)
Cat < Z

Dog

[Tishby'17] 7sso

IB Theory Claim: Training comprises 2 phases ** L

sos6 2
o Fitting: I(Y;T;) & I(X;Ty) rise (short) Zos i
@ Compression: [(X;T) slowly drops (long) o  # !
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Meaningless Mutual Information
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= I(X;Ty) is independent of the DNN parameters
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@ Continuous X: [(X;Ty) = MTy) — h(fo(X)|X) = oo
o Discrete X: The map X — T} is injective* = I(X;1;) = H(X)
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What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)
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@ Smaller bins = Closer to truth: I(X;T;) = In(2!?) ~ 8.31
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What is going on here?

@ Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

77
—> Plotted values are I(X;Bin(1}y)) ~ I(X;T) No!
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[

1(X; Bin(T_I))

@ Smaller bins = Closer to truth: I(X;T;) = In(2!?) ~ 8.31

@ Binning introduces “noise” into estimator (not present in the DNN)
@ Plots showing estimation errors

& Real Problem: I(X;T}) is meaningless in det. DNNs
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Modification: Inject (small) Gaussian noise to neurons’ output

e Formally: T, = fy(Ty_1) + Zs, where Z; ~ N(0, 321)

Ty—1 Sy(k) Ty (k)

o (W T, 10 (k)

Zy(k) ~ N(0, 5?)
—> X +— Ty is a parametrized channel that depends on DNN param.!
= I(X;T}) is a function of weights and biases!

@ Operational Perspective:

Performance & learned representations similar to det. DNNs (8 ~ 107!)
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General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Zg ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —>524><—|%—> Ty -

Al Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:
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= Estimate I(X;7}) from samples via general-purpose h(P) est.:

@ Most results assume lower bounded density
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General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Se + Ze, Ze ~ N(O,,B2I)

X— f1 —»5; Ti—>» fo —>» 5 T -

Z1 Za

— Estimate I(X;Ty) from samples via general-purpose h(P) est.:
@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
© KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
© Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

@ Assume: supp=1[0,1]¢ & Periodic BC & s¢&(0,2] = Inapplicable*

* Except sub-Gaussian result from [Han-Jiao-Weissman-Wu'17]
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General-Purpose Differential Entropy Estimators

Noisy DNN: Sg £ fg(Tg_l) — Tg = Se + Ze, Ze ~ N(O,,B2I)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
© KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
@ Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
@ Assume: supp=1[0,1]¢ & Periodic BC & s¢&(0,2] = Inapplicable*
o Rate: Risk <O (n_ﬂ‘:—id), w/ a, B € N, s smoothness, d dimension



Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —>524><—|%—> Ty -

Al Za

@ Exploit structure: We know Ty = Sy + Z; ~ P *  and:
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@ Exploit structure: We know Ty = Sy + Z; ~ P *  and:
@ Geniel: Sample P=Ps, and P = Pg,|x_,, (sample T;_; & apply f)
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@ Exploit structure: We know Ty = Sy + Z; ~ P *  and:
@ Geniel: Sample P=Ps, and P = Pg,|x_,, (sample T;_; & apply f)

@ Genie2: Know the distribution ¢ of Z; (noise injected by design)
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Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Z2

@ Exploit structure: We know Ty = Sy + Z; ~ P *  and:
@ Geniel: Sample P=Ps, and P = Pg,|x_,, (sample T;_; & apply f)
@ Genie2: Know the distribution ¢ of Z; (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * @) based on n i.i.d. samples from P € F; (nonparametric
class) and knowledge of o (PDF of N'(0, 31)).

Estimating Information Flow in DNNs 9/16



Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg £ fg(Tg_l) — Tg = Sg + Ze, Ze ~ N(O,,BQI)

X— fi —»Sla?—»ﬂ—» f2 —»5'24»(—?—» Ty -

Z1 Za

@ Exploit structure: We know Ty = Sy + Z; ~ P *  and:
@ Geniel: Sample P=Ps, and P = Pg,|x_,, (sample T;_; & apply f)
@ Genie2: Know the distribution ¢ of Z; (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € F; (nonparametric
class) and knowledge of o (PDF of N'(0, 31)).

Nonparametric Class: Depends on DNN architecture (nonlinearities)

Estimating Information Flow in DNNs 9/16




The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|
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The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, =
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1
w 22 0s;

=1

ESP(Sna/B) = h(pn * )
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The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy
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@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, =
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ds;
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n i
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ESP(Sna/B) = h(pn * )

Comments:

@ Plug-in: hsp is just plug-in est. for the functional T,(P) £ h(P * )

Estimating Information Flow in DNNs 10/16



The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

o8

‘Sample Propagation’ Estimator: Empirical distribution P, = % ds,

=1

ESP(Sna/B) = h(pn * )

Comments:

@ Plug-in: hsp is just plug-in est. for the functional T,(P) £ h(P * )

o Mixture: hgp is the diff. entropy of a known Gaussian mixture
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The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

Ry(n, B) = inf sup Egn
h PeFy

h(P * @) = (", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

s

‘Sample Propagation’ Estimator: Empirical distribution P, = % ds,

=1

hsp (5™, ) £ h(Py * ¢)
Comments:
@ Plug-in: hsp is just plug-in est. for the functional T,(P) £ h(P * )
o Mixture: hgp is the diff. entropy of a known Gaussian mixture
@ Computing: Can be efficiently computed via MC integration

Estimating Information Flow in DNNs 10/16



The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy
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The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

N og n)4/
h(P * @) — hsp(S”,B)‘ <Opg (%) :

sup Egn
PeFy

sup Egn
PeFg

B(P ) — hsp (5™, 5)|

. n(2+ zwm)d

< log

2(4m32) % (nB2)%
N ( ) 2¢5.q4d(1 + 3?) N 8d(d + 2% + dﬁ‘*))

€3.d 52 B4
where cg 4 £ & log(2n3%) + ﬁ%.

(Qmm)%

Bl

SR
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Estimating Information Flow in DNNs 11/16



The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

Estimating Information Flow in DNNs 11/16



The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

Estimating Information Flow in DNNs 11/16



The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds

Estimating Information Flow in DNNs 11/16



The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

. oo n)4/4
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds

Comments:

Estimating Information Flow in DNNs 11/16



The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

N og n)4/
h(P * @) — hsp(S”,B)‘ <Opg (%) :

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds

Comments:

@ Faster rate than O (n_ﬂ‘:—id> for kNN /KDE est. via ‘noisy’ samples
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The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

N og n)4/
h(P * @) — hsp(S”,B)‘ <Opg (%) :

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds
Comments:
@ Faster rate than O (n_ﬂ‘:—id) for kNN /KDE est. via ‘noisy’ samples

@ Explicit expression enables concrete error bounds in simulations
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The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For F4 £ {P|supp(P) C [-1,1]?} and any 8 >0 and d > 1, we have

A d/4
sup Egu [B(P+ ) — hisp(5",6)| < Op (%) .

PeFy

Pf. Technique: Split analysis to R £ [~1,1]? + B(0,/clogn) and R*

@ Inside R: Modulus of cont. & Convex analysis & Functional opt.

@ QOutside R: Chi-squared distribution tail bounds

Comments:

@ Faster rate than O (n_ﬂ‘:—frd) for kNN /KDE est. via ‘noisy’ samples
@ Explicit expression enables concrete error bounds in simulations

o Extension: P with sub-Gaussian marginals (ReLU + Weight regular.)
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Back to Noisy DNNs



I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Sw.b T

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif (X_; U Xy)
X—l £ {_3a _L 1} ' ~)Cvl £ {3}
Z ~N(0,5%)

X—»tanh(wX +b)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif (X_; U Xy)
X—l £ {_3a _L 1} ' ~)Cvl £ {3}
Z ~N(0,5%)

X—»tanh(wX +b)

@ Center & sharpen transition ( <= increase w and keep b = —2w)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:
X—»tanh(wX +b)

o Input: X ~ Unif (X_; U Xy)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:
X—»tanh(wX +b)

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}

[] Correct classification performance
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Sw.b T

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}

@ Mutual Information:
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Sw.b T

o Input: X ~ Unif (X_; U Xy)
X2 {=3,-1,1}, X1 = {3}
@ Mutual Information: [(X;T) = I(Syp;Swp+ 2)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b)

o Input: X ~ Unif (X_; U Xy)
X1 2{-3,-1,1}, &1 = {3}

@ Mutual Information: [(X;T) = I(Syp;Swp+ 2)

= I(X;T) is # bits (nats) transmittable over AWGN w. symbols
Sw.p = {tanh(—3w+b), tanh(—w+b), tanh (w+b), tanh (3w-+b) }

Z NN(0752)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b)

o Input: X ~ Unif (X_; U Xy)
X1 2{-3,-1,1}, &1 = {3}
@ Mutual Information: [(X;T) = I(Syp;Swp+ 2)
= I(X;T) is # bits (nats) transmittable over AWGN w. symbols
Sw.p = {tanh(—=3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {1}

Z NN(0752)
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Clustering of Representations - Larger Networks
Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:
@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
@ Noise std.: Set to § = 0.01
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv& Tishby’17]:
@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
@ Noise std.: Set to § = 0.01

@ Verified in multiple additional experiments

= Compression of I(X;Ty) driven by clustering of representations
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o Alternative measures for clustering (det. and noisy DNNs):
> Scatter plots (up to 3D layers)

> Binned entropy H (Bin(T}))
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Circling back to Deterministic DNNs

® [(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T}))

@ Noisy DNNs: I(X;7y) and H(Bin(1})) highly correlated!*
o Det. DNNs: H (Bin(T})) = I(X;Bin(1;)) compresses
[l Incapable of accurately estimating MI values

[l Does track clustering!

—> Past works were not showing MI but clustering (via binned-MI)!
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Summa

@ Reexamined Information Bottleneck Compression:
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@ Reexamined Information Bottleneck Compression:
» I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

» SP estimator for accurate MI estimation over this framework

» Clustering of the learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

—— Clustering is the common phenomenon of interest!
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Future Research

@ Curse of Dimensionality: Track clustering in high-dimensions?

» Lower-dimensional embedding
» Summarizing statistics

> Graph clusterability measures [Czumaj-Peng-Sohler'15]

@ The Role of Compression:

> Is compression necessary? Desirable?

> Design tool for DNN architectures

o Algorithmic Perspective:
> Better understanding of internal representation evolution & final state

» Enhanced DNN training algorithms

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®

o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py )| < supE|hg (P @) — hr (P,  ¢)|+2sup |hre (P x ¢)]

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py )| < supE|hg (P @) — hr (P,  ¢)|+2sup |hre (P x ¢)]

@ Inside R: » —tlogt modulus of cont. for z — xlogx & Jensen's ineq.

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py )| < supE|hg (P @) — hr (P,  ¢)|+2sup |hre (P x ¢)]

@ Inside R: » —tlogt modulus of cont. for z — xlogx & Jensen's ineq.

= Focus on analyzing IE’(P s ©)(x) — (P, * go)(a:)‘

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py )| < supE|hg (P @) — hr (P,  ¢)|+2sup |hre (P x ¢)]

@ Inside R: » —tlogt modulus of cont. for z — xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘

» Bias & variance analysis

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py )| < supE|hg (P @) — hr (P,  ¢)|+2sup |hre (P x ¢)]

9 Inside R: » —tlogt modulus of cont. for z +— xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis

= E|(P+o)@)— Coxp)(@)| ey 28 5= N (0, 21)

n

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py )| < supE|hg (P @) — hr (P,  ¢)|+2sup |hre (P x ¢)]

@ Inside R: » —tlogt modulus of cont. for z — xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis
— E|[(Px)@) - Barxp)@)] <er/ 2, 5 = v (0, 51)

» Plug back in & Convex analysis

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py )| < supE|hg (P @) — hr (P,  ¢)|+2sup |hre (P x ¢)]

9 Inside R: » —tlogt modulus of cont. for z +— xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis
== E‘(P*@)(x)—(lsn*w)(x)’ < %, @ :N(O, ’%QI)
» Plug back in & Convex analysis
= Sup E[hr(P+p) — h (P )| <z log (AR /2R

n

Estimating Information Flow in DNNs 16/16



The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) = E[—log p(X)1ixery]
supE|h(Px)—h(Py )| < supE|hg (P @) — hr (P,  ¢)|+2sup |hre (P x ¢)]

9 Inside R: » —tlogt modulus of cont. for z +— xlogx & Jensen's ineq.
— Focus on analyzing IE’(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis
= E‘(P*@)(x)—(lsn*w)(x)’ < %, @ ZN(O, %21)
» Plug back in & Convex analysis
= Sup E[hr(P+p) — h (P )| <z log (AR /2R

n

@ Qutside R: O (%) decay via Chi-squared distribution tail bounds
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Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:
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= Past works were not showing MI but clustering (via binned-Ml)!
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