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Storing Information Inside Matter

1 Writing data =⇒ Perturb local state of particles

2 Atomic/subatomic interactions evolves local states

3 Stable for “long” =⇒ Enables later data recovery

Goals:

Distill notion of storage from particular technology

Capture interparticle interaction and system’s dynamics

How much data can be stored and for how long?
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1 Select site for update v ∼ Unif(V)

2 Refresh σ(v) ∼ π
(

·
∣

∣

∣

{

σ(w)
}

w 6=v

)

Warm (β small) =⇒ Weak interactions

Cold (β large) =⇒ Strong interactions
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⊛⊛⊛ Warm (β → 0): BSC
(

1
2 + o(1)

)⊗n
after t = O(n).

⊛⊛⊛ Cold: Can interactions (memory) help?
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2 Refresh spin σ(v) =







spin of maj. , if ∃ maj.

∼ Ber
(

1
2

)

, if no maj.

Time Information Capacity Comments

t = 0 In(t) = n Upper bound ∀t
t = O(n) In(t) = Θ(n) Constant ‘physical’ time

t = a(n) · n
a(n) ∈ ω(1)

In(t) = Ω
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n
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) In(n log n) = Ω
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Storage for indefinite time is impossible

Q: How long can we hope for?

Theorem (Goldfeld-Bresler-Polyanskiy’19)

Fix ǫ ∈
(

0, 1
2

)

, γ > 0. For β sufficiently large there exist c > 0 s.t.

I(X0;Xt) ≤ log 2 + ǫn(β),

for all t ≥ n · ecβn
1
4

+ǫ

, where X0 ∼ π and limn→∞ ǫn(β) = 0.

=⇒ Storage beyond exponential time ≤ 1 bit (X0 ∼Gibbs)
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(
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Single Stripe Case: Main Result

Bottom 1-Stripe:

2-stripe reduction by gluing horizontal spins

Strategy:

◮ Bound EN (+)(tf ), where N (+)(tf ) , #pluses in bottom stripe of Xt

◮ High probability claim via Chebyshev

Theorem (Goldfeld-Bresler-Polyanskiy’19)

Fix any c, C ∈ (0, 1). For β and n sufficiently large, we have

EN (+)(t) ≥ C
√
n, ∀t ≤ ecβ.
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◮ Sprinkle: Flip w/ all-plus horizontal neighbors

◮ Erosion: Flip w/ at least one minus horizontal neighbor

Expected Behavior:

1 Initially chain stays close to X0 w/ occasional sprinkles

2 After sufficiently many sprinkle, drift driven by erosion

=⇒ Dominate {Xt}t by a phase-separated dynamics
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Blocking Rule:

1 For t < tf allow only sprinkle flips

2 For tf ≤ t ≤ 2tf allow only erosion flips

⊛⊛⊛ Adjust {X̃t}t∈[0,2tf ] Poisson rates to neighborhoods

Observations:

Erosion flips in {Xt}t∈[0,tf ] =⇒ Erosion flips in {X̃t}t∈[tf ,2tf ]

Erosion flip rates in {X̃t}t∈[tf ,2tf ] are faster

=⇒ New dynamics is a speedup: EN (+)(tf ) ≥ EÑ (+)(2tf )
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Sprinkle Analysis [0, tf ]: Ends w/ runs of ‘+’s separated by ‘-’ sprinkles

Q: What is the typical length of a run (contig) & how many of them?

Li = ‘Length of Contig i’ ≈ Geo(pβ), pβ , P(Sprinkle)

=⇒ ELi & ℓβ , 1
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E[Number of contigs of this length] &
√
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=⇒ EÑ (+)(2tf ) &
√

n
2−pβ

E[#pluses in contig i after tf -long erosion]

Erosion Analysis (tf ,2tf ]: Contig eaten w/ speed φβ , eβ

eβ+e−β (2 sides)

E[#pluses in contig i after tf -long erosion] & ℓβ

4φβ

Insert back to above bound and conclude proof
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◮ 1-bit upper bound on storage for exponential (in n) time
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n storage achievability for ecβ time (store in stripes)

Available on arXiv: https://arxiv.org/abs/1805.03027

Thank you!
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