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Abstract—The capacity-achieving input distribution of the
complex Gaussian channel with both average- and peak-power
constraint is known to have a discrete amplitude and a con-
tinuous, uniformly-distributed, phase. Practical considerations,
however, render the continuous phase inapplicable. This work
studies the backoff from capacity induced by discretizing the
phase of the input signal. A sufficient condition on the total
number of quantization points that guarantees an arbitrarily
small backoff is derived, and constellations that attain this
guaranteed performance are proposed.

I. INTRODUCTION

The most common channel model in the information the-
ory literature is, arguably, the additive white Gaussian noise
(AWGN) channel. Due to practical considerations, the input is
typically constrained in some manner. For an average power
constraint P,,, it is well-known that the channel capacity of
the discrete-time, complex-valued AWGN channel with noise
variance 02 is log(1 + Payg/0?), and the capacity-achieving
input distribution is zero-mean Gaussian with variance P,y
[1]. Gaussian inputs, however, suffer from several drawbacks
which limit their use in practical systems. One main drawback
is that they have unbounded and continuous support, hence an
infinite number of bits is needed to represent the signal points.

This impracticality is alleviated when considering the
complex-valued AWGN channel with both average- and peak-
power constraints. In this case, it was shown by Shamai and
Bar-David [2] that the capacity-achieving input distribution
is discrete in amplitude and continuous in phase. Efficient
algorithms for calculating the capacity-achieving input dis-
tribution were proposed in [3]. Furthermore, Wu and Verdu
[4] studied the information rates achievable over the Gaussian
channel when the input takes value in a finite constellation
with N signal points. For every fixed SNR, they showed that
the difference between the capacity and the achievable rate
tends to zero exponentially in V.

In practice, discrete constellations such as phase-shift-
keying (PSK) or quadrature amplitude modulation (QAM) are
often used instead, despite the fact that they may produce
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suboptimal performance with a significant backoff from capac-
ity. Discrete signal constellations are also required for coded
modulation methods such as multi-level coding (MLC). To
this end, [5] proposed an ad-hoc approach to approximate
the semi-continuous capacity-achieving input distribution by
discretizing its phase. The authors in [5] took the following
approach: given a budget K’ > 0 on the total number of desired
constellation points, their resulting discrete signal set, referred
to as K-ary amplitude and phase-shift keying (/K -APSK),
consists of |.A| different PSK constellations with radii a; € A
(each with probably Pa(a;)) with k; equiprobable signal
points on each (such that Z'Zéll k; = K). Choosing k;’s to be
proportional to P4 (a;), [5] empirically showed that K-APSK
significantly outperforms K-QAM constellations for the peak-
power-limited complex-valued AWGN channel. However, no
theoretical guarantees of performance were provided. To the
best of our knowledge, it is yet unknown how to convert
theoretical capacity-achieving input distributions for the peak-
power-limited AWGN channel into practically applicable mod-
ulation schemes.

In this paper, we propose distributions that provably ap-
proach capacity, while being discrete both in amplitude and
phase. To this end, we analyze the capacity loss incurred
by discretizing the phase of the semi-continuous capacity-
achieving input distribution. We propose an optimized K-
APSK constellation and derive a sufficient condition on the
total number of quantization points K that guarantees a given
backoff from capacity. We also briefly discuss the case of re-
discretizing the amplitude A, or, equivalently, shrinking the
set A, which might be essential when the cardinality of A is
large. The main technical tool in our analysis is based on a
recent result by Polyanskiy and Wu [6], which states that when
smoothed by Gaussian noise, mutual information is Lipschitz
continuous with respect to the Wasserstein distance.

II. PRELIMINARIES AND MODEL FORMULATION

A. Notation

Throughout this paper we use the following notation. Differ-
ential entropy and mutual information are denoted by A(-) and
I(-;-), respectively. The Euclidean and ¢; norms of z™ € R”
are denoted by [lz]| £ (30, 22)"/2 and ||z, £ 31, [z
respectively. Given two probability measures P and ) on R,
their p-Wasserstein distance (p > 1) on the Euclidean space
is defined as W,(P,Q) 2 inf (E|X — Y|”)"/?, where the



infimum is taken over all couplings of P and @, i.e., joint
distributions Pxy of two random variables X and Y, whose
marginals satisfy Py = I” and Py = (). The complex conju-
gate, real part, and imaginary part of a complex number z € C
are denoted by z*, Re(z), and Im(z), respectively. Finally, the
unnormalized sinc function is defined as sinc(z) £ sin(z)/z,
for x # 0, and sinc(0) = 1.

B. The Model

Consider a discrete-time, complex-valued AWGN channel,
where the channel output Y; at time ¢ € N is given by

where X; is the time-i channel input, {W;, i € N} is a se-
quence of independent and identically distributed (i.i.d.), cen-
tered, unit-variance, circularly-symmetric, complex Gaussian
random variables, and o0 € R denotes the standard deviation
of the additive noise. The noise sequence {W;,i € N} is
independent of the channel input sequence {X;, i € N}.

Since the channel is memoryless, the channel capacity (in
nats per channel-use) under both average and peak-power
constraints is given by

C(Pavga Pmax) = sup I(Xv Y) (2)

Px: |X|<V/Panx as.,
E|X[?< Pavg

where the supremum is over all input distributions with
essential support in {z € C : |z| < \/Ppax} that satisfy
E|X |2 < Payg, for some Ppax, Pavg > 0. It was demonstrated
by Shamai and Bar-David [2] that the capacity-achieving input
distribution is compactly supported on the complex plane,
satisfies spherical symmetry, and has amplitudes supported
on a finite subset of [0, c0) that contains 0. In other words,
for every o > 0, the capacity-achieving input distribution is
discrete in amplitude and uniform in phase, with the number
of mass points growing as ¢ — 0. In [3] an algorithm for
computing the optimal amplitude distribution was devised.

We next introduce some additional notation. Throughout
this papers, the complex-valued transmitted signal is repre-
sented by X = A . €7, where the amplitude (or, modulo)
A and phase ¢ take values in R and [0, 27), respectively;
j £ /=1 denotes the imaginary unit. As described above, for
the capacity-achieving input distribution, the random variable
A is discrete taking values in a finite set A C R, and ¢
is uniformly distributed on [0,27), i.e., ¢ ~ Unif|0,2m).
Furthermore, A and ¢ are statistically independent.

Remark 1. While not explicit in our notation, the distribution
of A, as well as the cardinality of the set A, depend on
the average and maximal signal-to-noise ratio, namely, on

SNRavg £ avg/a2 and SNRuax 2 Prax /0>

C. Phase Quantization

Our goal is to design discrete input distributions that mimic
the performance of the capacity-achieving input distribution.
To this end, we discretize the phase ¢. Specifically, for any
a € A, we define a phase quantizer as a map Q, : [0,271) —
Q,, where Q,, is a finite set with cardinality k, £ |Q.|. To

wit, for any given value of A = a € A, Q,(¢) maps the phase
into Q,. Given (k)qc., @ natural choice of Q,(+) is

27

Qulg) = 7=+ (E=1), Va e A &)
'a
where ¢ € [0,27) and ¢ € [1: k,] is such that
2w 2
— (-1 <p<—-/ 4
o (=1 <y " 4)
For convenience, for each a € A and ¢ € [1 : k,], we set

@a,eé{we[o,%): 2—W~(€—1)§¢<2—W'f}- )

kq kq

The above choice corresponds to discretizing the “circle” of
radius A = a using k, points (namely, the corresponding
roots of unity). Geometrically, we divide the circle of radius
A = a in the complex plane into equal-lengthed &, arcs, each
subtending an angle of 27 /k,, at the origin and centered around
the k,-th root of unity. In the sequel, X denotes the input
with discretized phase, i.e., Xg = A - e/%1(¥) Accordingly,
Yq denotes the output of the AWGN channel (1) when X is
transmitted, namely, Yo = X¢g + 0 - W.

Deviating from optimality, we study the loss incurred by
the above pre-processing. More precisely, we focus on the
loss in terms of mutual information when the quantized input
distribution has at most K constellation points. Indeed, let
k £ (ka)aca € NI be such that 3, _ 4 kq < K, and define

Li(k) = |I(X:Y) - I(Xq;Yo)| = [M(Y) — h(Yq)|. (6)

The definition in (6) calls for an optimization over k.
Namely, given a budget K > 0 on k, one would like to find
the best phase-quantizer through the optimization problem

L = L (k). (7

min
k: [kl <K
Unfortunately, obtaining a closed-form expression for (7)
seems out of reach, since even I(X;Y) cannot be evaluated
in closed form. To circumvent this difficulty we derive and
study an upper bound on (7) in Section III.

D. Amplitude and Phase Quantization

The previous subsection considers only phase quantization.
However, one may also wish to re-discretize A, or, equiva-
lently, shrink the set A. For example, if |.A| is large, it may be
desirable to revert to a smaller set of amplitudes, while keeping
the power and average constraints satisfied. To do so, let ©
be the set of all maps A : A — R with [Image(A)| < |A],
and

Z PA(a)Az(a) < Pavg7 (8a)
acA
|A(a)| <v Prax, Ya € A. (8b)

The set © comprises all possible amplitude quantizers A. We
assume that 0 € Image(A) for any quantizer in ©. This
assumption comes without loss of generality since one can
always add 0 as an amplitude without increasing the average
or the maximal power of the signal while improving the result



of subsequently stated optimization problem (see (10)). For
simplicity of notation, we let D £ Tmage(A).

Given A € 9, the phase quantizer is defined as in
Subsection II-C with A replaced by A(A). In the sequel,
Xq,a denotes the resulting amplitude-phase quantized input,
ie, Xga = A(A)- 722 Accordingly, we let Yo A be
the output of our AWGN channel when X A is transmitted.

We aim to find the optimal pair of amplitude-phase quan-
tizers, given a constraint on the total number of constellation
points. More precisely, for fixed K € Ny, A € D, and
ka £ (ka)aep € NIPI with |kall, < K, let

Lx(ka,A) = I(X:Y) - I(Xqa:Yoa)l- (9

The optimal information loss due to amplitude and phase
quantization is then

E_* £ min ZK kA A).
K AeD, (ka, )
ka: [[kall; <K

(10)

In this paper, we focus on the phase quantization part, but
several results on amplitude and phase quantization are briefly
discussed at the end of Section III.

IIT. MAIN RESULTS

In this section we present our main results. Proof sketches
of some of the results appear in Section IV.

A. Theoretical Bounds

Our first result concerns the phase-quantization scenario.
We establish a lower-bound on the total number of phase-
quantization points K that ensures that the loss function L},
in (7) does not exceed a given € > 0.

Theorem 1 (Sufficient Conditions for Proximity to Capacity).
For any € > 0, we have L < € if any of the three sufficient
conditions holds:

K>-—_|4 [1 + SNRMSNRmaX] ,

7 (11

T A?
K> E /SNRowe SNRome, (12
5\/§\/ {Pan'Pi(AJ ¢ (12

or

0 A?
K> E /SNRpvaSNRoman, (13
ﬁ\/ [ng~f2<A>] : (13

where

Va € A.

fla) 2 — VO Pa@ (13b)

B ZaeA \/3 a? 'PA(E')7

To the best of our knowledge, Theorem 1 gives the first
theoretical performance guarantee of discrete constellations
for the peak-power-limited complex Gaussian channel. The
sufficient conditions in the theorem follow by upper bound-
ing the information loss L7, using three different (possibly
suboptimal) phase quantizers. In particular, (11) is obtained
by setting k, = |[K/|A||, for any a € A. We refer to
this quantizer as the wuniform quantizer. To get (12), we set
ko = | Pa(a) - K|, for any a € A, as proposed in [5]. The

third condition (13a) is achieved by choosing k, as in (16)
below.

The proof of Theorem 1 relies on the following upper bound
on the loss function Lk (k). As previous works mostly focused
on numerical evaluations of the information loss, we find this
theoretical bound to be of independent interest.

Lemma 1 (General Upper Bound on the Information Loss).
For any k € NI with Yoweaka <K,

SNRavgSNRmax

V2
X \/1 - PjngEl [A2-sinc (%)] (14a)

which can be loosened to
T
L (k) < —+1/SNR,veSNR 1k
K( )— \/g g

Furthermore, allowing k to take values in ]RlA', the vector
k £ (ka)aEA given by
: vV a? - Pa(a)

‘T ZaeA Y a*- Px(a)

minimizes the right-hand side (v.h.s.) of (14b).

1 A2
—FE |—=]. 14b
Prvs M (14)

K, VYac A,

(15)

The upper bounds in Lemma 1 are general in the sense
that they apply to any choice of quantizer k € NI and
any amplitude distribution (not necessarily the optimal one).
Most coding techniques assume a uniform use of constellation
points. As the optimal amplitude distribution is not necessarily
uniform, one may mimic uniformity of the constellation by
quantizing the phase while allowing multiple copies of some
points. Doing so gives rise to a trade-off between the number
of constellation points and the approximation accuracy of the
optimal amplitude distribution. The generality of Lemma 1
enables a theoretic analysis of such scenarios.

Remark 2 (Relation Between Lemma 1 and (13a)). The vector
k in (15) is obtained by relaxing a discrete-valued optimization
problem to a continuous domain. A natural choice for the
phase-quantization vector (ka)aca would be to round each
kq given in (15) to the next smallest integer, namely,

E* va? - Pa(a)

| Ceea V@ Pa@

This choice yields the sufficient condition (13a) in Lemma 1.
Note that this is not necessarily the best choice. For example,
if > geaky < K then one may allocate the unused phase-
quantization points to any of the circles corresponding to the
different amplitude values a € A, which would decrease the
information loss.

K|, Yac A (16

As mentioned in the introduction, [5] proposed an ad-
hoc approach to approximate the semi-continuous capacity-
achieving input distribution. Specifically, the authors of [5]
employed the same constellation used herein but with &, =
| Pa(a) - K|. Our results suggest, however, that the depen-
dence of the phase quantizer on the amplitude is as appears
in (16).
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Fig. 1. Comparison between the number of quantization points times the gap
from capacity, i.e., € - K, obtained for the uniform quantizer (see, eq. (11))
and the optimal quantizer (see, eq. (13a)), as a function of SNRayg, where
02 =1 and Pmax = 10.

B. Numerical Comparison of the Sufficient Conditions

The sufficient conditions in Theorem 1 depend on the
distribution of A. Unfortunately, little is known about the
cardinality or the peak amplitude of the optimal input. To
evaluate the conditions in Theorem 1, we use an efficient
algorithm proposed in [3] to numerically approximate the
optimal distribution of A.

Fig. 1 presents a comparison between the sufficient con-
ditions from (11) and (13a). We plot ¢ - K (the number of
quantization points times the gap from capacity) as a function
of SNRuyg, for 02 = 1 and Pyax = 10. The dashed and
solid curves correspond to (11) and (13a), respectively. While
the sufficient condition in (12) is easily evaluated using the
same method, it yields large values of ¢ - K (spanning from
300 to around 1700 points). Indeed, since (12) depends on the
inverse of P4, small values of P4(a) result in a very large
contribution to K. To keep a reasonable scale in Fig. 1, we
therefore decided not to plot the curve corresponding to (12).

Fig. 1 shows that the quantizer proposed in (16) signif-
icantly outperforms the uniform quantizer. The latter sets
kq = | K/|A]|], for all a € A, thus allocating the same number
of points to all amplitude values. Roughly speaking, as each
amplitude corresponds to a circle in the complex plane, the
uniform strategy implies that constellation points may be too
sparse on larger circles and too dense on smaller ones. The
quantizer from (16), on the other hand, scales the number
of constellation points on a circle of radius a according to
{/a? - P4(a). Consequently, larger and more probable circles
are allocated with more points, while smaller and less probable
ones contain less constellation points.

C. Extensions to Amplitude and Phase Quantization

Finally, we discuss briefly the scenario where both ampli-
tude and phase quantizers are used. In this case, in the spirit
of Lemma 1, the following can be shown.

For any K € Ny, and given quantizers A € © and ka €
NIl with D = Image(A),
1
2
ka(a) '

E_K(kAa A) < \/5 SNRangNRmax
1
X {1— E(A-A(A)-sinc(
Using the same arguments as in the proof of Lemma 1, one
can show that £y (ka,A) can be further upper bounded by

avg
ZK (kA> A) § \/5\/ SNRangNR/nmx

a7

1 2 :
x |1— E(A-AA) |1 - —— , (18)
Payg 6k (1)
and that choosing ka according to
Va-Ala)- P
kP (a) a8 Pal®)  pviep 9)

Yaep V@ Ala) - Pa(a)
minimizes the r.h.s. of (18) when the optimization domain is
relaxed to RIPI.

To further upper bound (18), consider the following (possi-
bly suboptimal) amplitude quantizer

\/ZasM\m Pa(a)-a? \/ﬁ’

0, otherwise

a < M|D|

Afa) = , (20)

where M p| consists of the |D| elements in A with the highest
values of a- P4(a). It can be shown that this choice minimizes
the information loss when only the amplitude is quantized but
not the phase. It therefore seems plausible that A(A) performs
also well when both amplitude and phase are quantized.
Substituting (19)-(20) into (18), it would remain to optimize
over the allocation of amplitude and phase quantization points.

IV. PROOF OF MAIN RESULTS
A. Proof of Theorem 1

To prove Theorem 1, we apply (14b) in Lemma 1 with two
possibly suboptimal choices of k. We have

L) < —=V/SNRavg SNRima LElRE @Y
which holds for all k = (y)ac.. Setting k, = K 2 | £

into the expected value on the r.h.s. of (21) gives
A? 1 K -
E|l&5|==E[A*] <Py | —-1) . 22
G R G e B
Inserting back to (21), we have

77 |A|
L3 < —+/SNR4veSNRpax - ————.
k=3 & K — | A

Requiring that the rh.s. is upper bounded by ¢ > 0 and
isolating K, we obtain
K> L3|A| [1 + SNRanSNRmaX] ,
£
as required. The proof of (12) and (13a) follows the same steps
but using k, = |Pa(a) - K|, a € A, and k as given in (16),
respectively.

(23)

24



B. Proof of Lemma 1

To prove (14a) we use the following result from [6] con-
cerning the continuity of differential entropy with respect to
the quadratic Wasserstein distance between sufficiently regular
probability density functions.

Lemma 2. /6, Proposition 5] Let B be an R™-valued random
vector satisfying |B| < v/nP almost surely, and let G ~
N(0,0%1,). Assume that B and G are independent, and let
V = B + G. For any R"-valued random vector U,

h(U)=h(V) < 2%2 [EIUIP-E |V |[*2vaP- Wi (P, Py)].
(25)

We apply Lemma 2 to upper bound the information loss
Lk (k). Treating complex random variables as real-valued,
two-dimensional, random vectors, we set U = Y, V = Y
and we further note that E ||U||* = E||V||>. This gives

1
L (k) < ~V SNRuax - Wi(Py, Py,).

Thus, upper bounding £k (k) is tantamount to upper bounding
the Wasserstein distance between Py and PYQ.

By Hélder’s inequality one readily gets Wi(Py, Py,) <
Wo(Py, Py, ). Furthermore, by definition, the Wasserstein
distance is non-increasing under convolutions, so

(26)

WQ(PY7PYQ)SW2(PX)PXQ)' (27)

Consequently, to upper bound the information loss L (k)
it suffices to estimate Wy(Px, Px,). By the definition of
Wasserstein distance, any coupling of Px and Px, yields
an upper bound. We use the natural coupling where the
conditional distribution of X given X is the uniform dis-
tribution on the arc of appropriate width around X. Formally,
let A ~ Py and ¢ ~ Unif[0,27) be independent random
variables over the same probability space. We set X = A-e/¥
and Xg = A - ¢/24(%) We now have

W3(Px, Px,) <E[|X - Xo’
= 2P, — 2Re (EX X))
=2 (Pug —E [A%cos(p — Qa(p))]) . (28)
The expected value can be written as

E[A%- cos(p — Qa(p))]

- Z aQPA(a)E cos(¢ — Qaly))

acA

Ly
_ 2
=Y Pa(a)g- /[072”] A0 cos(0 — Qq(0)).  (29)

Recalling the definition of ®, ¢ in (5), the integral on the r.h.s.
of (29) evaluates to

1

df cos(6 — Q. (0
37 8050 = Q@)

K
— % Z df cos(6 — Q. (0))
=17%

a,l

kq

:271'(1;,

df cos() = sinc (];) , (30)

a,1 a

where the second equality uses the symmetry of the phase
quantizer in (3). Combining (26), (29) and (30), we obtain

W3 (Px. Pxp) <2 {Pavg ~E4 (A? -sinc (kl))] . (31)

a

Together with (27) and (26), this proves (14a). The upper
bound in (14b) follows by further upper bounding the r.h.s.
of (31) using sin(x) > z — 23/6.

We conclude by showing that (15) minimizes the r.h.s. of
(14b), if we relax the constraint that (k,),ca are integer-
valued. To this end, we solve the optimization problem

. a?- Pa(a)
" min Z T (32)
kE]R+ :ZaeAkagKaeA a

The minimization problem in (32) can be solved by resorting
to Lagrange multipliers. It follows that

P Y/a? - Pa(a) .
‘ ZaeA 3\/ a2 - PA((_L)

minimizes (32) and, hence, also the r.h.s. of (14b).

K, Yac A,  (33)
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