
Key-Message Security over State-Dependent

Wiretap Channels

Alexander Bunin

Technion

Ziv Goldfeld

MIT

Haim H. Permuter

Ben-Gurion University

Shlomo Shamai

Technion

Paul Cuff

Princeton University

Pablo Piantanida

CentraleSupélec

Abstract—The state-dependent (SD) wiretap channel (WTC)
with non-causal channel state information (CSI) available at the
encoder is considered. An inner bound on the trade-off region
between admissible secret key (SK) and secret message (SM) rates
is provided. The result is derived under the stringent semantic-
security metric. Our inner bound recovers the best-known
achievability results for either SK generation, SM transmission,
or simultaneous execution of both. Since some of these past
benchmarks were derived under weaker security metrics, our
results imply that an upgrade to semantic-security is possible
without inflicting any rate loss. It is shown that for certain
instances of the considered SD-WTC, the derived region is strictly
larger than the previously best-known SK-SM trade-off region
reported by Prabhakaran et al., and that a recently reported SK
rate for this setup cannot be achieved.

I. INTRODUCTION

Two fundamental questions in Physical layer security (PLS)

concern the best achievable transmission rate of a secret

message (SM) over a noisy channel, and the highest attainable

SK rate that distributed parties can agree upon. The base model

for SM transmission is Wyner’s WTC [1]. The study of SK

agreement was pioneered by Maurer [2], and, independently,

by Ahlswede and Csiszár [3], who studied the achievable SK

rates based on correlated observations at the terminals that can

communicate via a noiseless public link.

A more general framework is the state-dependent (SD)

WTC with non-causal encoder channel state information

(CSI). This model combines the WTC and the Gelfand and

Pinsker (GP) channel [4], and is, therefore, sometimes referred

to as the GP-WTC. The dependence of the channel’s transition

probability on the state sequence accounts for the possible

availability of correlated sources at the terminals. The similar-

ity between the SM transmission and the SK agreement tasks

makes their integration in a single model natural. Adhering to

the most general framework, we study the SM-SK rate pairs

that are simultaneously achievable over the GP-WTC.

The scenario with a SM only was first studied in [5],

where an achievable formula was established. This result was

improved upon in [6] based on a novel superposition coding

scheme. SK agreement over the GP-WTC was the focus of
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Fig. 1. Secret message transmission and secret key generation over the state-
dependent WTC with non-casual encoder CSI

[7], and, more recently, of [8] (see also references therein).

The combined model was considered by Prabhakaran et al.

[9], who derived the best inner bound on the SM-SK capacity

region known until this work. The result from [9] is optimal

for several classes of GP-WTCs.

We extend the superposition coding scheme from [6] to

generate a SK, which gives rise to a novel inner bound on

the SM-SK capacity region of the GP-WTC. To the best of

our knowledge, all existing inner bounds on SM transmission,

SK agreement or both, for this setup, are captured by our

result. Furthermore, we demonstrate our region can achieve

strictly higher rates than [9], for certain instances of the GP-

WTC. The key observation here is that the scheme from [9]

does not allow GP coding in the inner code layer. Exploiting

this fact, we propose an example for which GP coding in the

inner layer is necessary to achieve capacity. For that example,

the scheme from [9] is strictly sub-optimal, while our result

attains optimality. In addition, we show that a recently reported

achievability bound on the SK capacity for this setup [10],

that seemingly achieves higher rates than the result herein, is

missing a condition to be correct. The amended result (with

the missing condition) is a special case of our inner bound.

Our coding scheme uses an over-populated superposition

codebook that encodes the entire confidential message in its

outer layer. Using the redundancies in the inner and outer

layers, the transmission is correlated with the state via the

likelihood encoder [11]. Although the redundancy indices are

chosen as part of the encoding process, their distribution turns

out to be approximately uniform. Consequently, as long as a

certain redundancy index is kept secret, it may be declared as

a SK. The security analysis is based on constructing the inner

codebook such that it is better observable by the eavesdropper,

making the inner layer index decodable by him/her. This

enhances the secrecy resources that the legitimate parties can

extract from the outer layer, which they use to secure the SM

and part of the redundancy index of the outer layer, which is



declared as the SK.

Our results are derived under the strict metric of semantic-

security (SS), i.e., negligible mutual information (MI) be-

tween the confidential data (in our case, the SM-SK pair)

and the eavesdropper’s observations, when maximized over

all possible message distributions. Since many of the past

secrecy results were derived under the weak secrecy metric

(i.e., a vanishing normalized MI with respect to a uniformly

distributed message-key pair), our achievability outperforms

those schemes, not only in terms of the achievable rate pairs,

but also in the upgraded sense of security.

II. SETUP AND DEFINITIONS

We use notations from [12, Section 2]. Let S, X , Y and

Z be finite sets. The
(

S,X ,Y,Z,WS ,WY,Z|S,X

)

GP-WTC

is shown in Fig. 1. A state sequence s ∈ Sn is sampled from

the product distribution Wn
S and non-causally revealed to the

encoder. The sender chooses a message m from the set
[

1 :
2nRM

]

and maps (s,m) onto a channel input sequence x ∈
Xn and a key index k ∈

[

1 : 2nRK
]

(the mapping may be

random). The sequence x is transmitted over the SD-WTC

WY,Z|S,X . The channel’s outputs y ∈ Yn and z ∈ Zn are

observed by the receiver and the eavesdropper, respectively.

Based on y, the receiver produces its estimates of (m, k). The

eavesdropper tries to glean whatever it can about the message-

key pair from z.

Remark 1 The considered model is the most general instance

of a SD-WTC with non-causal CSI known at some or all of the

terminals. Receiver and/or eavesdropper CSI may be incorpo-

rated in their channel outputs. Our model also supports the

existence of a public (or private) bit-pipe from the transmitter

to the receiver and the eavesdropper (or to the receiver only).

The bit-pipe may replace or coexist with the noisy channel.

Definition 1 (Code) An (n,RM , RK)-code cn for the GP-

WTC with a message set Mn ,
[

1 : 2nRM
]

and a key set

Kn ,
[

1 : 2nRK
]

is a pair of maps:

1) fn : Mn × Sn → P(Kn ×Xn) is a stochastic encoder.

2) φn : Yn → Mn ×Kn is the decoding function.

For any message distribution pM and an (n,RM , RK)-code

cn, the induced joint distribution is

p(cn)(s,m, k,x,y, z, m̂, k̂)=Wn
S (s)PM (m)

× fn(k,x|m, s)Wn
Y,Z|S,X(y, z|s,x)1{

(m̂,k̂)=φn(y)
}.

The probability measure induced by p(cn) is P. MI terms taken

with respect to p(cn) are denoted by Ip.

Definition 2 (Achievability) A pair (RM , RK) ∈ R
2
+ is an

achievable SS message-key rate pair for the GP-WTC, if

for every ǫ > 0 and sufficiently large n there exists an

(n,RM , RK)-code cn with

max
{

max
m∈Mn

[em(cn), δm(cn)] , max
pM∈P(Mn)

ℓ(pM , cn)
}

≤ ǫ,

where

em(cn) , P

(

(

M̂, K̂
)

6= (m,K)
∣

∣

∣
M = m

)

δm(cn) ,
∣

∣

∣

∣p
(cn)
K|M=m

− p
(U)
Kn

∣

∣

∣

∣

TV

ℓ(pM , cn) , Ip(M,K;Z)

are respectively, the error probability when m is transmitted,

the key uniformity and independence metric for message m,

and the information leakage given message distribution pM .

Here ||p− q||TV is the TV between p and q, while p
(U)
A is the

uniform distribution over a set A.

Remark 2 The maximization in Definition 2 is over the mes-

sage distribution only (rather than the distribution of the SM-

SK pair) because, while the choice of M ∼ pM is independent

of the code, the distribution of K is induced by the code.

Definition 3 (SS-Capacity) The SS message-key capacity re-

gion CSem of the GP-WTC is the convex closure of the set of

achievable SS rate pairs.

III. MAIN RESULT

We give a novel inner bound on the SS message-key

capacity region of the GP-WTC. To the best of our knowledge,

our achievable region recovers all the best-known achievability

results for the considered problem (or any of its special cases).

To state the result, let U and V be finite sets with cardinal-

ities |U| ≤
[

|X ||S|+ 5
]

and |V| ≤
[

|X |2|S|2 + 5|X ||S|+ 3
]

.

For any qU,V,X|S define RA

(

qU,V,X|S

)

as the set of all

(RM , RK) ∈ R
2
+ satisfying

RM ≤I(U, V ;Y )−I(U, V ;S), (1a)

RM+RK≤I(V ;Y |U)−I(V ;Z|U)−|I(U ;S)−I(U ;Y )|+
(1b)

where |x|+ , max{x, 0} and the MI terms are taken with

respect to WSqU,V,X|SWY,Z|S,X , i.e., such that (U, V ) −
(S,X)− (Y,Z) forms a Markov chain.

Theorem 1 (Inner Bound) The following inclusion holds:

CSem ⊇ RA ,
⋃

qU,V,X|S

RA

(

qU,V,X|S

)

. (2)

Due to space limitation, the proof of Theorem 1 is omitted

(see [13]). A high-level description of the code construction

is as follows. We use secured superposition coding scheme.

An over-populated two-layered superposition codebook is

constructed (independently of the state sequence), in which

the entire secret message is encoded in the outer layer. The

likelihood encoder [11] uses the redundancies in the inner and

outer codebooks to correlate the transmission with the state.

Upon doing so, part of the correlation index from the outer

layer is declared by the encoder as the key. The inner layer is

designed to utilize the part of the channel which is better ob-

servable by the eavesdropper. This saturates the eavesdropper

with redundant information, leaving him/her with insufficient



resources to extract any information on the SM-SK pair from

the outer layer. The legitimate decoder, on the other hand,

decodes both layers and declares the appropriate indices as

the decoded message-key pair.

Remark 3 (Interpretation of Theorem 1) We interpret the

terms in (1) as follows. The right-hand side (RHS) of (1a)

is the total rate of reliable (secured and unsecured) com-

munication that our superposition codebook supports, which

restricts RM . For (1b), the term I(V ;Y |U)−I(V ;Z|U) is the

total rate of secrecy resources that are produced by the outer

layer of the codebook. Since the security of the SM-SK pair

comes entirely from the outer layer, this MI difference is an

upper bound on the sum of rates. To interpret the penalty term

|I(U ;S)− I(U ;Y )|+, we note that I(U ;S) is approximately

the rate of the inner codebook. Thus, I(U ;Y ) < I(U ;S)
means that looking solely at the inner layer, the decoder

lacks the resolution to decode it. However, the success of

our communication protocol relies on the decoder reliably

decoding both layers. Therefore, in this case, some of the rate

from the outer layer is allocated to convey the inner layer

index. As our security analysis is based on revealing the inner

layer to the eavesdropper, this rate allocation effectively results

in a loss of |I(U ;S)− I(U ;Y )|+ in the secrecy rate.

IV. TIGHT SECRECY CAPACITY RESULTS

An interesting special case of the considered GP-WTC is as

follows. Assume that WY,Z|S,X is such that the eavesdropper’s

channel is less noisy than the main channel, but that the

legitimate parties share noiseless observations of a source

L ∼ Wn
L , independent of the channel and its state sequence

S ∼ Wn
S . Using L the legitimate parties may extract a SK and

secure the confidential data.

Formally, let L, S , X , Y and Z be the cor-

responding alphabets. The considered instance is the
(

S̃,X , Ỹ,Z,WS̃ ,WỸ,Z|S̃,X

)

GP-WTC with S̃ = L × S ,

Ỹ = L×Y , WS̃ = WL ×WS , S̃ = (L, S), Ỹ = (L′, Y ), and

WỸ,Z|S̃,X = W(L′,Y ),Z|(L,S),X = 1{L′=L}WY,Z|S,X ,

where WY,Z|S,X satisfies the less-noisy eavesdropper property:

I(U ;Y ) ≤ I(U ;Z), for any U for which U − (S,X)− (Y,Z)
forms a Markov chain. We refer to this instance as the SD

less-noisy-eavesdropper WTC with a key.

Corollary 1 (SM-SK Capacity Region) The SS message-

key capacity region of the SD less-noisy-eavesdropper WTC

with a key is the set of all (RM , RK) ∈ R
2
+ satisfying

RM ≤ max
qU,X|S

[I(U ;Y )− I(U ;S)] , (3a)

RK +RM ≤ H(L), (3b)

where the joint distribution in (3a) is WSqU,X|SWY |S,X .

The achievability of (3) follows by setting V = (L,U)
into Theorem 1, with (U,X) that are independent of L.

The converse relies on two observations. First, the SM rate

of the channel cannot exceed the total reliable rate for this

channel. Second, since the channel is less noisy in favor of the

eavesdropper, all the secrecy comes from the external source

L. For the full proof see [13, Appendix A].

A direct consequence of Corollary 1 is that when no SK is

to be established (i.e., RK = 0) the best attainable SM rate is

CSM = min

{

max
qU,X|S

[

I(U ;Y )− I(U ;S)
]

, H(L)

}

. (4)

Instead of employing Theorem 1, (4) can be achieved via a

simple separation-based coding scheme. Roughly speaking,

a capacity achieving error correction code transforms the

channel into a noiseless bit-pipe. The legitimate parties then

compresses L to produce a shared uniformly distributed key

of entropy H(L). The key is used to encrypt the SM via a

one-time pad and the encrypted message is transmitted. The

achievable SM rate equals the minimum between the channel’s

capacity and the key’s rate. While this scheme is very natural,

to the best of our knowledge, none of the past achievability

results for the GP-WTC prior to [6] attain its performance.

In Section V-B, a special case of this setup is used to

demonstrate the improvement of our result over the previous

benchmark achievable SM-SK region for the GP-WTC [9].

V. COMPARISON TO SM-SK TRADE-OFF BENCHMARK

We show RA contains the previously best-known achievable

SK-SM trade-off region from [9]. Then, it is demonstrated that,

for certain GP-WTCs, Theorem 1 strictly outperforms [9].

A. SM-SK Trade-off Region

In [9, Theorem 1] the following region was established:

RPER ,
⋃

qUqV,X|U,S

RPER

(

qUqV,X|U,S

)

, (5)

where, for any qU and qV,X|U,S , RPER

(

qUqV,X|U,S

)

is the set

of all (RM , RK) ∈ R
2
+ satisfying,

RM ≤ I(U, V ;Y )− I(U, V ;S) (6a)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U), (6b)

with the MI terms taken with respect to

WSqUqV,X|U,SWY,Z|S,X , i.e., U and S are independent

and (U, V )−(S,X)−(Y,Z) forms a Markov chain. Theorem

1 recovers RPER by restricting U and S to be independent.

B. Achieving Strictly Higher Rates

Since [9, Theorem 1] restricts the inner layer coding random

variables U to be independent of S, Gelfand-Pinsker coding

[4] (which generally requires correlating U with S), is not

supported in the inner layer. Instead, only Shannon’s Strategies

coding [14], that operates with independent U and S, is

allowed. The latter is optimal if the encoder observes the

state causally, but is generally sub-optimal when non-causal

encoder CSI is available.

To show that Theorem 1 can improve upon [9], we exploit

the aforementioned limitation of the scheme therein, along

with the observation that it is beneficial to exploit any part
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of a considered SD-WTC that is better observable by the

eavesdropper to transmit the inner layer of the code.

Let X = G = L = E = {0, 1}, S = {0, 1, 2}, Y =
{0, 1, ?}, where ? /∈ {0, 1} and Z = X ×S . Consider the SD

less-noisy-eavesdropper WTC with a key (defined in Section

IV) shown in Fig. 2, whose transition probability WY,Z|S,X ,

key L ∼ WL and state S ∼ WS are defined by the three

parameters λ, ǫ, σ ∈ (0, 0.5) as follows:

• Let (L, S,E) ∼ WLWSWE be independent random vari-

ables with WL = Ber(λ), WE = Ber(ǫ), WS(0) =
WS(1) =

σ
2 and WS(2) = 1− σ.

• Let X and G be, respectively, the input and the output of the

Memory with Stuck-at-Faults (MSAF) [15] channel, driven

by a ternary state S. The relation between G and (X,S) is

described through the deterministic function

g(s, x) =

{

s, s ∈ {0, 1}

x, s = 2
.

• The output G of the MSAF channel is fed into a Binary

Erasure Channel with erasure probability ǫ (abbreviated as

a BEC(ǫ)). Thus, G and Y are related by means of the

erasure random variable E through the function:

y(e, g) =

{

g, e = 0

?, e = 1
.

• Set Z = (S,X) as the eavesdropper’s observation.

With respect to the above definitions, we have

WY,Z|S,X(y′, z|x, s)

=
∑

g′∈{0,1}

∑

e∈{0,1}

WE(e)WG,Y,Z|S,X,E(g
′, y′, z|s, x, e),

where WG,Y,Z|S,X,E = 1{G=g(S,X)}∩{Y=y(E,G)}∩{Z=(S,X)}.

For any λ, ǫ, σ ∈ (0, 0.5), let C(λ, ǫ, σ) denote the secrecy-

capacity of the channel. Let RA(λ, ǫ, σ) and RPER(λ, ǫ, σ)
denote the maximal achievable secrecy rates attained by (2)

from Theorem 1 and (5) from [9, Theorem 1], respectively.

Corollary 1 (more specifically, (4)) implies that

C(λ, ǫ, σ) = RA(λ, ǫ, σ), ∀λ, ǫ, σ ∈ (0, 0.5).

As stated next, RPER(λ, ǫ, σ) is strictly below capacity.

Proposition 1 There exist λ, ǫ, σ ∈ (0, 0.5) such that

RA(λ, ǫ, σ) > RPER(λ, ǫ, σ).

We next outline the proof of Proposition 1 (see [13, Appendix

C] for details).

Proof Outline: For the considered example, Theorem 1

attains (4). Fix σ ∈ (0, 0.5) and set ǫ = 1
2

[

h
(

σ
2

)

− σ
]

and

λ = h−1(1−σ−ǫ), where h : [0, 1] → [0, 1] and h−1 : [0, 1] →
[0, 0.5] are the binary entropy function and the inverse of its

restriction to [0, 0.5], respectively. It is readily verified that,

with the these parameters, H(L) attains the minimum in (4).

Assuming, by contradiction, that RPER(λ, ǫ, σ) is no worse

than (4), in particular, we must have

I(V ;Y, L|U)− I(V ;X,S|U) ≥ H(L). (7)

On the other hand, it can be shown that the opposite inequality

in (7) is also true, thus implying an equality. The reader may

verify that an equality in (7), implies the Markov relation V −
U − (S,X) and that L is a deterministic function of (U, V ).
Combining V −U−(S,X) with the independence of U and S
in [9, Theorem 1], we have that (U, V ) and S are independent

too. Interestingly, this means that the inability of the scheme

from [9, Theorem 1] to support GP coding in the inner layer

implies, for the considered example, that GP coding is not

supported at all.

We next focus on the remaining rate bound (6a). Using the

above derived properties, it can be shown that

I(U, V ;Y, L)− I(U, V ;S,L)≤ I(U, V ;G)≤ max
qT qX|S,T

I(T ;G).

Note that the RHS above is the capacity of the MSAF

channel with causal CSI, which equals 1− h
(

σ
2

)

[16]. Thus,

RPER(λ, ǫ, σ) ≤ 1−h
(

σ
2

)

. Recalling that RA(λ, ǫ, σ) = H(L)
and noticing that H(L) > 1− h

(

σ
2

)

concludes the proof.

Remark 4 This example actually demonstrates that [6, Theo-

rem 1] (which is a special case of Theorem 1, when RK = 0)

achieves strictly higher SM rates than [9, Theorem 1].

VI. A MISSING CONDITION IN A RECENTLY REPORTED

SK ACHIEVABILITY RESULT

In [10], a lower bound on the SK capacity of the GP-

WTC was reported. In our notation, [10, Theorem 1] states the

following lower bound on the GP-WTC’s SK capacity CSK
1

CSK ≥ RZib , max
[

I(V ;Y |U)− I(V ;Z|U)
]

, (8)

where the maximization is over all qU |V and qV,X|S satisfying

I(V ;Y ) ≥ I(V ;S). The underlying joint distribution is

WSqU |V qV,X|SWY,Z|S,X , where U − V − (S,X) − (Y,Z)
forms a Markov chain.

RZib suggests that no secrecy rate-loss is inflicted when

the inner layer is not decodable on its own by the legitimate

receiver, i.e., when I(U ;S) > I(U ;Y ). Consequently, RZib

seemingly attains higher SK rates than Theorem 1. However,

following the steps of the proof of [10, Theorem 1], it appears

1 [10, Theorem 1] considers a setting with state observations at the receiver
and the eavesdropper, and a public communication link. As Remark 1 explains,
this is simply a special case of the GP-WTC. It can be verified that [10,
Theorem 1] (in its original form) is recoverable from its restatement here.



that another condition was assumed without being explicitly

stated. Namely, the missing condition is I(U ;Y ) ≥ I(U ;S),
which would assure decodability of the inner code layer by the

legitimate receiver without relying on the outer layer. Taking

this additional constraint into consideration, our inner bound

recovers the amended Theorem 1 from [10] by setting RM =
0, V = (U, V ), and maximizing only over distributions that

satisfy I(U ;Y )− I(U ;S) > 0.

To verify that (8) is not achievable without the additional

constraint, consider the following setup.

• Let A, B and Q be three i.i.d. Ber( 12 ) random variables.

• Let T = t(A,B,Q), where

t(a, b, q) =

{

a, q = 0

b, q = 1
. (9)

• Let Ψ be a private (i.e., unobserved by the eavesdropper)

bib-pipe of rate 1.

Setting S = (A,B), X = Ψ, Y = (T,Q,Ψ) and Z = A ⊕
B, gives rise to the following operational problem. Consider

n rounds such that at each round i ∈ [1 : n], the encoder

observes two memoryless fair coin tosses, Ai and Bi (i.i.d.

copies of A and B). The decoder observes only one of them,

namely Ti, chosen at random, using a third memoryless fair

coin Qi. The decoder also observes Qi, which informs it if

Ti = Ai or Ti = Bi; the encoder does not know which coin the

decoder observed. The eavesdropper observes only the modulo

2 addition of the two coins. After n coin tossing rounds (recall

that CSI is non-causal in our setup), the encoder transmits n
bits to the decoder using the private bit-pipe. This transmission

is inaccessible to the eavesdropper. The legitimate parties wish

to agree upon a key that is kept secret from the eavesdropper.

A valid choice of random variables for (8) is

1) Ψ ∼ Ber( 12 ) independent of (A,B,Q),
2) U = Z = A⊕B,

3) V = (A,B,Ψ),

which achieves RZib = 2. Hence, by showing that the SK

capacity of the proposed setup is strictly less than 2, we

contradict the achievability of RZib. We do so by showing that

the vanishing average error probability and the weak secrecy

of the SK, used in the definition of achievability in [10], cannot

coexist in this setup while a SK rate of 2 is attained.

A formulation of the subsequently outlined ideas is found

in [13, Appendix B]. Assume a SK rate of 2 bits per channel

use is attainable. Thus, there exists a sequence of codes

{cn}n, inducing a sequence of SKs {Kn}n. The sequence

of keys approaches the rate of 2 bits, as n grows, while the

decoding error and the information leakage rate vanish. All

subsequent multi-letter entropy terms are taken with respect

to the distribution induced by the corresponding cn.

As stated in [13, Lemma 8], the rate assumption along with

the vanishing decoding error requirement imply

1

n
H(An, Bn|Kn) −−−−→

n→∞
0. (10)

This is proven in Appendix E of [13]; the proof utilizes the

statistical relations between the random variables in play, as

well as standard information identities. The meaning of (10) is

that, asymptotically, the coin realizations can be reconstructed

from the SK.

Then, we notice that the common randomness (CR) rate of

this setup [17], which upper-bounds the SK rate 1
n
H(Kn), is

2. Combining this observation with (10), it follows that

1

n
H(Kn|A

n, Bn) −−−−→
n→∞

0.

Thus, Kn and (An, Bn) are asymptotically recoverable from

one another, which means that the only way the encoder and

decoder can achieve a CR rate of 2, is by using the coin

realizations as their CR. Finally, since, in each round, the

eavesdropper observes Zi , Ai+Bi, we have 1
n
I(Kn;Z

n) ≈
1
n
I(An, Bn;Zn) = 1. This contradicts security.
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